Transcript
1200 MHz to 2500 MHz, Balanced Mixer, LO Buffer, and RF Balun ADL5365
Data Sheet FEATURES
FUNCTIONAL BLOCK DIAGRAM
RF frequency range of 1200 MHz to 2500 MHz IF frequency range of dc to 450 MHz Power conversion loss: 7.3 dB SSB noise figure of 8.3 dB SSB noise figure with 5 dBm blocker of 18.5 dB Input IP3 of 36 dBm Typical LO drive of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle 5 mm × 5 mm, 20-lead LFCSP 1500 V HBM/500 V FICDM ESD performance
VCMI
IFOP
IFON
PWDN
COMM
20
19
18
17
16
ADL5365 VPMX 1
15
LOI2
RFIN 2
14
VPSW
RFCT 3
13
VGS1
COMM 4
12
VGS0
COMM 5
11
LOI1
BIAS GENERATOR
Cellular base station receivers Transmit observation receivers Radio link downconverters
6
7
8
9
10
VLO3
LGM3
VLO2
LOSW
NC
NC = NO CONNECT
08082-001
APPLICATIONS
Figure 1.
GENERAL DESCRIPTION The ADL5365 uses a highly linear, doubly balanced passive mixer core along with integrated RF and LO balancing circuitry to allow for single-ended operation. The ADL5365 incorporates an RF balun, allowing for optimal performance over a 1200 MHz to 2500 MHz RF input frequency range using low-side LO injection for RF frequencies from 1700 MHz to 2500 MHz and high-side injection for frequencies from 1200 MHz to 1700 MHz. The balanced passive mixer arrangement provides good LO-toRF leakage, typically better than −30 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in the degradation of dynamic performance.
The ADL5365 is fabricated using a BiCMOS high performance IC process. The device is available in a 5 mm × 5 mm, 20-lead LFCSP, and operates over a −40°C to +85°C temperature range. An evaluation board is also available. Table 1. Passive Mixers RF Frequency (MHz) 500 to 1700 1200 to 2500 2300 to 2900
Single Mixer ADL5367 ADL5365 ADL5363
Single Mixer and IF Amp ADL5357 ADL5355 ADL5353
Dual Mixer and IF Amp ADL5358 ADL5356 ADL5354
The ADL5365 provides two switched LO paths that can be used in TDD applications where it is desirable to rapidly switch between two local oscillators. LO current can be externally set using a resistor to minimize dc current commensurate with the desired level of performance. For low voltage applications, the ADL5365 is capable of operation at voltages down to 3.3 V with substantially reduced current. Under low voltage operation, an additional logic pin is provided to power down (< 200 µA) the circuit when desired.
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com
ADL5365
Data Sheet
TABLE OF CONTENTS Features .............................................................................................. 1
Upconversion .............................................................................. 15
Applications ....................................................................................... 1
Spurious Performance ............................................................... 16
Functional Block Diagram .............................................................. 1
Circuit Description......................................................................... 17
General Description ......................................................................... 1
RF Subsystem .............................................................................. 17
Revision History ............................................................................... 2
LO Subsystem ............................................................................. 17
Specifications..................................................................................... 3
Applications Information .............................................................. 19
5 V Performance ........................................................................... 4
Basic Connections ...................................................................... 19
3.3 V Performance ........................................................................ 4
IF Port .......................................................................................... 19
Absolute Maximum Ratings ............................................................ 5
Mixer VGS Control DAC .......................................................... 19
ESD Caution .................................................................................. 5
Evaluation Board ............................................................................ 20
Pin Configuration and Function Descriptions ............................. 6
Outline Dimensions ....................................................................... 23
Typical Performance Characteristics ............................................. 7
Ordering Guide .......................................................................... 23
5 V Performance ........................................................................... 7 3.3 V Performance ...................................................................... 14
REVISION HISTORY 2/15—Rev. A to Rev. B Changes to Table 1 ............................................................................ 1 Deleted Figure 37 and Figure 39; Renumbered Sequentially ... 13 Deleted Bias Resistor Selection Section ....................................... 19 Changes to Figure 49 ...................................................................... 20 Changes to Table 7 .......................................................................... 21 Updated Outline Dimensions ....................................................... 23 Changes to Ordering Guide .......................................................... 23 8/14—Rev. 0 to Rev. A Changes to General Description Section ...................................... 1 Changes to Table 7 .......................................................................... 21 Updated Outline Dimensions ....................................................... 23 10/09—Revision 0: Initial Version
Rev. B | Page 2 of 24
Data Sheet
ADL5365
SPECIFICATIONS VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted. Table 2. Parameter RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range OUTPUT INTERFACE Output Impedance IF Frequency Range DC Bias Voltage1 LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range POWER-DOWN (PWDN) INTERFACE 2 PWDN Threshold Logic 0 Level Logic 1 Level PWDN Response Time PWDN Input Bias Current 1 2
Test Conditions/Comments
Min
Tunable to >20 dB over a limited bandwidth
Typ
Unit
2700
dB Ω MHz
450 5.5
Ω||pF MHz V
16 50 1500
Differential impedance, f = 200 MHz Externally generated
Max
36||2 dc 3.3 −6
5.0 0 17 50
1230
+10
2470 1.0 0.4
1.4 Device enabled, IF output to 90% of its final level Device disabled, supply current < 5 mA Device enabled Device disabled
Apply the supply voltage from the external circuit through the choke inductors. PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. B | Page 3 of 24
160 220 0.0 70
dBm dB Ω MHz V V V ns ns µA µA
ADL5365
Data Sheet
5 V PERFORMANCE VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB)1 LO-to-IF Leakage LO-to-RF Leakage RF-to-IF Isolation IF/2 Spurious IF/3 Spurious POWER SUPPLY Positive Supply Voltage Quiescent Current
Test Conditions\Comments
Min
Typ
Max
Unit
Including 1:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential
6.5
7.3
8.4
8.3 18.5
dB dB dB dB
36
dBm
67
dBm
25 −18 −33 −50 −65 −71
dBm dBm dBm dBc dBc dBc
5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697MHz, each RF tone at 0 dBm fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1697 MHz, each RF tone at 0 dBm Exceeding 20 dBm RF power results in damage to the device Unfiltered IF output
27
0 dBm input power 0 dBm input power 4.5 Resistor programmable
5 95
5.5
V mA
Exceeding 20 dBm RF power results in damage to the device.
1
3.3 V PERFORMANCE VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 4. Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) POWER INTERFACE Supply Voltage Quiescent Current Power-Down Current
Test Conditions/Comments
Min
Including 1:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697 MHz, each RF tone at 0 dBm fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1697 MHz, each RF tone at 0 dBm 3.0 Resistor programmable Device disabled
Rev. B | Page 4 of 24
Typ
Max
Unit
7.4 7.1 8.4 32
dB dB dB dBm
58
dBm
3.3 56 150
3.6
V mA µA
Data Sheet
ADL5365
ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage, VS RF Input Level LO Input Level IFOP, IFON Bias Voltage VGS0, VGS1, LOSW, PWDN Internal Power Dissipation θJA Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering, 60 sec)
Rating 5.5 V 20 dBm 13 dBm 6.0 V 5.5 V 1.2 W 25°C/W 150°C −40°C to +85°C −65°C to +150°C 260°C
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
ESD CAUTION
Rev. B | Page 5 of 24
ADL5365
Data Sheet
20 19 18 17 16
VCMI IFOP IFON PWDN COMM
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1 2 3 4 5
PIN 1 INDICATOR
ADL5365 TOP VIEW (Not to Scale)
15 LOI2 14 VPSW 13 VGS1 12 VGS0 11 LOI1
NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD. MUST BE SOLDERED TO GROUND.
08082-002
VLO3 6 LGM3 7 VLO2 8 LOSW 9 NC 10
VPMX RFIN RFCT COMM COMM
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions Pin No. 1 2 3 4, 5, 16 6, 8 7 9 10 11, 15 12, 13 14 17 18, 19 20
Mnemonic VPMX RFIN RFCT COMM VLO3, VLO2 LGM3 LOSW NC LOI1, LOI2 VGS0, VGS1 VPSW PWDN IFON, IFOP VCMI EPAD (EP)
Description Positive Supply Voltage. RF Input. Must be ac-coupled. RF Balun Center Tap (AC Ground). Device Common (DC Ground). Positive Supply Voltages for LO Amplifier. LO Amplifier Bias Control. LO Switch. LOI1 selected for 0 V, or LOI2 selected for 3 V. No Connect. LO Inputs. These pins must be ac-coupled. Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting. Positive Supply Voltage for LO Switch. Power-Down. Connect this pin to ground for normal operation or connect this pin to 3.0 V for disable mode. Differential IF Outputs. No Connect. This pin can be grounded. Exposed pad must be soldered to ground.
Rev. B | Page 6 of 24
Data Sheet
ADL5365
TYPICAL PERFORMANCE CHARACTERISTICS 5 V PERFORMANCE VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 110
100
105
90
TA = +85°C
INPUT IP2 (dBm)
100 TA = +25°C
95 TA = –40°C 90
TA = +25°C
80
70
60
50
80 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
Figure 3. Supply Current vs. RF Frequency
08082-008
TA = +85°C 85
08082-005
SUPPLY CURRENT (mA)
TA = –40°C
Figure 6. Input IP2 vs. RF Frequency
10
10.0 9.5 TA = +85°C
9.0
8
7
SSB NOISE FIGURE (dB)
CONVERSION LOSS (dB)
9
TA = +85°C
TA = –40°C
TA = +25°C
8.5
TA = +25°C
8.0 7.5 7.0
TA = –40°C
6.5 6.0
6
Figure 4. Power Conversion Loss vs. RF Frequency
38 TA = –40°C
TA = +25°C
32 30 28 26 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
08082-011
INPUT IP3 (dBm)
36
TA = +85°C
RF FREQUENCY (MHz)
Figure 7. SSB Noise Figure vs. RF Frequency
40
34
5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
Figure 5. Input IP3 vs. RF Frequency
Rev. B | Page 7 of 24
08082-021
RF FREQUENCY (MHz)
08082-014
5.5 5 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
ADL5365
Data Sheet
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 110
74 72
TA = +85°C
TA = +25°C
95 TA = –40°C
90
TA = –40°C 68 66 64
85
0
20
40
60
80
TEMPERATURE (°C)
60 –40
08082-015
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 8. Supply Current vs. Temperature
Figure 11. Input IP2 vs. Temperature
10.0
10.0 TA = –40°C TA = +25°C TA = +85°C
9.5
9.5
9.0
8.0 7.5 7.0 6.5
VPOS = 5.25V 8.5
VPOS = 5.0V 8.0 7.5
VPOS = 4.75V 7.0 6.5
6.0
6.5
5.5
5.5
5.0 –40
–20
0
20
40
60
80
TEMPERATURE (°C)
5.0 –40
36
TA = +25°C
TA = –40°C
34 32 30
–20
0
20
40
60
TEMPERATURE (°C)
80
08082-017
28 26 –40
20
40
60
Figure 12. SSB Noise Figure vs. Temperature
40
TA = +85°C
0
TEMPERATURE (°C)
Figure 9. Power Conversion Loss vs. Temperature
38
–20
Figure 10. Input IP3 vs. Temperature
Rev. B | Page 8 of 24
80
08082-022
SSB NOISE FIGURE (dB)
9.0
8.5
08082-018
CONVERSION LOSS (dB)
–20
08082-016
62
80 –40
INPUT IP3 (dBm)
TA = +25°C
TA = +85°C
70 100
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
105
Data Sheet
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 75
110
70
100 TA = –40°C
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
105
TA = +25°C
95 TA = +85°C 90
TA = +25°C
65
TA = –40°C
60
TA = +85°C
55
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
50 30
80
9.0
SSB NOISE FIGURE (dB)
9.5
9.0 8.5 TA = +85°C
7.0
TA = –40°C
6.5
180
230
280
330
380
430
IF FREQUENCY (MHz)
36 TA = –40°C
TA = +85°C
32 30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
08082-009
28 26 30
130
180
230
280
330
380
Figure 17. SSB Noise Figure vs. IF Frequency
TA = +25°C
34
80
IF FREQUENCY (MHz)
40
INPUT IP3 (dBm)
6.5
5.0 30
Figure 14. Power Conversion Loss vs. IF Frequency
38
430
7.0
5.5
130
380
7.5
5.5
80
330
8.0
6.0
5.0 30
280
8.5
6.0
08082-012
CONVERSION LOSS (dB)
10.0
9.5
TA = +25°C
230
Figure 16. Input IP2 vs. IF Frequency
10.0
7.5
180
IF FREQUENCY (MHz)
Figure 13. Supply Current vs. IF Frequency
8.0
130
Figure 15. Input IP3 vs. IF Frequency
Rev. B | Page 9 of 24
430
08082-020
80
08082-003
80 30
08082-006
85
ADL5365
Data Sheet
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 10.0
–40 –45
9.5
IF/2 SPURIOUS (dBc)
8.5 8.0
TA = +85°C TA = +25°C
7.5
TA = –40°C
–55 –60 –65 –70 –75 TA = –40°C
7.0 –80 6.5
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
–90 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150
2200
RF FREQUENCY (MHz)
Figure 18. Power Conversion Loss vs. LO Power
Figure 21. IF/2 Spurious vs. RF Frequency –40
40
TA = +25°C
36
–45
TA = –40°C
–50 TA = +85°C
IF/3 SPURIOUS (dBc)
38
TA = +25°C
–85 08082-013
6.0 –6
INPUT IP3 (dBm)
TA = +85°C
08082-027
CONVERSION LOSS (dB)
–50 9.0
34 32 30
–55 –60 TA = +25°C
TA = +85°C
–65 –70
TA = –40°C
–75 –80
28
–2
0
2
4
6
8
10
LO POWER (dBm)
Figure 19. Input IP3 vs. LO Power
TA = –40°C
TA = +85°C
60
55
–4
–2
0
2
4
6
LO POWER (dBm)
8
10
08082-007
INPUT IP2 (dBm)
TA = +25°C
65
50 –6
RF FREQUENCY (MHz)
Figure 22. IF/3 Spurious vs. RF Frequency
75
70
–90 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
Figure 20. Input IP2 vs. LO Power
Rev. B | Page 10 of 24
08082-033
–4
08082-010
–85 26 –6
Data Sheet
ADL5365
RESISTANCE (Ω)
PERCENTAGE (%)
80
60
40
20
MEAN: 7.33 STANDARD DEVIATION:0.232 7.0
7.8
7.6
7.4
7.2
CONVERSION LOSS (dB)
3.6
36.0
3.4
35.5
3.2
35.0
3.0
34.5
2.8
34.0
2.6
33.5
2.4
33.0
2.2
32.5
2.0
32.0
1.8
31.5
1.6
31.0
1.4
30.5 30
08082-059
0 6.8
36.5
1.2 80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
Figure 26. IF Output Impedance (R Parallel, C Equivalent)
Figure 23. Conversion Loss Distribution 100
0
80
5
RF RETURN LOSS (dB)
PERCENTAGE (%)
08082-044
100
CAPACITANCE (pF)
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
60
40
20
10
15
20
34
36
38
40
INPUT IP3 (dBm)
25 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-060
0 32
RF FREQUENCY (MHz)
08082-058
MEAN: 36.11 STANDARD DEVIATION: 0.146
Figure 27. RF Port Return Loss, Fixed IF
Figure 24. Input IP3 Distribution 0
100 90
5
LO RETURN LOSS (dB)
70 60 50 40 30
10 15
SELECTED
20 UNSELECTED 25
20
30 10 8.0
8.1
8.2
8.3
8.4
8.5
NOISE FIGURE (dB)
8.6
8.7
35 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 LO FREQUENCY (MHz)
Figure 28. LO Return Loss, Selected and Unselected
Figure 25. SSB Noise Figure Distribution
Rev. B | Page 11 of 24
08082-030
0 7.9
MEAN = 8.29 STANDARD DEVIATION = 0.30 08082-061
PERCENTAGE (%)
80
ADL5365
Data Sheet
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 70
–20 –22 –24
LO-TO-RF LEAKAGE (dBm)
60 TA = –40°C 55
TA = +25°C TA = +85°C
–28
TA = –40°C
–30 –32
TA = +25°C
–34 –36
45
TA = +85°C
–38
RF FREQUENCY (MHz)
–40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
08082-034
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
LO FREQUENCY (MHz)
Figure 29. LO Switch Isolation vs. RF Frequency
Figure 32. LO-to-RF Leakage vs. LO Frequency
–40
0
–42
–46
–5
TA = +85°C –10
TA = +25°C
2LO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dBc)
–44
–48 –50 –52
08082-029
50
–26
TA = –40°C
–54
–15 –20
2LO TO RF
–25 –30
–56
2LO TO IF
–35
–58
RF FREQUENCY (MHz)
–40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
08082-032
–60 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
LO FREQUENCY (MHz)
08082-025
LO SWITCH ISOLATION (dB)
65
Figure 33. 2LO Leakage vs. LO Frequency
Figure 30. RF-to-IF Isolation vs. RF Frequency –20
0
–25
–5
3LO LEAKAGE (dBm)
TA = –40°C TA = +25°C
–20
TA = +85°C
–25 –30
–35
3LO TO RF
–40 –45 –50
3LO TO IF
–55 –60
–35
–65
–40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
–70 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
Figure 34. 3LO Leakage vs. LO Frequency
Figure 31. LO-to-IF Leakage vs. LO Frequency
Rev. B | Page 12 of 24
08082-026
–15
08082-028
LO-TO-IF LEAKAGE (dBm)
–30
–10
Data Sheet
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 9
25
14 GAIN
13
7
12
6
11
5
10
4
9
3
8 NOISE FIGURE
2 1
20
7
10
5
6 08082-043
0 5 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency 40 38
VGS = 0, VGS = 0, VGS = 1, VGS = 1,
0 1 0 1
36 34 32 30 28 26 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
08082-042
INPUT IP3 (dBm)
15
Figure 36. Input IP3 vs. RF Frequency
Rev. B | Page 13 of 24
0 –30
–25
–20
–15
–10
–5
0
5
BLOCKER POWER (dBm)
Figure 37. SSB Noise Figure vs.10 MHz Offset Blocker Power
10
08082-019
CONVERSION LOSS (dB)
8
15
0 1 0 1
SSB NOISE FIGURE (dB)
VGS = 0, VGS = 0, VGS = 1, VGS = 1,
SSB NOISE FIGURE (dB)
10
ADL5365
Data Sheet
3.3 V PERFORMANCE VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 75
60 59
70 TA = +25°C
57
65
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
58
56 55
TA = +85°C
54 53
TA = –40°C
TA = +85°C 60
TA = –40°C TA = +25°C
55 50
52 45
RF FREQUENCY (MHz)
Figure 41. Input IP2 vs. RF Frequency at 3.3 V 10.0
9.5
9.5
9.0
9.0
8.5
8.5
NOISE FIGURE (dB)
10.0
8.0 TA = +85°C 7.5 7.0
TA = +25°C
TA = –40°C
6.5
TA = +25°C
8.0 7.5
TA = –40°C
7.0 6.5 6.0
5.5
5.5
5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
RF FREQUENCY (MHz)
Figure 39. Power Conversion Loss vs. RF Frequency at 3.3 V
TA = –40°C
33 31 TA = +85°C 29 27
25
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
08082-037
TA = +25°C
23
RF FREQUENCY (MHz)
Figure 42. SSB Noise Figure vs. RF Frequency at 3.3 V
35
INPUT IP3 (dBm)
TA = +85°C
6.0
08082-035
CONVERSION LOSS (dB)
Figure 38. Supply Current vs. RF Frequency at 3.3 V
Figure 40. Input IP3 vs. RF Frequency at 3.3 V
Rev. B | Page 14 of 24
08082-038
RF FREQUENCY (MHz)
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-039
50 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-036
51
Data Sheet
ADL5365
UPCONVERSION 9.0
9.0
8.5
8.5
7.5 TA = –40°C 7.0
8.0
7.5 TA = +85°C 7.0 TA = –40°C 6.5
6.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-048
6.5
6.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
Figure 43. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion
35
33
33 TA = –40°C
TA = +85°C
INPUT IP3 (dBm)
29
31
TA = +25°C
27
29
TA = +85°C 25
23
23
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
TA = –40°C
27
25
08082-046
INPUT IP3 (dBm)
Figure 45. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion
35
31
TA = +25°C
08082-047
TA = +25°C
TA = +85°C
TA = +25°C
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
Figure 44. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion
Figure 46. Input IP3 vs. RF Frequency at 3.3 V, Upconversion
Rev. B | Page 15 of 24
08082-045
8.0
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TA = 25°C, fIF = 153 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
ADL5365
Data Sheet
SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.
5 V Performance VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 0 0 1 −42.2 2 −75.8 3 <−100 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −10.9 0.0 −76.5 −83.0 <−100
2 −28.3 −49.3 −64.6 <−100 <−100
3 −44.5 −31.2 −78.4 −73.5 <−100 <−100
4 −49.8 −78.5 −90.9 <−100 <−100 <−100
5
−94.7 −89.8 <−100 <−100 <−100 <−100
6
7
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
M 8
<−100 <−100 <−100 <−100 <−100 <−100 <−100
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
<−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
12
<−100 <−100 <−100 <−100 <−100 <−100
13
<−100 <−100 <−100 <−100 <−100 <−100
14
15
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
3.3 V Performance VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. M 0 0 1 −41.9 2 −72.3 3 −94.6 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −16.9 0.0 −80.3 −71.6 <−100
2 −35.1 −49.1 −62.7 <−100 <−100
3 −61.4 −30.4 −68.5 −61.2 <−100 <−100
4 −52.6 −71.9 −92.7 <−100 <−100 <−100
5
<−100 −75.1 <−100 <−100 <−100 <−100
6
<−100 <−100 <−100 <−100 <−100 <−100
7
8
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100
Rev. B | Page 16 of 24
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
<−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
12
<−100 <−100 <−100 <−100 <−100 <−100
13
14
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
15
<−100 <−100 <−100 <−100 <−100
Data Sheet
ADL5365
CIRCUIT DESCRIPTION The resulting balanced RF signal is applied to a passive mixer that commutates the RF input with the output of the LO subsystem. The passive mixer is essentially a balanced, low loss switch that adds minimum noise to the frequency translation. The only noise contribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms.
The ADL5365 consists of two primary components: the radio frequency (RF) subsystem and the local oscillator (LO) subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size. The RF subsystem consists of an integrated, low loss RF balun, passive MOSFET mixer, and a sum termination network. The LO subsystem consists of an SPDT-terminated FET switch and a three-stage limiting LO amplifier. The purpose of the LO subsystem is to provide a large, fixed amplitude, balanced signal to drive the mixer independent of the level of the LO input. A block diagram of the device is shown in Figure 47. VCMI
IFOP
IFON
PWDN
COMM
20
19
18
17
16
Additionally, dc current can be saved by reducing the dc supply voltage to as low as 3.3 V, further reducing the dissipated power of the part. (Note that no performance enhancement is obtained by reducing the value of these resistors and excessive dc power dissipation may result.)
LO SUBSYSTEM
ADL5365 VPMX 1
15
LOI2
RFIN 2
14
VPSW
13
VGS1
12
VGS0
RFCT 3 BIAS GENERATOR
COMM 5
11 6
7
8
9
10
VLO3
LGM3
VLO2
LOSW
NC
LOI1
08082-051
COMM 4
NC = NO CONNECT
As the mixer is inherently broadband and bidirectional, it is necessary to properly terminate all the idler (M × N product) frequencies generated by the mixing process. Terminating the mixer avoids the generation of unwanted intermodulation products and reduces the level of unwanted signals at the IF output. This termination is accomplished by the addition of a sum network between the IF output and the mixer.
Figure 47. Simplified Schematic
RF SUBSYSTEM The single-ended, 50 Ω RF input is internally transformed to a balanced signal using a low loss (<1 dB) unbalanced-to-balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended that a blocking capacitor be used to avoid running excessive dc current through the part. The RF balun can easily support an RF input frequency range of 1200 MHz to 2500 MHz.
The LO amplifier is designed to provide a large signal level to the mixer to obtain optimum intermodulation performance. The resulting amplifier provides extremely high performance centered on an operating frequency of 1700 MHz. The best operation is achieved with either high-side LO injection for RF signals in the 1200 MHz to 1700 MHz range or low-side injection for RF signals in the 1700 MHz to 2500 MHz range. Operation outside these ranges is permissible, and conversion gain is extremely wideband, easily spanning 1200 MHz to 2500 MHz, but intermodulation is optimal over the aforementioned ranges. The ADL5365 has two LO inputs permitting multiple synthesizers to be rapidly switched with extremely short switching times (<40 ns) for frequency agile applications. The two inputs are applied to a high isolation SPDT switch that provides a constant input impedance, regardless of whether the port is selected, to avoid pulling the LO sources. This multiple section switch also ensures high isolation to the off input, minimizing any leakage from the unwanted LO input that may result in undesired IF responses. The single-ended LO input is converted to a fixed amplitude differential signal using a multistage, limiting LO amplifier. This results in consistent performance over a range of LO input power. Optimum performance is achieved from −6 dBm to +10 dBm, but the circuit continues to function at considerably lower levels of LO input power.
Rev. B | Page 17 of 24
ADL5365
Data Sheet
The performance of this amplifier is critical in achieving a high intercept passive mixer without degrading the noise floor of the system. This is a critical requirement in an interferer rich environment, such as cellular infrastructure, where blocking interferers can limit mixer performance. The bandwidth of the intermodulation performance is somewhat influenced by the current in the LO amplifier chain. For dc current sensitive applications, it is permissible to reduce the current in the LO amplifier by raising the value of the external bias control resistor. For dc current critical applications, the LO chain can operate with a supply voltage as low as 3.3 V, resulting in substantial dc power savings.
In addition, when operating with supply voltages below 3.6 V, the ADL5365 has a power-down mode that permits the dc current to drop to <200 µA. All of the logic inputs are designed to work with any logic family that provides a Logic 0 input level of less than 0.4 V and a Logic 1 input level that exceeds 1.4 V. All logic inputs are high impedance up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection circuitry permits operation up to 5.5 V, although a small bias current is drawn.
Rev. B | Page 18 of 24
Data Sheet
ADL5365
APPLICATIONS INFORMATION BASIC CONNECTIONS
IF PORT
The ADL5365 mixer is designed to up- or downconvert between radio frequencies (RF) from 1200 MHz to 2500 MHz and intermediate frequencies (IF) from dc to 450 MHz. Figure 48 depicts the basic connections of the mixer. It is recommended to ac-couple RF and LO input ports to prevent non-zero dc voltages from damaging the RF balun or LO input circuit. The RFIN capacitor value of 3 pF is recommended to provide the optimized RF input return loss for the desired frequency band.
The real part of the output impedance is approximately 50 Ω, as seen in Figure 26, which matches many commonly used SAW filters without the need for a transformer. This results in a voltage conversion loss that is approximately the same as the power conversion loss, as shown in Table 3.
MIXER VGS CONTROL DAC The ADL5365 features two logic control pins, Pin 12 (VGS0) and Pin 13 (VGS1), that allow programmability for internal gate-to-source voltages for optimizing mixer performance over desired frequency bands. The evaluation board defaults both VGS0 and VGS1 to ground. Power conversion loss, NF, and IIP3 can be optimized, as shown in Figure 35 and Figure 36.
For upconversion, the IF input, Pin 18 (IFON) and Pin 19 (IFOP), must be driven differentially or by using a 1:1 ratio transformer for single-ended operation. A 3 pF capacitor is recommended for the RF output, Pin 2 (RFIN).
IF1_OUT R1 0Ω
T1
C25 560pF +5V
C24 560pF 19
20
10kΩ 18
17
16
10pF
4.7µF
ADL5365 +5V
22pF
1
15
2
14
LO2_IN
3pF RF-IN
+5V 10pF
3
10pF
BIAS GENERATOR 4
12
5
11
22pF
6
7
8
9
RBIAS LO
10
10kΩ
+5V 10pF
LO1_IN
10pF
Figure 48. Typical Application Circuit
Rev. B | Page 19 of 24
08082-052
0.01µF
13
ADL5365
Data Sheet
EVALUATION BOARD RO3003 material. Table 7 describes the various configuration options of the evaluation board. Evaluation board layout is shown in Figure 50 to Figure 53.
An evaluation board is available for the family of double balanced mixers. The standard evaluation board schematic is shown in Figure 49. The evaluation board is fabricated using Rogers®
IF1_OUT R1 0Ω
T1
C25 560pF
C24 560pF
R14 0Ω
C21 10pF
COMM
PWDN
IFON
VPMX
VPOS
COMM
LOI1
R22 10kΩ R23 15kΩ
VGS1 VGS0
LO1_IN
NC
LOSW
VGS0
C6 10pF
C22 1nF
VGS1
COMM
VLO2
C4 10pF
VLO3
C5 0.01µF
ADL5365
RFCT
VPOS
C20 10pF
VPSW
LGM3
C1 3pF
LO2_IN LOI2
RFIN
RF-IN
C12 22pF
C10 22pF
LOSEL
R9 1.7kΩ C8 10pF
VPOS
Figure 49. Evaluation Board Schematic
Rev. B | Page 20 of 24
R4 10kΩ 08082-053
C2 10µF
IFOP
L3 0Ω
VCMI VPOS
PWR_UP
R21 10kΩ
Data Sheet
ADL5365
Table 7. Evaluation Board Configuration Components C2, C6, C8, C20, C21 C1, C4, C5 T1, R1, C24 (R24), C25 (R25)
C10, C12, R4
R21
C22, L3, R9, R14, R22, R23, VGS0, VGS1
Description Power Supply Decoupling. Nominal supply decoupling consists of a 10 µF capacitor to ground in parallel with a 10 pF capacitor to ground positioned as close to the device as possible. RF Input Interface. The input channels are ac-coupled through C1. C4 and C5 provide bypassing for the center taps of the RF input baluns. IF Output Interface. T1 is a 1:1 impedance transformer used to provide a single-ended IF output interface. Remove R1 for balanced output operation. C24 (R24) and C25 (R25) are capacitors (resistors) used to block the dc bias at the IF ports. LO Interface. C10 and C12 provide ac coupling for the LO1_IN and LO2_IN local oscillator inputs. LOSEL selects the appropriate LO input for both mixer cores. R4 provides a pull-down to ensure that LO1_IN is enabled when the LOSEL test point is logic low. LO2_IN is enabled when LOSEL is pulled to logic high. PWDN Interface. R21 pulls the PWDN logic low and enables the device. The PWR_UP test point allows the PWDN interface to be exercised using an external logic generator. Grounding the PWDN pin for nominal operation is allowed. Using the PWDN pin when supply voltages exceed 3.3 V is not allowed. Bias Control. R22 and R23 form a voltage divider to provide 3 V for logic control, bypassed to ground through C22. VGS0 and VGS1 jumpers provide programmability at the VGS0 and VGS1 pins. It is recommended to pull these two pins to ground for nominal operation. R9 sets the bias point for the internal LO buffers. R14 sets the bias point for the internal IF amplifier.
Rev. B | Page 21 of 24
Default Conditions C2 = 10 µF (Size 0603), C6, C8, C20, C21 = 10 pF (Size 0402) C1 = 3 pF (Size 0402), C4 = 10 pF (Size 0402), C5 = 0.01 µF (Size 0402) T1 = TC1-1-13M+ (Mini-Circuits), R1 = 0 Ω (Size 0402), C24 (R24), C25 (R25) = 560 pF (Size 0402) C10, C12 = 22 pF (Size 0402), R4 = 10 kΩ (Size 0402)
R21 = 10 kΩ (Size 0402)
C22 = 1 nF (Size 0402), L3 = 0 Ω (Size 0603), R9 = 1.7 kΩ (Size 0402), R14 = 0 Ω (Size 0402), R22 = 10 kΩ (Size 0402), R23 = 15 kΩ (Size 0402), VGS0 = VGS1 = 3-pin shunt
Data Sheet
08082-054
08082-056
ADL5365
Figure 52. Evaluation Board Power Plane, Internal Layer 2
08082-057
08082-055
Figure 50. Evaluation Board Top Layer
Figure 53. Evaluation Board Bottom Layer
Figure 51. Evaluation Board Ground Plane, Internal Layer 1
Rev. B | Page 22 of 24
Data Sheet
ADL5365
OUTLINE DIMENSIONS PIN 1 INDICATOR
5.10 5.00 SQ 4.90
0.35 0.28 0.23 0.65 BSC
20
16 15
PIN 1 INDICATOR
1
EXPOSED PAD
3.25 3.10 SQ 2.95 5
11
0.80 0.75 0.70 SEATING PLANE
0.70 0.60 0.40
10
6
0.25 MIN
BOTTOM VIEW
0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WHHC.
111908-A
TOP VIEW
Figure 54. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 5 mm × 5 mm Body, Very Very Thin Quad (CP-20-9) Dimensions shown in millimeters
ORDERING GUIDE Model1 ADL5365ACPZ-R7 ADL5365-EVALZ 1
Temperature Range −40°C to +85°C
Package Description 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7” Tape and Reel Evaluation Board
Z = RoHS Compliant Part.
Rev. B | Page 23 of 24
Package Option CP-20-9
Ordering Quantity 1,500 1
ADL5365
Data Sheet
NOTES
©2009–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08082-0-2/15(B)
Rev. B | Page 24 of 24