Preview only show first 10 pages with watermark. For full document please download

9. Measuring Converters Of Electrical Quantities - 2

   EMBED


Share

Transcript

9. MEASURING CONVERTERS OF ELECTRICAL QUANTITIES - 2 Converters for measurement of sum and difference (using OAs, using transformers) Electronic integrator: basic principle and derivation of output voltage Converters of RMS value to DC voltage Converters of product value to DC voltage (multipliers) Controlled (phase sensitive) rectifiers, measurement of voltage vectors AE2B38EMB, L9 1 Converters for measurement of sum and difference I1 R I2 R U1 R R2 IN R U2 UN I I + + U0 U0 voltages adder R2 U 0   R2 I   R currents adder N U i 1 N i U 0   RI   R  I i i 1 (input voltages in voltage adder might be weighted by different R values) AE2B38EMB, L9 2 I1 R U1 R Io R U1 U UB Uo + U0 R UA U2 U 0 =k 1 U 1 +k 2 U 2 Difference amplifier a) U1  U B U0 U B  ; R R U1  U2 U  U 0  2 2 2 AE2B38EMB, L9 I2 U2 UB UA  2  U 0  U 2  U1 I 0 =k 1 I 1 +k 2 I 2 b) a) voltage measuring transformers used for adding voltages b) current measuring transformers used for adding currents (k 1 = k 2 = 1) 3 Electronic integrator (inverting) i i1 C u1 du 2   iC   C i1  dt R R + u1 u2 u 2 (t1 )  t1 t1 1 1 i ( t ) d t  u1 (t ) dt C   C0 RC 0 True RMS to DC converters  10 V electronic RMS value converters (used in DVM and DMM) most used: implicit-computing converter (e.g. IO AD 637) u x (t) u2/U zv u1 U FB AE2B38EMB, L9 LP U 10 VF U FB =U 1 1T 1 T u x2 U 10   u1dt   dt U F T0 T 0 U FB T 1 U   u x2 dt T 0 2 F 4 Squaring circuit/divider could be based on logarithm and exponential function circuits: u x2  exp( 2 ln u x  ln U FB ) U FB Thermal RMS converters (using feedback) – based on physical definition of RMS OA2 OA1 + + R R U2 R T2 R T1 TC1 TC2 0,01% in the band 20 Hz to 50 kHz 2% to 5% in the band 10 MHz to 100 MHz AE2B38EMB, L9 5 Converters for measurement of product (multipliers) Multiplier log-antilog) |u 1 | Function ln defined for positive argument only ln|u 1 | + ln|u 2 | = ln|u 1 .u 2 | ln x  AC voltages cannot be directly multiplied ln|u 1 | ex + |u 2 | ln x ln|u 2 | u 3 =exp(ln|u 1 u 2 |)=|u 1 u 2 Solutions: - superposition of a DC component - using auxiliary circuits for polarity indication and control of output Typical parameters: f : tens of kHz; ~ 0.2 – 0.5 % Variable resistance or variable transconductance multiplier Realization: UP - voltage control resistance – linearized unipolar transistor in series with VCCS u1 i 1 =k 1 u 1 - differential amplifier with bipolar transistors with voltage-controlled emitters current source Typical parameters: f : tens of kHz to tens of MHz; ~ 0.2 - 2 % AE2B38EMB, L9 u2 R=k 2 u 2 u3 = R i1 = k2 u2 k1 u1 = = k u 1 .u 2 6 Power to DC voltage converter using pulse-width pulse-height multiplier u2 UA converter u1 amplitude modulator U1  T1 - T2 UA  k  UA T1 T2 T1 - T2 = k1u1 U SS  k UA = k2u2 U DC filter – low pass (LP) U 2 (T1  T2 ) T1  T2 1 T1  T2 T1 T2  u1u2 dt 0 Typical parameters: f : units of kHz; ~ 0,1 – 0,5 % Hall multiplier i1 Use: Electronic (static) W-h meters i2 B Typical parameters: f : units of kHz; ~ 1 - 2 % u H = k.i 2 .B = k i 1 i 2 uH AE2B38EMB, L9 7 Controlled (phase sensitive) rectifiers R R u2 R u1 + u1 UC UC CC u2 CC U c – rectangular pulse train with magnitude 1 1 sin k  t   k ´1 k u 1 t   U m sin  t    u c t   4   k  odd u 2 t   u 1 t   u c t  AE2B38EMB, L9 8     4 1    u2 t   U m cos  t     t   cos  t     t         2    2 t        uC  u1 u2 u 20     4 1    cos  t    k t   cos  t    k t  Um             2 k 3    1 k t 1 k t                  2 u2 t   U m cos   AC components  u 20  AC comp.  Notes to derivation 2  U m  U RM sin  sin   1 cos      cos     2 (U RM  U RMS !) AE2B38EMB, L9 9 Measuring voltage phasor using controlled rectifier-VECTORVOLTMETER After filtering out the AC components using a LP filter the DC component u 2,0 at the c.r. output is proportional to the real part of the phasor. After shifting the control voltage by 900 (/2), this DC component u 2,90 corresponds to imaginary part of the u0 measured phasor. UX (u 90 ) FILTER CR U (LP) ur u 2,0   uR,0 (uR,90 ) SC 0 ux o 90 o  2 o SC u0 u 2,0 u R,90 ReU x U m cos   2 2  u 2 , 90   ur   u R,0 Ur 90 2 2  U RMS cos  U m sin   2 2  U RMS sin  u 90 ImU x AE2B38EMB, L9 Ux u 2,90 10