Preview only show first 10 pages with watermark. For full document please download

100 Mhz To 4000 Mhz Rf/if Digitally Controlled Vga Adl5243 Data Sheet

   EMBED


Share

Transcript

Data Sheet 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA ADL5243 FEATURES GENERAL DESCRIPTION Operating frequency from 100 MHz to 4000 MHz Digitally controlled VGA with serial and parallel interfaces 6-bit, 0.5 dB digital step attenuator 31.5 dB gain control range with ±0.25 dB step accuracy Gain Block Amplifier 1 Gain: 19.2 dB at 2140 MHz OIP3: 40.2 dBm at 2140 MHz P1dB: 19.8 dBm at 2140 MHz Noise figure: 2.9 dB at 2140 MHz ¼ W Driver Amplifier 2 Gain: 14.2 dB at 2140 MHz OIP3: 41.1 dBm at 2140 MHz P1dB: 26.0 dBm at 2140 MHz Noise figure: 3.7 dB at 2140 MHz Gain block, DSA, or ¼ W driver amplifier can be first Low quiescent current of 175 mA The companion ADL5240 integrates a gain block with DSA The ADL5243 is a high performance, digitally controlled variable gain amplifier operating from 100 MHz to 4000 MHz. The VGA integrates two high performance amplifiers and a digital step attenuator (DSA). Amplifier 1 (AMP1) is an internally matched gain block amplifier with 20 dB gain, and Amplifier 2 (AMP2) is a broadband ¼ W driver amplifier that requires very few external tuning components. The DSA is 6-bit with a 31.5 dB gain control range, 0.5 dB steps, and ±0.25 dB step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface. The gain block and DSA are internally matched to 50 Ω at their inputs and outputs, and all three internal devices are separately biased. The separate bias allows all or part of the ADL5243 to be used, which allows for easy reuse throughout a design. The pinout of the ADL5243 also enables the gain block, DSA, or ¼ W driver amplifier to be first, giving the VGA maximum flexibility in a signal chain. APPLICATIONS The ADL5243 consumes 175 mA and operates off a single supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully specified for operation from −40°C to +85°C. A fully populated evaluation board is available. Wireless infrastructure Automated test equipment RF/IF gain control SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6 FUNCTIONAL BLOCK DIAGRAM 32 31 30 29 28 27 26 25 VDD 1 24 VDD NC 2 23 NC NC 3 22 NC 21 DSAOUT 20 NC 19 AMP2IN 18 NC 17 NC SERIAL/PARALLEL INTERFACE DSAIN 4 0.5dB 1dB 2dB 4dB 8dB 16dB NC 5 AMP1OUT/VCC 6 NC 7 AMP2 AMP1 14 15 16 VBIAS NC 13 AMP2OUT/VCC2 AMP1IN 12 NC 11 NC 10 NC 9 NC NC 8 09431-001 ADL5243 Figure 1. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved. ADL5243 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  Basic Layout Connections ......................................................... 22  Applications ....................................................................................... 1  SPI Timing................................................................................... 23  General Description ......................................................................... 1  ADL5243 Amplifier 2 Matching .............................................. 25  Functional Block Diagram .............................................................. 1  ADL5243 Loop Performance .................................................... 31  Revision History ............................................................................... 2  Proper Driving Level for the Optimum ACLR ...................... 32  Specifications..................................................................................... 3  Thermal Considerations............................................................ 32  Absolute Maximum Ratings.......................................................... 10  ESD Caution ................................................................................ 10  Soldering Information and Recommended PCB Land Pattern ....................................................................................................... 32  Pin Configuration and Function Descriptions ........................... 11  Evaluation Board ............................................................................ 33  Typical Performance Characteristics ........................................... 12  Outline Dimensions ....................................................................... 38  Applications Information .............................................................. 22  Ordering Guide .......................................................................... 38  REVISION HISTORY 8/12—Rev. A to Rev. B Changes to General Description Section ....................................... 1 Changes to Table 1 ............................................................................. 3 Changes to Table 3 ...........................................................................11 Changes to Figure 3 .........................................................................12 Changes to Figure 33 .......................................................................17 Added Figure 47 and Figure 49, Renumbered Sequentially ......19 Change to Figure 58 ........................................................................22 Changes to ADL5243 Amplifier 2 Matching Section, Table 8, and Table 9 ........................................................................................25 Added Figure 61 and Figure 62......................................................26 Changes to Figure 63 and Figure 64 ..............................................27 Added Figure 65; Changes to Figure 66........................................28 Added Figure 67; Changes to Figure 68........................................29 Added Figure 69...............................................................................30 Changes to ADL5243 Loop Performance Section; Added Figure 71, Figure 72, and Table 10, Renumbered Sequentially....... 31 Added Proper Driving Level for the Optimum ACLR Section and Figure 73.................................................................................... 32 Changes to Evaluation Board Section and Table 11 ................... 33 Changes to Figure 75....................................................................... 34 Added Figure 76 .............................................................................. 35 Changes to Figure 77 and Figure 78.............................................. 36 Added Figure 79 .............................................................................. 37 8/11—Rev. 0 to Rev. A Changes to Features Section ............................................................1 7/11—Revision 0: Initial Version Rev. B | Page 2 of 40 Data Sheet ADL5243 SPECIFICATIONS VDD = 5 V, VCC = 5 V, VCC2 = 5 V, TA = 25°C. Table 1. Parameter OVERALL FUNCTION Frequency Range AMPLIFIER 1 FREQUENCY = 150 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 450 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 748 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 943 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure Conditions Min Typ 100 Max Unit 4000 MHz Using the AMP1IN and AMP1OUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 3 dBm/tone 18.2 ±0.97 ±0.07 ±0.03 −10.4 −8.2 18.4 29.5 2.8 dB dB dB dB dB dB dBm dBm dB 20.6 ±0.10 ±0.36 ±0.01 −17.8 −16.5 19.5 38.4 2.8 dB dB dB dB dB dB dBm dBm dB 20.8 ±0.02 ±0.32 ±0.01 −22.0 −21.6 19.6 39.6 2.7 dB dB dB dB dB dB dBm dBm dB Using the AMP1IN and AMP1OUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 3 dBm/tone Using the AMP1IN and AMP1OUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 3 dBm/tone Using the AMP1IN and AMP1OUT pins 19.0 ±18 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 18.5 ∆f = 1 MHz, POUT = 3 dBm/tone Rev. B | Page 3 of 40 20.3 ±0.01 ±0.28 ±0.02 −24.0 −21.5 19.9 40.4 2.7 22.0 dB dB dB dB dB dB dBm dBm dB ADL5243 Parameter AMPLIFIER 1 FREQUENCY = 1960 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 2140 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 2630 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 1 FREQUENCY = 3600 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 150 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure Data Sheet Conditions Using the AMP1IN and AMP1OUT pins Min Typ Max 19.5 ±0.02 ±0.26 ±0.04 −13.5 −12.4 19.6 40.4 2.9 ±30 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 3 dBm/tone Unit dB dB dB dB dB dB dBm dBm dB Using the AMP1IN and AMP1OUT pins 17.5 ±30 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 17.5 ∆f = 1 MHz, POUT = 3 dBm/tone 19.2 ±0.02 ±0.26 ±0.05 −13.3 −12.2 19.8 40.2 2.9 21.5 dB dB dB dB dB dB dBm dBm dB 19.0 ±0.03 ±0.22 ±0.05 −17.3 −12.3 19.5 39.5 2.9 21.5 dB dB dB dB dB dB dBm dBm dB Using the AMP1IN and AMP1OUT pins 17.5 ±60 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 17.5 ∆f = 1 MHz, POUT = 3 dBm/tone Using the AMP1IN and AMP1OUT pins ±100 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 3 dBm/tone 18.0 ±0.10 ±0.05 ±0.12 −30.7 −9.0 18.0 34.6 3.3 dB dB dB dB dB dB dBm dBm dB 20.8 ±1.1 ±0.3 ±0.03 −11.0 −6.5 22.8 40.6 6.3 dB dB dB dB dB dB dBm dBm dB Using the AMP2IN and AMP2OUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Rev. B | Page 4 of 40 Data Sheet Parameter AMPLIFIER 2 FREQUENCY = 450 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 748 MHz Gain vs. Frequency Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 943 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 1960 MHz Gain vs. Frequency Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 2140 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure ADL5243 Conditions Using the AMP2IN and AMP2OUT pins Min ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Typ Max Unit 16.4 ±0.5 ±0.35 ±0.07 −9.0 −8.0 23.2 38.1 6.2 dB dB dB dB dB dB dBm dBm dB 17.5 ±0.14 −14 −8.6 24.7 41.5 5.6 dB dB dB dB dBm dBm dB 16.5 ±0.05 ±0.39 ±0.10 −11.2 −8.1 25.0 43.3 5.3 dB dB dB dB dB dB dBm dBm dB 14.9 ±0.15 −14 −7.0 26.0 39.9 3.73 dB dB dB dB dBm dBm dB Using the AMP2IN and AMP2OUT pins ±50 MHz S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Using the AMP2IN and AMP2OUT pins ±18 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Using the AMP2IN and AMP2OUT pins ±30 MHz S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Using the AMP2IN and AMP2OUT pins 13.0 ±30 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Rev. B | Page 5 of 40 14.2 ±0.03 ±0.50 ±0.09 −10.7 −8.1 26.0 41.1 3.7 15.5 dB dB dB dB dB dB dBm dBm dB ADL5243 Parameter AMPLIFIER 2 FREQUENCY = 2630 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER 2 FREQUENCY = 3600 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure DSA FREQUENCY = 150 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept DSA FREQUENCY = 450 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept DSA FREQUENCY = 748 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept Data Sheet Conditions Using the AMP2IN and AMP2OUT pins ±60 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Min Typ Max Unit 13.0 ±0.13 ±0.56 ±0.09 −9.4 −8.3 24.5 40.4 4.1 dB dB dB dB dB dB dBm dBm dB 12.3 ±1.23 ±1.05 ±0.07 −15.0 −11.0 26.2 36.2 5.5 dB dB dB dB dB dB dBm dBm dB −1.5 ±0.12 ±0.10 28.8 ±0.18 ±1.35 −13.5 −13.3 48.2 dB dB dB dB dB dB dB dB dBm −1.4 ±0.02 ±0.12 30.7 ±0.14 ±0.39 −17.7 −17.4 44.0 dB dB dB dB dB dB dB dB dBm −1.5 ±0.02 ±0.12 30.9 ±0.15 ±0.30 −17.1 −17.1 44.0 dB dB dB dB dB dB dB dB dBm Using the AMP2IN and AMP2OUT pins ±200 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Rev. B | Page 6 of 40 Data Sheet Parameter DSA FREQUENCY = 943 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 1960 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 2140 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 2630 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept ADL5243 Conditions Using the DSAIN and DSAOUT pins, minimum attenuation ±18 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±30 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±30 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins, minimum attenuation ±60 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Rev. B | Page 7 of 40 Min Typ Max Unit −1.6 ±0.01 ±0.13 30.9 ±0.15 ±0.28 −16.0 −15.9 30.5 50.7 dB dB dB dB dB dB dB dB dBm dBm −2.5 ±0.04 ±0.18 30.8 ±0.15 ±0.35 −10.3 −9.6 31.5 49.6 dB dB dB dB dB dB dB dB dBm dBm −2.6 ±0.02 ±0.19 30.9 ±0.13 ±0.32 −9.8 −9.3 31.5 49.6 dB dB dB dB dB dB dB dB dBm dBm −2.8 ±0.02 ±0.21 31.2 ±0.18 ±0.24 −10.0 −9.6 31.5 48.3 dB dB dB dB dB dB dB dB dBm dBm ADL5243 Parameter DSA FREQUENCY = 3600 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA Gain Settling Minimum Attenuation to Maximum Attenuation Maximum Attenuation to Minimum Attenuation LOOP FREQUENCY = 150 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOOP FREQUENCY = 450 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOOP FREQUENCY = 943 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOOP FREQUENCY = 2140 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure Data Sheet Conditions Using the DSAIN and DSAOUT pins, minimum attenuation ±100 MHz −40°C ≤ TA ≤ +85°C Between maximum and minimum attenuation states All attenuation states All attenuation states ∆f = 1 MHz, POUT = 5 dBm/tone Using the DSAIN and DSAOUT pins Min Typ Max Unit −3.0 ±0.02 ±0.23 31.7 ±0.38 ±0.35 −12.3 −11.7 31.0 46.2 dB dB dB dB dB dB dB dB dBm dBm 36 ns 36 ns 37.4 ±0.1 28.0 −10.0 −7.0 22.5 38.5 3.0 dB dB dB dB dB dBm dBm dB 35.8 ±0.43 31.0 −12.5 −6.4 23.1 37.6 3.1 dB dB dB dB dB dBm dBm dB 34.0 ±0.10 29.3 −14.2 −10.1 25.1 42.8 2.9 dB dB dB dB dB dBm dBm dB 31.3 ±0.03 32.5 −9.3 −5.4 25.3 40.0 3.1 dB dB dB dB dB dBm dBm dB AMP1 – DSA – AMP2, DSA at minimum attenuation ±50 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone AMP1 – DSA – AMP2, DSA at minimum attenuation ±50 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone AMP1–DSA–AMP2, DSA at minimum attenuation ±18 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone AMP1 – DSA – AMP2, DSA at minimum attenuation ±30 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Rev. B | Page 8 of 40 Data Sheet Parameter LOOP FREQUENCY = 2630 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOOP FREQUENCY = 3600 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOGIC INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINH/IINL Input Capacitance, CIN POWER SUPPLIES Voltage Supply Current ADL5243 Conditions AMP1 – DSA – AMP2, DSA at minimum attenuation Min ±60 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone Typ Max Unit 29.5 ±0.56 30.0 −12.6 −5.8 24.6 39.3 3.1 dB dB dB dB dB dBm dBm dB 26.5 ±1.3 33.0 −8.0 −8.0 24.7 36.0 3.7 dB dB dB dB dB dBm dBm dB AMP1 – DSA – AMP2, DSA at minimum attenuation ±200 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 5 dBm/tone CLK, DATA, LE, SEL, D0~D6 2.5 0.8 0.1 1.5 4.75 AMP1 AMP2 DSA Rev. B | Page 9 of 40 5.0 89 86 0.5 5.25 120 120 V V µA pF V mA mA mA ADL5243 Data Sheet ABSOLUTE MAXIMUM RATINGS ESD CAUTION Table 2. Parameter Supply Voltage (VDD, VCC, VCC2) Input Power AMP1IN AMP2IN (50 Ω Impedance) DSAIN Internal Power Dissipation θJA (Exposed Paddle Soldered Down) θJC (Exposed Paddle) Maximum Junction Temperature Lead Temperature (Soldering, 60 sec) Operating Temperature Range Storage Temperature Range Rating 6.5 V 16 dBm 20 dBm 30 dBm 1.0 W 34.8°C/W 6.2°C/W 150°C 240°C −40°C to +85°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. B | Page 10 of 40 Data Sheet ADL5243 32 31 30 29 28 27 26 25 SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 PIN 1 INDICATOR ADL5243 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 VDD NC NC DSAOUT NC AMP2IN NC NC NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND. 09431-002 NC AMP1IN NC NC NC NC AMP2OUT/VCC2 VBIAS 9 10 11 12 13 14 15 16 VDD NC NC DSAIN NC AMP1OUT/VCC NC NC Figure 2. Pin Configuration Table 3. Pin Function Descriptions Pin No. 1, 24 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 17, 18, 20, 22, 23 4 6 Mnemonic VDD NC Description Supply Voltage for DSA. Connect this pin to a 5 V supply. No Connect. Do not connect to this pin. DSAIN AMP1OUT/VCC 10 15 AMP1IN AMP2OUT/VCC2 16 19 21 25 26 27 28 29 30 31 32 VBIAS AMP2IN DSAOUT D6 D5 D4 D3 D2/LE D1/DATA D0/CLK SEL RF Input to DSA. RF Output from Amplifier 1/Supply Voltage for Amplifier 1. Bias to Gain Block Amplifier 1 is provided through a choke to this pin when connected to VCC. RF Input to Gain Block Amplifier 1. RF Output from Amplifier 2/Supply Voltage for Amplifier 2. Bias to Driver Amplifier 2 is provided through a choke to this pin when connected to VCC2. Bias for Driver Amplifier 2. RF Input to Amplifier 2. RF Output from DSA. Data Bit in Parallel Mode (LSB). Connect to supply in serial mode. Data Bit in Parallel Mode. Connect to ground in serial mode. Data Bit in Parallel Mode. Connect to ground in serial mode. Data Bit in Parallel Mode. Connect to ground in serial mode. Data Bit in Parallel Mode/Latch Enable in Serial Mode. Data Bit in Parallel Mode (MSB)/Data in Serial Mode. Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode. Select Pin. For parallel mode operation , connect this pin to the supply. For serial mode operation, connect this pin to ground. Exposed Paddle. The exposed paddle must be connected to ground. EPAD Rev. B | Page 11 of 40 ADL5243 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 28 45 26 40 24 35 22 30 20 25 18 20 OIP3 40 35 P1dB (dBm) GAIN 25 20 15 P1dB 10 0 0.4 0.8 1.2 1.6 +85°C +25°C –40°C 16 NOISE FIGURE 2.0 2.4 2.8 3.2 3.6 4.0 FREQUENCY (GHz) 0 0.4 0.8 1.2 1.6 2.0 2.8 3.2 FREQUENCY (GHz) 42 21.5 40 21.0 38 943MHz 450MHz 748MHz 36 1960MHz 20.5 2140MHz 34 OIP3 (dBm) –40°C 19.5 +25°C 2630MHz 32 30 3600MHz 28 +85°C 18.5 2.4 Figure 6. AMP1: OIP3 at POUT = 3 dBm/Tone and P1dB vs. Frequency and Temperature 22.0 19.0 10 3.6 14 Figure 3. AMP1: Gain, P1dB, OIP3 at POUT = 3 dBm/Tone and Noise Figure vs. Frequency 20.0 15 09431-006 5 0 150MHz 26 18.0 24 17.5 22 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 FREQUENCY (GHz) 20 –4 09431-004 17.0 –2 0 2 4 6 8 10 12 14 16 3.6 4.0 POUT PER TONE (dBm) 09431-007 GAIN (dB) OIP3 (dBm) 30 09431-003 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 45 Figure 7. AMP1: OIP3 vs. POUT and Frequency Figure 4. AMP1: Gain vs. Frequency and Temperature 5.0 0 –5 4.5 S22 –15 NOISE FIGURE (dB) S-PARAMETERS (dB) –10 S11 –20 S12 –25 –30 –35 4.0 +85°C 3.5 3.0 +25°C 2.5 –40°C –40 2.0 0.5 0.9 1.3 1.7 2.1 2.5 FREQUENCY (GHz) 2.9 3.3 3.7 4.1 Figure 5. AMP1: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency Rev. B | Page 12 of 40 1.5 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 FREQUENCY (GHz) Figure 8. AMP1: Noise Figure vs. Frequency and Temperature 09431-008 –50 0.1 09431-005 –45 Data Sheet ADL5243 27.0 45 26.5 43 26.0 41 25.5 39 25.0 37 40 35 P1dB (dBm) 30 P1dB 25 20 GAIN 15 10 24.5 NF 5 0 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 FREQUENCY (GHz) 24.0 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 33 0.965 FREQUENCY (GHz) Figure 9. AMP2–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency Figure 12. AMP2–943 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs. Frequency and Temperature 18.0 45 44 17.5 961MHz 43 925MHz OIP3 (dBm) –40°C 17.0 GAIN (dB) 35 +85°C +25°C –40°C 09431-012 45 OIP3 (dBm) OIP3 09431-009 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 50 +25°C 16.5 +85°C 16.0 42 943MHz 41 40 39 15.5 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 FREQUENCY (GHz) 37 –4 09431-010 7.5 –5 7.0 S22 4 6 8 10 12 14 16 18 6.5 –10 NOISE FIGURE (dB) S-PARAMETERS (dB) 2 Figure 13. AMP2–943 MHz: OIP3 vs. POUT and Frequency 0 S11 –20 –25 +85°C 6.0 5.5 +25°C 5.0 –40°C –40°C 4.5 S12 –30 4.0 0.85 0.90 0.95 1.00 FREQUENCY (GHz) 1.05 1.10 3.5 0.80 09431-011 –35 0.80 0 POUT PER TONE (dBm) Figure 10. AMP2–943 MHz: Gain vs. Frequency and Temperature –15 –2 Figure 11. AMP2–943 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency 0.83 0.86 0.89 0.92 0.95 0.98 FREQUENCY (GHz) 1.01 1.04 1.07 1.10 09431-014 15.0 0.925 09431-013 38 Figure 14. AMP2–943 MHz: Noise Figure vs. Frequency and Temperature Rev. B | Page 13 of 40 ADL5243 Data Sheet 28.0 43 27.5 41 27.0 39 26.5 37 26.0 35 OIP3 40 30 P1dB (dBm) P1dB 25 20 GAIN 15 OIP3 (dBm) 35 10 +85°C +25°C –40°C 0 2.11 2.12 2.13 2.14 2.15 2.16 2.17 FREQUENCY (GHz) Figure 15. AMP2–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency 25.0 2.11 2.12 2.13 33 2.14 2.15 31 2.17 2.16 09431-018 25.5 NF 5 09431-015 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 45 FREQUENCY (GHz) Figure 18. AMP2–2140 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs. Frequency and Temperature 16.0 42 15.5 41 14.5 +25°C 14.0 +85°C 40 38 13.5 37 13.0 36 12.5 35 12.0 2.11 2.12 2.13 2.14 2.15 2.16 2.17 FREQUENCY (GHz) 2.14GHz 39 34 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 POUT PER TONE (dBm) 09431-019 –40°C OIP3 (dBm) 15.0 09431-016 GAIN (dB) 2.17GHz 2.11GHz Figure 19. AMP2–2140 MHz: OIP3 vs. POUT and Frequency Figure 16. AMP2–2140 MHz: Gain vs. Frequency and Temperature 5.5 0 5.0 –5 S22 –15 –20 4.0 +25°C 3.5 –40°C 3.0 S12 –25 2.5 2.05 2.10 2.15 2.20 FREQUENCY (GHz) 2.25 2.30 2.0 2.00 09431-017 –30 2.00 +85°C 4.5 Figure 17. AMP2–2140 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency 2.03 2.06 2.09 2.12 2.15 2.18 FREQUENCY (GHz) 2.21 2.24 2.27 2.30 09431-020 –10 NOISE FIGURE (dB) S-PARAMETERS (dB) S11 Figure 20. AMP2–2140 MHz: Noise Figure vs. Frequency and Temperature Rev. B | Page 14 of 40 ADL5243 OIP3 40 35 P1dB (dBm) 30 P1dB 25 20 42.0 27.5 41.5 27.0 41.0 26.5 40.5 26.0 40.0 25.5 39.5 25.0 39.0 24.5 38.5 38.0 24.0 NF 5 2.59 +85°C +25°C –40°C 23.5 2.61 2.63 2.65 2.67 2.69 FREQUENCY (GHz) Figure 21. AMP2–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency 23.0 2.57 2.59 2.61 2.65 37.0 2.69 2.67 FREQUENCY (GHz) 42 2.69GHz 41 14.5 2.63GHz 40 39 –40°C 2.57GHz 38 OIP3 (dBm) 13.5 GAIN (dB) 2.63 Figure 24. AMP2–2630 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs. Frequency and Temperature 15.0 14.0 37.5 09431-024 10 0 2.57 28.0 GAIN 15 09431-021 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 45 OIP3 (dBm) Data Sheet +25°C 13.0 +85°C 12.5 37 36 35 34 33 12.0 32 11.5 2.61 2.63 2.65 2.67 2.69 FREQUENCY (GHz) 30 –6 –2 0 2 4 6 8 10 12 14 16 18 20 22 POUT PER TONE (dBm) Figure 22. AMP2–2630 MHz: Gain vs. Frequency and Temperature Figure 25. AMP2–2630 MHz: OIP3 vs. POUT and Frequency 0 6.0 5.5 –5 S11 5.0 NOISE FIGURE (dB) S-PARAMETERS (dB) –4 09431-025 2.59 09431-022 11.0 2.57 31 –10 S22 –15 –20 S12 +85°C 4.5 +25°C 4.0 3.5 –40°C 3.0 –25 2.55 2.60 2.65 2.70 FREQUENCY (GHz) 2.75 2.80 2.0 2.50 09431-023 –30 2.50 Figure 23. AMP2–2630 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency 2.53 2.56 2.59 2.62 2.65 2.68 FREQUENCY (GHz) 2.71 2.74 2.77 2.80 09431-026 2.5 Figure 26. AMP2–2630 MHz: Noise Figure vs. Frequency and Temperature Rev. B | Page 15 of 40 ADL5243 Data Sheet 0 1.0 0dB 450MHz 748MHz 943MHz 0.8 –5 1960MHz 2140MHz 2630MHz 3600MHz 0.6 ABSOLUTE ERROR (dB) ATTENUATION (dB) –10 –15 –20 –25 –30 0.4 0.2 0 –0.2 –0.4 –0.6 –35 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 FREQUENCY (GHz) –1.0 09431-027 –40 0.1 0 24 28 32 –5 INPUT RETURN LOSS (dB) ATTENUATION (dB) 20 0 4dB 8dB –11 16 Figure 30. DSA: Absolute Error vs. Attenuation 0dB –6 12 ATTENUATION (dB) Figure 27. DSA: Attenuation vs. Frequency –1 8 4 09431-030 –0.8 31.5dB –16 16dB –21 +85°C +25°C –40°C –26 0dB –10 –15 31.5dB –20 –25 –31 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 FREQUENCY (GHz) 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 Figure 31. DSA: Input Return Loss vs. Frequency, All States 0.5 0 1960MHz 2140MHz 2630MHz 3600MHz 0.3 –5 OUTPUT RETURN LOSS (dB) 450MHz 748MHz 943MHz 4.1 FREQUENCY (GHz) Figure 28. DSA: Attenuation vs. Frequency and Temperature 0.4 0.2 0.1 0 –0.1 –0.2 –0.3 0dB –10 –15 31.5dB –20 –25 –0.5 0 4 8 12 16 20 24 ATTENUATION (dB) 28 32 –30 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 FREQUENCY (GHz) Figure 32. DSA: Output Return Loss vs. Frequency, All States Figure 29. DSA: Step Error vs. Attenuation Rev. B | Page 16 of 40 09431-032 –0.4 09431-029 STEP ERROR (dB) –30 0.1 09431-028 0.5 09431-031 31.5dB –36 0.1 Data Sheet ADL5243 55 36 150 1960MHz IIP3 35 50 100 33 40 PHASE (Degrees) 45 IIP3 (dBm) 34 35 32 50 2630MHz 0 –50 IP1dB 30 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 25 3.6 –150 FREQUENCY (GHz) 943MHz 0 4 8 12 16 20 24 28 32 960 965 ATTENUATION (dB) 09431-036 –100 09431-033 30 31 Figure 36. DSA: Phase vs. Attenuation Figure 33. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum Attenuation State 3 CH3 2.00V CH4 200mV M10ns 10GS/s A CH3 IT 1.0ps/pt 1.24V 40 GAIN 35 30 P1dB 25 20 15 10 NF 5 0 925 09431-034 4 OIP3 45 930 935 940 945 950 955 FREQUENCY (MHz) 09431-037 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 50 Figure 37. Loop–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency, Minimum Attenuation State Figure 34. DSA: Gain Settling Time, 0 dB to 31.5 dB 0 S22 –10 S-PARAMETERS (dB) –20 3 4 S11 –30 –40 –50 S12 –60 –70 CH3 2.00V CH4 200mV M10ns 10GS/s A CH3 IT 1.0ps/pt 1.24V Figure 35. DSA: Gain Settling Time, 31.5 dB to 0 dB –90 0.70 0.75 0.80 0.85 0.90 0.95 FREQUENCY (GHz) 1.00 1.05 1.10 09431-038 –80 09431-035 IP1dB (dBm) 2140MHz Figure 38. Loop–943 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State Rev. B | Page 17 of 40 ADL5243 Data Sheet 42 46 925MHz 2.14GHz 943MHz 961MHz 40 OIP3 (dBm) 42 OIP3 (dBm) 2.11GHz 41 44 40 38 2.17GHz 39 38 37 36 36 34 6 8 10 12 14 16 18 20 22 POUT PER TONE (dBm) 34 1 11 13 15 17 19 21 35 GAIN 30 P1dB 25 20 15 10 NF 5 2.12 2.13 2.14 2.15 2.16 2.17 Figure 40. Loop–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency, Minimum Attenuation State OIP3 40 35 GAIN 30 P1dB 25 20 15 10 5 0 2.57 NF 2.59 2.61 2.63 2.65 2.67 2.69 FREQUENCY (GHz) 09431-043 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 40 09431-040 NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm) 9 45 OIP3 FREQUENCY (GHz) Figure 43. Loop–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise Figure vs. Frequency, Minimum Attenuation State 5 5 0 0 S22 –10 S22 –5 S-PARAMETERS (dB) –5 S-PARAMETERS (dB) 7 Figure 42. Loop–2140 MHz: OIP3 vs. POUT and Frequency, Minimum Attenuation State 45 S11 –15 –20 –25 –30 –10 S11 –15 –20 –25 –30 –35 –35 S12 –40 S12 –40 –45 2.05 2.10 2.15 2.20 FREQUENCY (GHz) 2.25 2.30 –50 2.50 09431-041 –45 2.00 5 POUT PER TONE (dBm) Figure 39. Loop–943 MHz: OIP3 vs. POUT and Frequency, Minimum Attenuation State 0 2.11 3 Figure 41. Loop–2140 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State 2.55 2.60 2.65 2.70 2.75 FREQUENCY (GHz) 2.80 2.85 2.90 09431-044 4 09431-039 32 09431-042 35 Figure 44. Loop–2630 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State Rev. B | Page 18 of 40 Data Sheet ADL5243 110 42 105 2.69GHz 100 SUPPLY CURRENT (mA) 2.63GHz 40 38 2.57GHz 37 36 80 70 6 8 10 12 POUT PER TONE (dBm) 14 16 18 60 –40 –30 –20 –10 09431-045 4 0 10 20 30 40 50 60 70 80 90 TEMPERATURE (°C) Figure 45. Loop–2630 MHz: OIP3 vs. POUT and Frequency, Minimum Attenuation State Figure 48. AMP2: Supply Current vs. Voltage and Temperature 150 145 140 110 SUPPLY CURRENT (mA) 105 100 95 5.25V 90 5.00V 85 4.75V 80 0 10 20 30 40 50 60 70 80 90 TEMPERATURE (°C) 09431-046 70 –40 –30 –20 –10 Figure 46. AMP1: Supply Current vs. Voltage and Temperature 105 100 –40°C 95 +25°C 90 85 +85°C 80 –2 0 2 4 6 8 10 12 14 16 18 20 POUT PER TONE (dBm) 22 09431-147 75 –4 135 130 125 120 115 110 105 100 95 90 85 80 75 70 –6 –4 –2 75 70 –6 4.75V 75 65 2 5.00V 5.00V 85 34 0 SUPPLY CURRENT (mA) 90 35 33 SUPPLY CURRENT (mA) 5.25V 95 Figure 47. AMP1: Supply Current vs. POUT and Temperature Rev. B | Page 19 of 40 +25°C +85°C –40°C 0 2 4 6 8 10 12 14 16 18 20 22 24 26 POUT PER TONE (dBm) Figure 49. AMP2: Supply Current vs. POUT and Temperature 09431-149 OIP3 (dBm) 39 09431-047 41 Data Sheet 45 100 40 90 35 80 PERCENTAGE (%) 30 25 20 15 70 60 50 40 30 10 3.8 NOISE FIGURE (dB) 09431-051 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.3 20.0 GAIN (dB) 09431-048 19.9 19.8 19.7 19.6 19.5 19.4 19.3 19.2 19.1 19.0 18.9 18.8 18.7 18.6 18.5 18.4 0 18.3 10 0 2.4 20 5 2.5 PERCENTAGE (%) ADL5243 Figure 53. AMP1: Noise Figure Distribution at 2140 MHz Figure 50. AMP1: Gain Distribution at 2140 MHz 40 25 35 20 PERCENTAGE (%) PERCENTAGE (%) 30 15 10 25 20 15 10 5 15.0 GAIN (dB) 09431-052 14.9 26.9 14.8 14.7 14.6 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 26.8 P1dB (dBm) 0 09431-049 20.5 20.4 20.3 20.2 20.1 20.0 19.9 19.8 19.7 19.6 19.5 19.4 19.3 19.2 19.1 19.0 18.9 0 18.8 5 Figure 54. AMP2: Gain Distribution at 2140 MHz Figure 51. AMP1: P1dB Distribution at 2140 MHz 50 35 45 30 40 PERCENTAGE (%) 20 15 35 30 25 20 15 10 10 5 5 P1dB (dBm) Figure 52. AMP1: OIP3 Distribution at 2140 MHz Figure 55. AMP2: P1dB Distribution at 2140 MHz Rev. B | Page 20 of 40 09431-053 26.7 26.6 26.5 26.4 26.3 26.2 26.1 26.0 25.9 25.8 25.7 25.6 25.5 25.4 OIP3 (dBm) 0 25.3 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 25.2 0 09431-050 PERCENTAGE (%) 25 Data Sheet ADL5243 70 60 60 50 PERCENTAGE (%) 40 30 40 30 20 20 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 0 3.1 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 OIP3 (dBm) 3.0 0 NOISE FIGURE (dB) Figure 57. AMP2: Noise Figure Distribution at 2140 MHz Figure 56. AMP2: OIP3 Distribution at 2140 MHz Rev. B | Page 21 of 40 09431-055 10 10 09431-054 PERCENTAGE (%) 50 ADL5243 Data Sheet APPLICATIONS INFORMATION BASIC LAYOUT CONNECTIONS The basic connections for operating the ADL5243 are shown in Figure 58. The schematic of AMP2 is configured for 2140 MHz operation. SERIAL PARALLEL INTERFACE VDD VDD 0.01µF C17 1 2 3 4 DSAIN AMP1OUT L1 470nH C15 68pF NC NC NC DSAIN AMP1OUT/VCC NC NC NC AMP2IN NC NC 24 23 22 C5 100pF C21 0.1µF DSAOUT 21 20 19 18 17 AMP2IN C27 2.2pF C28 1.8pF C8 10pF VCC2 9 10 11 12 13 14 15 16 C14 1.2nF C13 1µF DSAOUT ADL5243 NC 6 8 VDD NC 5 7 C4 0.1µF VDD NC AMP1IN NC NC NC NC AMP2OUT/VCC2 VBIAS C1 100pF SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6 32 31 30 29 28 27 26 25 L2 9.5nH C3 10pF AMP1IN C22 1pF C25 10nF C20 10µF VCC AMP2OUT Figure 58. Basic Connections Rev. B | Page 22 of 40 09431-056 C23 10pF Data Sheet ADL5243 Amplifier 1 Power Supply AMP1 in the ADL5243 is a broadband gain block. The dc bias is supplied through Inductor L1 and is connected to the AMP1OUT pin. Three decoupling capacitors (C13, C14, and C25) are used to prevent RF signals from propagating on the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC test pin. Amplifier 1 RF Input Interface Additionally, bias is provided through this pin. Figure 58 shows the output matching components and is configured for 2140 MHz. DSA RF Input Interface Pin 4 is the RF input for the DSA of the ADL5243. The input impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C1) is required. DSA RF Output Interface Pin 10 is the RF input for AMP1 of the ADL5243. The amplifier is internally matched to 50 Ω at the input; therefore, no external components are required. Only a dc blocking capacitor (C21) is required. Amplifier 1 RF Output Interface Pin 21 is the RF output for the DSA of the ADL5243. The output impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C5) is required. DSA SPI Interface Pin 6 is the RF output for AMP1 of the ADL5243. The amplifier is internally matched to 50 Ω at the output as well; therefore, no external components are required. Only a dc blocking capacitor (C4) is required. The bias is provided through this pin via a choke inductor, L1. Amplifier 2 Power Supply The collector bias for AMP2 is supplied through Inductor L2 and is connected to the AMP2OUT pin, whereas the base bias is provided through Pin 16. The base bias is connected to the same supply pin as the collector bias. Three decoupling capacitors (C3, C20, and C25) are used to prevent RF signals from propagating on the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC2 test pin. The DSA of the ADL5243 can operate in either serial or parallel mode. Pin 32 (SEL) controls the mode of operation. For serial mode operation, connect SEL to ground, and for parallel mode operation, connect SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are the data bits, with D6 being the LSB. Connect Pin 31 (D0) to ground during parallel mode of operation. In serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used in the serial mode and should be connected to ground. Pin 25 (D6) should be connected to VDD during the serial mode of operation. To prevent noise from coupling onto the digital signals, an RC filter can be used on each data line. SPI TIMING Amplifier 2 RF Input Interface SPI Timing Sequence Pin 19 is the RF input for AMP2 of the ADL5243. The input of the amplifier is easily matched to 50 Ω with a combination of series and shunt capacitors and a microstrip line serving as an inductor. Figure 58 shows the input matching components and is configured for 2140 MHz. Figure 60 shows the timing sequence for the SPI function using a 6-bit operation. The clock can be as fast as 20 MHz. In serial mode operation, Register B5 (MSB) is first, and Register B0 (LSB) is last. Amplifier 2 RF Output Interface Pin 15 is the RF input for AMP2 of the ADL5243. The output of the amplifier is easily matched to 50 Ω with a combination of series and shunt capacitors and a microstrip line serving as an inductor. Table 4. Mode Selection Table Pin 32 (SEL) Connect to Ground Connect to Supply Table 5. SPI Timing Specifications Parameter FCLK t1 t2 t3 t4 t5 t6 Limit 10 30 30 10 10 10 30 Unit MHz ns min ns min ns min ns min ns min ns min Test Conditions/Comments Data clock frequency Clock high time Clock low time Data to clock setup time Clock to data hold time Clock low to LE setup time LE pulse width Rev. B | Page 23 of 40 Functionality Serial mode Parallel mode ADL5243 Data Sheet t1 t5 CLK t2 t3 t4 MSB B5 DATA B4 B3 B2 B1 LSB B0 09431-057 t6 LE Figure 59. SPI Timing Diagram (Data Loaded MSB First) D0/CLK MSB B5 D1/DATA B4 B3 B2 B1 LSB B0 09431-058 D2/LE D6 Figure 60. SPI Timing Sequence Table 6. DSA Attenuation Truth Table—Serial Mode Attenuation State 0 dB (Reference) 0.5 dB 1.0 dB 2.0 dB 4.0 dB 8.0 dB 16.0 dB 31.5 dB B5 (MSB) 1 1 1 1 1 1 0 0 B4 1 1 1 1 1 0 1 0 B3 1 1 1 1 0 1 1 0 B2 1 1 1 0 1 1 1 0 B1 1 1 0 1 1 1 1 0 B0 (LSB) 1 0 1 1 1 1 1 0 D4 1 1 1 0 1 1 1 0 D5 1 1 0 1 1 1 1 0 D6 (LSB) 1 0 1 1 1 1 1 0 Table 7. DSA Attenuation Truth Table—Parallel Mode Attenuation State 0 dB (Reference) 0.5 dB 1.0 dB 2.0 dB 4.0 dB 8.0 dB 16.0 dB 31.5 dB D1 (MSB) 1 1 1 1 1 1 0 0 D2 1 1 1 1 1 0 1 0 D3 1 1 1 1 0 1 1 0 Rev. B | Page 24 of 40 Data Sheet ADL5243 the spacing is 153 mils and 25 mils respectively. The component spacing is referenced from the center of the component to the edge of the package. Figure 61 to Figure 69 show the graphical representation of the matching network. It is recommended to configure a RC feedback network and bias the AMP2 input through external R for optimal performance at frequency bands less than 500 MHz as shown at Figure 61 and Figure 62. In this case, VBIAS pin must be left open. ADL5243 AMPLIFIER 2 MATCHING The AMP2 input and output of the ADL5243 can be matched to 50 Ω with two or three external components and the microstrip line used as an inductor. Table 8 lists the required matching components values. All capacitors are Murata GRM155 series (0402 size), and Inductor L2 is a Coilcraft® 0603CS series (0603 size). For all frequency bands, the placement of Capacitors C22, C26, and C28 is critical. Table 9 lists the recommended component spacing of C22, C26, and C28 for the various frequencies. The placement of R12 and C27 is fixed for the matching network on evaluation board and Table 8. Component Values on Evaluation Board Frequency 150 MHz 450 MHz 748 MHz 943 MHz 1960 MHz 2140 MHz 2350 MHz 2630 MHz 3600 MHz 1 C27 2.7n H 0Ω 0Ω 0Ω 2.7 pF 2.2 pF 3.3 pF 2.7 pF 1.0 pF C26 1.5 pF N/A N/A 3.9 pF N/A N/A 1.6 pF 1.1 pF 1.5 KΩ C28 N/A 5.1pF 5.1 pF N/A 1.0 pF 1.8 pF 1.5 KΩ 1.5 KΩ 1.2 pF C8 1500 pF 1000 pF 12 pF 6 pF 10 pF 10 pF 10 pF 10 pF 10 pF C22 0.5 pF 0.5 pF 1.3 pF 1.3 pF 1.0 pF 1.0 pF 1.0 pF 1.3 pF 1.2 pF C23 4700 pF 1000 pF 18 pF 100 pF 20 pF 10 pF 20 pF 20 pF 20 pF L2 390 nH 110 nH 56 nH 56 nH 9.5 nH 9.5 nH 9.5 nH 9.5 nH 9.5 nH R10 21 Ω 21 Ω 18 Ω 18 Ω 0Ω 0Ω 0Ω 0Ω 0Ω R20 1 N/A 5.6 Ω 5.6 Ω N/A N/A N/A N/A N/A N/A R12 22 nH 3.9 nH 3.9 nH 3.3 nH 0Ω 0Ω 0Ω 0Ω 1.0 nH R16 3.16 kΩ 3.16 kΩ N/A N/A N/A N/A N/A N/A N/A R15 750 Ω 750 Ω N/A N/A N/A N/A N/A N/A N/A C10 1 nF 1 nF N/A N/A N/A N/A N/A N/A N/A R20 is not reserved on the evaluation board. Table 9. Component Spacing on Evaluation Board Frequency 150 MHz 450 MHz 748 MHz 943 MHz 1960 MHz 2140 MHz 2350 MHz 2630 MHz 3600 MHz C26 : λ1(mils) 213 N/A N/A 236 N/A N/A 153 126 342 C28 : λ2(mils) N/A 230 315 N/A 366 366 195 161 366 Rev. B | Page 25 of 40 C22 : λ3(mils) 408 485 201 394 244 244 244 240 106 R31 0Ω 0Ω N/A N/A N/A N/A N/A N/A N/A R30 N/A N/A 0Ω 0Ω 0Ω 0Ω 0Ω 0Ω 0Ω ADL5243 Data Sheet NC 20 ADL5243 λ1 R10 21Ω AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 2.7nH 13 14 15 16 NC 18 NC 17 AMP2IN C8 1500pF C26 1.5pF R31 0Ω R15 750Ω R16 3.16kΩ C10 1nF L2 390nH λ3 R12 22nH VCC C22 0.5pF C23 4700pF 09431-161 AMP2OUT Figure 61. AMP2: Matching Circuit at 150 MHz NC 20 λ2 ADL5243 R10 21Ω AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 0Ω 13 14 15 16 NC 18 C28 5.1pF R31 0Ω AMP2IN C8 1000pF R20 5.6Ω NC 17 R15 750Ω R16 3.16kΩ C10 1nF λ3 L2 110nH R12 3.9nH VCC C22 0.5pF AMP2OUT 09431-162 C23 1000pF Figure 62. AMP2: Matching Circuit at 450 MHz Rev. B | Page 26 of 40 Data Sheet ADL5243 NC 20 λ2 R10 18Ω ADL5243 AMP2IN 19 C28 5.1pF NC NC AMP2OUT/VCC2 VBIAS C27 0Ω 13 14 15 16 AMP2IN C8 12pF R20 5.6Ω NC 18 NC 17 L2 56nH λ3 R12 3.9nH C22 1.3pF C23 18pF 09431-061 AMP2OUT Figure 63. AMP2: Matching Circuit at 748 MHz NC 20 λ1 ADL5243 R10 18Ω AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 0Ω 13 14 15 16 λ3 C26 3.9pF AMP2IN C8 6pF NC 18 NC 17 L2 56nH R12 3.3nH C22 1.3pF AMP2OUT 09431-062 C23 100pF Figure 64. AMP2: Matching Circuit at 943 MHz Rev. B | Page 27 of 40 ADL5243 Data Sheet NC 20 λ2 ADL5243 R10 0Ω AMP2IN AMP2IN 19 C28 1.0pF NC NC AMP2OUT//VCC2 VBIAS C27 2.7pF 13 14 15 16 C8 10pF NC 18 NC 17 L2 9.5nH λ3 R12 0Ω C22 1.0pF C23 20pF 09431-165 AMP2OUT Figure 65. AMP2: Matching Circuit at 1960 MHz NC 20 λ2 ADL5243 R10 0Ω AMP2IN 19 NC NC AMP2OUT/VCC2 VBIAS C27 2.2pF 13 14 15 16 λ3 C28 1.8pF AMP2IN C8 10pF NC 18 NC 17 L2 9.5nH R12 0Ω C22 1pF AMP2OUT 09431-064 C23 10pF Figure 66. AMP2: Matching Circuit at 2140 MHz Rev. B | Page 28 of 40 Data Sheet ADL5243 NC 20 ADL5243 λ2 λ1 R10 0Ω AMP2IN AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 3.3pF 13 14 15 16 C26 1.6pF C28 1.5kΩ C8 10pF NC 18 NC 17 L2 9.5nH λ3 R12 0Ω C22 1.0pF C23 20pF 09431-167 AMP2OUT Figure 67. AMP2: Matching Circuit at 2350 MHz NC 20 ADL5243 λ2 λ1 R10 0Ω AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 2.7pF 13 14 15 16 λ3 C26 1.1pF C28 1.5kΩ AMP2IN C8 10pF NC 18 NC 17 L2 9.5nH R12 0Ω C22 1.3pF AMP2OUT 09431-065 C23 20pF Figure 68. AMP2: Matching Circuit at 2630 MHz Rev. B | Page 29 of 40 ADL5243 Data Sheet NC 20 ADL5243 λ2 λ1 R10 0Ω AMP2IN 19 NC NC AMP2OUT//VCC2 VBIAS C27 1.0pF 13 14 15 16 λ3 C26 1.5kΩ C28 1.2pF AMP2IN C8 10pF NC 18 NC 17 L2 9.5nH R12 0Ω C23 20pF C22 1.2pF AMP2OUT 09431-169 R12 1nH Figure 69. AMP2: Matching Circuit at 3600 MHz Rev. B | Page 30 of 40 Data Sheet ADL5243 λ4 ADL5243 LOOP PERFORMANCE The typical configuration of the ADL5243 is to connect in AMP1-DSA-AMP2 mode, as shown in Figure 70. Because AMP1 and DSA are broadband in nature and internally matched, only an ac coupling capacitor is required between them. The AMP2 is externally matched for each frequency band of operation, and these matching elements should be placed between the DSA and AMP2 and at the output of AMP2. Matching circuits for AMP2 are shown in Figure 61 through Figure 69. This works well in a loop in each case but matching circuits between the DSA and AMP2 requires slight retuning, such as adding a shunt capacitor at the DSA output or changing the location of a shunt capacitor for optimum performance in a loop at certain frequency bands. Figure 71 and Figure 72 show the retuned matching circuits from Figure 66 and Figure 69 at 2140 MHz and 3600 MHz, respectively. Figure 37 to Figure 45 show the performance of the ADL5243 when connected in a loop for the three primary frequency bands of operation, namely 943 MHz, 2140 MHz, and 2630 MHz. DSAOUT 21 C11 1.3pF NC 20 NC NC AMP2OUT/VCC2 VBIAS C27 2.2pF 13 14 15 16 VCC C28: λ2 (mils) 366 342 C22: λ3 (mils) 244 106 C28 1.8pF C6 10pF NC 18 NC 17 L2 9.5nH λ3 R12 0Ω C22 1pF C11: λ4 (mils) 122 C23 10pF AMP2OUT N/A 09431-171 2140 MHz 3600 MHz C26: λ1 (mils) N/A 126 R33 0Ω AMP2IN 19 Table 10. Component Spacing in a Loop on Evaluation Board Frequency λ2 ADL5243 VCC2 VDD/SPI Figure 71. ADL5243 Matching Circuit at 2140 MHz in a Loop DSAOUT 21 AMP1 DSA IMN AMP2 OMN RFOUT NC 20 ADL5243 λ2 λ1 ADL5243 09431-067 R33 0Ω AMP2IN 19 C27 1.0pF NC AMP2OUT/VCC2 VBIAS Figure 70. ADL5243 Loop Block Diagram NC 13 14 15 16 λ3 C26 1.2pF C28 1.5kΩ C6 10pF NC 18 NC 17 L2 9.5nH C22 1pF R12 1.2nH C23 10pF AMP2OUT 09431-172 RFIN Figure 72. ADL5243 Matching Circuit at 3600 MHz in a Loop Rev. B | Page 31 of 40 ADL5243 Data Sheet PROPER DRIVING LEVEL FOR THE OPTIMUM ACLR It is usually required to drive the amplifier as high as possible in order to maximize output power. However, properly driving AMP1 and AMP2 at the ADL5243 is required to achieve optimum ACLR performance. Once output power approaches P1dB and OIP3, there is ACLR degradation. The driving level of amplifier with a modulated signal should be backed off properly from P1dB by at least the amount of a signal crest factor for optimum ACLR. So assuming a gain and P1dB of AMP1 at 2140 MHz are 19 dB and 19 dBm respectively, the output power, which is backed off by 11 dB crest factor at the modulated signal case, is 8 dBm. Therefore, the proper input driving level should be under −11 dBm. –30 SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN –35 –40 AMP1, ADJ AMP2, ADJ –45 AMP1, ALT AMP2, ALT Figure 74 shows the recommended land pattern for the ADL5243. To minimize thermal impedance, the exposed paddle on the 5 mm × 5 mm LFCSP package is soldered down to a ground plane. To improve thermal dissipation, 25 thermal vias are arranged in a 5 × 5 array under the exposed paddle. If multiple ground layers exist, they should be tied together using vias. For more information on land pattern design and layout, see the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP). ACLR (dBc) –50 –55 –60 –65 –70 –75 –80 –85 PIN (dBm) –8 –4 0 4 8 09431-173 –90 –95 –40 –36 –32 –28 –24 –20 –16 –12 For the best thermal performance, it is recommended to add as many thermal vias as possible under the exposed pad of the LFCSP. The above thermal resistance numbers assume a minimum of 25 thermal vias arranged in a 5 × 5 array with a via diameter of 13 mils, via pad of 25 mils, and pitch of 25 mils. The vias are plated with copper, and the drill hole is filled with a conductive copper paste. For optimal performance, it is recommended to fill the thermal vias with a conductive paste of equivalent thermal conductivity, as mentioned above, or use an external heat sink to dissipate the heat quickly without affecting the die junction temperature. It is also recommended to extend the ground pattern as shown in Figure 74 to improve thermal efficiency. 1 Figure 73. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input Power at AMP1 and AMP2, 2140 MHz The ADL5243 is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP. The thermal resistance from junction to air (θJA) is 34.8°C/W. The thermal resistance for the product was extracted assuming a standard 4-layer JEDEC board with 25 copper platter thermal vias. The thermal vias are filled with conductive copper paste, AE3030, with a thermal conductivity of 7.8 W/mk and thermal expansion as follows: α1 of 4 × 10−5/°C and α2 of 8.6 × 10−5/°C. The thermal resistance from junction to case (θJC) is 6.2°C/W, where case is the exposed pad of the lead frame package. Rev. B | Page 32 of 40 25 MIL VIA PAD WITH 13 MIL VIA 8 DSAOUT 17 09431-068 THERMAL CONSIDERATIONS DSAIN 24 Figure 74. Recommended Land Pattern Data Sheet ADL5243 EVALUATION BOARD The schematic of the ADL5243 evaluation board is shown in Figure 75. All RF traces on the evaluation board have a characteristic impedance of 50 Ω and are fabricated from Rogers3003 material. The traces are CPWG with a width of 25 mils, spacing of 20 mils, and dielectric thickness of 10 mils. The input and output to the DSA and amplifier should be ac-coupled with capacitors of an appropriate value to ensure broadband performance. The bias to AMP1 is provided through a choke connected to the AMP1OUT pin and, similarly, bias to AMP2 is provided through a choke connected to the AMP2OUT pin. Bypassing capacitors are recommended on all supply lines to minimize RF coupling. The DSA and the amplifiers can be individually biased or connected to the VDD plane through Resistors R1, R2, and R11. The schematic of AMP2 on evaluation board is configured for 2140 MHz operation. When configuring the ADL5243 evaluation board in the AMP1-DSA-AMP2 loop, remove Capacitors C1, C4, C5, and C8 and remove Resistor R10. Place 10 pF in place of C24 and C6, and 0 Ω in place of R32 and R33. If needed, placing a shunt capacitor (1.3 pF) at the output of the DSA improves the output return loss of this loop as described at the ADL5243 Loop Performance section. On the digital signal traces, provisions for an RC filter are made to clean any potential coupled noise. In normal operation, series resistors are 0 Ω and shunt resistors and capacitors are open. The evaluation board is designed to control DSA in either parallel or serial mode by connecting the SEL pin to the supply or ground by a switch. For adjusting attenuation at DSA, the ADL5243 can be programmed in two ways: through the on-board USB interface from a PC USB port, or through an SDP board, which will become the Analog Devices common control board in the future. The on-board USB interface circuitry of the evaluation board is powered directly by the PC. USB based programming software is available to download from the ADL5243 product page at www.analog.com. Figure 71 shows the window of the programming software where the user selects serial or parallel mode for the attenuation adjustment at DSA. The selection of the mode in the window should match the mode of the evaluation board switch. It is highly recommended to refer the evaluation board layout for the optimal and stable performance of each block as well as for the improvement of thermal efficiency. Table 11. Evaluation Board Configurations Options Component C1, C5 C4, C21 C13, C14, C15 Function AC coupling caps for DSA. AC coupling capacitors for AMP1. Power supply bypassing capacitors for AMP1. Capacitor C15 should be closest to the device. L1 C8 C23 C22 The bias for AMP1 comes through L1 when connected to a 5 V supply. L1 should be high impedance for the frequency of operation, while providing low resistance for the dc current. AMP2 input ac coupling capacitor. AMP2 output ac coupling capacitor. AMP2 shunt output tuning capacitor. C26 C27 C28 ANP2 shunt input tuning capacitor. AMP2 series input tuning capacitor. AMP2 shunt input tuning capacitor. C3, C25, C20 Power supply bypassing capacitors for AMP2. Capacitor C3 should be closest to the device. L2 The bias for AMP2 comes through L2 when connected to a 5 V supply. L2 should be high impedance for the frequency of operation, while providing low resistance for the dc current. Power supply bypassing capacitor for DSA. Placeholder for the series component for the other frequency band. Replace with capacitors and resistors to connect the device in a loop. Resistors to connect the supply for the amplifier and the DSA to the same VDD plane. Switch to change between serial and parallel mode operation; connect to a supply for parallel mode and to ground for serial mode operation. C17 R10, R12 C6, C24, R32, R33 R1, R2, R11 S1 Rev. B | Page 33 of 40 Default Value C1, C5 = 10 pF C4, C21 = 10 pF C13 = 10 μF C14 = 10 nF C15 = 10 pF L1 = 33 nH C8 = 10 pF C23 = 10 pF C22 = 1.0 pF at 244 mils from edge of package DNP C27 = 2.2 pF C28 = 1.8 pF at 366 mils from edge of package C3 = 10 pF C25 = 10 nF C20 = 10 μF L2 = 9.5 nH C17 = 0.1 μF R10, R12 = 0 Ω C6, C24, R32, R33 = open R1, R2 = open 3-pin rocker AGND Figure 75. ADL5243 Evaluation Board Rev. B | Page 34 of 40 0Ω DNI R1 2 3 4 5 AGND 1 AMP1OUT AMP1IN 1 AGND VDD 1 2 3 4 5 AGND 2 3 4 5 1 DSAIN 10pF C21 C13 10µF VCC RED 10pF C4 10pF C1 C17 0.1µF 0 DNI R2 L1 33nH AGND C14 0.01µF C24 10pF DNI R32 0Ω DNI VDD AGND C15 10pF AGND 1 2 3 4 5 6 7 8 AGND C22 1pF AGND C23 10pF R12 0 C10 AGND 9.5nH L2 0Ω R30 0.001µF DNI 24 23 22 21 20 19 18 17 U1 CLK_D0 DATA_D1 LE_D2 D3 D4 D5 D6 VDD VDD NC NC NC NC ADL5243ACPZ DSAOUT DSAIN NC NC AMP2IN AMP1OUT/VCC NC NC NC NC AGND VDD 1 RED 1 PAD 32 31 30 29 28 27 26 25 EPAD SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6 NC AMP1IN NC NC NC NC AMP2OUT/VCC2 VBIAS 9 10 11 12 13 14 15 16 S1 3 2 R15 750Ω DNI R16 3.16kΩ DNI R31 0Ω DNI 5 4 3 2 AGND AMP2OUT 1 C3 10pF AGND 2.2pF C27 AGND C11 1.3pF DNI R33 0Ω DNI R10 AGND C20 10µF 0Ω DNI R11 10pF C8 10pF VCC2 1 RED AGND R20 0Ω 0Ω C28 1.8pF C25 10000pF C26 1.1pF DNI C6 10pF DNI C5 VDD AGND AMP2IN 5 4 3 2 1 AGND DSAOUT 5 4 3 2 1 ADL5243 Data Sheet 09431-069 D1 C37 1µF A C SML-210MTT86 R4 2kΩ U3 DGND 7 1 IN1 OUT1 8 2 IN2 OUT2 6 3 SD_N FB PAD GND PAD 5 ADP3334ACPZ DGND C35 0.1µF DGND 3V3_USB R3 78.7kΩ FB C44 1000pF C36 0.1µF R9 140kΩ IN IN IN IN R45 2kΩ C38 0.1µF WAKEUP RESETN SCL SDA C47 1µF Rev. B | Page 35 of 40 Figure 76. USB/SDP Interface Circuitry on the Customer Evaluation Board R18 100kΩ LE_D2 R44 100kΩ R43 TBD0603 DNI CLK_D0 DATA_D1 DGND1 BLK DGND 1 AGND DGND 0Ω R46 0Ω R17 0Ω R42 0Ω R6 DNI DNI DNI C45 0.1µF DECOUPLING FOR U1 C39 0.1µF C33 0.1µF 1 2 3 6 7 8 DGND U5 0Ω R22 0Ω R21 C46 0.1µF DGND DNI C49 0.1µF R47 100kΩ R5 2kΩ C48 0.1µF DGND DGND A0 VCC A1 SDA 5 A2 SCL WP 24LC32A-I/MS VSS E014160 4 JEDEC_TYPE=MSOP8 U2 8 VCC A0 A1 A2 5 SCL SDA WC_N GND 4 24LC64-I-SN DGND 1 2 3 6 7 C9 10pF D6 D5 D4 D3 C34 0.1µF R7 100kΩ DNI AGND RDY0_SLRD RDY1_SLWR WAKEUP RESERVED XTALIN RESET_N SCL SDA P2 DGND 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 FX8-120S-SV(21) DGND 1 2 44 14 5 42 15 16 AVCC 0.1µF C31 10pF C50 GND 1 OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT PB1 PB2 PB3 PB4 PB5 PB6 PB7 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 DGND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 FX8-120S-SV(21) P2 5V_SDP RED (FROM MAIN BOARD; 200mA MINIMUM) 5V_SDP PA7 1 2kΩ R8 OUT IFCLK CLKOUT CTL0_FLAGA CTL1_FLAGB CTL2_FLAGC C51 22pF XTALOUT XTALIN CR2 3 A C SML-210MTT86 DM DP CASE 2 4 Y1 24.000000MHZ CY7C68013A-56LTXC E013815 JEDEC_TYPE=QFN56_8X8_PAD5_2X4_5 PB0_FD0 PB1_FD1 PB2_FD2 PB3_FD3 PB4_FD4 PB5_FD5 PB6_FD6 PB7_FD7 PD0_FD8 PD1_FD9 PD2_FD10 PD3_FD11 PD4_FD12 PD5_FD13 PD6_FD14 PD7_FD15 PAD 18 19 20 21 22 23 24 25 45 46 47 48 49 50 51 52 33 34 35 36 37 38 39 40 4 8 9 13 54 29 30 31 U4 DGND XTALOUT DPLUS DMINUS IFCLK CLKOUT CTL0_FLAGA CTL1_FLAGB CTL2_FLAGC VCC PA0_INT0_N PA1_INT1_N PA2_SLOE PA3_WU2 PA4_FIFOADR0 PA5_FIFOADR1 PA6_PKTEND PA7_FLAGD_SLCS_N 17 28 3 6 27 41 11 26 32 53 7 10 43 56 IO 12 55 PAD 5V_USB DGND OUT PB0 DGND DGND C52 22pF CLK_D0 D3 D4 D5 D6 LE_D2 DATA_D1 DGND OUT OUT OUT OUT OUT OUT OUT 0Ω R25 0Ω R23 0Ω R20 0Ω R19 0Ω R24 0Ω 0Ω R54 GND PINS P1 DGND R29 1.00kΩ DNI DGND R28 1.00kΩ DNI DGND R27 1.00kΩ DNI DGND R26 1.00kΩ DNI R55 1.00kΩ DNI C19 330pF DNI C18 330pF DNI C16 330pF DNI C12 330pF DNI C53 330pF DNI 897-43-005-00-100001 G1 G2 G3 G4 1 2 3 4 5 TSW-105-08-G-D DNI PLACEHOLDER DGND P3 R53 PA0 PA1 PA2 PA3 PA4 PA5 PA6 5V_USB 1 2 3 4 5 6 7 8 9 10 R13 1.00kΩ DNI C55 330pF DNI DGND R14 1.00kΩ DNI D6 D5 D4 D3 C56 330pF DNI CLK_D0 DATA_D1 LE_D2 09431-176 3V3_USB Data Sheet ADL5243 Data Sheet 09431-071 ADL5243 09431-070 Figure 78. Evaluation Board Layout—Bottom Figure 77. Evaluation Board Layout—Top Rev. B | Page 36 of 40 ADL5243 09431-179 Data Sheet Figure 79. Evaluation Board Control Software Rev. B | Page 37 of 40 ADL5243 Data Sheet OUTLINE DIMENSIONS 5.00 BSC SQ 0.60 MAX 0.60 MAX 25 32 1 24 0.50 BSC 3.45 3.30 SQ 3.15 EXPOSED PAD 17 TOP VIEW 1.00 0.85 0.80 SEATING PLANE 0.80 MAX 0.65 TYP 12° MAX 0.30 0.25 0.18 0.50 0.40 0.30 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF 8 16 9 BOTTOM VIEW 0.25 MIN 3.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2 05-23-2012-A 4.75 BSC SQ PIN 1 INDICATOR PIN 1 INDICATOR Figure 80. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 5 mm × 5 mm Body, Very Thin Quad (CP-32-3) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADL5243ACPZ-R7 ADL5243-EVALZ 1 Temperature Range −40°C to +85°C Package Description 32-Lead Lead Frame Chip Scale Package LFCSP_VQ Evaluation Board Z = RoHS Compliant Part. Rev. B | Page 38 of 40 Package Option CP-32-3 Data Sheet ADL5243 NOTES Rev. B | Page 39 of 40 ADL5243 Data Sheet NOTES ©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09431-0-8/12(B) Rev. B | Page 40 of 40