Transcript
!"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
•
In collaboration with WHOI NDSF and DeepSea Challenger, develop a technologically advanced 11k HROV (ROV or AUV) for R/V Falkor, supporting: – – – – –
•
Robust access to abyssal and hadal zones for scientific research UHD / 3DHD / panoramic HD video acquisition and streaming Scientific data collection (seafloor mapping, chemical and thermal data collection, photomosaicing, etc.) Versatile scientific sample collection Object manipulation (e.g. collection and deployment of equipment)
HROV will satisfy SOI operational requirements – –
HROV will be optimized for operation on R/V Falkor HROV will support single body launch and recovery !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• Phase 0 –Objectives Definition: Sep 2013 – Nov 2013 • Phase 1 - Conceptual Design: Dec 2013 - Feb 2014 • Phase 2 - Preliminary Design: Mar 2014 - July 2014 – System Requirements Review: – Preliminary Design Review:
• Phase 3 - Final Design and Build: • Phase 4 - Testing and Evaluation:
May 14, 2014 July 23, 2014
Aug 2014 – Aug 2015 Sep 2015 – Mar 2016
– Engineering Trials: – Science Verification Cruises:
• Committed Scientific Deployments:
Sep 2015, Jan 2016 Feb 2016, Mar 2016
mid-2016
!"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• SOI HROV SAG Chair: Dr. Christopher German, WHOI • Science Advisory Group: – – – – – – – – –
Dr. Bill Chadwick, OSU Dr. Patricia Fryer, U. Hawaii Dr. Alan Jamieson, U. Aberdeen, UK Dr. Chuck Fisher, PSU Dr. Antje Boetius, MPI-Bremen, Germany Dr. Julie Huber, MBL Dr. David Butterfield, NOAA Dr. Marv Lilley, U. Washington Dr. Bruce Robison, MBARI !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
Air weight < 28.9 kN (6500 lb); Science payload 1.8 kN (400 lb); Dimensions within 350cm length x 180cm width x 190cm height !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
Single-body launch and recovery requirement is the primary driver for the arrangement !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
:)5B134$)C$.31*&6)52$
+,,DE?D??>$ !1F$G$
!"#$%"&'(#)
!*(+$%"&'(#)
,+$(#,)*!#",+'*-()
71'JF1*$K&4&$3&B(&01T$ 71S)LJ'Ja1$F1IJB'1$JC$K12J*1KT$ $$$$$$8F1*V$,_$S)54I2M$/1*C)*S$)F1*I&='$S&J5415&5B1T$
OJ22J)5$/'&55J50$ $$$$$`K156CV$2BJ15B1$)L\1B6F12T$ $$$$$:I))21$)31*&6)5&'$S)K1$&5K$B)5H0=*1$F1IJB'1T$ $$$$$/*13&*1$KJF1$3'&5T$ O)LJ'Ja1$F1IJB'1$)5$2IJ3$JC$5)4$&'*1&KV$)5$L)&*KT$ /1*C)*S$/*1D:*=J21$O&J5415&5B1$
#1IJB'1$24)*1K$J5$I&50&*T$ $$$$$$$O)F1K$L&B($&5K$C)*4I$C*)S$WX!9$FJ&$4*&B($ 2V241ST$ $$$$$$$b)*(J50$23&B1$)5$&''$2JK12$)C$F1IJB'1T$ 713*122)*$&5K$YJ5BI$24)*1K$)5$K1B(T$ XDC*&S1$S)=541K$W&=5BI$&5K$!1B)F1*V$9V241S$ NWX!9PT$ MJ%:"?6%"H$6,@"2C%
*&+"#,%>)8)%*;;&-'%,+'*-() `541*&B6F1$'JF1$L*)&KB&242$Q$ FJK1)$C11K$4)$3=L'JB@$B'&22*))S2@$ 2I)*1D2JK1$J5F1260&4)*2@$K&4&$ KJ24*JL=6)5$&5K$3=L'JB&6)5@$14BT$
Surface Interval
/1*C)*S$S&J5415&5B1$&5K$*1DB)5H0=*1$F1IJB'1$&2$511K1K$C)*$51^4$SJ22J)5T$ :)5K=B4$3)24DKJF1$K1L*J1C$&5K$3*1DKJF1$L*J1C$$C)*$51^4$KJF1T$ O&^$_$I)=*2$)5$2=*C&B1$L14Y115$KJF12T$
+./0123)%.456.7)8)9:5:);:4:<3=345) :)SS=5JB&6)52@$+&FJ0&6)5@$c*&B(J50$ 7&4&$3)24D3*)B122J50$
Post-Dive
Pre-Dive
!)''$F1IJB'1$J54)$I&501*$C)*$3)24DKJF1T$ /*)B122$&5K$K1'JF1*$2BJ15B1$K&4&$&5K$2&S3'12T$
Recovery
:)5H0=*1$F1IJB'1$&5K$L10J5$3*1DKJF1$J5$I&50&*M$ $$$$$$NO)K1$,P$%JL1*$24&B($C)*$K13*122)*$Q$R)&4D3&B($41*SJ5&41K$J5$'&L$23&B1T$ $$$$$$NO)K1$>P$.36B&'$S)K1S2$214=3T$ $$$$$$NO)K1$UP$8.O$B&L'1$B)551B41K$KJ*1B4'V$4)$F1IJB'1T$ /*13&*1$K13*122)*$)5$K1B(T$ !)''$F1IJB'1$)=4$)5$K1B(DS)=541K$4*&B(T$ O&41$F1IJB'1$4)$K13*122)*"R)&4$3&B(T$
("55C=%2,9=%G%-6,/0;2<%H6"9;#$%5$,2C%"8% +"/,@2<%;8%C?68,/$#%,I,3%86"5%C:;HA%
!1B)F1*$F1IJB'1$Z$K13*122)*$&221SL'VT$ NO)K1$XP$!1B)F1*$R)&4$3&B($)F1*$241*5T$ 71DS&41$F1IJB'1$C*)S$K13*122)*"R)&4$3&B(T$
Launch W&=5BI$&221SL'V$=2J50$XDC*&S1$S)=541K$ K)B(J50$I1&K$&5K$K1B(DS)=541K$YJ5BIT$ )$8,?+-%C;2<+$%D"#3%+,?2/:%,2#%6$/"9$63A%
*+",-%.,/0%1%!"#$%&% "2+3% N$:;/+$%5,3%,+C"%D$% C$H,6,-$+3%#$H+"3$#%,2#% 6$/"9$6$#%?C;2<%O1*6,5$A%
!1D3)2J6)5$2IJ3$51&*$&2B15KJ50$F1IJB'1T$ !1D'&=5BI$K13*122)*$4)$]>???DS$K134IT$ 8^1B=41$2=L21&$K)B(J50$)C$F1IJB'1$4)$K13*122)*T$
Descent
Ascent
#1IJB'1$Z$K13*122)*$3&22JF1'V$2J5(2$$4)$K12J*1K$K134I$NS)K1$K1315K154PT$ 7*JF1$F1IJB'1$&Y&V$C*)S$K13*122)*T$ NO)K1$XP$913&*&41$R)&4$3&B($&5K$L10J5$HL1*$3&V)=4T$
Execute Mission
[3)5$B)SS&5K1K$)*$&=4)D&L)*4M$ B%:"?6C%D"E"5%@5$%,-%FF%05% $$$$$$$NO)K1$XP$G*1&($HL1*T$ $$$$$$$XK\=24$L&''&24$C)*$3)2J6F1$L=)V&5BVT$ $$$$$$$G10J5$&2B154T$ -&='$J5$)5$K13*122)*$&5K$*1B)F1*T$
!"#$%&%
!"#$%'%
8^3')*1T$ :)''1B4$2&S3'12T$ !1B)*K$FJK1)$&5K$JS&012T$ O&(1$L&4IVS14*JB$S&32T$ `541*&B4$YJ4I$'&5K1*T$ 84BT$
4$+$5$-63%-"786"5%9$:;/+$% ,//"6#;2<%-"%!"#$%&=%'=%(=%"6%)% /"2>6,@"2A% JKK%+D%-"-,+%H,3+",#%/,H,/;-3% %%%%%L%FKK1MKK%+D%C,5H+$%D,C0$-%H,3+",#%
!"#$%(%
!"#$%)%
HROV Frame: Al and Ti considered for primary load path members, lightweight plastics and composites for secondary vehicle structure
!"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
•
Combination of syntactic foam and ceramic spheres in thwartships sphere tube matrix – Foam density 609-673 kg/m3 (38-42 PCF) – Ceramic sphere density 336 kg/ m3 (21 PCF) !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• • • • • • •
Ballast System comprised of the ascent and descent weight releases with triple redundancy Six Nereus-style Utility Pressure Housings with penetrators Electrical Distribution System leverages the Nereid Core design Pressure Balanced Oil Filled (PBOF) Lithium Ion Battery Modules and Battery Management System Pressure Balanced Oil Filled (PBOF) Direct Drive Thrusters and Motor Controllers In-hull Command & Control hardware and software that implements ROV and AUV functionality Designed to use Small Diameter Tether in light tether mode
!"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
•
Four Operational and Telemetry Modes: – – – –
• • • • •
Piloted via expendable fiber to 11 km Piloted via optical comms to 6 km Piloted via light tether to 6 km Untethered (Acoustic comms) to 11 km (AUV)
Reconfiguration between modes at sea will take 6 hours for 2 people Optimized for the prevalence of ROV operations, expected range of autonomous transit is at least 20 km Vertical transit time to or from 11 km no greater than 8 hours Maximum required surface interval between dives is 8 hours Per year, HROV will support up to 30 dives to 3000-m, 30 dives to 6000-m, and 60 dives to 11000-m. !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• • • • • • •
Bathymetry, backscatter, water column: Reson 7125 AUV 3 Multibeam Echo Sounder (6km) Interferometric bathymetry, sub-bottom profiles, sidescan: Edgetech 2205m (11km) 3-axis magnetic flux: Applied Physics Systems APS-1520 magnetometer (11km) Color video: 3DHD, panoramic, and UHD PZT cameras (11 km) Color photographs: WHOI/Insight Pacific Digital Still Camera with Strobe (6km) Turbidity: TBD, probably Seapoint Optical Backscatter sensor (>6km) Dissolved oxygen: Aandara Optode 4330-fastfoil (11km) !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• • • • • • • •
Conductivity, temperature, depth: Seabird SBE-49 (11km) Sound Velocity Probe: TBD, probably Reson (>6km) Redox potential: PMEL ORP Eh Probe (>6km) Vehicle position: Ixea PHINS-3 6-degree-of-freedom Inertial Navigation Sensor (internal, 11km) Vehicle velocities, water currents, altitude: RDI or ROWE Doppler Velocity Log, TBD (11km) Altitude over sea floor, backup altimetry: TBD, probably Novatech (11km) Pressure depth sensors: TBD, probably Paroscientific (11km) Vehicle position on surface: TBD, Iridium, AIS (11km) !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
• • • • • • • • •
Payload Weight: 180 kg 1x 7-function Kraft primary manipulator arm (11km) 1x 6-function Schilling secondary manipulator arm (11km) 8x 6.4 cm dia sediment cores (11km) 2x 30.5 cm x 30.5 cm 30.5 cm UHMW polyethylene biobox (11 km) 1x multi-chamber slurp system (11km) 5x 2-liter Niskin bottles (11km) Mid-water column observations and sampling The vehicle will accommodate add-on scientific systems via ethernet, RS-232, RS-485, RS-422, serial, and analog interfaces and 5000 WHr of battery power at up to 80V and 100W per channel. !"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$
!"#$%&'()*$+,,($-!.#$/*)0*122$!13)*4$ /*12154&6)5$&4$7899:$;$<=51$>?@$>?,A$