Preview only show first 10 pages with watermark. For full document please download

슬라이드 1

   EMBED


Share

Transcript

PH435 High Linearity InGaP HBT Amplifier Features Applications Functional Diagram 1500MHz - 3000MHz Mobile Infrastructure 14.8 dB Gain at 2.3GHz PCS, WCDMA, WiBro +25 dBm P1dB W-LAN / ISM +42 dBm Output IP3 RFID / Fixed Wireless 4 3 2 1 Single Voltage Supply Function Pin No. Lead-free / Green / RoHS- RF IN 1 compliant SOT-89 Package RF OUT / Bias 3 Ground 2,4 Description The PH435 is a high performance InGaP HBT MMIC Amplifier and high linearity driver amplifier in a high quality SOT-89 package. The device features excellent Input and output return loss, highly linear performance. The device can be easily matched to obtain optimum power and linearity. The product is targeted for use as driver amplifier for wireless infrastructure applications. The PH435 operates from a single +5 voltage supply and have an internal active bias. All devices are 100% RF and DC tested Specifications Symbol S21 Parameters Gain Units Freq. Min. Typ. dB 1900 2140 2300 2600 MHz MHz MHz MHz 16.8 15.1 14.8 13.0 MHz MHz MHz MHz -17 -17 -14 -11 S11 Input Return Loss dB 1900 2140 2300 2600 S22 Output Return Loss dB 1900 2140 2300 2600 MHz MHz MHz MHz -17 -14 -14 -11 P1dB Output Power @1dB compression dBm 1900 2140 2300 2600 MHz MHz MHz MHz 25.5 25.5 25.5 26.0 OIP3 Output Third Order intercept dBm 1900 2140 2300 2600 MHz MHz MHz MHz 42.0 42.0 42.5 39.5 1900 2140 2300 2600 MHz MHz MHz MHz 3.1 3.0 3.2 3.9 NF Noise Figure dB V/I Device voltage / current V/mA 5/152 Rth Thermal Resistance °C/W 34 Max. Test Conditions : T=25°C, Supply Voltage=+5V, 50ohm System, OIP3 measured with two tones at an output power of +7dBm/tone separated by 1MHz. http://www.prewell.com 1 April 2014 PH435 High Linearity InGaP HBT Amplifier 1900 MHz Application Circuit Frequency 1900 MHz S21 : Gain 17.0 dB S11 : Input Return Loss -19 dB 5V 1uF S22 : Output Return Loss -19 dB Output P1dB +25.5 dBm Output IP3 @7dBm +42 dBm IS-95A Ch. Power @ -45dBc ACPR +19.0 dBm Noise Figure 3.1 dB 20pF 22nH RF IN 1.5pF 2.0pF RF OUT 1.0pF Gain vs. Frequency Supply Voltage 5V Current 152 mA Input Return Loss 0 -6 18 -10 -12 S22(dB) -5 16 -15 o 12 1800 1850 1900 1950 o +25 C o -40 C o +85 C -20 -25 1800 2000 1850 Frequency(MHz) 32 -18 +25 C o -40 C o +85 C o +25 C o -40 C o +85 C 14 Output Return Loss 0 20 S11(dB) Gain(dB) 22 20pF 50Ω/6mm 1900 1950 -24 -30 1800 2000 1850 Frequency(MHz) o +7dBm/tone, +25 C 50 1950 2000 OIP3 vs. Temperature Output IP3 vs. Frequency P1dB vs. Frequency 1900 Frequency(MHz) Freq=1900MHz, +7dBm/tone 46 30 44 26 24 40 o 1850 1900 1950 +25 C o -40 C o +85 C 35 30 1800 2000 40 1850 1900 1950 2000 2050 38 2100 ACPR IS-95 vs. Channel Power Frequency(MHz) Frequency(MHz) 6 42 o +25 C o -40 C o +85 C 22 20 1800 OIP3(dBm) OIP3(dBm) P1dB(dBm) 45 28 36 -40 -20 0 20 40 60 80 o Temperature( C) ACPR IS-95A vs. Channel Power Noise Figure vs. Frequency -40 IS-95, 9 Ch. Forward, 30 kHz Meas BW, 885 kHz offset -45 4 -50 ACPR(dBc) NF(dB) freq=1.9GHz 5 3 -60 2 1 0 1800 -55 -65 o +25 C -70 1850 1900 Frequency(MHz) 1950 2000 10 12 14 16 18 20 22 Output Channel Power(dBm) http://www.prewell.com 2 April 2014 PH435 High Linearity InGaP HBT Amplifier 2140 MHz Application Circuit Frequency 2140 MHz S21 : Gain 15.4 dB S11 : Input Return Loss -20 dB 5V 1uF S22 : Output Return Loss -16 dB Output P1dB +26.0 dBm Output IP3 @7dBm +42 dBm WCDMA Ch. Power @ -45dBc ACLR +17.0 dBm Noise Figure 3.0 dB 20pF 22nH RF IN 1.0pF 1.5pF 20 20pF 50Ω/6mm RF OUT 1.2pF Gain vs. Frequency Supply Voltage 5V Current 152 mA Input Return Loss 0 Output Return Loss 0 -5 16 -20 -10 14 S22(dB) -10 S11(dB) Gain(dB) o 18 -30 10 2050 +25 C o -40 C o +85 C 2100 +25 C o -40 C o +85 C -40 2150 2200 -50 2050 2250 2100 Frequency(MHz) 2200 OIP3(dBm) 24 22 2150 2200 44 40 6 +25 C o -40 C o +85 C 30 2050 40 2100 2150 2200 38 2250 Frequency(MHz) ACPR IS-95 vs. Channel Power Frequency(MHz) 42 o 35 2250 2250 Freq=2140MHz, +7dBm/tone 46 o +25 C o -40 C o +85 C 2200 OIP3 vs. Temperature o +7dBm/tone, +25 C 50 2150 Frequency(MHz) 45 2100 2100 Output IP3 vs. Frequency P1dB vs. Frequency 26 20 2050 -25 2050 2250 Frequency(MHz) 28 P1dB(dBm) 2150 -20 OIP3(dBm) 30 -15 o o 12 +25 C o -40 C o +85 C 36 -40 -20 0 20 40 60 80 o Temperature( C) W-CDMA ACLR vs. Channel Power Noise Figure vs. Frequency -40 3GPP W-CDMA, Test Model1 + 64DPCH, 5MHz offset freq=2.14GHz -45 ACLR(dBc) NF(dB) 5 4 3 -50 -55 2 o +25 C 1 2050 2100 2150 Frequency(MHz) 2200 2250 -60 10 12 14 16 18 20 Output Channel Power(dBm) http://www.prewell.com 3 April 2014 PH435 High Linearity InGaP HBT Amplifier 2300 MHz Application Circuit 5V Frequency 2300 MHz S21 : Gain 15.0 dB S11 : Input Return Loss -15 dB S22 : Output Return Loss -15 dB 1uF 20pF Output P1dB +25.5 dBm Output IP3 @7dBm +42.5 dBm Noise Figure 3.1 dB 22nH RF IN 2.0pF 1.8pF 1.2pF RF OUT 1.5pF Gain vs. Frequency Supply Voltage 5V Current 152 mA Input Return Loss 0 16 -10 -10 S22(dB) -5 S11(dB) -5 14 -15 o +25 C o -40 C o +85 C 12 2250 2300 2350 6 -15 o o +25 C o -40 C o +85 C -20 -25 2200 2400 2250 Frequency(MHz) 2300 2350 +25 C o -40 C o +85 C -20 -25 2200 2400 2250 Frequency(MHz) Noise Figure vs. Frequency 5 30 4 28 3 2 24 o +25 C o -40 C o +85 C o 2250 2300 2350 20 2200 2400 2250 2300 2350 2400 Frequency(MHz) Frequency(MHz) OIP3 vs. Temperature Output IP3 vs. Frequency Freq=2300MHz, +7dBm/tone o +7dBm/tone, +25 C 50 2400 26 +25 C 0 2200 2350 P1dB vs. Frequency 22 1 2300 Frequency(MHz) 32 P1dB(dBm) NF(dB) 46 44 45 OIP3(dBm) 10 2200 Output Return Loss 0 18 OIP3(dBm) Gain(dB) 20 20pF 50Ω/6mm 40 42 40 o +25 C o -40 C o +85 C 35 30 2200 2250 2300 2350 2400 2450 38 36 -40 2500 -20 0 20 40 60 80 o Frequency(MHz) Temperature( C) http://www.prewell.com 4 April 2014 PH435 High Linearity InGaP HBT Amplifier 2600 MHz Application Circuit 5V Frequency 2600 MHz S21 : Gain 13.0 dB S11 : Input Return Loss -12 dB S22 : Output Return Loss -11 dB 1uF 20pF Output P1dB +26.3 dBm Output IP3 @9dBm +39.5 dBm Noise Figure 3.9 dB 22nH RF IN 1.0pF 1.0pF 0.75pF RF OUT 1.5pF Gain vs. Frequency Supply Voltage 5V Current 152 mA Input Return Loss 0 16 -4 -4 14 -8 -8 12 8 2500 -12 +25℃ -40℃ +85℃ 10 2550 2600 2650 +25℃ -40℃ +85℃ -16 -20 2500 2700 2550 2650 -12 +25℃ -40℃ +85℃ -16 -20 2500 2700 2550 Frequency(MHz) Frequency(MHz) 8 2600 Output Return Loss 0 S22(dB) 18 S11(dB) Gain(dB) 20pF 50Ω/6mm Noise Figure vs. Frequency 2650 2700 Output IP3 vs. Frequency P1dB vs. Frequency 32 2600 Frequency(MHz) +9dBm/tone, +25oC 50 30 4 2 26 24 +25℃ -40℃ +85℃ 22 +25℃ 2550 2600 2650 20 2500 2700 2550 Frequency(MHz) 2600 2650 +25℃ -40℃ +85℃ 35 30 2500 2700 2550 2600 2650 2700 Frequency(MHz) 6FA W-CDMA ACLR vs. Channel Power Freq=2600MHz, +7dBm/tone 46 40 Frequency(MHz) OIP3 vs. Temperature -38 -41 3GPP W-CDMA 6FA, Test Model5 + w/8HSPDSCH freq=2.6GHz 44 ACLR(dBc) 0 2500 28 OIP3(dBm) P1dB(dBm) 45 OIP3(dBm) NF(dB) 6 42 -44 -47 -50 40 5MHz 10MHz -53 38 -40 -20 0 20 40 60 -56 10 80 Temperature(℃) 12 14 16 Output Channel Power(dBm) http://www.prewell.com 5 April 2014 PH435 High Linearity InGaP HBT Amplifier Absolute Maximum Ratings Parameter Rating Unit Supply Voltage +6 V Supply Current 220 mA RF Power Input 12 dBm Storage Temperature -55 to +125 °C Ambient Operating Temperature -40 to +85 °C Junction Temperature for >106 hours MTTF 187 °C Operation of this device above any of these parameters may cause permanent damage. Lead-free /RoHS Compliant / Green SOT-89 Package Outline Product Code Lot Number ESD / MSL Ratings 1. ESD sensitive device. Observe Handling Precautions. 2. ESD Rating : Class 1C(Passes at 1000V min.) Human Body Model (HBM), JESD22-A114 3. ESD Rating : Class IV (Passes at 1000V min.) Charged Device Model (CDM), JESD22-C101 4. MSL (Moisture Sensitive Level) Rating : Level 1 at +260°C Convection reflow, J-STD-020 Mounting Instructions Evaluation Board Layout (4x4) 1. Use a large ground pad area with many plated through-holes as shown. 2. We recommend 1 oz copper minimum. 3. Measurement for our data sheet was made on 0.8mm thick FR-4 Board. 4. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. 5. RF trace width depends on the board material and construction. 6. Add mounting screws near the part to fasten the board to a heatsink. http://www.prewell.com 6 April 2014