Transcript
Micron Confidential and Proprietary
Advance‡
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Features
DDR2 SDRAM SODIMM MT8HSF3264HD – 256MB MT8HSF6464HD – 512MB MT8HSF12864HD – 1GB For component data sheets, refer to Micron’s Web site: www.micron.com/ddr2
Features
Figure 1:
• 200-pin, small outline, dual in-line memory module (SODIMM) • Fast data transfer rates: PC2-3200, PC2-4200, or PC25300 • 256MB (32 Meg x 64), 512MB (64 Meg x 64), and 1GB (128 Meg x 64) • VDD = VDDQ = +1.8V • VDDSPD = +3.0V to +3.6V • JEDEC standard 1.8V I/O (SSTL_18-compatible) • Differential data strobe (DQS, DQS#) option • Four-bit prefetch architecture • DLL to align DQ and DQS transitions with CK • Multiple internal device banks for concurrent operation • Programmable CAS latency (CL) • Posted CAS additive latency (AL) • WRITE latency = READ latency - 1 tCK • Programmable burst lengths: 4 or 8 • Adjustable data-output drive strength • 64ms, 8,192-cycle refresh • On-die termination (ODT) • Serial presence-detect (SPD) with EEPROM • Gold edge contacts • Dual rank • Temperature sensor
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_1.fm - Rev. A 4/06 EN
200-Pin SODIMM (MO-224 R/C “A”)
PCB height: 1.18in (29.97mm)
Options
Marking
2
• I C bus SPD and temperature sensor • Package 200-pin SODIMM (lead-free) • Frequency/CL1 3.0ns @ CL = 5 (DDR2-667)2 3.75ns @ CL = 4 (DDR2-533) 5.0ns @ CL = 3 (DDR2-400) • PCB height 1.18in (29.97mm)
HSF Y -667
-53E -40E
Notes: 1. CL = CAS (READ) latency. 2. Not available in 1GB density.
1
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Features Table 1:
Address Table
Refresh count Row addressing Device bank addressing Device page size per bank Device configuration Column addressing Module rank addressing
Table 2:
256MB
512MB
1GB
8K 8K (A0–A12) 4 (BA0, BA1) 1KB 256Mb (16 Meg x 16) 512 (A0–A8) 2 (S0#, S1#)
8K 8K (A0–A12) 4 (BA0, BA1) 1KB 512Mb (32 Meg x 16) 1K (A0–A9) 2 (S0#, S1#)
8K 8K (A0–A12) 8 (BA0, BA1, BA2) 1KB 1Gb (64 Meg x 16) 1K (A0–A9) 2 (S0#, S1#)
Key Timing Parameters Data Rate (MT/s)
Speed Grade
CL = 3
CL = 4
CL = 5
(ns)
tRP (ns)
tRC (ns)
-667 -53E -40E
400 400 400
533 533 400
667 – –
15 15 15
15 15 15
55 55 55
Table 3:
tRCD
Part Numbers and Timing Parameters
Part Number1 MT8HSF3264HDY-667__ MT8HSF3264HDY-53E__ MT8HSF3264HDY-40E__ MT8HSF6464HDY-667__ MT8HSF6464HDY-53E__ MT8HSF6464HDY-40E__ MT8HSF12864HDY-667__ MT8HSF12864HDY-53E__ MT8HSF12864HDY-40E__ Notes:
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_1.fm - Rev. A 4/06 EN
Module Density
Configuration
Module Bandwidth
Memory Clock/ Data Rate
Latency (CL-tRCD-tRP)
256MB 256MB 256MB 512MB 512MB 512MB 1GB 1GB 1GB
32 Meg x 64 32 Meg x 64 32 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64
5.3 GB/s 4.3 GB/s 3.2 GB/s 5.3 GB/s 4.3 GB/s 3.2 GB/s 5.3 GB/s 4.3 GB/s 3.2 GB/s
3.0ns/667 MT/s 3.75ns/533 MT/s 5.0ns/400 MT/s 3.0ns/667 MT/s 3.75ns/533 MT/s 5.0ns/400 MT/s 3.0ns/667 MT/s 3.75ns/533 MT/s 5.0ns/400 MT/s
5-5-5 4-4-4 3-3-3 5-5-5 4-4-4 3-3-3 5-5-5 4-4-4 3-3-3
1. All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for current revision codes. Example: MT8HSF6464HDY-40EC2.
2
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Table of Contents
Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Pin Assignments and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Serial Presence-Detect Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 AC Timing and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 EVENT# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 SMBus Slave Subaddress Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Capability Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Temperature Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Upper Temperature Boundary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Lower Temperature Boundary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Critical Temperature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Temperature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Serial Presence-Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 SPD Clock and Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 SPD Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 SPD Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 SPD Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Module Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDGTOC.fm - Rev. A 4/06 EN
3
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM List of Figures
List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 7: Figure 8: Figure 9: Figure 10:
200-Pin SODIMM (MO-224 R/C “A”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Pin Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 EVENT# Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Definition of Start and Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Acknowledge Response From Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 SPD EEPROM Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 200-Pin DDR2 SODIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDGLOF.fm - Rev. A 4/06 EN
4
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM List of Tables
List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Table 23: Table 24: Table 25: Table 26: Table 27: Table 28: Table 29:
Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Part Numbers and Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Absolute Maximum DC Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 DDR2 IDD Specifications and Conditions – 256MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 DDR2 IDD Specifications and Conditions – 512MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 DDR2 IDD Specifications and Conditions – 1GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Module and Component Speed Grade Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Temperature Sensor EEPROM AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Temperature Sensor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Pointer Register Bits 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Pointer Register Bits 0–2 Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Capability Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Capability Register Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Configuration Register Bits 0–15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Configuration Register Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Upper Temperature Boundary Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Lower Temperature Boundary Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Critical Temperature Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Temperature Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Temperature Register Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 EEPROM Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 EEPROM Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Serial Presence-Detect EEPROM and Temperature Sensor DC Operating Conditions . . . . . . . . . . .26 Serial Presence-Detect EEPROM AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Serial Presence-Detect Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDGLOT.fm - Rev. A 4/06 EN
5
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Pin Assignments and Descriptions
Pin Assignments and Descriptions Table 4:
Pin Assignments 200-Pin SODIMM Front
200-Pin SODIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
VSS 52 DQ4 54 DQ5 56 VSS 58 DM0 60 VSS 62 DQ6 64 DQ7 66 VSS 68 DQ12 70 DQ13 72 VSS 74 DM1 76 VSS 78 CK0 80 CK0# 82 VSS 84 DQ14 86 DQ15 88 VSS 90 VSS 92 DQ20 94 DQ21 96 VSS 98 EVENT# 100
DM2 VSS DQ22 DQ23 VSS DQ28 DQ29 VSS DQS3# DQS3 VSS DQ30 DQ31 VSS CKE1 VDD NC NC VDD A11 A7 A6 VDD A4 A2
102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150
A0 VDD BA1 RAS# S0# VDD ODT0 NC VDD NC VSS DQ36 DQ37 VSS DM4 VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DQS5# DQS5 VSS
152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200
DQ46 DQ47 VSS DQ52 DQ53 VSS CK1 CK1# VSS DM6 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS DQS7# DQS7 VSS DQ62 DQ63 VSS SA0 SA1
VREF VSS DQ0 DQ1 VSS DQS0# DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1# DQS1 Vss DQ10 DQ11 VSS VSS DQ16 DQ17 VSS DQS2#
51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DM3 NC VSS DQ26 DQ27 VSS CKE0 VDD NC NC/BA2 VDD A12 A9 A8 VDD A5 A3 Note:
Figure 2:
101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149
A1 VDD A10/AP BA0 WE# VDD CAS# S1# VDD ODT1 VSS DQ32 DQ33 VSS DQS4# DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DM5 VSS
151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199
DQ42 DQ43 VSS DQ48 DQ49 VSS NC VSS DQS6# DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS DM7 VSS DQ58 DQ59 VSS SDA SCL VDDSPD
Pin 85 is NC for 256MB and 512MB, BA2 for 1GB.
Pin Locations
Front View
U1
Back View
U2
U3
U4
U5
U10
PIN 1
U9
U7
(all odd pins)
PIN 199
PIN 200
Indicates a VDD or VDDQ pin
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
U8
U6
6
(all even pins)
PIN 2
Indicates a VSS pin
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Pin Assignments and Descriptions Table 5:
Pin Descriptions Pin numbers may not correlate with symbols; refer to Table 4 on page 6 for more information
Pin Numbers
Symbol
Type
Description
114, 119
ODT0, ODT1
Input
30, 32, 164, 166
CK0, CK0# CK1, CK1#
Input
79, 80
CKE0, CKE1
Input
110, 115
S0#, S1#
Input
108, 109, 113
RAS#, CAS#, WE#
Input
85 (1GB), 106, 107
BA0, BA1, BA2 (1GB)
Input
89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 105
A0–A12
Input
10, 26, 52, 67, 130, 147, 170, 185
DM0–DM7 UDM = DM0, DM2, DM5, DM7 LDM = DM 1, DM3, DM4, DM6
Input
On-Die termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is applied to these pins: DQ, DQS, DQS#, and DM. The ODT input will be ignored if disabled via the LMR command. Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#. Output data (DQs and DQS/DQS#) is referenced to the crossings of CK and CK#. Clock enable: CKE (registered HIGH) activates and CKE (registered LOW) deactivates clocking circuitry on the DDR2 SDRAM. The specific circuitry that is enabled/disabled is dependent on the DDR2 SDRAM configuration and operating mode. CKE LOW provides PRECHARGE power-down and SELF REFRESH operations (all device banks idle), or ACTIVE powerdown (row ACTIVE in any device bank). CKE is synchronous for power-down entry, power-down exit, output disable, and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, and ODT) are disabled during power-down. Input buffers (excluding CKE) are disabled during SELF REFRESH. CKE is an SSTL_18 input but will detect a LVCMOS LOW level once VDD is applied during first power-up. After VREF has become stable during the power-on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper SELF-REFRESH operation, VREF must be maintained to this input. Chip select: S# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when S# is registered HIGH. S# provides for external rank selection on systems with multiple ranks. S# is considered part of the command code. Command inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered. Bank address inputs: BA0–BA1/BA2 define to which device bank an ACTIVE, READ, WRITE, or PRECHARGE command is being applied, BA0–BA1/BA2 define which mode register including MR, EMR, EMR(2), and EMR(3) is loaded during the LOAD MODE command. Address inputs: Provide the row address for ACTIVE commands, and the column address and auto precharge bit (A10) for READ/ WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one device bank (A10 LOW, device bank selected by BA0–BA1/BA2) or all device banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Input data mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges of DQS. Although DM pins are input-only, the DM loading is designed to match that of DQ and DQS pins.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
7
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Pin Assignments and Descriptions Table 5:
Pin Descriptions (Continued) Pin numbers may not correlate with symbols; refer to Table 4 on page 6 for more information
Pin Numbers 4, 5, 6, 7, 14, 16, 17, 19, 20, 22, 23, 25, 35, 36, 37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 61, 62, 63, 64, 73, 74, 75, 76, 123, 124, 125, 126, 134, 135, 136, 137, 140, 141, 142, 143, 151, 152, 153, 154, 157, 158, 159, 160, 173, 174, 175, 176, 179, 180, 181, 182, 189, 191, 192, 194 11, 13, 29, 31, 49, 51, 68, 70, 129, 131, 146, 148, 167, 169, 186, 188
Symbol
Type
DQ0–DQ63
I/O
DQS0–DQS7, DQS0#–DQS7#
I/O
Description Data input/output: Bidirectional data bus.
197
SCL
198, 200
SA0–SA1
195
SDA
50
EVENT#
81, 82, 87, 88, 95, 96, 103, 104, 111, 112, 117, 118 1 2, 3, 8, 9, 12, 15, 18, 21, 24, 27, 28, 33, 34, 39, 40, 41, 42, 47, 48, 53, 54, 59, 60, 65, 66, 71, 72, 77, 78, 121, 122, 127, 128, 132, 133, 138, 139, 144, 145, 149, 150, 155, 156, 161, 162, 165, 168, 171, 172, 177, 178, 183, 184, 187, 190, 193, 196 199 69, 83, 84, 85 (256MB and 512MB), 86, 116, 120, 163
VDD
Data strobe: Output with read data, input with write data for source synchronous operation. Edge-aligned with read data, center aligned with write data. DQS# is only used when differential data strobe mode is enabled via the LMR command. Input Serial clock for presence-detect: SCL is used to synchronize the presence-detect data transfer to and from the module. Input Presence-detect address inputs: These pins are used to configure the presence-detect device. Input/ Serial presence-detect data: SDA is a bidirectional pin used to Output transfer addresses and data into and out of the presence-detect portion of the module. Output Event signal based off the temperature for the temperature sensor option. Supply Power supply: +1.8V ±0.1V.
VREF VSS
Supply SSTL_18 reference voltage. Supply Ground.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
VDDSPD NC
Supply Serial EEPROM positive power supply: +3.0V to +3.6V. – No connect: These pins should be left unconnected.
8
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Functional Block Diagram
Functional Block Diagram Unless otherwise noted, resistor values are 22Ω. Micron module part numbers are explained in the module part numbering guide at www.micron.com/numbering. Modules use the following DDR2 SDRAM devices: MT47H16M16BP (256MB); MT47H32M16BT (512MB); and MT47H64M16BT (1GB). Figure 3:
Functional Block Diagram 3
S1# S0#
UDQS UDQS# UDM
DQS0 DQS0# DM0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7
DQS1 DQS1# DM1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15
DQ DQ DQ DQ DQ DQ DQ DQ LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ
UDQS UDQS# UDM
DQS2 DQS2# DM2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23
DQS3 DQS3# DM3 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31
DQ DQ DQ DQ DQ DQ DQ DQ LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ
CS#
U1
CS#
U2
UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ
UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ
CS#
LDQS LDQS# LDM
DQS4 DQS4# DM4 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39
U9 DQS5 DQS5# DM5
DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47
CS#
LDQS LDQS# LDM
DQS6 DQS6# DM6 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55
U8
DQ DQ DQ DQ DQ DQ DQ DQ UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ
DQS7 DQS7# DM7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63
DQ DQ DQ DQ DQ DQ DQ DQ UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ
BA0-BA1/BA2: DDR2 SDRAMs A0-A12/A13: DDR2 SDRAMs VDDSPD RAS#: DDR2 SDRAMs VDD, VDDQ CAS#: DDR2 SDRAMs VREF WE#: DDR2 SDRAMs VSS CKE0: DDR2 SDRAMs CKE1: DDR2 SDRAMs ODT0: DDR2 SDRAMs ODT1: DDR2 SDRAMs
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ
U3
CS#
LDQS LDQS# LDM DQ DQ DQ DQ DQ DQ DQ DQ UDQS UDQS# UDM DQ DQ DQ DQ DQ DQ DQ DQ
U4
U7 Serial PD
3Ω BA0–BA1/BA2 A0–A12 RAS# CAS# WE# CKE0 CKE1 ODT0 ODT1
CS#
Serial PD DDR2 SDRAMS SCL DDR2 SDRAMS DDR2 SDRAMS, EEPROM TEMP SENSOR
WP
SDA
A0 A1 A2
CS#
U5
U1, U2, U8, U9 100Ω
U10
Temp Sensor A1
U6
100Ω CK0 CK0#
EVENT SA0 SA1
EVT A0
CS#
CK1 CK1#
U3, U4, U5, U6
SDA
A2
EVENT SA0 SA1
9
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM General Description
General Description The MT8HSF3264HD, MT8HSF6464HD, and MT8HSF12864HD DDR2 SDRAM modules are high-speed, CMOS, dynamic random-access 256MB, 512MB, and 1GB memory modules organized in x72 configuration. DDR2 SDRAM modules use internally configured quad-bank (256MB, 512MB) or eight-bank (1GB) DDR2 SDRAM devices. DDR2 SDRAM modules use double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 4n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the DDR2 SDRAM module effectively consists of a single 4n-bitwide, one-clock-cycle data transfer at the internal DRAM core and four corresponding n-bit-wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS, DQS#) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR2 SDRAM device during READs and by the memory controller during WRITEs. DQS is edgealigned with data for READs and center-aligned with data for WRITEs. DDR2 SDRAM modules operate from a differential clock (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK.
Serial Presence-Detect Operation DDR2 SDRAM modules incorporate serial presence-detect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes. The first 128 bytes are programmed by Micron to identify the module type and various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device occur via a standard I2C bus extended mode register 2 (EMR2).
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
10
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Electrical Specifications
Electrical Specifications Stresses greater than those listed below (in Table 6) may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Table 6:
Absolute Maximum DC Ratings
Parameter VDD supply voltage relative to VSS VDDQ supply voltage relative to VSS VDDL supply voltage relative to Vss Voltage on any pin relative to VSS Storage temperature DDR2 SDRAM device operating temperature (ambient) Operating temperature (ambient) Command/Address, Input leakage current; Any input 0V ≤ VIN ≤ VDD; VREF input 0V ≤ VIN ≤0.95V; (All other pins not under RAS#, CAS#, WE# S#, test = 0V) CKE CK, CK# DM Output leakage current; 0V ≤ VOUT ≤ VDDQ; DQs and DQ, DQS, DQS# ODT are disabled VREF leakage current; VREF = Valid VREF level
Symbol
Min
Max
Units
VDD VDDQ VDDL
–1.0 –0.5 –0.5
2.3 2.3 2.3
V V V
VIN, VOUT TSTG Tcase TOPR II
–0.5 –55 0 0
2.3 100 85 65
V °C °C °C
–40
40
–20 –10
20 10
IOZ
–10
10
µA
IVREF
–16
16
µA
µA
Capacitance At DDR2 data rates, Micron encourages designers to simulate the performance of the module to achieve optimum values. When inductance and delay parameters associated with trace lengths are used in simulations, they are significantly more accurate and realistic than a gross estimation of module capacitance. Simulations can then render a considerably more accurate result. JEDEC modules are now designed by using simulations to close timing budgets.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
11
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Electrical Specifications Table 7:
DDR2 IDD Specifications and Conditions – 256MB Values shown for DDR2 SDRAM components only
Parameter/Condition t
t
t
Symbol
-667
-53E
-40E
Units
IDD0a
380
340
320
mA
IDD1a
420
380
360
mA
IDD2Pb
40
40
40
mA
IDD2Qb
400
280
200
mA
IDD2Nb
320
280
240
mA
240
200
160
mA
48
48
48
mA
IDD3Nb
440
320
240
mA
IDD4Wa
880
740
580
mA
IDD4Ra
780
660
500
mA
IDD5b
1,440
1,360
1,320
mA
IDD6b
40
40
40
mA
IDD7a
1,020
980
940
mA
t
Operating one bank active-precharge current; CK = CK (IDD), RC = RC (IDD), tRAS = tRAS MIN (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are SWITCHING Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS MIN (IDD), t RCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data pattern is same as IDD4W Precharge power-down current; All device banks idle; tCK = tCK (IDD); CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating Precharge quiet standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are stable; Data bus inputs are floating Precharge standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are switching; Data bus inputs are switching Active power-down current; All device banks open; tCK = Fast PDN exit tCK (IDD); CKE is LOW; Other control and address bus inputs MR[12] = 0 are stable; Data bus inputs are floating Slow PDN exit MR[12] = 1 t t Active standby current; All device banks open; CK = CK(IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Operating burst write current; All device banks open, continuous burst WRITEs; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Operating burst read current; All device banks open, continuous burst READs, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Burst refresh current; tCK = tCK (IDD); REFRESH command at every tRFC (IDD) interval; CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Self refresh current; CK and CK# at 0V; CKE ≤ 0.2V; Other control and address bus inputs are floating; Data bus inputs are floating Operating bank interleave read current; All device banks interleaving reads, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = tRCD (IDD) - 1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD), tRCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are stable during DESELECTs; Data bus inputs are switching; See IDD7 conditions in component data sheet for detail
IDD3Pb
Note: a: Value calculated as one module rank in this operating condition, and all other ranks in IDD2P (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Electrical Specifications Table 8:
DDR2 IDD Specifications and Conditions – 512MB Values shown for DDR2 SDRAM components only
Parameter/Condition t
t
t
Symbol
-667
-53E
-40E
Units
IDD0a
500
460
460
mA
IDD1a
600
540
520
mA
IDD2Pb
40
40
40
mA
IDD2Qb
440
360
320
mA
IDD2Nb
480
400
360
mA
280
240
200
mA
80
80
80
mA
IDD3Nb
560
480
400
mA
IDD4Wa
940
780
620
mA
IDD4Ra
960
800
640
mA
IDD5b
1,760
1,680
1,600
mA
IDD6b
40
40
40
mA
IDD7a
1,340
1,320
1,300
mA
t
Operating one bank active-precharge current; CK = CK (IDD), RC = RC (IDD), tRAS = tRAS MIN (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are SWITCHING Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS MIN (IDD), t RCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data pattern is same as IDD4W Precharge power-down current; All device banks idle; tCK = tCK (IDD); CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating Precharge quiet standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are stable; Data bus inputs are floating Precharge standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are switching; Data bus inputs are switching Active power-down current; All device banks open; tCK = Fast PDN exit tCK (IDD); CKE is LOW; Other control and address bus inputs MR[12] = 0 are stable; Data bus inputs are floating Slow PDN exit MR[12] = 1 t t Active standby current; All device banks open; CK = CK(IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Operating burst write current; All device banks open, continuous burst WRITEs; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Operating burst read current; All device banks open, continuous burst READs, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Burst refresh current; tCK = tCK (IDD); REFRESH command at every tRFC (IDD) interval; CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Self refresh current; CK and CK# at 0V; CKE ≤ 0.2V; Other control and address bus inputs are floating; Data bus inputs are floating Operating bank interleave read current; All device banks interleaving reads, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = tRCD (IDD) - 1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD), tRCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are stable during DESELECTs; Data bus inputs are switching; See IDD7 conditions in component data sheet for detail
IDD3Pb
Note: a: Value calculated as one module rank in this operating condition, and all other ranks in IDD2P (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
13
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Electrical Specifications Table 9:
DDR2 IDD Specifications and Conditions – 1GB Values shown for DDR2 SDRAM components only
Parameter/Condition t
t
t
Symbol
-667
-53E
-40E
Units
IDD0a
560
460
460
mA
IDD1a
660
540
520
mA
IDD2Pb
56
40
40
mA
IDD2Qb
520
360
320
mA
IDD2Nb
560
400
320
mA
320
240
200
mA
40
40
40
mA
IDD3Nb
600
440
400
mA
IDD4Wa
1,100
780
660
mA
IDD4Ra
1,120
800
740
mA
IDD5b
2,160
2,000
1,920
mA
IDD6b
56
40
40
mA
IDD7a
1,640
1,440
1,440
mA
t
Operating one bank active-precharge current; CK = CK (IDD), RC = RC (IDD), tRAS = tRAS MIN (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are SWITCHING Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS MIN (IDD), t RCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data pattern is same as IDD4W Precharge power-down current; All device banks idle; tCK = tCK (IDD); CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating Precharge quiet standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are stable; Data bus inputs are floating Precharge standby current; All device banks idle; tCK = tCK (IDD); CKE is HIGH, S# is HIGH; Other control and address bus inputs are switching; Data bus inputs are switching Active power-down current; All device banks open; tCK = Fast PDN exit tCK (IDD); CKE is LOW; Other control and address bus inputs MR[12] = 0 are stable; Data bus inputs are floating Slow PDN exit MR[12] = 1 t t Active standby current; All device banks open; CK = CK(IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Operating burst write current; All device banks open, continuous burst WRITEs; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Operating burst read current; All device banks open, continuous burst READs, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching Burst refresh current; tCK = tCK (IDD); REFRESH command at every tRFC (IDD) interval; CKE is HIGH, S# is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching Self refresh current; CK and CK# at 0V; CKE ≤ 0.2V; Other control and address bus inputs are floating; Data bus inputs are floating Operating bank interleave read current; All device banks interleaving reads, IOUT = 0mA; BL = 4, CL = CL (IDD), AL = tRCD (IDD) - 1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD), tRCD = tRCD (IDD); CKE is HIGH, S# is HIGH between valid commands; Address bus inputs are stable during DESELECTs; Data bus inputs are switching; See IDD7 conditions in component data sheet for detail
IDD3Pb
Note: a: Value calculated as one module rank in this operating condition, and all other ranks in IDD2P (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM AC Timing and Operating Conditions
AC Timing and Operating Conditions Recommended AC operating conditions are given in the DDR2 component data sheets. Component specifications are available on Micron’s Web site: www.micron.com/ddr2. Module speed grades correlate with component speed grades as shown in the following table: Table 10:
Table 11:
Module and Component Speed Grade Table Module Speed Grade
Component Speed Grade
-667 -53E -40E
-3 -37E -5E
Temperature Sensor EEPROM AC Timing
Parameter/Condition Time the bus must be free before a new transition can start SDA and SCL fall time Data hold time Start condition hold time Clock HIGH period Clock LOW period SDA and SCL rise time SCL clock frequency Data setup time Start condition setup time Stop condition setup time Clock frequency
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
Symbol
Min
tBUF
4.7
tF tHD:DAT tHD:STA tHIGH tLOW
300 300 4.0 4 4.7
tR
tSU:STA tSU:STO tCK
15
50 1000 400
fSCL tSU:DAT
Max
250 4.7 4 10
100
Units µs ns ns µs µs µs ns KHz ns µs µs KHz
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Temperature Sensor
Temperature Sensor The optional temperature sensor continuously monitors the module’s temperature and can be read back at any time over the I2C bus shared with the SPD. This sensor complies with the JEDEC standard JC-42.4, covering a range from -20–125°C.
EVENT# Pin The temperature sensor also adds the EVENT# pin. Not used by the SPD, EVENT# is a temperature sensor output used to flag critical events that can be set up in the sensor’s configuration register. EVENT# has three defined modes of operation: interrupt mode, compare mode, and critical temperature mode. The open-drain output of EVENT# under the three separate operating modes is illustrated in Figure 4 on page 17. Event thresholds are programmed in the 0x01 register using a hysteresis. The alarm window provides a comparison window, with upper and lower limits set in the alarm upper boundary register and the alarm lower boundary register, respectively. When the alarm window is enabled, EVENT# will trigger whenever the temperature is outside the MIN or MAX values set by the user. The interrupt mode enables software to reset EVENT# after a critical temperature threshold has been detected. Threshold points are set in the configuration register by the user. This mode triggers the critical temperature limit and both the MIN and MAX of the temperature window. The compare mode is similar to the interrupt mode, except EVENT# cannot be reset by the user and only returns to the logic HIGH state once temperature falls below the programmed thresholds. Critical temperature mode triggers EVENT# only when the temperature has exceeded the programmed critical trip point. Once the critical trip point has been reached, the temperature sensor goes into comparator mode and the critical EVENT# cannot be cleared through software.
SMBus Slave Subaddress Decoding The temperature sensor’s physical address differs from current SPD device physical addresses: 0011 for A0, A1, A2, and RW in binary, where A2, A1, and A0 are the three slave subaddress pins and RW pin is the READ/WRITE flag. If the slave base address is fixed for the SPD and temperature sensor, then the pins set the subaddress bits of the slave address, enabling the devices to be located anywhere within the eight slave address locations. For example, they could be set from 30h to 3Eh.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
16
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Temperature Sensor Figure 4:
EVENT# Pin Functionality Temp
Critical Hysteresis affects these trip points Alarm Window (MAX)
Alarm Window (MIN)
S/V clears event
Time
EVENT# interrupt mode EVENT# comparator mode EVENT# critical temp-only mode
Table 12:
Temperature Sensor Registers
Name Pointer register Capability register Configuration register Alarm temperature upper boundary register Alarm temperature lower boundary register Critical temperature register Temperature register
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
17
Address (Hex)
Power-On Default
n/a 0x00 0x01 0x02 0x03 0x04 0x05
Undefined 0x0001 0x0000 0x0000 0x0000 0x0000 Undefined
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Pointer Register
Pointer Register The pointer register selects which of the 16-bit registers is being accessed in subsequent READ and WRITE operations. This register is a WRITE only register. Table 13:
Pointer Register Bits 0–7
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0
0
0
0
Register select
Register select
Register select
Register select
Table 14:
Pointer Register Bits 0–2 Descriptions
Bit2
Bit1
Bit0
0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 1
Register Capability register Configuration register Alarm temperature upper boundary register Alarm temperature lower boundary register Critical temperature register Temperature register
Capability Register The capability register indicates the features and functionality supported by the temperature sensor. This register is a read-only register. Table 15: Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
RFU
RFU
RFU
RFU
RFU
RFU
RFU
RFU
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
RFU
RFU
RFU
TRES1
TRES0
Wider range
Precision
Has alarm and critical temperature
Table 16: Bit 0 1
2
Capability Register Bits
Capability Register Bit Descriptions
Description Basic capability 1: Has alarm and critical trip point capabilities Accuracy 0: ±2°C over the active range and ±3°C over the monitor range 1: ±1°C over the active range and ±2°C over the monitor range Wider range 0: Values lower than 0°C is clamped to a binary value of 0 1: Temperatures below 0°C can be read
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
18
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Configuration Register Table 16:
Capability Register Bit Descriptions
Bit
Description
4:3
Temperature resolution 00: 05°C LSB 01: 0.25°C LCB 10: 0.125°C LSB 11: 0.0625°C LSB 0: Must be set to zero
15:5
Configuration Register Table 17:
Configuration Register Bits 0–15
Bit15
Bit14
Bit13
Bit12
Bit11
RFU
RFU
RFU
RFU
RFU
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Critical lock bit
Alarm lock bit
Clear event
Event output status
Event output control
Critical event only
Event polarity
Event mode
Table 18: Bit 0
1
2
3
4
5
6
7
Bit10
Bit9
Hysteresis
Bit8 Shutdown mode
Configuration Register Bit Descriptions
Description Event mode 0: Comparator mode 1: Interrupt mode Cannot be changed if either of the lock bits are set EVENT# polarity 0: Active LOW 1: Active HIGH Cannot be changed if either of the lock bits are set Critical event only 0: Event# trips on alarm or critical temperature event 1: EVENT# trips only if critical temperature is reached Event output control 0: Event output disabled 1: Event output enabled Event status 0: EVENT# has not been asserted by this device 1: EVENT# is being asserted due to a alarm window or critical temperature condition This is a read-only field in the register; the event causing the event can be determined from the read temperature register Clear event 0: No effect 1: Clears the event when the temperature sensor is in the interrupt mode This is a WRITE only field in the register and is self clearing Alarm window lock bit 0: Alarm trips will are not locked and can be changed 1: Alarm trips are not locked and can not be changed Critical trip lock bit 0: Critical trip is not locked and can be changed 1: Critical trip are not locked and can not be changed
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
19
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Configuration Register Table 18: Bit 8
10:9
Configuration Register Bit Descriptions
Description Shutdown mode 0: Enabled 1: Shutdown The shutdown mode is a power saving mode that disables the temperature sensor Hysteresis enable 00: Disable 01: Enable at 1.5°C 10: Enable at 3°C 11: Enable at 6°C When enabled, a hysteresis is applied to temperature movement around the trip points. For example, if the hysteresis register is enabled to a delta of 6°C, the preset trip points will toggle when temperature reaches the programmed value. The value resets when temperature drops below trip points minus the set hysteresis level (critical temperature - 6°C). The hysteresis is applied to both the above alarm window and the below alarm window bits found in the read-only temperature register. EVENT# is also affected by this register.
Figure 5:
Hysteresis TH TH-Hyst
TL
TL-Hyst
Below Window Bit
Above Window Bit TH - Value set in the alarm temperature upper boundary trip register TL - Value set in the alarm temperature lower boundary trip register Hyst - Value set in the hysteresis bits of the configuration register
Table 19:
Hysteresis
Condition Sets Clears
Below Alarm Window Bit Temperature gradient Falling Rising
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
Above Alarm Window Bit
Critical temperature TL-Hyst TL
20
Temperature gradient Rising Falling
Critical temperature TH TH-Hyst
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Temperature Format
Temperature Format The temperature trip point registers and temperature readout register use a “2’s complement” format to enable negative numbers. The least significant bit (LSB) is equal to 0.0625°C or 0.25°C depending on which register is referenced. As an example, assuming a LSB of 0.0625°C: • A value of 0x018C would equal 24.75°C • A value of 0x06C0 would equal 108°C • A value of 0x1E74 would equal –24.75°C
Upper Temperature Boundary Register The upper temperature boundary register is used to set the maximum value of the alarm window. The LSB for this register is 0.25°C. All RFU bits in the register will always report zero. Table 20:
Upper Temperature Boundary Register Bits
15
14
13
12
11
0
0
0
MSB
10
9
8
7
6
5
4
3
2
1
0
LSB
RFU
RFU
Alarm window upper boundary temperature
Lower Temperature Boundary Register The lower temperature boundary register is used to set the minimum value of the alarm window. The LSB for this register is 0.25oC. All RFU bits in the register will always report zero. Table 21:
Lower Temperature Boundary Register Bits
15
14
13
12
11
0
0
0
MSB
10
9
8
7
6
5
4
3
2
1
0
LSB
RFU
RFU
Alarm window lower boundary temperature
Critical Temperature Register The critical temperature register is used to set the maximum temperature above the alarm window. The LSB for this register is 0.25°C. All RFU bits in the register will always report zero. Table 22:
Critical Temperature Register Bits
15
14
13
12
0
0
0
MSB
11
10
9
8
7
6
5
4
3
2
1
0
LSB
RFU
RFU
Critical temperature trip point
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Temperature Format Temperature Register The temperature register is a read-only register that provides the current temperature detected by the temperature sensor. The LSB for this register is 0.0625°C with a resolution of 0.0625°C. The most significant bit (MSB) is 128°C in the readout section of this register. The upper three bits of the register are used to monitor the trip points that are set in the previous three registers. Table 23: 15
Temperature Register Bits 14
13
Above Above Below critical alarm alarm trip window window
Table 24:
12
11
10
9
8
5
4
3
2
1
0 LSB
Temperature
Temperature Register Bit Descriptions
Description
13
Below alarm window 0: Temperature is equal to or above the lower boundary 1: Temperature is below alarm window Above alarm window 0: Temperature is equal to or below the upper boundary 1: Temperature is above alarm window Above critical trip point 0: Temperature is below critical trip point 1: Temperature is above critical trip point
15
6
MSB
BIT
41
7
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
22
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect
Serial Presence-Detect SPD Clock and Data Conventions Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions (see Figures 6 and 7 on page 24).
SPD Start Condition All commands are preceded by the start condition, which is a HIGH-to-LOW transition of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met.
SPD Stop Condition All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device into standby power mode.
SPD Acknowledge Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either master or slave, will release the bus after transmitting 8 bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it received the 8 bits of data (see Figure 8 on page 24). The SPD device will always respond with an acknowledge after recognition of a start condition and its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device will transmit 8 bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the stop condition to return to standby power mode.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Figure 6:
Data Validity
SCL
SDA Data stable
Figure 7:
Data change
Data stable
Definition of Start and Stop
SCL
SDA
Start bit
Figure 8:
Stop bit
Acknowledge Response From Receiver
(( ))
SCL from master
(( )) (( ))
Data output from transmitter
(( ))
Data output from receiver
Acknowledge
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Table 25:
EEPROM Device Select Code The most significant bit (b7) is sent first Device Type Identifier
Select Code Memory area select code (two arrays) Protection register select code
Table 26:
RW
b7
b6
b5
b4
b3
b2
b1
b0
1 0
0 1
1 1
0 0
SA2 SA2
SA1 SA1
SA0 SA0
RW RW
EEPROM Operating Modes
Mode Current address READ Random address READ Sequential READ Byte WRITE Page WRITE
Figure 9:
Chip Enable
RW Bit
WC
Bytes
1 0 1 1 0 0
VIH or VIL VIH or VIL VIH or VIL VIH or VIL VIL VIL
1 1 1 ≥1 1 ≤ 16
Initial Sequence START, device select, RW = ‘1’ START, device select, RW = ‘0’, address RESTART, device select, RW = ‘1’ Similar to current or random address READ START, device select, RW = ‘0’ START, device select, RW = ‘0’
SPD EEPROM Timing Diagram tF
t HIGH
tR
t LOW
SCL t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA In t DH
t AA
t BUF
SDA Out UNDEFINED
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Table 27:
Serial Presence-Detect EEPROM and Temperature Sensor DC Operating Conditions All voltages referenced to VSS; VDDSPD = +3.0V to +3.6V
Parameter/Condition Supply voltage with temperature sensor option Input high voltage: Logic 1; All inputs Input low voltage: Logic 0; All inputs Output low voltage: IOUT = 3mA SPD input leakage current: VIN = GND to VDD SPD output leakage current: VOUT = GND to VDD SPD standby current Power supply current, READ: SCL clock frequency = 100 KHz Power supply current, WRITE: SCL clock frequency = 100 KHz Average temperature sensor current
Table 28:
Symbol
Min
Max
Units
VDDSPD VIH VIL VOL ILI ILO ISB ICCR ICCW
3.0 2.1 -0.6 – 0.10 0.05 1.6 0.4 2
3.6 VDDSPD + 0.5 0.8 0.4 3 3 4 1 3 500
V V V V µA µA µA mA mA µA
Serial Presence-Detect EEPROM AC Operating Conditions All voltages referenced to VSS; VDDSPD = +3.0V to +3.6V
Parameter/Condition SCL LOW to SDA data-out valid Time the bus must be free before a new transition can start Data-out hold time SDA and SCL fall time Data-in hold time Start condition hold time Clock HIGH period Noise suppression time constant at SCL, SDA inputs Clock LOW period SDA and SCL rise time SCL clock frequency Data-in setup time Start condition setup time Stop condition setup time WRITE cycle time Notes:
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
Symbol
Min
Max
Units
Notes
tAA
0.2 1.3 200
0.9
µs µs ns ns µs µs µs ns µs µs KHz ns µs µs ms
1
tBUF tDH tF tHD:DAT tHD:STA tHIGH
300 0 0.6 0.6
tI tLOW
50 1.3
tR
0.3 400
fSCL tSU:DAT tSU:STA t
SU:STO t WRC
100 0.6 0.6 10
2
2
3 4
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising edge of SDA. 2. This parameter is sampled. 3. For a restart condition, or following a WRITE cycle. 4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
26
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Table 29:
Serial Presence-Detect Matrix “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
Byte
Description
Entry (Version)
0 1 2 3 4
Number of SPD bytes used by Micron Total number of bytes in SPD device Fundamental memory type Number of row addresses on assembly Number of column addresses on assembly DIMM height and module ranks Module data width Reserved Module voltage interface levels DDR2 cycle time, tCK (CL = MAX value, see byte 18)
128 256 DDR2 SDRAM 13 9, 10
80 08 08 0D 09
80 08 08 0D 0A
80 08 08 0D 0A
1.18in, Dual rank 64 – SSTL 1.8V -667 -53E -40E -667 -53E -40E
61 40 00 05 30 3D 50 45 50 60 00 82 10
61 40 00 05 30 3D 50 45 50 60 00 82 10
61 40 00 05 30 3D 50 45 50 60 00 82 10
00 00 0C 04 38 18 01 04 00 03 01 3D 50 45 60 50 00 45 00 3C 28 3C 2D 28
00 00 0C 04 38 18 01 04 00 03 01 3D 50 45 60 50 00 45 00 3C 28 3C 2D 28
00 00 0C 08 38 18 01 04 00 03 01 3D 50 45 60 50 00 45 00 3C 28 3C 2D 28
5 6 7 8 9
10
DDR2 access from clock,tAC (CL = MAX value, see byte 18)
11 12 13
Module configuration type Refresh rate/type DDR2 SDRAM device width (primary device) Error-checking DDR2 data width Reserved Burst lengths supported Number of banks on DDR2 device CAS latencies supported
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Module thickness DDR2 DIMM type DDR2 module attributes DDR2 device attributes: weak driver (01) or 50Ω ODT (03) DDR2 cycle time, tCK, MAX CL - 1 SDRAM access from CK, tAC, MAX CL - 1 SDRAM cycle time, tCK, MAX CL - 2 SDRAM access from CK, tAC, MAX CL - 2 MIN row precharge time, tRP MIN row active to row active, tRRD MIN RAS#-to-CAS# delay, tRCD MIN RAS# pulse width, tRAS
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
7.81µs/SELF 16 N/A – 4, 8 4 or 8 -667 (5, 4, 3) -53E/-40E (4, 3) SODIMM -667 -53E/-40E -667 -53E/-40E -667/-53E -40E -667 -53E/-40E(N/S) -667 -53E/-40E(N/S)
-667/-53E -40E
27
MT8HSF3264HD MT8HSF6464HD MT8HSF12864HD
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Table 29:
Serial Presence-Detect Matrix “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
Byte
Description
31
Module rank density
32
Address and command setup time, tISb
33
Address and command hold time, tIHb
34
Data/data mask input setup time, tDSb
35
Data/data mask input hold time, tDHb
36 37
Write recovery time, tWR WRITE-to-READ command delay, tWTR
38
READ-to-PRECHARGE command delay, tRTP Mem analysis probe Extension for bytes 41 and 42 MIN active auto refresh time, tRC
39 40 41 42 43 44
45
MIN AUTO REFRESH-to-ACTIVE/ AUTO REFRESH command period, tRFC DDR2 device MAX cycle time, tCKMAX DDR2 device MAX DQS-DQ skew time, tDQSQ DDR2 device MAX read data hold skew factor, tQHS
46 47–61 62 63
PLL relock time Optional features, not supported SPD revision Checksum for bytes 0–62
64 65–71 72 73–90 91 92 93 94 95-98 99–117 118 119
Manufacturer’s JEDEC ID code Manufacturer’s JEDEC ID code Manufacturing location Module part number (ASCII) PCB identification code Identification code (Continued) Year of manufacture in BCD Week of manufacture in BCD Module serial number Manufacturer-specific data (RSVD) Temperature sensor location and accuracy MAX temperature offset
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
Entry (Version) 128MB, 256MB, 512MB -667/-53E -40E -667 -53E -40E -667/-53E -40E -667 -53E -40E -667/-53E -40E
-667/-53E -40E
-667 -53E -40E -667 -53E -40E
Release 1.2 -667 -53E -40E MICRON (Continued) 01–12 1–9 0
28
MT8HSF3264HD MT8HSF6464HD MT8HSF12864HD 20
40
80
20 35 27 37 47 10 15 17 22 27 3C 1E 28 1E
20 35 27 37 47 10 15 17 22 27 3C 1E 28 1E
20 35 27 37 47 10 15 17 22 27 3C 1E 28 1E
00 00 3C 37 4B
00 00 3C 37 69
00 06 3C 37 7F
80 18 1E 23 22 28 2D 00 00 12 E0 8B F2 2C FF 01–0C Variable data 01–09 00 Variable data Variable data Variable data – TBD TBD
80 18 1E 23 22 28 2D 00 00 12 1F CA 31 2C FF 01–0C Variable data 01–09 00 Variable data Variable data Variable data – 0C 16
80 18 1E 23 22 28 2D 00 00 12 7F 2A 91 2C FF 01–0C Variable data 01–09 00 Variable data Variable data Variable data – TBD TBD
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Serial Presence-Detect Table 29:
Serial Presence-Detect Matrix “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
Byte
Description
Entry (Version)
120 MAX offset error 121 DIMM PSI 122–127 Manufacturer-specific data (RSVD) Notes:
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
MT8HSF3264HD MT8HSF6464HD MT8HSF12864HD TBD TBD –
05 25 –
TBD TBD –
1. The tRAS SPD value shown is based on the JEDEC standard value of 45ns; the actual device specification is tRAS = 40ns.
29
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.
Micron Confidential and Proprietary
Advance
256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SDRAM SODIMM Module Dimensions
Module Dimensions MAX
All dimensions are in inches (millimeters); or typical where noted. The dimensional diagram is for reference only. Refer toMIN the MO document for complete design dimensions. Figure 10:
200-Pin DDR2 SODIMM FRONT VIEW
0.150 (3.80) MAX
2.667 (67.75) 2.656 (67.45)
0.079 (2.00) R
(2X) U1
U2
U3
U4
1.187 (31.15) 1.175 (29.85)
U10
0.071 (1.80) (2X)
0.787 (20.00) TYP
0.236 (6.00) TYP
0.043 (1.10)
0.0197 (0.50) R 0.079 (2.00) TYP
0.018 (0.45) TYP 2.504 (63.60) TYP
PIN 1
0.024 (0.60) TYP
PIN 199
0.035 (0.90)
BACK VIEW
U5
U6
U8
U9
U7
0.138 (3.50) TYP PIN 200 1.87 (47.4) TYP
0.165 (4.2) TYP
PIN 2 0.45 (11.4) TYP 0.64 (16.26) TYP
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
[email protected] www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. Advance: This data sheet contains initial descriptions of products still under development.
pdf: 09005aef80ebed66, source: 09005aef80ebbc49 HSF8C32_64_128x64HDG_2.fm - Rev. A 4/06 EN
30
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2006 Micron Technology, Inc. All rights reserved.