Preview only show first 10 pages with watermark. For full document please download

A Build-your-own Open Source Cnc Lathe Machine - Tlc

   EMBED


Share

Transcript

A Build-Your-Own Open Source CNC Lathe Machine Fabrication and User manual MHRD – Teaching Learning Centre for Design and Manufacturing Indian Institute of Information Technology for Design and Manufacturing – Kancheepuram, Chennai - 600127 A Build-Your-Own Open Source CNC Lathe Machine August 14, 2017 Documentation Author Rakesh Nair Project Team Raja Ganapathi S. Rakesh Nair Kamal Prasath Balaji Guide Dr. Shunmugham R. Pandian For information: Teaching Learning Center for Design and Manufacturing(TLC), IIITDM Kancheepuram, Melakottaiyur Village, Chennai 600127 E-mail: [email protected] Website: www.tlc.iiitdm.ac.in Table of Contents 1. Introduction …………………………………………………………………1 1.1 CNC…………………………………………………………………1 1.2 Lathe machine ………………………………………………………4 2. CNC Lathe fabrication……………………………………………………... 6 2.1 Design……………………………………………………………….6 2.1 Parts…………………………………………………………………6 2.2 Fabrication procedure……………………………………………….9 3. Associated software…………………………………………………...……17 3.1 CAD software……………………………………………………....17 3.3 Grbl GRU………………………………………………………......17 3.4 Universal G-Code sender……………………………………….….18 3.5 Grbl…………………………………………………………………18 4. Operating Procedure……….…………………………………………….…19 5. Sample Experiments……………………………………………..…………27 5.1 Simple Facing and Turning…………………………...……………27 5.2 Step Turning………………………………………………………..32 5.3 Taper Turning………………………………………………………39 5.4 Step and Taper Turning…………………………………………….46 6. Conclusion………………………………………………………………….53 Appendix I – Design Sheets Appendix II – Product Datasheets Appendix III – Bill of Materials and Part Suppliers 1. INTRODUCTION Industrial revolution that had led to the emergence of modern era has its roots in the Lathe machine. Widely known as the ‘Mother of machine tools’, Lathe works by removing materials from a workpiece to give a desired shape and size. Various material removing operations such as facing, turning, chamfering, knurling, grooving etc can be performed with it. In the past, mechanized power generated by water wheels and steam engines was used to operate lathe, imparting a certain degree of control to it. But it’s not until the 1950s that servomechanisms were applied to the control, coupling with the computers to yield Computer Numerical Control (CNC) lathe. Today CNC lathe machines are being used in almost all manufacturing industries. 1.1 Computer Numerical Control (CNC) Computer Numerical Control or CNC refers to the automation of machine tools by using computers executing pre-programmed sequence of machine control commands. A simple CNC system Taking digitized data fed into it by the user, a computer and CAD/CAM (Computer Aided Design / Computer Aided Manufacturing) program is used to control, automate and monitor the movement of the machine. The machine can be a lathe, milling machine, router, welder, grinder, laser or waterjet cutter. CNC controller works with a series of motors and drive components to move and control the machine axes, executing programmed motions. 1.1.1 Parts 1.1.1.1 Computer system and CAD/CAM All modern CNC machines constitute a computer system with a CAD/CAM software into which the user can feed in the CAD diagram or directly enter a set of commands called NC code for the machine to understand. 1 1.1.1.2 Numerical Control or NC Code Originally developed to program parts directly at the machine keyboard without any CAM software, the Numerical Control (NC) codes tell the machine what moves to execute, one by one, as well as controlling other machining functions like spindle speed, feed rate. The most commonly used language is G-code or ISO code, a simple alphanumeric programming language developed for early CNC machines. Instead, if a CAD diagram is fed, the postprocessor in the program converts the diagram to the relevant NC code and pass it to the Control Unit. 1.1.1.3 Control Unit The control unit constitutes a controller, drives and circuitry for machine motion along multiple axes, atleast two (X and Y), in the case of CNC lathe machine while a third axis (Z) can be used to move the tool spindle as in the case of CNC milling machine. Stepper motors are used for accurate control of the machining process resulting in high quality, accurate finishing. 1.1.2 Types of control Open loop control, without any feedback can used for simple machining operations requiring less accuracy and speed. Open loop controller Driver Motor A simple open loop control Closed loop control with feedback from sensors is used for increased accuracy, repeatability and speed. Closed loop controller Driver Motor Feedback A simple closed loop control 1.1.2 G-Code and M-Code G-Code and M-Code are the most widely used Numerical Control (NC) programming languages for the automation of machine tools. The codes constitute instructions to the machine controller that tells the drives where to move, performing machining operation on the mounted workpiece. G-Code instruction specifically deals with the type of motion control required for machining operation. 2 M-Code deals with machine functions like coolant control, spindle control, List of G-Code, M-Code instructions: G00 - Positioning at rapid speed; Milling and Turning G01 - Linear interpolation (machining a straight line); Milling and Turning G02 - Circular interpolation clockwise (machining arcs); Milling and Turning G03 - Circular interpolation, counter clockwise; Milling and Turning G04 - Milling and Turning, Dwell G09 - Milling and Turning, Exact stop G10 - Setting offsets in the program; Milling and Turning G12 - Circular pocket milling, clockwise; Milling G13 - Circular pocket milling, counter clockwise; Milling G17 - X-Y plane for arc machining; Milling and Turning with live tooling G18 - Z-X plane for arc machining; Milling and Turning with live tooling G19 - Z-Y plane for arc machining; Milling and Turning with live tooling G20 - Inch units; Milling and Turning G21 - Metric units; Milling and Turning G27 - Reference return check; Milling and Turning G28 - Automatic return through reference point; Milling and Turning G29 - Move to location through reference point; Milling and Turning (slightly different for each machine) G31 - Skip function; Milling and Turning G32 - Thread cutting; Turning G33 - Thread cutting; Milling G40 - Cancel diameter offset; Milling. Cancel tool nose offset; Turning G41 - Cutter compensation left; Milling. Tool nose radius compensation left; Turning G42 - Cutter compensation right; Milling. Tool nose radius compensation right; Turning G43 - Tool length compensation; Milling G44 - Tool length compensation cancel; Milling (sometimes G49) G50 - Set coordinate system and maximum RPM; Turning G52 - Local coordinate system setting; Milling and Turning G53 - Machine coordinate system setting; Milling and Turning G54~G59 - Workpiece coordinate system settings #1 t0 #6; Milling and Turning G61 - Exact stop check; Milling and Turning G65 - Custom macro call; Milling and Turning G70 - Finish cycle; Turning G71 - Rough turning cycle; Turning G72 - Rough facing cycle; Turning G73 - Irregular rough turning cycle; Turning G73 - Chip break drilling cycle; Milling G74 - Left hand tapping; Milling G74 - Face grooving or chip break drilling; Turning G75 - OD groove pecking; Turning G76 - Fine boring cycle; Milling G76 - Threading cycle; Turning G80 - Cancel cycles; Milling and Turning G81 - Drill cycle; Milling and Turning G82 - Drill cycle with dwell; Milling G83 - Peck drilling cycle; Milling G84 - Tapping cycle; Milling and Turning 6 3 G85 - Bore in, bore out; Milling and Turning G86 - Bore in, rapid out; Milling and Turning G87 - Back boring cycle; Milling G90 - Absolute programming G91 - Incremental programming G92 - Reposition origin point; Milling G92 - Thread cutting cycle; Turning G94 - Per minute feed; Milling G95 - Per revolution feed; Milling G96 - Constant surface speed control; Turning G97 - Constant surface speed cancel G98 - Per minute feed; Turning G99 - Per revolution feed; Turning M00 - Program stop; Milling and Turning M01 - Optional program stop; Turning and Milling M02 - Program end; Turning and Milling M03 - Spindle on clockwise; Turning and Milling M04 - Spindle on counter clockwise; Turning and Milling M05 - Spindle off; Turning and Milling M06 - Tool change; Milling M08 - Coolant on; Turning and Milling M09 - Coolant off; Turning and Milling M10 - Chuck or rotary table clamp; Turning and Milling M11 - Chuck or rotary table clamp off; Turning and Milling M19 - Orient spindle; Turning and Milling M30 - Program end, return to start; Turning and Milling M97 - Local sub-routine call; Turning and Milling M98 - Sub-program call; Turning and Milling M99 - End of sub program; Turning and Milling 1.2 Lathe machine Lathe is a machine tool that rotates the workpiece about an axis of rotation to perform various operations like facing, turning, knurling, chamfering etc. using cutting tools to create objects with symmetry about that axis. Manual lathe machine 4 1.2.1 Parts of manual lathe machine Main parts of manual lathe are as following; 1.2.1.1 Lathe Bed The bed of the lathe machine is the base on which all other parts are mounted. It is horizontal, massive and rigid single piece of casting made to support other active parts of the lathe. Headstock and tailstock are located the two extremities of the bed. A guideway runs in between holding the carriage for transverse axis. Generally, cast iron alloyed with nickel and chromium material is used for manufacturing lathe bed. 1.2.1.2 Headstock Head stock bears the horizontal axle parallel to the bed, called spindle. Spindles are often hollow and have exterior threads for mounting work-holding accessories like chuck. Spindle is driven by an electric motor via gearbox or belt to impart motion to the workpiece. In addition to this, the headstock can also contain speed control methods for adjusting the spindle speed as the machining requirement. 1.2.1.3 Carriage The carriage runs on the guideway along the working length of the lathe. It carries the cross slide, saddle, compound rest and tool post for the transverse movement and machining. It can be adjusted to fit any angle for machining operation. The compound rest is actuated by a screw, which rotates a nut fixed to the saddle. Tool post mounts the tool holder. 1.2.1.4 Tailstock The tail stock is commonly used for the objective of primarily giving an outer bearing and support the circular job being turned on centres. Tail stock can be easily set or adjusted for alignment or non-alignment with respect to the spindle centre and carries a centre called dead centre for supporting one end of the work. Both live and dead centres have 60° conical points to fit centre holes in the circular job, the other end tapering to allow for good fitting into the spindles. The dead centre can be mounted in ball bearing so that it rotates with the job avoiding friction of the job with dead centre as it important to hold heavy jobs. 1.2.1.5. Feed Mechanism Feed mechanism is the combination of different units through which motion of headstock spindle is transmitted to the carriage of lathe machine. The gearing at the end of bed transmits the rotary motion of headstock spindle to the feed gear box. Through the feed gear box the motion is further transmitted either to the feed shaft or lead screw, depending on whether the lathe machine is being used for plain turning or screw cutting. The feed gear box contains a number of different sizes of gears. The feed gear box provides a means to alter the rate of feed, and the ration between revolutions of the headstock spindle and the movement of carriage for thread cutting by changing the speed of rotation of the feed rod or lead screw. The apron is fitted to the saddle. It contains gears and clutches to transmit motion from the feed rod to the carriage, and the half nut which engages with the lead screw during cutting threads. 5 2. CNC LATHE FABRICATION 2.1 Design The main design requirements of the CNC lathe include machining accuracy, rigidity and compactness. Wood was chosen as the primary material for the CNC lathe for its sturdiness, low weight, easy machinability and low cost. To attain compactness, easy usage and light weight, the machine has been designed to be table top type. CNC Lathe design 2.2 Parts of CNC Lathe Hardware parts of the machine are combined with fabricated as well as few commercially available products. Main frame of the machine is constructed using wood blocks of 1”and 3 “size, as per design. Design file of each component is attached in Appendix I. Following table contains list of components required for CNC Lathe machine construction. Table 1. Parts List Parts List Headstock frame CAD Model – Headstock Setup Wooden blocks – 1”, 3” CAD Model – Base Wooden block 6 4” Three Jaw chuck 24V 250W 2650 DC Motor V- belt (2x) 680mm x15mm Guideway & Sliders CAD Model: Guideway 1 (2x) 180mm x15mm Guideway & Sliders CAD Model: Guideway 2 (1x) 12mm, 580mm Ball lead screw rod & nut CAD Model: Ballscrew 1 (1x) NEMA 17 Stepper Motor CAD Model: NEMA-17 (1x) 12mm, 220mm Ball lead screw rod & nut CAD Model: Ballscrew 2 7 (1x) NEMA 23 Stepper Motor CAD Model: Stepper Motor N-23 (2x) 24V, 3.3A Micro Stepper Motor Drivers (1x) 24V, 10A Switched Mode Power Supply (1x) Arduino UNO Microcontroller board 1 x Emergency Stop switch Miscellaneous Fasteners (2x) Motor clamp CAD Model: MotorClamp - N17 (2x) Bearing block CAD Model: Support Bearing ` 8 2.3 Fabrication procedure 1. Lathe headstock frame is firmly fixed on the wooden base of dimension 500mm x 200mm x50mm. Spindle is connected to an electric motor via V belt. A 4” three jaw chuck is mounted on the spindle to hold the workpiece. 2. 3” Wood block is cut into 700mm x 200mm x 50mm base for the lathe bed. 3. Two wood blocks of dimension 700mm x 40mm x 50mm are cut for the mounting the linear guideway (X axis). 4. Two 15mm, 680mm guideway rails are mounted on top of the wooden blocks (X axis). 9 5. NEMA 23 stepper motor is fixed to the motor clamp. 6. The motor is fixed in between the guideways. 7. Rigid coupler is attached to the motor shaft. 10 8. Bearing blocks are fixed at both ends to mount the ball lead screw. 9. A protrusion block of dimension 80mm x 55mm x 20mm is attached to the base of the carriage to be fixed to the ball lead screw nut. 10. A ball lead screw of diameter 12mm and length 580mm is fixed in between the guideway blocks with a bearing block and NEMA 23 stepper motor. 11 11. 1” wooden block is used for making the carriage with dimension of 310mm x 150mm. 12. Two wood blocks of dimension mm 250mm x 30mm x 40mm are cut for mounting the transverse guideway (Y axis). 13. Two HSAC 15mm, 180mm guideway rails are mounted on top of the wooden blocks (Y axis). 14. Mount the carriage to the X axis guideway saddles. 15. A Motor clamp is fixed on the carriage at one end. 12 16. NEMA 17 motor is fixed to the clamp. 17. Bearing block are fixed in between the guideways. 18. A Tool post is made from 1” block with dimensions 165mm x 110mm and a support block is attached to it. 13 19. A second ball lead screw of diameter 12mm and length 220mm is attached to the support block of the tool post. 20. The assembly is then fixed in between the guideway blocks with a bearing block and NEMA 17 stepper motor. 21. Tool post is mounted on saddle block slides on the transverse guideway and a protrusion block from the tool holder base is connected to the ball lead screw nut. The ball lead screw is then attached to the NEMA 17 motor with a rigid coupler. 14 22. Tool holder of dimension 110mm x 100mm is placed on the tool holder with screw. 23. A cutting tool is fixed to the holder with screws. 24. Stepper motors NEMA 23 (Y Axis) and NEMA 17 (X axis) are connected to the motor drivers. Arduino based control unit 15 25. Motor drivers are connected to the Arduino Uno, which is connected to the desktop PC. Spindle motor is also connected to the Arduino through a potentiometer for rotary speed control of the workpiece. CNC Lathe assembly 16 2. ASSOCIATED SOFTWARE 3.1 CAD software - AutoCAD Student version AutoCAD is a computer aided design and drafting software application with 2D, 3D design and documentation, drawings. AutoCAD Student version is a fully comprehensive 3D CAD application that you can download and install for free. You can download the student version of AutoCAD from the following link:https://www.autodesk.com/education/free-software/autocad 3.2 GrblGRU GrblGRU is a free Computer aided manufacturing (CAM) and simulation software for converting the CAD diagram to G-Code. GrblGRU works by importing a .dxf file of the CAD diagram and converts it into G-Code to be post processed by a G-Code parser. 3.2.1 Download and Installation of GrblGRU v3.6 GrblGRU v3.6 is available in the page: https://www.dropbox.com/s/ve7llxtbaeht0h7/GrblGru.7z?dl=0 Download the .7zip file and extract it with 7zip extractor. Run the Grbl-GRU installer .exe file to start the installation. After installation you can run the program. GrblGRU window On top, just below the title bar you can find the menu bar for the general tasks of loading, saving, importing, settings and help index. Tool bar contains various options for clearing the workplace, scale objects, scanning / probing, G Code creator, STL creator, measurements etc. To the centre is the workplace window where the CAD diagram / simulation of the current process can be viewed. To the left of workplace is the parameter section for 2D / 3D configuration. Different properties and values like feed, spindle speed, port etc can be configured as per the numerical control requirements. Jogging can also be performed with the 17 directional buttons provided. To the right is the preset diagrams for quick access and simulation. 3.3 Universal G-Code sender Universal G-Code sender is a Java based Grbl compatible cross platform G-Code sender used to run Grbl controlled CNC machines. It is used to send the NC code generated into the Grbl program in Arduino for CNC machining. Universal G-Code sender also contains controls to directly jog the tool for accurate positioning before CNC machining and visualizing window to see the real time machining in progress. 3.4 Grbl G-Code parser Grbl is an open source, embedded, high performance, G-Code parser and CNC controller writer in optimized C that will run on Arduino. It is a high performance, low cost alternative to parallel port based motion control for CNC machines. Running primarily on Atmega 323 microcontroller, Grbl maintains upto 30kHz of stable, jitter free control pulses and can achieve precise timing and asynchronous operation. It accepts standards-compliant G-Code and has been tested with output of several CAM tool with no problems. Grbl also includes full acceleration management with look ahead in which the controller will look up to 18 motions into the future and plan its velocities ahead to deliver smooth acceleration and jerk free cornering. Compiled version of GRBL software is available in the form of hex file and is burned into the Arduino. Grbl CNC code will receive signals from Arduino’s seriel buffer and parses it to decode the serial data into G code. Grbl settings in Arduino will be stored in the EEPROM of Arduino and so when configured will not erased during power off. Settings can also be viewed and modified anytime by sending corresponding configuration characters. $$ symbol is used as configuration character from which we can view different settings of the machine, such as axis feed rate, steps/mm, software limits, axis acceleration values and resolution of movement. 3.2.1 Download and installation of Grbl Grbl is available in the GitHub site: https://github.com/grbl/grbl Download the zip format and extract the bundle. Inside you will find a list of build files, header files and examples for Arduino. 18 4. OPERATING PROCEDURE 1. Draw one half of the symmetrical part to be machined in AutoCAD (Student version) CAD software. 2. Export the CAD diagram in .dxf format. 19 3. Open GrblGRU and import the .dxf file. 4. Click on 2D on the tool bar to scale the imported part. Set Fx to appropriate value and accordingly other scaling parameters will change automatically. Lathe parameters can be altered in the properties section. Change the Y coordinate to half the size of the actual workpiece. Also set X to move the tool and set the reference position. 20 5. Set offset distance of 1mm for both X & Y. Now set the origin by clicking on the ‘Set Coordinate Origin’. 6. Click NC on the tool bar. 21 7. Now change the parameters as per the machining requirements. 8. Click Start to start the simulation. 22 9. Select File and Save NC with .nc extension to export the file. 10. Open Universal GCode Sender and set COM port for Arduino. 23 11. Use the virtual control panel to manually move the tool to 1mm in X & Y for origin reference as per the NC code. 12. Click on ‘machine control’ and reset zero in X & Y. 24 13. Select file mode ad browse open the NC file previously saved. 14. Click ‘Send’ to transfer the code to Grbl in the Arduino that controls the CNC Lathe. Visualize button on the right can be used for real-time machining simulation. 25 15. CNC Lathe will automatically machine the workpiece as per the CAD diagram input by the user. You can see the machining visualization by clicking on the ‘Visualize’ button on top right side. 16. Wood and wax workpiece can be machined to the required shape. 26 5. SAMPLE EXPERIMENTS 5.1 Experiment 1 – Simple Facing and Turning using CNC Lathe Aim: To machine the given work piece according to the dimensions given in diagram using CNC Lathe Tools required:        Chuck key Tool post spanner/ Hex key Turning tool Chamfering tool Vernier Calliper Steel rule Power supply Software required:    GrblGru V.3.7.0 Arduino 1.8.1 Universal G-Code sender Procedure: 1. The work piece is held in the lathe chuck. 2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using reference from the open source software. 3. Import the drawing in. stl /.nc/.dxf into the software 4. Make sure the drawn piece is imported within the specific parameters. Otherwise Resize the workpiece into appropriate dimensions. 5. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre. 6. Once the outer diameter of the piece is set we can start simulating the feed cut machining 7. Save the simulated piece by converting it into G-code using the G-code creator button. 8. After the G code is generated, switch on the power source and start rotating the chuck and spindle setup. (make sure that the tool post is set to pre-set origin before commencement of running the code) 9. Commence the transmission of code into the universal G-code sender and start the process by pressing the send button. 10. Automatically according to the code produced in the system, the carriage is moved on the bed and is clamped at the required position. 11. By giving cross feed the tool is fed parallel to lathe axis. 12. The facing operation of the work piece is machined to required dimensions. 13. The system by repeating the same procedure, the next face of work piece is machined. 14. Then the tool is automatically fed parallel to lathe axis with suitable depth of cut. (can be done manually) 15. The finished piece is retrieved. 27 Result: The given work piece is machined according to required dimensions by the CNC lathe according to the code given by the universal G-code Sender. Diagram: Part Diagram in modelling software Simulation and generation of G-Code in GrblGRU Materials supplied: Machinable Wax Ø23mm x 50mm Tool material: High Speed Steel 28 Generated Code: ; Created by GrblGru:GCodeCreator G90 G1 F600.00 x-3.500 y-1.990 G90 G1 F600.00 x-4.000 y-1.990 ; 25.03.2017 11:56:16 G90 G1 F600.00 x-4.500 y-1.990 G90 G1 F600.00 x-5.000 y-1.990 ; Finfeed= 800 G90 G1 F600.00 x-5.500 y-1.990 ; F= 1500 G90 G1 F600.00 x-6.000 y-1.990 ; Fmax= 2000 G90 G1 F600.00 x-6.500 y-1.990 ; OffsetX = 0 G90 G1 F600.00 x-7.000 y-1.990 ; DeltaY = 1 G90 G1 F600.00 x-7.500 y-1.990 ; Smart clearance = True G90 G1 F600.00 x-8.000 y-1.990 ; Free entry = False G90 G1 F600.00 x-8.500 y-1.990 ; Both directions = True G90 G1 F600.00 x-9.000 y-1.990 ; Finfeed Finish = 400 G90 G1 F600.00 x-9.500 y-1.990 ; F Finish = 600 G90 G1 F600.00 x-10.000 y-1.990 ; Fmax Finish= 2000 G90 G1 F600.00 x-10.500 y-1.990 ; DeltaY Finish = 2 G90 G1 F600.00 x-11.000 y-1.990 G90 G1 F600.00 x-11.500 y-1.990 G90 G1 F1000 G90 G1 F600.00 x-12.000 y-1.990 ; Rough 21 G90 G1 F600.00 x-12.500 y-1.990 ; Move to startpoint G90 G1 F600.00 x-13.000 y-1.990 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-13.500 y-1.990 F2000.00 x0.000 G90 G1 F600.00 x-14.000 y-1.990 ; Back to startpoint G90 G1 F600.00 x-14.500 y-1.990 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-15.000 y-1.990 F2000.00 x0.000 G90 G1 F600.00 x-15.500 y-1.990 ; Finish G90 G1 F600.00 x-16.000 y-1.990 G90 G1 F600.00 x0.000 y-2.989 G90 G1 F600.00 x-16.500 y-1.990 G90 G1 F600.00 x-0.500 y-2.663 G90 G1 F600.00 x-17.000 y-1.990 G90 G1 F600.00 x-1.000 y-2.337 G90 G1 F600.00 x-17.500 y-1.990 G90 G1 F600.00 x-1.500 y-2.012 G90 G1 F600.00 x-18.000 y-1.990 G90 G1 F600.00 x-2.000 y-1.990 G90 G1 F600.00 x-18.500 y-1.990 G90 G1 F600.00 x-2.500 y-1.990 G90 G1 F600.00 x-19.000 y-1.990 G90 G1 F600.00 x-3.000 y-1.990 G90 G1 F600.00 x-19.500 y-1.990 29 G90 G1 F600.00 x-20.000 y-1.990 G90 G1 F600.00 x-37.000 y-1.990 G90 G1 F600.00 x-20.500 y-1.990 G90 G1 F600.00 x-37.500 y-1.990 G90 G1 F600.00 x-21.000 y-1.990 G90 G1 F600.00 x-38.000 y-1.990 G90 G1 F600.00 x-21.500 y-1.990 G90 G1 F600.00 x-38.500 y-1.990 G90 G1 F600.00 x-22.000 y-1.990 G90 G1 F600.00 x-39.000 y-1.990 G90 G1 F600.00 x-22.500 y-1.990 G90 G1 F600.00 x-39.500 y-1.990 G90 G1 F600.00 x-23.000 y-1.990 G90 G1 F600.00 x-40.000 y-1.990 G90 G1 F600.00 x-23.500 y-1.990 G90 G1 F600.00 x-40.500 y-1.990 G90 G1 F600.00 x-24.000 y-1.990 G90 G1 F600.00 x-41.000 y-1.990 G90 G1 F600.00 x-24.500 y-1.990 G90 G1 F600.00 x-41.500 y-1.990 G90 G1 F600.00 x-25.000 y-1.990 G90 G1 F600.00 x-42.000 y-1.990 G90 G1 F600.00 x-25.500 y-1.990 G90 G1 F600.00 x-42.500 y-1.990 G90 G1 F600.00 x-26.000 y-1.990 G90 G1 F600.00 x-43.000 y-1.990 G90 G1 F600.00 x-26.500 y-1.990 G90 G1 F600.00 x-43.500 y-1.990 G90 G1 F600.00 x-27.000 y-1.990 G90 G1 F600.00 x-44.000 y-1.990 G90 G1 F600.00 x-27.500 y-1.990 G90 G1 F600.00 x-44.500 y-1.990 G90 G1 F600.00 x-28.000 y-1.990 G90 G1 F600.00 x-45.000 y-1.990 G90 G1 F600.00 x-28.500 y-1.990 G90 G1 F600.00 x-45.500 y-1.990 G90 G1 F600.00 x-29.000 y-1.990 G90 G1 F600.00 x-46.000 y-1.990 G90 G1 F600.00 x-29.500 y-1.990 G90 G1 F600.00 x-46.500 y-1.990 G90 G1 F600.00 x-30.000 y-1.990 G90 G1 F600.00 x-47.000 y-1.990 G90 G1 F600.00 x-30.500 y-1.990 G90 G1 F600.00 x-47.500 y-1.990 G90 G1 F600.00 x-31.000 y-1.990 G90 G1 F600.00 x-48.000 y-1.990 G90 G1 F600.00 x-31.500 y-1.990 G90 G1 F600.00 x-48.500 y-1.990 G90 G1 F600.00 x-32.000 y-1.990 G90 G1 F600.00 x-49.000 y-1.990 G90 G1 F600.00 x-32.500 y-1.990 G90 G1 F600.00 x-49.500 y-1.990 G90 G1 F600.00 x-33.000 y-1.990 G90 G1 F600.00 x-50.000 y-1.990 G90 G1 F600.00 x-33.500 y-1.990 G90 G1 F600.00 x-50.500 y-1.990 G90 G1 F600.00 x-34.000 y-1.990 G90 G1 F600.00 x-51.000 y-1.990 G90 G1 F600.00 x-34.500 y-1.990 G90 G1 F600.00 x-51.500 y-1.990 G90 G1 F600.00 x-35.000 y-1.990 G90 G1 F600.00 x-52.000 y-1.990 G90 G1 F600.00 x-35.500 y-1.990 G90 G1 F600.00 x-52.500 y-1.990 G90 G1 F600.00 x-36.000 y-1.990 G90 G1 F600.00 x-53.000 y-1.990 G90 G1 F600.00 x-36.500 y-1.990 G90 G1 F600.00 x-53.500 y-1.990 30 G90 G1 F600.00 x-54.000 y-1.990 G90 G1 F600.00 x-67.000 y-1.990 G90 G1 F600.00 x-54.500 y-1.990 G90 G1 F600.00 x-67.500 y-1.990 G90 G1 F600.00 x-55.000 y-1.990 G90 G1 F600.00 x-68.000 y-1.990 G90 G1 F600.00 x-55.500 y-1.990 G90 G1 F600.00 x-68.500 y-1.990 G90 G1 F600.00 x-56.000 y-1.990 G90 G1 F600.00 x-69.000 y-1.990 G90 G1 F600.00 x-56.500 y-1.990 G90 G1 F600.00 x-69.500 y-1.990 G90 G1 F600.00 x-57.000 y-1.990 G90 G1 F600.00 x-70.000 y-1.990 G90 G1 F600.00 x-57.500 y-1.990 G90 G1 F600.00 x-70.500 y-1.990 G90 G1 F600.00 x-58.000 y-1.990 G90 G1 F600.00 x-71.000 y-1.990 G90 G1 F600.00 x-58.500 y-1.990 G90 G1 F600.00 x-71.500 y-1.990 G90 G1 F600.00 x-59.000 y-1.990 G90 G1 F600.00 x-72.000 y-1.990 G90 G1 F600.00 x-59.500 y-1.990 G90 G1 F600.00 x-72.500 y-1.990 G90 G1 F600.00 x-60.000 y-1.990 G90 G1 F600.00 x-73.000 y-1.990 G90 G1 F600.00 x-60.500 y-1.990 G90 G1 F600.00 x-73.500 y-1.990 G90 G1 F600.00 x-61.000 y-1.990 G90 G1 F600.00 x-74.000 y-1.990 G90 G1 F600.00 x-61.500 y-1.990 G90 G1 F600.00 x-74.500 y-1.990 G90 G1 F600.00 x-62.000 y-1.990 G90 G1 F600.00 x-75.000 y-1.990 G90 G1 F600.00 x-62.500 y-1.990 G90 G1 F600.00 x-75.500 y-1.990 G90 G1 F600.00 x-63.000 y-1.990 G90 G1 F600.00 x-76.000 y-1.990 G90 G1 F600.00 x-63.500 y-1.990 G90 G1 F600.00 x-76.500 y-1.990 G90 G1 F600.00 x-64.000 y-1.990 G90 G1 F600.00 x-77.000 y-1.990 G90 G1 F600.00 x-64.500 y-1.990 G90 G1 F600.00 x-77.500 y-1.990 G90 G1 F600.00 x-65.000 y-1.990 G90 G1 F600.00 x-65.500 y-1.990 ; Back to startpoint G90 G1 F600.00 x-66.000 y-1.990 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-66.500 y-1.990 F2000.00 x0.000 31 5.2 Experiment 2 – Step Turning using CNC Lathe Aim: To machine the given work piece according to the dimensions given in diagram using CNC Lathe Tools required:        Chuck key Tool post spanner/ Hex key Turning tool Chamfering tool Vernier Calliper Steel rule Power supply Software required:    GrblGru V.3.7.0 Arduino 1.8.1 Universal G-Code sender Procedure: 1. The work piece is held in the lathe chuck. 2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using reference from the open source software. 3. Import the drawing in. stl /.nc/.dxf into the software 4. Make sure the drawn piece is imported within the specific parameters. Otherwise resize the work piece into appropriate dimensions. 5. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre. 6. Once the outer diameter of the piece is set we can start simulating the feed cut machining 7. Save the simulated piece by converting it into G-code using the G-code creator button. 8. After the G code is generated, switch on the power source and start rotating the chuck and spindle setup. (make sure that the tool post is set to pre-set origin before commencement of running the code) 9. Commence the transmission of code into the universal G-code sender and start the process by pressing the send button. 10. Automatically the facing and plain turning operation are carried out as per the given dimensions. 11. After the plain turning operation is completed the tool is fed parallel to the lathe axis to the particular length assigned by the code. 12. Two or more cuts are given accordingly to retrieve the required diameter. 13. Now the first step of machining is completed and by repeating the same process the CNC lathe comenses its operation with the specified diameter. 14. By this time the work piece would be completed. 32 Result: The given work piece is machined according to required dimensions by the CNC lathe according to the code given by the universal G-code Sender Diagram: Part Diagram in modelling software Simulation and generation of G-Code in GrblGRU Materials supplied: Machinable Wax Ø23mm x 50mm Tool material: High Speed Steel Code Generated: ; Created by GrblGru:GCodeCreator ; 25.03.2017 11:41:14 33 ; Finfeed= 800 F800.00 x-58.000 y-2.000 ; F= 1500 F1500.00 x0.000 ; Fmax= 2000 ; OffsetX = 0 ; section: 0 <- 107 ; DeltaY = 1 F2000.00 y-2.000 ; Smart clearance = True F2000.00 x0.000 ; Free entry = False ; Both directions = True ; #Line 3: ; Finfeed Finish = 400 F2000.00 x0.000 y-2.000 ; F Finish = 600 F800.00 x0.000 y-3.000 ; Fmax Finish= 2000 F1500.00 x-39.937 ; DeltaY Finish = 2 ; section: 105 <- 0 G90 G1 F1000 F2000.00 y-3.000 F2000.00 x-38.241 ; Rough 161 ; #Line 4: ; Move to startpoint F2000.00 x-38.241 y-3.000 G90 G1 F2000.00 y0.000 F800.00 x-38.241 y-4.000 F2000.00 x0.000 F1500.00 x0.000 ; #Line 1: ; section: 0 <- 72 F2000.00 x0.000 y0.000 F2000.00 y-4.000 F800.00 x0.000 y-1.000 F2000.00 x0.000 F1500.00 x-58.000 ; #Line 5: ; section: 108 <- 0 F2000.00 x0.000 y-4.000 F2000.00 y-1.000 F800.00 x0.000 y-5.000 F2000.00 x-58.000 F1500.00 x-38.000 ; #Line 2: ; section: 55 <- 0 F2000.00 x-58.000 y-1.000 F2000.00 y-5.000 34 F2000.00 x-19.937 F1500.00 x-18.000 ; #Line 6: ; section: 2 <- 0 F2000.00 x-19.937 y-5.000 F2000.00 y-9.000 F800.00 x-19.937 y-6.000 F2000.00 x-18.000 F1500.00 x0.000 ; #Line 10: ; section: 0 <- 53 F2000.00 x-18.000 y-9.000 F2000.00 y-6.000 F800.00 x-18.000 y-10.000 F2000.00 x0.000 F1500.00 x0.000 ; #Line 7: ; section: 0 <- 1 F2000.00 x0.000 y-6.000 F800.00 x0.000 y-7.000 ; Back to startpoint F1500.00 x-18.241 G90 G1 F2000.00 y0.000 F2000.00 x0.000 ; section: 20 <- 0 F2000.00 y-7.000 F2000.00 x-18.000 ; Finish ; #Line 8: G90 G1 F600.00 x-0.500 y-12.990 F2000.00 x-18.000 y-7.000 G90 G1 F600.00 x-1.000 y-12.990 F800.00 x-18.000 y-8.000 G90 G1 F600.00 x-1.500 y-12.990 F1500.00 x0.000 G90 G1 F600.00 x-2.000 y-12.990 G90 G1 F600.00 x-2.500 y-12.990 ; section: 0 <- 3 G90 G1 F600.00 x-3.000 y-12.990 F2000.00 y-8.000 G90 G1 F600.00 x-3.500 y-12.990 F2000.00 x0.000 G90 G1 F600.00 x-4.000 y-12.990 G90 G1 F600.00 x-4.500 y-12.990 ; #Line 9: G90 G1 F600.00 x-5.000 y-12.990 F2000.00 x0.000 y-8.000 G90 G1 F600.00 x-5.500 y-12.990 F800.00 x0.000 y-9.000 G90 G1 F600.00 x-6.000 y-12.990 35 G90 G1 F600.00 x-6.500 y-12.990 G90 G1 F600.00 x-17.500 y12.990 G90 G1 F600.00 x-7.000 y-12.990 G90 G1 F600.00 x-18.000 y12.990 G90 G1 F600.00 x-7.500 y-12.990 G90 G1 F600.00 x-8.000 y-12.990 G90 G1 F600.00 x-18.500 y12.990 G90 G1 F600.00 x-8.500 y-12.990 G90 G1 F600.00 x-19.000 y12.990 G90 G1 F600.00 x-9.000 y-12.990 G90 G1 F600.00 x-9.500 y-12.990 G90 G1 F600.00 x-19.500 y12.990 G90 G1 F600.00 x-10.000 y12.990 G90 G1 F600.00 x-20.000 y-7.990 G90 G1 F600.00 x-10.500 y12.990 G90 G1 F600.00 x-20.500 y-7.990 G90 G1 F600.00 x-11.000 y12.990 G90 G1 F600.00 x-21.000 y-7.990 G90 G1 F600.00 x-11.500 y12.990 G90 G1 F600.00 x-22.000 y-7.990 G90 G1 F600.00 x-21.500 y-7.990 G90 G1 F600.00 x-22.500 y-7.990 G90 G1 F600.00 x-12.000 y12.990 G90 G1 F600.00 x-23.000 y-7.990 G90 G1 F600.00 x-12.500 y12.990 G90 G1 F600.00 x-23.500 y-7.990 G90 G1 F600.00 x-24.000 y-7.990 G90 G1 F600.00 x-13.000 y12.990 G90 G1 F600.00 x-24.500 y-7.990 G90 G1 F600.00 x-13.500 y12.990 G90 G1 F600.00 x-25.000 y-7.990 G90 G1 F600.00 x-14.000 y12.990 G90 G1 F600.00 x-26.000 y-7.990 G90 G1 F600.00 x-14.500 y12.990 G90 G1 F600.00 x-27.000 y-7.990 G90 G1 F600.00 x-25.500 y-7.990 G90 G1 F600.00 x-26.500 y-7.990 G90 G1 F600.00 x-15.000 y12.990 G90 G1 F600.00 x-27.500 y-7.990 G90 G1 F600.00 x-15.500 y12.990 G90 G1 F600.00 x-28.500 y-7.990 G90 G1 F600.00 x-28.000 y-7.990 G90 G1 F600.00 x-29.000 y-7.990 G90 G1 F600.00 x-16.000 y12.990 G90 G1 F600.00 x-29.500 y-7.990 G90 G1 F600.00 x-30.000 y-7.990 G90 G1 F600.00 x-16.500 y12.990 G90 G1 F600.00 x-30.500 y-7.990 G90 G1 F600.00 x-17.000 y12.990 G90 G1 F600.00 x-31.000 y-7.990 G90 G1 F600.00 x-31.500 y-7.990 36 G90 G1 F600.00 x-32.000 y-7.990 G90 G1 F600.00 x-47.500 y-4.990 G90 G1 F600.00 x-32.500 y-7.990 G90 G1 F600.00 x-48.000 y-4.990 G90 G1 F600.00 x-33.000 y-7.990 G90 G1 F600.00 x-48.500 y-4.990 G90 G1 F600.00 x-33.500 y-7.990 G90 G1 F600.00 x-49.000 y-4.990 G90 G1 F600.00 x-34.000 y-7.990 G90 G1 F600.00 x-49.500 y-4.990 G90 G1 F600.00 x-34.500 y-7.990 G90 G1 F600.00 x-50.000 y-4.990 G90 G1 F600.00 x-35.000 y-7.990 G90 G1 F600.00 x-50.500 y-4.990 G90 G1 F600.00 x-35.500 y-7.990 G90 G1 F600.00 x-51.000 y-4.990 G90 G1 F600.00 x-36.000 y-7.990 G90 G1 F600.00 x-51.500 y-4.990 G90 G1 F600.00 x-36.500 y-7.990 G90 G1 F600.00 x-52.000 y-4.990 G90 G1 F600.00 x-37.000 y-7.990 G90 G1 F600.00 x-52.500 y-4.990 G90 G1 F600.00 x-37.500 y-7.990 G90 G1 F600.00 x-53.000 y-4.990 G90 G1 F600.00 x-38.000 y-7.990 G90 G1 F600.00 x-53.500 y-4.990 G90 G1 F600.00 x-38.500 y-7.990 G90 G1 F600.00 x-54.000 y-4.990 G90 G1 F600.00 x-39.000 y-7.990 G90 G1 F600.00 x-54.500 y-4.990 G90 G1 F600.00 x-39.500 y-7.990 G90 G1 F600.00 x-55.000 y-4.990 G90 G1 F600.00 x-40.000 y-4.990 G90 G1 F600.00 x-55.500 y-4.990 G90 G1 F600.00 x-40.500 y-4.990 G90 G1 F600.00 x-56.000 y-4.990 G90 G1 F600.00 x-41.000 y-4.990 G90 G1 F600.00 x-56.500 y-4.990 G90 G1 F600.00 x-41.500 y-4.990 G90 G1 F600.00 x-57.000 y-4.990 G90 G1 F600.00 x-42.000 y-4.990 G90 G1 F600.00 x-57.500 y-4.990 G90 G1 F600.00 x-42.500 y-4.990 G90 G1 F600.00 x-58.000 y-4.990 G90 G1 F600.00 x-43.000 y-4.990 G90 G1 F600.00 x-58.500 y-4.990 G90 G1 F600.00 x-43.500 y-4.990 G90 G1 F600.00 x-59.000 y-4.990 G90 G1 F600.00 x-44.000 y-4.990 G90 G1 F600.00 x-59.500 y-4.990 G90 G1 F600.00 x-44.500 y-4.990 G90 G1 F600.00 x-60.000 y-0.990 G90 G1 F600.00 x-45.000 y-4.990 G90 G1 F600.00 x-60.500 y-0.990 G90 G1 F600.00 x-45.500 y-4.990 G90 G1 F600.00 x-61.000 y-0.990 G90 G1 F600.00 x-46.000 y-4.990 G90 G1 F600.00 x-61.500 y-0.990 G90 G1 F600.00 x-46.500 y-4.990 G90 G1 F600.00 x-62.000 y-0.990 G90 G1 F600.00 x-47.000 y-4.990 G90 G1 F600.00 x-62.500 y-0.990 G90 G1 F600.00 x-63.000 y-0.990 G90 G1 F600.00 x-63.500 y-0.990 37 G90 G1 F600.00 x-64.000 y-0.990 G90 G1 F600.00 x-73.500 y-0.990 G90 G1 F600.00 x-64.500 y-0.990 G90 G1 F600.00 x-74.000 y-0.990 G90 G1 F600.00 x-65.000 y-0.990 G90 G1 F600.00 x-74.500 y-0.990 G90 G1 F600.00 x-65.500 y-0.990 G90 G1 F600.00 x-75.000 y-0.990 G90 G1 F600.00 x-66.000 y-0.990 G90 G1 F600.00 x-75.500 y-0.990 G90 G1 F600.00 x-66.500 y-0.990 G90 G1 F600.00 x-76.000 y-0.990 G90 G1 F600.00 x-67.000 y-0.990 G90 G1 F600.00 x-76.500 y-0.990 G90 G1 F600.00 x-67.500 y-0.990 G90 G1 F600.00 x-77.000 y-0.990 G90 G1 F600.00 x-68.000 y-0.990 G90 G1 F600.00 x-77.500 y-0.990 G90 G1 F600.00 x-68.500 y-0.990 G90 G1 F600.00 x-78.000 y-0.990 G90 G1 F600.00 x-69.000 y-0.990 G90 G1 F600.00 x-78.500 y-0.990 G90 G1 F600.00 x-69.500 y-0.990 G90 G1 F600.00 x-79.000 y-0.990 G90 G1 F600.00 x-70.000 y-0.990 G90 G1 F600.00 x-79.500 y-0.990 G90 G1 F600.00 x-70.500 y-0.990 G90 G1 F600.00 x-80.000 y-0.990 G90 G1 F600.00 x-71.000 y-0.990 G90 G1 F600.00 x-71.500 y-0.990 ; Back to startpoint G90 G1 F600.00 x-72.000 y-0.990 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-72.500 y-0.990 F2000.00 x0.000 G90 G1 F600.00 x-73.000 y-0.990 38 5.3 Experiment 3 – Taper Turning using CNC Lathe Aim: To machine the given work piece according to the dimensions given in diagram using CNC Lathe Tools required:        Chuck key Tool post spanner/ Hex key Turning tool Chamfering tool Vernier Calliper Steel rule Power supply Software required:    GrblGru V.3.7.0 Arduino 1.8.1 Universal G-Code sender Procedure: 1. The work piece is held in the lathe chuck. 2. The cutting tool is held in the tool post and its cutting point is set to lathe axis using reference from the open source software. 3. Calculate the taper angle using the formula 4. Prepare drawing using drawing tools and import the drawing in. stl /.nc/.dxf into the software. 5. Make sure the drawn piece is imported within the specific parameters. Otherwise resize the work piece into appropriate dimensions. 6. Fix the feed cut parameters and tolerance level and fix the tool piece at the centre. 7. Once the outer diameter of the piece is set we can start simulating the feed cut machining 8. Save the simulated piece by converting it into G-code using the G-code creator button. 9. After the G code is generated, switch on the power source and start rotating the chuck and spindle setup. (make sure that the tool post is set to pre-set origin before commencement of running the code) 10. Commence the transmission of code into the universal G-code sender and start the process by pressing the send button. 11. The step and plain turning process operation are carried out according to the prescribed dimensions. 12. Then the taper angle cut operation is done and the work piece is finished. Result: 39 The given work piece is machined according to required dimensions by the CNC lathe according to the code given by the universal G-code Sender Diagram: Part Diagram in modelling software Simulation and generation of G-Code in GrblGRU Materials supplied: Machinable Wax Ø23mm x 50mm Tool material: High Speed Steel 40 Code Generated: ; Created by GrblGru:GCodeCreator ; #Line 1: ; 25.03.2017 11:52:14 F2000.00 x0.000 y0.000 F800.00 x0.000 y-1.000 ; Finfeed= 800 F1500.00 x-35.737 ; F= 1500 ; Fmax= 2000 ; section: 21 <- 0 ; OffsetX = 0 F2000.00 y-1.000 ; DeltaY = 1 F2000.00 x-34.022 ; Smart clearance = True ; Free entry = False ; #Line 2: ; Both directions = True F2000.00 x-34.022 y-1.000 ; Finfeed Finish = 400 F800.00 x-34.022 y-2.000 ; F Finish = 600 F1500.00 x0.000 ; Fmax Finish= 2000 ; DeltaY Finish = 2 ; section: 0 <- 19 F2000.00 y-2.000 G90 G1 F1000 F2000.00 x0.000 ; Rough 44 ; #Line 3: ; Move to startpoint F2000.00 x0.000 y-2.000 G90 G1 F2000.00 y0.000 F800.00 x0.000 y-3.000 F2000.00 x0.000 F1500.00 x-32.307 41 F800.00 x0.000 y-7.000 ; section: 17 <- 0 F1500.00 x-25.447 F2000.00 y-3.000 F2000.00 x-30.592 ; section: 9 <- 0 F2000.00 y-7.000 ; #Line 4: F2000.00 x-23.732 F2000.00 x-30.592 y-3.000 F800.00 x-30.592 y-4.000 ; #Line 8: F1500.00 x0.000 F2000.00 x-23.732 y-7.000 F800.00 x-23.732 y-8.000 ; section: 0 <- 15 F1500.00 x0.000 F2000.00 y-4.000 F2000.00 x0.000 ; section: 0 <- 7 F2000.00 y-8.000 ; #Line 5: F2000.00 x0.000 F2000.00 x0.000 y-4.000 F800.00 x0.000 y-5.000 ; #Line 9: F1500.00 x-28.877 F2000.00 x0.000 y-8.000 F800.00 x0.000 y-9.000 ; section: 13 <- 0 F1500.00 x-22.017 F2000.00 y-5.000 F2000.00 x-27.162 ; section: 5 <- 0 F2000.00 y-9.000 ; #Line 6: F2000.00 x-20.302 F2000.00 x-27.162 y-5.000 F800.00 x-27.162 y-6.000 ; #Line 10: F1500.00 x0.000 F2000.00 x-20.302 y-9.000 F800.00 x-20.302 y-10.000 ; section: 0 <- 11 F1500.00 x0.000 F2000.00 y-6.000 F2000.00 x0.000 ; section: 0 <- 3 F2000.00 y-10.000 ; #Line 7: F2000.00 x0.000 F2000.00 x0.000 y-6.000 42 ; #Line 11: G90 G1 F600.00 x-10.500 y12.991 F2000.00 x0.000 y-10.000 G90 G1 F600.00 x-11.000 y12.991 F800.00 x0.000 y-11.000 F1500.00 x-19.445 G90 G1 F600.00 x-11.500 y12.991 ; section: 2 <- 0 G90 G1 F600.00 x-12.000 y12.991 ; Back to startpoint G90 G1 F600.00 x-12.500 y12.991 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-13.000 y12.991 F2000.00 x0.000 G90 G1 F600.00 x-13.500 y12.991 ; Finish G90 G1 F600.00 x-14.000 y12.991 G90 G1 F600.00 x0.000 y-12.991 G90 G1 F600.00 x-14.500 y12.991 G90 G1 F600.00 x-0.500 y-12.991 G90 G1 F600.00 x-1.000 y-12.991 G90 G1 F600.00 x-15.000 y12.991 G90 G1 F600.00 x-1.500 y-12.991 G90 G1 F600.00 x-2.000 y-12.991 G90 G1 F600.00 x-15.500 y12.991 G90 G1 F600.00 x-2.500 y-12.991 G90 G1 F600.00 x-16.000 y12.991 G90 G1 F600.00 x-3.000 y-12.991 G90 G1 F600.00 x-3.500 y-12.991 G90 G1 F600.00 x-16.500 y12.991 G90 G1 F600.00 x-4.000 y-12.991 G90 G1 F600.00 x-17.000 y12.991 G90 G1 F600.00 x-4.500 y-12.991 G90 G1 F600.00 x-5.000 y-12.991 G90 G1 F600.00 x-17.500 y12.991 G90 G1 F600.00 x-5.500 y-12.991 G90 G1 F600.00 x-6.000 y-12.991 G90 G1 F600.00 x-18.000 y12.991 G90 G1 F600.00 x-6.500 y-12.991 G90 G1 F600.00 x-18.500 y12.991 G90 G1 F600.00 x-7.000 y-12.991 G90 G1 F600.00 x-7.500 y-12.991 G90 G1 F600.00 x-19.000 y12.991 G90 G1 F600.00 x-8.000 y-12.991 G90 G1 F600.00 x-19.500 y12.991 G90 G1 F600.00 x-8.500 y-12.991 G90 G1 F600.00 x-9.000 y-12.991 G90 G1 F600.00 x-9.500 y-12.991 G90 G1 F600.00 x-20.000 y12.989 G90 G1 F600.00 x-10.000 y12.991 G90 G1 F600.00 x-20.500 y12.689 43 G90 G1 F600.00 x-21.000 y12.389 G90 G1 F600.00 x-35.500 y-3.688 G90 G1 F600.00 x-36.000 y-3.388 G90 G1 F600.00 x-21.500 y12.089 G90 G1 F600.00 x-36.500 y-3.088 G90 G1 F600.00 x-22.000 y11.789 G90 G1 F600.00 x-37.000 y-2.788 G90 G1 F600.00 x-22.500 y11.489 G90 G1 F600.00 x-38.000 y-2.188 G90 G1 F600.00 x-37.500 y-2.488 G90 G1 F600.00 x-38.500 y-1.888 G90 G1 F600.00 x-23.000 y11.189 G90 G1 F600.00 x-39.000 y-1.588 G90 G1 F600.00 x-39.500 y-1.288 G90 G1 F600.00 x-23.500 y10.889 G90 G1 F600.00 x-40.000 y-0.991 G90 G1 F600.00 x-24.000 y10.589 G90 G1 F600.00 x-40.500 y-0.991 G90 G1 F600.00 x-24.500 y10.289 G90 G1 F600.00 x-41.000 y-0.991 G90 G1 F600.00 x-25.000 y-9.989 G90 G1 F600.00 x-42.000 y-0.991 G90 G1 F600.00 x-25.500 y-9.689 G90 G1 F600.00 x-42.500 y-0.991 G90 G1 F600.00 x-26.000 y-9.389 G90 G1 F600.00 x-43.000 y-0.991 G90 G1 F600.00 x-26.500 y-9.089 G90 G1 F600.00 x-43.500 y-0.991 G90 G1 F600.00 x-27.000 y-8.789 G90 G1 F600.00 x-44.000 y-0.991 G90 G1 F600.00 x-27.500 y-8.489 G90 G1 F600.00 x-44.500 y-0.991 G90 G1 F600.00 x-28.000 y-8.189 G90 G1 F600.00 x-45.000 y-0.991 G90 G1 F600.00 x-28.500 y-7.889 G90 G1 F600.00 x-45.500 y-0.991 G90 G1 F600.00 x-29.000 y-7.589 G90 G1 F600.00 x-46.000 y-0.991 G90 G1 F600.00 x-29.500 y-7.289 G90 G1 F600.00 x-46.500 y-0.991 G90 G1 F600.00 x-30.000 y-6.988 G90 G1 F600.00 x-47.000 y-0.991 G90 G1 F600.00 x-30.500 y-6.688 G90 G1 F600.00 x-47.500 y-0.991 G90 G1 F600.00 x-31.000 y-6.388 G90 G1 F600.00 x-48.000 y-0.991 G90 G1 F600.00 x-31.500 y-6.088 G90 G1 F600.00 x-48.500 y-0.991 G90 G1 F600.00 x-32.000 y-5.788 G90 G1 F600.00 x-49.000 y-0.991 G90 G1 F600.00 x-32.500 y-5.488 G90 G1 F600.00 x-49.500 y-0.991 G90 G1 F600.00 x-33.000 y-5.188 G90 G1 F600.00 x-50.000 y-0.991 G90 G1 F600.00 x-33.500 y-4.888 G90 G1 F600.00 x-50.500 y-0.991 G90 G1 F600.00 x-34.000 y-4.588 G90 G1 F600.00 x-51.000 y-0.991 G90 G1 F600.00 x-34.500 y-4.288 G90 G1 F600.00 x-51.500 y-0.991 G90 G1 F600.00 x-35.000 y-3.988 G90 G1 F600.00 x-52.000 y-0.991 G90 G1 F600.00 x-41.500 y-0.991 44 G90 G1 F600.00 x-52.500 y-0.991 G90 G1 F600.00 x-67.500 y-0.991 G90 G1 F600.00 x-53.000 y-0.991 G90 G1 F600.00 x-68.000 y-0.991 G90 G1 F600.00 x-53.500 y-0.991 G90 G1 F600.00 x-68.500 y-0.991 G90 G1 F600.00 x-54.000 y-0.991 G90 G1 F600.00 x-69.000 y-0.991 G90 G1 F600.00 x-54.500 y-0.991 G90 G1 F600.00 x-69.500 y-0.991 G90 G1 F600.00 x-55.000 y-0.991 G90 G1 F600.00 x-70.000 y-0.991 G90 G1 F600.00 x-55.500 y-0.991 G90 G1 F600.00 x-70.500 y-0.991 G90 G1 F600.00 x-56.000 y-0.991 G90 G1 F600.00 x-71.000 y-0.991 G90 G1 F600.00 x-56.500 y-0.991 G90 G1 F600.00 x-71.500 y-0.991 G90 G1 F600.00 x-57.000 y-0.991 G90 G1 F600.00 x-72.000 y-0.991 G90 G1 F600.00 x-57.500 y-0.991 G90 G1 F600.00 x-72.500 y-0.991 G90 G1 F600.00 x-58.000 y-0.991 G90 G1 F600.00 x-73.000 y-0.991 G90 G1 F600.00 x-58.500 y-0.991 G90 G1 F600.00 x-73.500 y-0.991 G90 G1 F600.00 x-59.000 y-0.991 G90 G1 F600.00 x-74.000 y-0.991 G90 G1 F600.00 x-59.500 y-0.991 G90 G1 F600.00 x-74.500 y-0.991 G90 G1 F600.00 x-60.000 y-0.991 G90 G1 F600.00 x-75.000 y-0.991 G90 G1 F600.00 x-60.500 y-0.991 G90 G1 F600.00 x-75.500 y-0.991 G90 G1 F600.00 x-61.000 y-0.991 G90 G1 F600.00 x-76.000 y-0.991 G90 G1 F600.00 x-61.500 y-0.991 G90 G1 F600.00 x-76.500 y-0.991 G90 G1 F600.00 x-62.000 y-0.991 G90 G1 F600.00 x-77.000 y-0.991 G90 G1 F600.00 x-62.500 y-0.991 G90 G1 F600.00 x-77.500 y-0.991 G90 G1 F600.00 x-63.000 y-0.991 G90 G1 F600.00 x-78.000 y-0.991 G90 G1 F600.00 x-63.500 y-0.991 G90 G1 F600.00 x-78.500 y-0.991 G90 G1 F600.00 x-64.000 y-0.991 G90 G1 F600.00 x-79.000 y-0.991 G90 G1 F600.00 x-64.500 y-0.991 G90 G1 F600.00 x-79.500 y-0.991 G90 G1 F600.00 x-65.000 y-0.991 G90 G1 F600.00 x-65.500 y-0.991 ; Back to startpoint G90 G1 F600.00 x-66.000 y-0.991 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-66.500 y-0.991 F2000.00 x0.000 G90 G1 F600.00 x-67.000 y-0.991 45 5.4 Experiment 4 – Stepper and Taper Turning using CNC Lathe Aim: To machine the given work piece according to the dimensions given in diagram using CNC Lathe Tools required:        Chuck key Tool post spanner/ Hex key Turning tool Chamfering tool Vernier Calliper Steel rule Power supply Software required:    GrblGru V.3.7.0 Arduino 1.8.1 Universal G-Code sender Procedure: 1. This experiment comprises of both step and taper turning process. 2. The procedure is same as both experiment 2&3. 3. Produce work piece drawing and import it in.stl/.dxf/.nc file into the CNC lathe software. 4. Convert the following diagram into G-Code and import it into the universal G Code sender. 5. By clicking the send button the code is transferred and the turning, facing and taper turning process is completed. 6. The taper angle is calculated using the formula as done in experiment 3. 7. The work piece is completed as per the diagram. Result: The given work piece is machined according to required dimensions by the CNC lathe according to the code given by the universal G-code Sender 46 Diagram: Part Diagram in modelling software Simulation and generation of G-Code in GrblGRU Code Generated: ; Created by GrblGru:GCodeCreator ; Smart clearance = True ; Free entry = False ; 25.03.2017 11:44:41 ; Both directions = True ; Finfeed Finish = 400 ; Finfeed= 800 ; F Finish = 600 ; F= 1500 ; Fmax Finish= 2000 ; Fmax= 2000 ; DeltaY Finish = 2 ; OffsetX = 0 ; DeltaY = 1 G90 G1 F1000 47 ; #Line 4: ; Rough 156 F2000.00 x-38.230 y-3.000 F800.00 x-38.230 y-4.000 ; Move to startpoint F1500.00 x0.010 G90 G1 F2000.00 y0.000 F2000.00 x0.000 ; section: 0 <- 67 F2000.00 y-4.000 ; #Line 1: F2000.00 x0.010 F2000.00 x0.010 y0.000 F800.00 x0.010 y-1.000 ; #Line 5: F1500.00 x-57.989 F2000.00 x0.010 y-4.000 F800.00 x0.010 y-5.000 ; section: 103 <- 0 F1500.00 x-37.989 F2000.00 y-1.000 F2000.00 x-57.989 ; section: 51 <- 0 F2000.00 y-5.000 ; #Line 2: F2000.00 x-37.989 F2000.00 x-57.989 y-1.000 F800.00 x-57.989 y-2.000 ; #Line 6: F1500.00 x0.010 F2000.00 x-37.989 y-5.000 F800.00 x-37.989 y-6.000 ; section: 0 <- 102 F1500.00 x0.010 F2000.00 y-2.000 F2000.00 x0.010 ; section: 0 <- 50 F2000.00 y-6.000 ; #Line 3: F2000.00 x0.010 F2000.00 x0.010 y-2.000 F800.00 x0.010 y-3.000 ; #Line 7: F1500.00 x-39.863 F2000.00 x0.010 y-6.000 F800.00 x0.010 y-7.000 ; section: 99 <- 0 F1500.00 x-35.266 F2000.00 y-3.000 F2000.00 x-38.230 ; section: 47 <- 0 F2000.00 y-7.000 48 F2000.00 x-31.386 ; section: 28 <- 0 F2000.00 y-11.000 ; #Line 8: F2000.00 x-0.699 F2000.00 x-31.386 y-7.000 F800.00 x-31.386 y-8.000 ; #Line 12: F1500.00 x0.010 F2000.00 x-0.699 y-11.000 F800.00 x-0.699 y-12.000 ; section: 0 <- 43 F1500.00 x0.010 F2000.00 y-8.000 F2000.00 x0.010 ; section: 0 <- 11 ; #Line 9: ; Back to startpoint F2000.00 x0.010 y-8.000 G90 G1 F2000.00 y0.000 F800.00 x0.010 y-9.000 F2000.00 x0.000 F1500.00 x-27.505 ; section: 39 <- 0 F2000.00 y-9.000 ; Finish F2000.00 x-23.625 G90 G1 F600.00 x0.000 y-16.865 G90 G1 F600.00 x-0.500 y-15.122 ; #Line 10: G90 G1 F600.00 x-1.000 y-14.390 F2000.00 x-23.625 y-9.000 G90 G1 F600.00 x-1.500 y-13.882 F800.00 x-23.625 y-10.000 G90 G1 F600.00 x-2.000 y-13.568 F1500.00 x0.010 G90 G1 F600.00 x-2.500 y-13.310 G90 G1 F600.00 x-3.000 y-13.185 ; section: 0 <- 35 G90 G1 F600.00 x-3.500 y-13.179 F2000.00 y-10.000 G90 G1 F600.00 x-4.000 y-13.173 F2000.00 x0.010 G90 G1 F600.00 x-4.500 y-13.168 G90 G1 F600.00 x-5.000 y-13.162 ; #Line 11: G90 G1 F600.00 x-5.500 y-13.156 F2000.00 x0.010 y-10.000 G90 G1 F600.00 x-6.000 y-13.150 F800.00 x0.010 y-11.000 G90 G1 F600.00 x-6.500 y-13.144 F1500.00 x-3.863 G90 G1 F600.00 x-7.000 y-13.139 G90 G1 F600.00 x-7.500 y-13.133 49 G90 G1 F600.00 x-8.000 y-13.127 G90 G1 F600.00 x-19.000 y12.999 G90 G1 F600.00 x-8.500 y-13.121 G90 G1 F600.00 x-19.500 y12.994 G90 G1 F600.00 x-9.000 y-13.115 G90 G1 F600.00 x-9.500 y-13.110 G90 G1 F600.00 x-20.000 y12.985 G90 G1 F600.00 x-10.000 y13.104 G90 G1 F600.00 x-20.500 y12.860 G90 G1 F600.00 x-10.500 y13.098 G90 G1 F600.00 x-21.000 y12.735 G90 G1 F600.00 x-11.000 y13.092 G90 G1 F600.00 x-21.500 y12.610 G90 G1 F600.00 x-11.500 y13.086 G90 G1 F600.00 x-22.000 y12.485 G90 G1 F600.00 x-12.000 y13.081 G90 G1 F600.00 x-22.500 y12.360 G90 G1 F600.00 x-12.500 y13.075 G90 G1 F600.00 x-23.000 y12.235 G90 G1 F600.00 x-13.000 y13.069 G90 G1 F600.00 x-23.500 y12.110 G90 G1 F600.00 x-13.500 y13.063 G90 G1 F600.00 x-24.000 y11.985 G90 G1 F600.00 x-14.000 y13.057 G90 G1 F600.00 x-24.500 y11.860 G90 G1 F600.00 x-14.500 y13.052 G90 G1 F600.00 x-25.000 y11.735 G90 G1 F600.00 x-15.000 y13.046 G90 G1 F600.00 x-25.500 y11.610 G90 G1 F600.00 x-15.500 y13.040 G90 G1 F600.00 x-26.000 y11.485 G90 G1 F600.00 x-16.000 y13.034 G90 G1 F600.00 x-26.500 y11.360 G90 G1 F600.00 x-16.500 y13.028 G90 G1 F600.00 x-27.000 y11.235 G90 G1 F600.00 x-17.000 y13.023 G90 G1 F600.00 x-27.500 y11.110 G90 G1 F600.00 x-17.500 y13.017 G90 G1 F600.00 x-28.000 y10.985 G90 G1 F600.00 x-18.000 y13.011 G90 G1 F600.00 x-28.500 y10.860 G90 G1 F600.00 x-18.500 y13.005 G90 G1 F600.00 x-29.000 y10.735 50 G90 G1 F600.00 x-29.500 y10.610 G90 G1 F600.00 x-45.000 y-4.988 G90 G1 F600.00 x-45.500 y-4.988 G90 G1 F600.00 x-30.000 y10.485 G90 G1 F600.00 x-46.000 y-4.988 G90 G1 F600.00 x-30.500 y10.360 G90 G1 F600.00 x-46.500 y-4.988 G90 G1 F600.00 x-31.000 y10.235 G90 G1 F600.00 x-47.500 y-4.988 G90 G1 F600.00 x-47.000 y-4.988 G90 G1 F600.00 x-48.000 y-4.988 G90 G1 F600.00 x-31.500 y10.110 G90 G1 F600.00 x-48.500 y-4.988 G90 G1 F600.00 x-32.000 y-9.985 G90 G1 F600.00 x-49.000 y-4.988 G90 G1 F600.00 x-32.500 y-9.860 G90 G1 F600.00 x-49.500 y-4.988 G90 G1 F600.00 x-33.000 y-9.735 G90 G1 F600.00 x-50.000 y-4.988 G90 G1 F600.00 x-33.500 y-9.610 G90 G1 F600.00 x-50.500 y-4.988 G90 G1 F600.00 x-34.000 y-9.485 G90 G1 F600.00 x-51.000 y-4.988 G90 G1 F600.00 x-34.500 y-9.360 G90 G1 F600.00 x-51.500 y-4.988 G90 G1 F600.00 x-35.000 y-9.235 G90 G1 F600.00 x-52.000 y-4.988 G90 G1 F600.00 x-35.500 y-9.110 G90 G1 F600.00 x-52.500 y-4.988 G90 G1 F600.00 x-36.000 y-8.985 G90 G1 F600.00 x-53.000 y-4.988 G90 G1 F600.00 x-36.500 y-8.860 G90 G1 F600.00 x-53.500 y-4.988 G90 G1 F600.00 x-37.000 y-8.735 G90 G1 F600.00 x-54.000 y-4.988 G90 G1 F600.00 x-37.500 y-8.610 G90 G1 F600.00 x-54.500 y-4.988 G90 G1 F600.00 x-38.000 y-8.485 G90 G1 F600.00 x-55.000 y-4.988 G90 G1 F600.00 x-38.500 y-8.360 G90 G1 F600.00 x-55.500 y-4.988 G90 G1 F600.00 x-39.000 y-8.235 G90 G1 F600.00 x-56.000 y-4.988 G90 G1 F600.00 x-39.500 y-8.110 G90 G1 F600.00 x-56.500 y-4.988 G90 G1 F600.00 x-40.000 y-4.988 G90 G1 F600.00 x-57.000 y-4.988 G90 G1 F600.00 x-40.500 y-4.988 G90 G1 F600.00 x-57.500 y-4.988 G90 G1 F600.00 x-41.000 y-4.988 G90 G1 F600.00 x-58.000 y-4.988 G90 G1 F600.00 x-41.500 y-4.988 G90 G1 F600.00 x-58.500 y-4.988 G90 G1 F600.00 x-42.000 y-4.988 G90 G1 F600.00 x-59.000 y-4.988 G90 G1 F600.00 x-42.500 y-4.988 G90 G1 F600.00 x-59.500 y-4.988 G90 G1 F600.00 x-43.000 y-4.988 G90 G1 F600.00 x-60.000 y-0.988 G90 G1 F600.00 x-43.500 y-4.988 G90 G1 F600.00 x-60.500 y-0.988 G90 G1 F600.00 x-44.000 y-4.988 G90 G1 F600.00 x-61.000 y-0.988 G90 G1 F600.00 x-44.500 y-4.988 G90 G1 F600.00 x-61.500 y-0.988 51 G90 G1 F600.00 x-62.000 y-0.988 G90 G1 F600.00 x-72.000 y-0.988 G90 G1 F600.00 x-62.500 y-0.988 G90 G1 F600.00 x-72.500 y-0.988 G90 G1 F600.00 x-63.000 y-0.988 G90 G1 F600.00 x-73.000 y-0.988 G90 G1 F600.00 x-63.500 y-0.988 G90 G1 F600.00 x-73.500 y-0.988 G90 G1 F600.00 x-64.000 y-0.988 G90 G1 F600.00 x-74.000 y-0.988 G90 G1 F600.00 x-64.500 y-0.988 G90 G1 F600.00 x-74.500 y-0.988 G90 G1 F600.00 x-65.000 y-0.988 G90 G1 F600.00 x-75.000 y-0.988 G90 G1 F600.00 x-65.500 y-0.988 G90 G1 F600.00 x-75.500 y-0.988 G90 G1 F600.00 x-66.000 y-0.988 G90 G1 F600.00 x-76.000 y-0.988 G90 G1 F600.00 x-66.500 y-0.988 G90 G1 F600.00 x-76.500 y-0.988 G90 G1 F600.00 x-67.000 y-0.988 G90 G1 F600.00 x-77.000 y-0.988 G90 G1 F600.00 x-67.500 y-0.988 G90 G1 F600.00 x-77.500 y-0.988 G90 G1 F600.00 x-68.000 y-0.988 G90 G1 F600.00 x-78.000 y-0.988 G90 G1 F600.00 x-68.500 y-0.988 G90 G1 F600.00 x-78.500 y-0.988 G90 G1 F600.00 x-69.000 y-0.988 G90 G1 F600.00 x-79.000 y-0.988 G90 G1 F600.00 x-69.500 y-0.988 G90 G1 F600.00 x-79.500 y-0.988 G90 G1 F600.00 x-70.000 y-0.988 G90 G1 F600.00 x-70.500 y-0.988 ; Back to startpoint G90 G1 F600.00 x-71.000 y-0.988 G90 G1 F2000.00 y0.000 G90 G1 F600.00 x-71.500 y-0.988 F2000.00 x0.000 52 6. CONCLUSION A low cost DIY CNC Lathe machine has been designed and developed using conventional off the shelf components of open source hardware and software, and sample sets of experiments have been performed. Current design uses wooden frame and will be replaced with mild steel for improved strength, rigidity and durability. The next version will also aim at machining non-ferrous metal workpiece with a higher degree of accuracy by incorporating sensors to it. Addition of limit switches and associated sensors will provide feedback for optimum control during machining operation and good accuracy. 53 APPENDIX I Design Sheets A B C D 6 6 6x 3 5 5 700 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE 200 132.50 140 0 60 67.50 3 30 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden block MATERIAL: 50 SCALE:1:5 DWG NO. 2 Part-1 SHEET 1 OF 1 1 A4 Base wooden block TITLE: Qty-1 1 Size 50x200x700mm DO NOT SCALE DRAWING 2 A B C D A B C 25 40 D 6 6 60 10 60 5 5 700 3 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 12x 4 DATE DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden block MATERIAL: 3 50 SCALE:1:5 2 Part-2 SHEET 1 OF 1 1 A4 Qty-2 1 Guide way wooden block DWG NO. TITLE: Size- 40x50x700 DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 5 5 680 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE 3 DEBURR AND BREAK SHARP EDGES 15 WEIGHT: 3 HIWIN GEH 15SA MOdel 12.50 Qty-2 1 SCALE:1:5 DWG NO. TITLE: 2 SHEET 1 OF 1 1 A4 Guideway 1 Size-12x15x680mm DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 34 5 55 5 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE 19.50 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 HIWIN GEH 15SA MODEL 3 SCALE:1:1 DWG NO. TITLE: 2 Part-4 SHEET 1 OF 1 1 Guide way slider A4 Qty-4 1 Size-19.50x34x55mm DO NOT SCALE DRAWING 2 A B C D A B C 6 R1 25 7. 5 5 45 8 12 2.30 D 6 6x 6x 4 8 12 10 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 30 DATE 3 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 SFU 1204-3 MODEL 24 SCALE:1:1 DWG NO. TITLE: Qty-2 1 2 Part-5 SHEET 1 OF 1 1 Ball Screw Flange Nut Length- 40mm DO NOT SCALE DRAWING 2 A4 A B C D 5 UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: FINISH: DATE MODEL DEBURR AND BREAK SHARP EDGES TITLE: R6 DO NOT SCALE DRAWING 2 Qty-1 1 A4 D A Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE WEIGHT: 3 SFU 1204-3 SCALE:1:10 DWG NO. 2 SHEET 1 OF 1 Part-6 1 Ball Screw 1 Length-580mm A B 3 B 580 4 C 6 5 C D 6 A B C 6 87.84 97.50 107.50 61.96 75 42.50 52.50 0 25 D 6 101.48 113.19 131.49 5 161.81 310 221.81 x 3 251.48 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 17 281.49 50 0 10 4 302.50 5 DATE DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden Block MATERIAL: 3 150 SCALE:1:5 DWG NO. TITLE: Qty-1 1 2 SHEET 1 OF 1 Part-8 1 Carriage Base A4 Size-25x150x310mm DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 12.50 5 180 5 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE 15 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 HIWIN GEH 15SA MATERIAL: 3 Qty-2 1 SCALE:1:2 DWG NO. TITLE: 2 Part-9 SHEET 1 OF 1 Guide way-2 1 A4 Size-12.50x15x180mm DO NOT SCALE DRAWING 2 A B C D A B C 32.50 11.80 8.20 D 6 6 32.50 80 5 32.50 5 28.30 24.30 0 R2 10 4.20 28.30 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: 20 SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 2x 4 24.30 DATE 3 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 3D-Printing MATERIAL: 52.50 SCALE:1:1 DWG NO. TITLE: 2 SHEET 1 OF 1 Part-10 1 Bearing Block-1 A4 Qty-2 1 Size-20x55x80mm DO NOT SCALE DRAWING 2 A B C D A B C D 0 6 80.40 3x 3 5 5 250 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: 250 SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE 40 140.40 20.40 6 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden block MATERIAL: 40 3 30 SCALE:1:2 2 SHEET 1 OF 1 Part-11 1 Guideway wooden Block-2 DWG NO. TITLE: Qty-2 1 A4 Size-30x40x250mm DO NOT SCALE DRAWING 2 A B C D 5 UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: FINISH: DATE MODEL: R6 DEBURR AND BREAK SHARP EDGES DO NOT SCALE DRAWING 2 Qty-1 1 D A Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE WEIGHT: 3 SFU 1204-3 SCALE:1:5 DWG NO. TITLE: 2 SHEET 1 OF 1 Part-12 1 A4 12mm X 220mm Ball Screw-2 Size- A B 3 B 220 4 C 6 5 C D 6 A B C 6 4x 30 4x 22 3.50 4 55.50 5 62.50 24.50 17.50 D 57 68 50 0 10 30 40 0 9 5 68 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 8 4 22 5 80 80 6 0 0 57 DATE 10 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 3D Printing MATERIAL: 3 SCALE:1:2 DWG NO. 2 SHEET 1 OF 1 Part-13 1 A4 Motor Clamp-N17 TITLE: Qty-1 1 Size-57x68x80mm DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 5 30 5 4 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 12 5 DATE WEIGHT: MODEL 05 R1 2. DEBURR AND BREAK SHARP EDGES 3 coupler5mmx12mm 3 SCALE:2:1 DWG NO. TITLE: 30x20mm 2 SHEET 1 OF 1 Part-14 1 A4 Qty-2 1 Solid Coupler Size- DO NOT SCALE DRAWING 2 A B C D A 6 5 FINISH: 64 DATE 3 DEBURR AND BREAK SHARP EDGES TITLE: Qty-1 DO NOT SCALE DRAWING 2 1 1 A4 D Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE SCALE:1:1 WEIGHT: 3 DWG NO. MATERIAL: 2 SHEET 1 OF 1 Part-15 Nema-17 A B UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 B 31 42.30 5 C 31 C D 6 5 A B C 6x 6 2X 24 D 3 3 5 80 60 5 Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE FINISH: .50 34 UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 10 D PC 4 10 27.70 6 DATE DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden Block MATERIAL: 20 3 60 SCALE:1:1 2 SHEET 1 OF 1 Part-16 1 Bottom Attachment DWG NO. TITLE: A4 Qty-2 1 Size-20x60x80mm DO NOT SCALE DRAWING 2 A B C D A B C 28.10 6 7.50 10 D 6 80 5 65 5 32.50 4.20 28.10 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: 15 8 SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 2x 4 24.10 DATE 3 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 3D Printing MATERIAL: 52.50 24.10 SCALE:1:1 DWG NO. 2 SHEET 1 OF 1 Part-17 1 Bearing Block-2 TITLE: A4 Qty-2 1 Size-15x53x80mm DO NOT SCALE DRAWING 2 A B C D A B C D 6 110 67.84 41.96 55 0 10 6 82.50 5 165 5 Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE FINISH: 0 3 12.5 10x UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 157.51 165 127.50 112.82 52.82 37.51 0 7.50 4 DATE DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden block MATERIAL: 20 3 110 SCALE:1:2 2 SHEET 1 OF 1 Part-18 1 Tool Post Base DWG NO. TITLE: Qty-1 1 Size- 20x110x165mm DO NOT SCALE DRAWING 2 A4 A B C D 6 5 UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 10 A Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE FINISH: DATE MATERIAL: 3 DEBURR AND BREAK SHARP EDGES TITLE: DO NOT SCALE DRAWING 2 Qty-1 1 D WEIGHT: 3 Wooden block SCALE:1:1 DWG NO. 2 SHEET 1 OF 1 Part-19 1 Top Post-1 A4 Size-10x105x105mm A B 105 .50 12 4 B 52.50 5 C 52.50 C D 6 105 A B C D 6 105 90 52.50 15 0 52.50 105 5 5 105 90 15 0 6 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: 20 SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 8x M10 0 12.5 4 DATE 105 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden Block MATERIAL: 3 SCALE:1:2 DWG NO. TITLE: 2 Tool Post-2 SHEET 1 OF 1 Part-20 1 1 A4 Qty-1 Size-20x105x105mm DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 20.70 5 5 M 12 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 12 4 DATE WEIGHT: DEBURR AND BREAK SHARP EDGES 3 Mild steel MATERIAL: 3 SCALE:2:1 DWG NO. TITLE: 2 M12 Nut SHEET 1 OF 1 Part-22 1 1 A4 Qty-3 Size-M12x12 DO NOT SCALE DRAWING 2 A B C D A B C D 6 6 M10 16 5 5 4 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 50 DATE WEIGHT: DEBURR AND BREAK SHARP EDGES Mild steel 3 MATERIAL: 3 SCALE:1:1 2 SHEET 1 OF 1 Part-23 1 A4 Tool Clamp Bolt DWG NO. TITLE: Qty-6 1 Size-M10x50mm DO NOT SCALE DRAWING 2 A B C D A B C 6 340 5 5 180 515 D 6 Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE SCALE:1:10 3 DO NOT SCALE DRAWING 2 REVISION 1 2 SHEET 1 OF 1 Part-24 1 A4 Headstock Setup WEIGHT: TITLE: DWG NO. DEBURR AND BREAK SHARP EDGES MATERIAL: 3 230 A B C D A B C D 6 6 47 56.30 5 5 5 47 Q.A MFG APPV'D CHK'D DRAWN 4 NAME SIGNATURE FINISH: 78.70 UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 4 DATE SCALE:1:2 WEIGHT: 3 DO NOT SCALE DRAWING 2 Qty-1 1 2 SHEET 1 OF 1 Part-26 1 A4 Stepper motor-N23 TITLE: DWG NO. DEBURR AND BREAK SHARP EDGES MATERIAL: 3 A B C D A B C D 0 7.50 6 0 9 32.50 62 56 47.50 5 80 5 4 38 2x 4x Q.A MFG APPV'D CHK'D DRAWN 4 NAME FINISH: 3 4 SIGNATURE UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN MILLIMETERS SURFACE FINISH: TOLERANCES: LINEAR: ANGULAR: 71 24 6 95 DATE 18 DEBURR AND BREAK SHARP EDGES WEIGHT: 3 Wooden block MATERIAL: 3 SCALE:1:1 2 SHEET 1 OF 1 Part-27 1 N23 Motor Clamp DWG NO. TITLE: A4 Qty-1 1 Size-18x62x95mm DO NOT SCALE DRAWING 2 A B C D APPENDIX II Product Datasheets Little Machine Shop www.littlemachineshop.com Rexroth – Precision Ball Screw Assemblies Single Nut with Flange FEM-E-C Standard series Mounting dimensions to DIN 69 051, Part 5 Flange type C With standard seals Reinforced seals, see Page 106 With backlash, reduced backlash, preload 2% or 5% C For precision-rolled screws SN-R of tolerance grade T5, T7, T9 and groundthread screws SN-F of tolerance grade P1, P3, P5, (T7) d0 = nominal diameter P = lead (R = right-hand, L = left-hand) DW = ball diameter i = number of ball track turns Size Order code: FEM-E-C 20 x 5R x 3-4 1 2 T7 R 82Z120 41Z120 1250 1 0 Part number Load ratings dyn. stat. C C0 (N) (N) d0 x P x Dw - i 16 x 5R x 3 - 4 16 x 10R x 3 - 3 16 x 16R x 3 - 3 20 x 5R x 3 - 4 20 x 20R x 3.5 - 3 25 x 5R x 3 - 4 25 x 10R x 3 - 4 25 x 25R x 3.5 - 3 32 x 5R x 3.5 - 4 32 x 10R x 3.969 - 5 32 x 20R x 3.969 - 3 32 x 32R x 3.969 - 3 40 x 5R x 3.5 - 5 40 x 10R x 6 - 4 40 x 12R x 6 - 4 40 x 16R x 6 - 4 40 x 20R x 6 - 3 40 x 40R x 6 - 3 50 x 5R x 3.5 - 5 50 x 10R x 6 - 6 50 x 12R x 6 - 6 50 x 16R x 6 - 6 50 x 20R x 6.5 - 5 50 x 40R x 6.5 - 3 63 x 10R x 6 - 6 63 x 20R x 6.5 - 5 63 x 40R x 6.5 - 3 80 x 10R x 6.5 - 6 80 x 20R x 12.7 - 6 100 x 10R x 6.5 - 6 100 x 20R x 12.7 - 6 125 x 10R x 6.5 - 6 125 x 20R x 12.7 - 6 1502-0-1065 1502-0-4085 1502-0-6065 1502-1-1085 1502-1-7065 1502-2-1085 1502-2-4085 1502-2-8065 1502-3-1085 1502-3-4086 1502-3-7065 1502-3-9065 1502-4-1086 1502-4-4085 1502-4-5065 1502-4-6065 1502-4-7085 1502-4-9065 1502-5-1086 1502-5-4086 1502-5-5066 1502-5-6066 1502-5-7086 1502-5-9065 1502-6-4086 1502-6-7086 1502-6-9065 1502-7-4086 1502-7-7096 1502-8-4066 1502-8-7066 1502-9-4066 1502-9-7066 12300 9600 9300 14300 13300 15900 15700 14700 21600 31700 19700 19500 29100 50000 49900 49700 37900 37000 32000 79700 79600 79400 75700 46500 88800 83900 53400 108400 262700 119500 295100 130600 326500 * See P. 95 Characteristic speed d0 . n and P. 116 Critical speed nk RE 83 301/2002-09 30 16100 12300 12000 21500 18800 27200 27000 23300 40000 58300 33700 34000 64100 86400 86200 85900 62800 62300 81300 166500 166400 166000 149700 85900 214300 190300 114100 291700 534200 371900 686400 468700 870400 Speed* vmax [m/min] 30 60 96 30 120 30 60 150 23 47 94 150 19 38 45 60 75 150 15 30 36 48 60 120 24 48 95 19 30 10 20 8 16 Lube port at flange center L 10 d0 ≤ 32 D7 L9 90° L9 -0.05 D1 -0.1 D1 22.5° D5 S BB2 BB1 D 6 L3 L4 d 0 ≥ 40 D7 L D w S 90° 30° d0 d1 d2 30° D 6 N.B.: On a ground-thread screw SN-F the core diameter d2 can be smaller by max. 0.3 mm due to the manufacture. Dimensions (mm) d1 15.0 15.0 15.0 19.0 19.3 24.0 24.0 24.0 31.0 31.0 31.0 31.0 39.0 38.0 38.0 38.0 38.0 38.0 49.0 48.0 48.0 48.0 48.0 48.0 61.0 61.0 61.0 78.0 76.0 98.0 96.0 123.0 121.0 d2 12.9 12.9 12.9 16.9 16.7 21.9 21.9 21.4 28.4 27.9 27.9 27.9 36.4 33.8 33.8 33.8 33.8 33.8 46.4 43.8 43.8 43.8 43.4 43.4 56.8 56.4 56.4 73.3 67.0 93.4 87.1 118.0 112.0 Weight D1 g6 D5 Hole pattern D6 D7 L L3 L4 28 28 28 36 36 40 40 40 50 50 50 50 63 63 63 63 63 63 75 75 75 75 75 75 90 95 95 105 125 125 150 150 170 48 48 48 58 58 62 62 62 80 80 80 80 93 93 93 93 93 93 110 110 110 110 110 110 125 135 135 145 165 165 202 202 222 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB2 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 BB1 38 38 38 47 47 51 51 51 65 65 65 65 78 78 78 78 78 78 93 93 93 93 93 93 108 115 115 125 145 145 176 176 196 5.5 5.5 5.5 6.6 6.6 6.6 6.6 6.6 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 13.5 13.5 13.5 13.5 13.5 17.5 17.5 17.5 38 45 61 40 77 45 64 95 48 77 84 120 54 70 75 90 88 142 54 90 105 128 132 149 90 132 149 95 170 95 170 95 170 12 12 12 12 12 12 12 12 13 13 13 13 15 15 15 15 15 15 15 18 18 18 18 18 22 22 22 22 25 25 30 25 40 10 16 20 10 25 10 20 30 10 16 25 40 10 16 25 25 25 45 10 16 25 25 25 45 16 25 45 16 25 16 25 16 25 31 L9 44.0 44.0 44.0 51.0 51.0 55.0 55.0 55.0 71.0 71.0 71.0 71.0 81.5 81.5 81.5 81.5 81.5 81.5 97.5 97.5 97.5 97.5 97.5 97.5 110.0 117.5 117.5 127.5 147.5 147.5 178.5 178.5 198.5 L10 S m (kg) 26 33 49 28 65 33 52 83 35 64 71 107 39 55 60 75 73 127 39 72 87 110 114 131 68 110 127 73 145 70 140 70 130 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 M8x1 0.19 0.21 0.26 0.31 0.49 0.36 0.47 0.63 0.62 0.84 0.90 1.21 1.03 1.19 1.27 1.51 1.44 2.16 1.39 2.14 2.38 2.75 2.73 3.04 2.56 4.51 5.04 3.40 10.20 4.40 14.30 5.65 16.10 RE 83 301/2002-09 Sabertooth 2x12 User’s Guide Input voltage: 6-24V nominal, 30V absolute max. Output current: Up to 12A continuous per channel. Peak loads may be up to 25A per channel for a few seconds. These ratings are for input voltages up to 18v in still air without additional heatsinking. 5V switching BEC: Up to 1A continuous and 1.5A peaks across the entire range of input voltages. Recommended power sources are: • • • • 5 to 18 cells NiMH or NiCd 2s to 6s lithium ion or lithium polymer. Sabertooth motor drivers have a lithium battery mode to prevent cell damage due to over-discharge of lithium battery packs. 6v to 24v lead acid 6v to 24v power supply (when in parallel with a suitable battery). Dimensions: Size: 2.5” x 2.95” x .6” Weight: 2.2oz 64 x 75 x 16mm • Switch settings: See the manufacturers instructions for operating mode, sample . settings etc. (www.dimensionengineering.com/datasheets/Sabertooth2x12.pdf) Stepper Motor NEMA 17 This document describes mechanical and electrical specifications for PBC Linear stepper motors; including standard, hollow, and extended shaft variations. Phases 2 Steps/Revolution 200 Step Accuracy ±5% Shaft Load 20,000 Hours at 1000 RPM Axial 25 N (5.6 lbs.) Push 65 N (15 lbs.) Pull Radial 29 N (6.5 lbs.) At Flat Center IP Rating 40 Approvals RoHS Operating Temp -20° C to +40° C Insulation Class B, 130° C Insulation Resistance 100 MegOhms Standard shaft motor shown. Description Length Mounted Rated Current Mounted Holding Torque Winding Ohms mH Detent Torque Rotor Inertia (Stack) “L” Max Amps Nm oz-in Typ. Typ. ±10% @ 20°C Typ. mNm oz-in g cm2 oz-in2 kg lbs Motor Weight Single 39.8 mm (1.57 in) 2 0.48 68 1.04 2.2 15 2.1 57 0.31 0.28 0.62 Double 48.3 mm (1.90 in) 2 0.63 89 1.3 2.9 25 3.5 82 0.45 0.36 0.79 Triple 62.8 mm (2.47 in) 2 0.83 120 1.49 3.8 30 4.2 123 0.67 0.6 1.3 *All standard motors have plug connector. Consult factory for other options. Dimensions: mm (in) (CONSULT FACTORY) Standard shaft dimensions shown. All other dimensions apply to hollow and extended shaft options. Dimensions: mm (in) 4 Lead Connector, PBC Part#6200490 (Consult factory for optional motor connectors) L I N E A R M OT I O N SO LU T I O N S I www.pbclinear.com NEMA 17 Stepper Motor *Performance curves apply to continuous duty cycles. Consult factory for intermittent cycles or other voltages. 24 Vdc, 2 A rms 12 Vdc, 2 A rms 64 57 50 42 35 28 21 14 7 0 1,000 2,000 3,000 4,000 5,000 6,000 Torque (Nm) Torque (oz-in) 0.60 71 0.40 57 0.30 42 0.20 28 0.10 14 0 1,000 2,000 3,000 4,000 5,000 6,000 300 600 900 1200 1500 1800 Speed Single Stack Double Stack 0.70 48 Vdc, 2 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms 12 Vdc, 2 A rms 99 0.60 85 0.50 71 0.40 57 0.30 42 0.20 28 0.10 14 0.00 Steps/Sec 0 RPM 0 Torque (oz-in) Bipolar Drive 48 Vdc, 1.7 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms 12 Vdc, 2 A rms 85 0.50 0.00 Steps/Sec 0 RPM 0 300 600 900 1200 1500 1800 Speed Torque (Nm) Torque (Nm) 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 Steps/Sec 0 RPM 0 Bipolar Drive 0 1,000 2,000 3,000 4,000 5,000 6,000 300 600 900 1200 1500 1800 Speed Triple Stack www.pbclinear.com I L I N E A R M OT I O N SO LU T I O N S Torque (oz-in) 36 Vdc, 2 A rms Bipolar Drive Stepper Motor NEMA 23 This document describes mechanical and electrical specifications for PBC Linear stepper motors; including standard, hollow, and extended shaft variations. Phases 2 Steps/Revolution 200 Step Accuracy ±5% Shaft Load 20,000 Hours at 1000 RPM Axial 40 N (9 lbs.) Push 130 N (30 lbs.) Pull Radial 70 N (15.5 lbs.) At Flat Center IP Rating 40 Approvals RoHS Operating Temp -20° C to +40° C Insulation Class B, 130° C Insulation Resistance 100 MegOhms Standard shaft motor shown. Description Length Mounted Rated Current Mounted Holding Torque Winding Ohms mH Detent Torque Rotor Inertia (Stack) “L” Max Amps Nm oz-in Typ. Typ. ±10% @ 20°C Typ. mNm oz-in g cm2 oz-in2 kg lbs Motor Weight Single 55.0 mm (2.17 in) 2.2 1.50 210 1.6 6.9 45 6.4 220 1.2 0.6 1.3 Double 77.0 mm (3.03 in) 3 2.30 330 1.1 4.5 75 11 390 2.1 1 2.2 Power Plus (Triple) 77.0 mm (3.03 in) 3 3.30 470 1.1 3.7 150 21 390 2.1 1.1 2.4 *All standard motors have plug connector. Consult factory for other options. Dimensions: mm (in) (CONSULT FACTORY) Motor with leads: Lead wire is 22 AWG UL3266, 300 ±10 (12 ±.5) long Standard shaft dimensions shown. All other dimensions apply to hollow and extended shaft options. Dimensions: mm (in) 4 Lead Connector, PBC Part#6200491 (Consult factory for optional motor connectors) L I N E A R M OT I O N SO LU T I O N S I www.pbclinear.com NEMA 23 Stepper Motor *Performance curves apply to continuous duty cycles. Consult factory for intermittent cycles or other voltages. 170 1.00 142 0.80 113 0.60 85 0.40 57 0.20 28 0.00 Steps/Sec 0 RPM 0 0 1,000 2,000 3,000 4,000 5,000 6,000 300 600 900 1200 1500 1800 Speed Single Stack 24 Vdc, 3 A rms 12 Vdc, 3 A rms 283 255 227 198 170 142 113 85 57 28 0 5,000 6,000 Torque (oz-in) 1.20 Bipolar Drive 2.00 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 Steps/Sec 0 RPM 0 Torque (Nm) Torque (Nm) 1.40 Torque (oz-in) 72 Vdc, 2 A rms 48 Vdc, 2 A rms 36 Vdc, 2 A rms 24 Vdc, 2 A rms Bipolar Drive 1,000 2,000 3,000 300 600 900 1200 1500 1800 Speed Double Stack Power Plus (Triple Stack) www.pbclinear.com I L I N E A R M OT I O N SO LU T I O N S APPENDIX III Bill of Materials and Part Suppliers BILL OF MATERIAL FOR WOODEN CNC LATHE Component Wood Guideway (X axis) Guideway (Y axis) Slider Block Ball Lead Screw (X axis) Ball Lead Screw (Y axis) Ball Screw Nut Rigid Coupler Stepper Motor (Y axis) Stepper Motor (X Axis) Arduino board Chuck UNIT Total SPECIFICATION QTY PRICE price PURCHASING DETAILS 1”, 3” blocks 4500 Local hardware Store W-15mm, L- 180mm 2 450 900 VM Traders, Coimbatore W-15mm, L- 680mm 2 1420 2840 VM Traders, Coimbatore W- 15mm 4 735 2940 VM Traders, Coimbatore D – 12mm, L – 220mm 1 800 800 Paramount bearings, Chennai D – 12mm, L – 580mm 1 1600 1600 Paramount bearings, Chennai ID=12mm 2 3200 6400 Paramount bearings, Chennai ID=12mm – 6mm 2 145 290 Local hardware Store NEMA 17, 24V 1.2A 1 400 400 Magna Flock NEMA 23, 24V 2.8A 1 800 800 Magna Flock UNO 1 500 500 Local electronics store LittleMachineShop or Local 4''- 3 JAW -CHUCK 1 6800 6800 hardware store Spindle Motor Belt Ebike MY1016 250W 24V 2650RPM DC motor V belt 1 1 3150 50 3150 50 Motor Drivers SMPS M542T MICRO 24V,10A 2 1 910 1000 1820 1000 Emergency Switch Shaft Bearings Headstock Frame AC 660V 10A SKF- 628 1 250 250 4 150 600 1 10000 10000 Fasteners M4X3”, M3x1”, Hex head M3x1” with washers and nuts http://www.ebay.in/itm/EbikeMY1016-250W-24V-2650RPMDC-motor/172244339903?hash=item281a 900cbf:g:y9kAAOSwWxNYnpv6 Local hardware Store http://www.amazon.in/TB6560Driver-Router-ControllerStepper/dp/B01EM10WA0/ref=s r_1_5?ie=UTF8&qid=148654076 9&sr=85&keywords=stepper+driver Local electronics store http://www.amazon.in/GenericEmergency-Switch-ButtonMushroom/dp/B01AUT8MUU?_ encoding=UTF8&psc=1&redirect =true&ref_=oh_aui_search_detai lpage Nu-tech bearings, Tambaram Local hardware Store 20 no's each 132 132 Local hardware Store TOTAL 45772