Preview only show first 10 pages with watermark. For full document please download

A Framework Of The Water Quality Planning

   EMBED


Share

Transcript

A FRAMEWORK OF THE WATER QUALITY PLANNING MODEL FOR THE CONSERVATION AREAS OF THE FLORIDA EVERGLADES By Ashok N. Shahane Donald Paich Robert L. Hamrick T his p u b lic d o cu m e n t was p ro m u lg a te d at an annual cost of $488.08 or $0.98 per copy to inform the public regarding water resource studies of the District. RP 487 50 / m Resource Planning Department South Florida Water Management District West Palm Beach, Florida 33402 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i LIST OF TABLES ii LIST OF FIGURES iii NOTATIONS IV ABSTRACT vi 1. INTRODUCTION 1 1.1 1.2 1.3 Introduction Need of a Water Quality Model Specific Objectives 1 2 4 2. WATER QUALITY MODEL . 5 2.1 2.1.1 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.1.5 2.1.1.6 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 Fundamentals of Water Quality Models Salient Features of Existing Water Quality Models QUAL I QUAL II Storm Model Statistical Models Agricultural Runoff Quality - Quantity Models EPA Stormwater Management Model Selection of a Suitable Model Description of the Selected Model Formulations Nature of the Water Quality Model Computational Procedure Assumptions Input Data Requirements 10 11 12 13 15 21 24 25 29 31 3. RESULTS AND DISCUSSION 37 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 37 39 39 39 46 48 52 59 3.2.8 Nature of the Output Discussion Mass Balance and Continuity Equation Approaches Slug Analysis Direct Rainfall Quality Inputs Correlations Between Simulated and Observed Set Parametric Sensitivity Analysis Computer Program and Time Requirements Analysis of the Model Output in Evaluating Backpumping Schemes Areas of Further Investigations 4. CONCLUSIONS 87 5. Bibliography 5 7 7 8 8 61 84 89 TABLE OF CONTENTS (con't.) Page EXHIBITS I II III Input Data Sets Computer Program Listing Illustrative Numerical Examples 91 173 190 ACKNOWLEDGEMENTS Grateful acknowledgement is made to Dr. Wayne Huber, Associate Professor in the Environmental Sciences Department of the University of Florida, for initially providing valuable insight into the application of the water quality portion of the EPA SWMM Model to the conservation areas. Mr. Peter B. Rhoads, Director of the Resource Planning Department and Mr. Stanley Winn, Deputy Director of the Resource Planning Department have coordinated this modeling work as a part of the water use and supply development plan for the lower east coast of south Florida. An interdis­ ciplinary team of geologists, chemists and biologists including Dr. Pat Gleason, Steve Davis, Peter Stone, John Lutz, Fred Davis and Walter Dineen of the South Florida Wate r Management District have provided wat er quality field data in addition to practical assistance in describing the reality of water quality interactions in the conservation areas. Finally, ackno w­ ledgements are also due to many others who assisted directly or indirectly in developing the water quality model to its current form. This report is prepared as a part of the documentation efforts initiated by Stan Winn, Deputy Director of Resource Planning Department. The technical editing was done by Ashok N. Shahane of the Water Resources Division. i LIST OF TABLES Table No. Title Page 1 Summary of Differential Equations Used in the QUAL II Model 2 The Historical Water Quality Calibration Data for the Three Conservation Areas for the y ear 1974 3,4,5 Initial Concentration Set for Conservation Areas 1, 2A and 3 for Calibration Runs for the year 1974 11,12,13 Comparison of Simulated and Recorded Values of Chlorides for Conservation Areas 1, 2 and 3 for the y e a r 1974 9 28 32-34-35 49-51 14 Computer Time Requirements of the Water Quality Model for Different Conditions 60 15 Backpumping Schemes and Their Points of Discharge in the Three Conservation Areas 62 6-10 Results of Slug Analysis for nodes 5, 10, 12, 15 and 17 of Conservation Area 1 16 Areas (in inches) Under Various Output Chloride Curves for Different Backpumping Schemes in C o n ­ servation Area 1 ii 41-45 83 LIST OF FIGURES Figure No. Title Page 3 1 Comparisons of Normal and Backpumping Flow Directions 2 General Features of Conservation Areas of the Florida Everglades 16 3 An Overall Perspective of Backpumping Analysis 17 4 Link-node Representation of Conservation Area 5 Link-node Representation of Conservation Area 2A 19 6 Link-node Representation of Conservation Area 3A 20 7 Illustrative Mode-1 ink System for Explaining the Continuity Equation of the Water Quality Model 23 8 Basic Procedure of the Water Quality Model 26 9 Chloride Variation of Surface Water in Conservation Area 1 33 10 Flowchart of the Modeling Procedure in Facilitating the Water Quality - Quantity Evaluation of Backpump­ ing Alternatives 38 11 The Possible Combinations of Chloride Runs for a Historical Case of 1974 47 12 Selected Combinations of Chloride Runs for Historical, Wet and Dry Years and for Various Backpumping Schemes 53 13-17 Stage-Concentration Response for Some Illustrative Nodes of Conservation Area 1 54-58 18-37 Pollutographs of Chlorides for Twenty Nodes (1-20) of Conservation Area 1 63-82 38 Potential Parametric Sensitivity Analyses for Nutrient Calibration Runs iii 1 18 86 NOTATIONS Concentration of chemical parameter, Change in concentration at junction j, Velocity in ft/sec, Length of the link i, Decay coefficient Sources or sinks, Junction number or node number, Discharge in cfs, Entering reach, Concentration of total dissolved nitrogen (mg/litre), Chloride concentration (mg/litre), Concentration of total dissolved phosphorus, Distance, Time, Cross-sectional area, Dispersion coefficient Stream velocity, Algal biomass concentration, Local specific growth rate of algae, Local respiration rate of algae, Local settling rate for algae, Average stream depth, The fraction of respired algal biomass The fraction of algal biomass that is phosphorus The rate of oxygen production per unit of algae (photosynthesis). (This coefficient is used in the equation for dissolved oxygen), The rate of oxygen uptake per unit of algae respired, NOTATIONS (Continued) Bl Rate constant for the biological oxidation of ammonia nitrogen, $2 Rate constant for the oxidation of nitrite nitrogen, a2 Benthos source rate for phosphorus, K-] Rate of decay of carbonaceous K3 Rate of loss of carbonaceous BOD due to settling, L-| Concentration of carbonaceous l_2 Benthic oxygen demand, K4 Constant benthetic uptake, «5 Rate of oxygen uptake per unit of ammonia oxidation, a6 Rate of oxygen uptake per unit of nitrite nitrogen oxidation, K2 Aeration rate, K5 Coliform die-off rate, Kr Radioactivity decay rate, At Unit time step. BOD, BOD, v ABSTRACT There are three water conservation areas in the south Florida E v e r ­ glades which are ecologically active water storage areas providing flood control and water supply benefits. In the development of the Water Use and Supply Plan for the region, a water management alternative called "backpumping" is considered as one of several wate r management schemes. In the backpumping schemes, normal eastward flow of excess water to the Atlantic Ocean is reversed by pumping it westward to the conservation areas in the wet period (May through October) to increase the wat er supply capability for the region of south Florida during the dry period (November through April). A framework associated with a modified version of the receiving water quality portion of the EPA stormwater ma nagement model is presented in this report for assessing the wa te r quality impact of various water management related backpumping schemes in these water conservation areas. For the given link-node representation of the conservation areas, the water quality model uses velocities, discharges and other hydraulic output from the water quantity model in conjunction with historical and future loadings of the chemical constituents. Daily concentrations of these c on­ stituents are generated at twenty points called "nodes". calibrated for the available chloride field data of 1974. The model is first The response of the model to wet and dry conditions is then examined by simulating possible concentrations of chlorides for four years (1968-1971). After reasonable results from these runs, the model is then used to estimate the spatial and time distribution of chlorides under historical and backpumping conditions. Using the comparative chloride pol1utographs of Conservation Area 1 as an illustration, it is demonstrated how the model output can be utilized in vi assessing the impact of various water m anagement related backpumping schemes. Since the District is currently in the process of broadening its limited wat er quality data base, the model chlorides at this time. is demonstrated only for It is expected that the integrative capability of the current model will be extended to nutrients and heavy metals to make the backpumping impact analysis more complete when a broader water quality data base becomes available. vii 1. 1.1 INTRODUCTION INTRODUCTION It is a matter of common observance that quantification of water related interactions plays an important role in effective and efficient management of water resources. In addition, due to the steady increase in population, industrialization and urbanization, pressure on the capacity and performance of the water system also increases. As a result, it becomes necessary to examine the water systems in terms of their future response and limitations to increasing water demands along with possible adverse impacts on other related issues. For example, the typical water system of south Florida (including lakes, reservoirs, channelized rivers, groundwater, intercoastal water, etc., etc.) coupled with its varieties of beneficial water uses, demands balanced scientific investigations to design guidelines for adequately maintaining these water bodies by considering chemical, bi o ­ logical, hydraulic, hydrologic and many other possible interactions. One of the many challenging tasks of such scientific investigations is to quantify to the extent possible the various implications of future water mana ge men t strategies considered in developing the current water supply capabilities. Use of mathematical techniques, coupled with data collection tasks and the practical judgment of the physical system, is receiving an increasing acceptance from members of water related interdisciplinary teams. Especially in the planning stages of the water ma nagement decision making process, the technique of mathematical models appears to be the most po wer ­ ful tool to assess beneficial, adverse or status quo impacts of future actions. As a consequence, varieties o f mathematical models in the areas of water, air, land and energy resources are constructed to examine a series of options for different levels of development of the resource under investigation. - 1 - 1.2 THE NEED FOR THE WATER QUALITY MODEL Backpumping was considered as one of several water management schemes in the development of the water supply and wat er use plan for the lower east coast of south Florida. Basically, backpumping means that excess water (which is normally discharged eastward to the ocean through existing canals) is pumped wes tward to selected areas (in our case, the conservation areas) during the wet period to increase the water supply capability for the region of south Florida during the dry period. illustrated in Figure 1. This concept of backpumping is In the upper portion o f Figure 1, the direction of the arrows indicates normal eastward flow of water from Lake Okeechobee to the ocean through the existing canal system. The lower portion of the figure represents pumping of water westward to the conservation areas of the Eve r­ glades for increasing storage capacity of the region in addition to providing flood protection to some urban areas. Although the inherent goals of the backpumping scheme are sound from a water quantity viewpoint, there are some points that need considerable environmental assessment). One of these points relates to the water quality impact of the backpumped water. In backpumping operations, surface water runoff from surrounding land uses and practices drains into a canal (which in turn is backpumped into the conservation area). The extent to which the conservation areas are affected from a water quality standpoint becomes a matte r of great significance in evaluating the overall effectiveness and trade-offs of future backpumping schemes. Secondly, the water quality impact assessment of future backpumping schemes must be c o m ­ pleted on a timely basis to facilitate the comparative evaluation of this alternative with other possible wate r management alternatives. These two points create the basic need for a wat er quality planning model which can estimate the spatial and time distribution of selected chemical constituents - 2 - LAKE OKEECHOBEE REGULATION SCHEDULE URBAN CANAL SYSTEM WATER STORED IN LAKE OKEECHOBEE USED TO RECHARGE SOUTHEAST FLORIDA WELLFIELDS BACKPUMPING C O N S E R V A T IO N AREA URBAN C A N A L SYSTEM CONTROL LE V E E f t PUMP t Figure I . EXCESS S TO R M W A TE R N O W BEING DISCHARGED IN OCEAN DURING R A IN Y SEASO NS Comparison of Normal and Backpumping Flow Directions. (in our case at present, chlorides) in the conservation areas for the expected future inputs of different backpumping schemes. 1.3 SPECIFIC OBJECTIVES As a part of the broad, modern methodologies for analyzing backpumping schemes, the specific objectives of the water quality model are as follows: 1. To modify the receiving water quality part of the EPA Stormwater Management Model so as to include typical characteristics (physical, chemical, biological and hydrogeological) of the three conservation areas in the model, 2. To obtain time and spatial distribution for a conservative substance (chloride in this case) and for two nonconservative chemical constituents (total dissolved nitrogen [TDN] and total dissolved phosphorus [TDP] in our case) for the three conservation areas, 3. To calibrate the model for the available field data of the y ear 1974, 4. To obtain time and spatial distribution o f three chemical co nst it u­ ents (Cl, TDN, TDP) for a wet ye ar and a dry year, 5. To estimate time and spatial distributions of two chemical parameters (TDN and TDP) for the various quality inputs generated for different viable backpumping m anagement alternatives, 6 . To provide some insights into the distribution of chemical inputs in the conservation areas by adequately considering the hydrologic, hydraulic and many other regimes of the physical system, and 7. To facilitate the assessment of the wat er quality impact of b a c k ­ pumping inputs by examining the extent to which these inputs are dispersed through the integrated channel and marsh system as the water moves from Conservation Areas 1 through 3. 2. 2.1 WATER QUALITY MODEL FUNDAMENTALS OF WATER QUALITY MODELS Although the original concept of formulating water quality parameters in terms of the net result of various physical, biological and chemical interactions goes back to the third decade of the twentieth century, a tremendous amount of developmental modeling work has been observed during the last twenty years as a result of increased public awareness and their demands for better analysis of aquatic environments. The availability of more sophisticated data acquisition systems, improved measurement techniques and powerful tools of systems analysis also provided impetus for examining water systems from different angles. Among other types of endeavors un de r­ taken during this period, efforts toward developing mathematical models for aquatic interactions have indeed played a significant role in providing interdisciplinary models in general and water quality models in particular. Basically, water quality models are developed for assessing the water quality changes that can occur as a result of the stress (natural or man made) imposed on the system. Since wa ter quality changes are functions of biological, c hem ­ ical, physical and many other numerous factors, these factors are first identified and interactions between these factors are then formulated. The mathematical representation of these interrelationships (reflecting the interactions) can take the form of either a simple algebraic equation tying together various factors or a differential equation representing the change of a certain parameter as a function of other variables or more sophisticated mathematical forms such as probabilistic or stochastic models. Most of the wate r quality modeling efforts are first involved with formulating the c on ­ centration of a certain chemical parameter of the aquatic environment in terms of various processes responsible for causing a concentration change in that parameter. Mathematically, the identified processes are included in terms of coefficients reflecting the rate and characteristic information of the processes. With such generalized mathematical representation, the formulations can be applied to many different types of water systems with different forms of coefficients and rate kinetics. Although such generalized procedures look straightforward, there are many variations possible in terms of the (a) number of processes included in the formulation, (b) type of mathematical model, (c) category of the water system, (d) characteristics of the chemical parameters, (e) mathematical scheme to obtain the solution and (f) simplifications, approximations and assumptions of the modeling methodologies. As a consequence, there exist varieties of water quality models to include these different conditions. From an applications s t a n d ­ point, these wat er quality models can be broadly categorized as follows: 1. QUAL I (using Streeter-Phelp formulations), 2. QUAL II, 3. STORM Model, 4. Statistical models with probabilistic, stochastic and deterministic rationales, 5. 6 . Agricultural runoff quality-quantity models (ARM Models), and EPA Storm Water Management Model To understand the selected water quality model for the conservation areas in the proper perspective, it is necessary to examine the existing models in light of their different rationales and methodologies. Thus, an effort is made in the following section to briefly review these models in terms of (1 ) what are they designed for? (2 ) w hat kind of useful information do they provide, and (3) whether or not they are applicable in our specific investigations of the three conservation areas, etc., etc. - 6 - 2.1.1 SALIENT FEATURES OF EXISTING WATER QUALITY MODELS 2.1.1.1 QUAL I A starting point in the development of wa t e r quality models appears to be the effort made by Streeter and Phelp in 1925 to formulate the dis­ solved oxygen profile as a function of organic load, deoxygenation and reaeration rates. The QUAL I model which was developed by the Texas Water Development Board and which is based on the formulations of oxygen sag equations, predicts the time and spatial distribution o f Biochemical Oxygen Demand (BOD) and Dissolved Oxygen (DO) at the downstream side of the point of discharge. Essentially, QUAL I was developed for one dimen­ sional flow with steady state conditions for stream and canal systems. Af te r estimating, either in the laboratory or in the field, the rate coefficients for deoxygenation and reaeration processes, QUAL I estimates the critical time and the downstream point where m i ni mum concentration of dissolved oxygen can occur. Although several applications of QUAL I to various streams in the United States have been reported, a recent study by the U. S. Geological Survey and Connell Associates, Inc., of Miami, Florida, has explored the QUAL I model as a management tool to predict the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in the Plantation Canal of south Florida, and for the St. Johns River, Kis­ simmee River, lower Florida and east coast basins, respectively (14, 20)*. It should also be noted that although most of the applications of QUAL I have considered the interplay of only deoxygenation and reaeration processes, formulations are available to include other dissolved oxygen related pr oc­ esses such as photosynthesis, nitrification and benthic oxygen demands for estimating the impact of waste discharges on the dissolved oxygen reservoir of stream and canal systems. * Numbers in the parenthesis refer to the reference numbers of the bibliography. 2.1.1.2 QUAL II This is a modified version of QUAL I and it was developed by Water Resources Engineers, Inc., (WRE) of Walnut Creek, California, to simulate the steady state behavior of (a) chlorophyll, (b) nitrogen, (c) phosphorus, (d) coliforms, and (e) radioactive material in addition to two parameters of dissolved oxygen and biochemical oxygen demand considered in QUAL I. The complete set of differential equations for water quality parameters of QUAL II is repeated in Table 1 for a ready reference. It is clear from the table that these formulations represent the rate of change of chemical parameters as the net interactions of dispersion advection, constituent reactions, and various sinks and sources. (12). An implicit type numerical technique is then applied to solve these differential equations for each of the numerous reaches constituting the river system. As an outcome, this model estimates time and spatial distribution of various parameters. Since QUAL II deals with varieties of physical, chemical and biological processes that are built into the formulations, there are relatively large numbers of constants and rate coefficients associated with this type of water quality model. 2.1.1.3 STORM Model As a part of urban stormwater management, the STORM Model was designed by the Hydrologic Engineering Center of the U.S. Corps of Engineers to estimate the quantity and quality of runoff from small and urban watersheds so that pollution from stormwater could be controlled by providing a c o m b i n ­ ation of storage and treatment facilities (18). By considering precipitation, air temperature for rainfall/snowmelt, pollutant accumulation, and land surface erosion, the amount of runoff associated with its water quality are estimated. The wate r quality parameters considered in the STORM Model - 8 - TABLE 1 S U M M A R Y OF D I F F E R E N T I A L E Q U A T I O N S 'USED IN QUAL II M O D E L C o n serv ativ e mineral ( c ) Algae (A) 3c . 3 A«ix I Phosphate phospho rus (P) Biochemical oxygen demand (L ) jp at H . >(aa ! t i A x i« >) It * ---A a V ~ Coliforn (F) iL «*,>*> ♦ (aj(p-u)A A *3X 5< V l> - (K, ♦K,)l A dx x 3(A u<>) K. " —A* 3 x ' * " t) + (OjW ”a„p)A * 3 ( A xuF) R a d io a c tiv e m a te r ia l (R) 3t A “ 7X 3R at f Ax3x x ~ T ? 7' 3(AxuR) A 3x x *,F KrR * 0 " " a i3 jN i ’ include suspended and settleable solids, biochemical oxygen demand (BOD), total nitrogen (TN), orthophosphate (PO 4 ), and total phosphorus (TP). 2.1.1.4 Statistical Models Since many professional wa ter scientists feel that natural processes are too complex to be derived by mathematical formulations, the int er­ relationships are empirically established by statistical methods. For example, a deterministic model developed by Reid, G. W. (13) using the statistical technique of multiple regression analysis for storm drainage is written as Y 2 = 4.8 + O. O 8 2 X 2 + 0.48X8 Y 5 = 2.38 - 0.188 lnX-j + 0.310 l n X 1 0 and Y 6 = 2.90 + 0.00003X] - .OOOIX 3 -0. 0137XS - 0.741 X n•] where Xi = population, X 2 = population density, X 3 = number of households, X 8 = commercial establishments, Xl 0 = streets, X I 1 = environmental index, Y 2 = B.O.D., Y 5 = total nitrogen, and Y 6 = total phosphorus (13). Another interesting empirical relationship provided by Reid, G. W. (13) for the eutrophication process relates to the required nutritional dilution with eutrophication parameters as shown in the following: Qn = (1 - TLn ) - 1.44 (1 - ILL) ' (TLL 3250) Qp = (1 - TLp ) - 0.27 (1 - ILL) ' (TLL 1080) where Qp or Q n Z TLp or T L n Fp or Fn TLl = nutritional dilution required, = relative portion impounded and affected by RQS level = phosphorus or nitrogen removal level expresssed as a decimal, = BOD/P ratio or BOD/N ratio, = BOD removal level expressed as a decimal, RQSp or RQSn = acceptable level for phosphorus and nitrogen. Likewise, varieties of statistical water quality models with p robabil­ istic and stochastic rationales can be found in the literature (1). Crit i­ cism that is generally heard regarding these statistical models is that they are not generalized and thus they should not be applied to any other si tua ­ tion. However, for setting short term planning guidelines on a regional basis, these empirical models may become more handy than the generalized solution of rigorous mathematical 2.1.1.5 formulations. Agricultural Runoff Quality-Quantity Models (ARM) These water quality and quantity oriented models are developed basically for describing the movement of chemicals in and across an agricultural w a t e r ­ shed. There are two kinds of models available in this category. type of model The first (which was developed by a research team of the Agricultural Research Service) uses USDAHL-74 model of watershed hydrology to estimate runoff h y d r o g r a p h s ,for a given watershed by considering precipitation, hydrologic characteristics of soils and land use, evapotranspiration, i n ­ filtration and routing techniques (9). The estimated runoff values are then further used in the wa t e r quality model (developed by the same research team) which is called an Agricultural Chemical Transport Model net result of the combination of the USDAHL 74 Model (ACTMO). The and the ACTMO Model gives the quality and quantity of runoff from an agricultural watershed for a given rainfall distribution and hydrogeologic, climatologic and many other watershed characteristics (6 ). The second type of model is advocated by Hydrocomp, Inc., of Palo Alto, California and is called the Pesticide Transport and Runoff Model (PTR Model). Although the basic purpose behind the development of ACTMO and PTR Models is the same, the methodology is different in terms of assumptions, computational procedures and the way different hydrologic processes are included in the model. ACTMO estimates chemical transport of the pesticide Carbofuran as against the herbicides (such as Paraquat, Dippenamid, etc.,) used in the PTR Model. Since most of the processes considered in the ARM Model are expressed in terms of empirical equations with the characteristics o f the region built into the various coefficients of the equations, the success of the model is largely dependent on the accuracy of these coefficients. It should be noted that the ARM Model was not developed in terms of differential equations, it was developed using daily accounting procedures of various interactions. 2.1.1. 6 EPA Stormwater Management Model While trying to establish a generalized and uniform procedure for estimating various aspects of storm water nationwide, the stormwater management model was evolved as a combined effort of Metcalf & Eddy, Inc., the Department of Environmental Engineering of the University of Florida at Gainesville, and Water Resources Engineers, Inc., under the sponsorship of the federal Environmental Protection Agency(ll). Basically, this model (which is widely known as the SWMM Model) estimates runoff hydrographs (using any rainfall hyetograph or multiple hyetographs) and continuous runoff quality graphs (pollutographs) on the basis of the volume of storm runoff, rainfall history, street sweeping data, land use and related data (11). As a next step, the computed hydrographs and pollutographs are routed - 12 - through the simulation of the physical transport system. After obtaining the routed quality and quantity of stormwater, the various options for storage and treatment facilities are examined in terms of their cost effectiveness. This comprehensive model has several sub-models (such as surface runoff quantity model, dry w e ath er flow quantity model, infiltra­ tion model, transport model, storage model, receiving water quantity model, surface runoff quality model, dry weat her flow quality model, treatment model and finally cost-effectiveness model) which are linked together to achieve the final result of providing the optimum combination of stormwater treatment and storage facilities to minimize, in the final analysis, the stormwater pollution (11). Although the SWMM Model is designed for storm ­ wa te r management, many concepts and procedures used in this comprehensive model seem to be useful in various contemporary environmental models and simulations. 2.2 SELECTION OF A SUITABLE MODEL Considering the specific objectives (as outlined in Section 1.3) for developing a water quality model for the three conservation areas, the receiving wat er quality part of the EPA Stormwater Management Model appears to be more applicable for the following reasons: 1. Since QUAL I is designed primarily for stream and canal systems to handle only two chemical parameters (such as dissolved oxygen and biochemical oxygen demand) and since our water system consists largely of a marsh with feeding canals, QUAL I is not directly applicable to analyze the distribution of chlorides and dissolved nutrients in the conservation areas. 2. Although the QUAL II Model has a sophisticated approach using di f ­ ferential equations for conservative as well as nonconservative parameters, the coefficients and rate constants of the equations cannot be adequately determined by the existing limited water quality data base. Because of such a limitation, it cannot be adequately used as a man agement tool to analyze backpumping schemes at the present time. 3. As mentioned earlier, the STORM Model was developed specifically to estimate quantity and quality of surface runoff from a given watershed only at an outlet of the watershed. As a result, our specific objective of estimating temporal and spatial distribution of chemical parameters in the conservation areas cannot be fulfilled by the STORM Model, although its useful role is utilized in other aspects of backpumping analysis. 4. Lack of sufficient wa t e r quality data has prevented the ava i l a ­ bility of well established statistical models interrelating various water quality parameters at different points in the conservation areas. 5. ARM Models do include sophisticated scientific bases in their water quantity and quality c o u n t e r p a r t s ; however, these two integrated parts cannot be separately processed. In other words, before the water quality part is developed for the conservation areas, its water quantity counterpart should be ready. Since neither the Stanford Watershed Model nor the USDAHL 74 Hydrology Model has been available for the three conservation areas due to many conceptual difficulties, ARM models are not considered as a logical choice. 6 . In spite of the fact that the EPA stormwater management model was developed for urban stormwater movement, and although this comprehensive model has varieties of pieces built into it, the methodology of the r e ce iv ­ ing water quantity model and the receiving wa ter quality model can be separately developed. Furthermore, the receiving water quantity model was recently applied to the three conservation areas and the hydraulic output (which becomes part of the input data set for the receiving wat er quality model) is available. This is one of the main reasons why the EPA SWMM - 14 - Model is more suitable in our water quality investigations of backpumping schemes. Furthermore, the network analysis implied in the receiving water quality model enables us to obtain the wanted information regarding temporal and spatial distribution of chemical constituents for various backpumping inputs. It is also conceived that some of the peculiarities of the c o n ­ servation areas may be included by perhaps modifying the basic concepts of the receiving wate r quality model. 2.3 DESCRIPTION OF THE SELECTED MODEL The relative position of the selected receiving water quality model in an overall perspective of backpumping analysis is depicted in Figure 3. As shown in Figure 3, three major types of input sets are required for a wate r quality model. Using such input information (in terms of historical loading, future expected loading from the backpumping alternatives and hydraulic output of the receiving water quantity part of the SWMM Model), the water quality model estimates concentration of the selected chemical constituents at various points in the three conservation areas, the general area of which is shown in Figure 2. Such an output is expected to be helpful in evaluating the water quality impact of backpumping alternatives and in providing some insights into the travel of the backpumped inputs through the three conservation areas. Since the selected receiving water quality model is essentially a network analysis, the three conservation areas under investigation are first represented in a series of networks as shown in Figures 4, 5 and 6 . The circles are called nodes and the line joining two nodes represents a link. Number of nodes, number of links, number of raingages and area contained in each conservation area are given in Figures 4, 5 and tional points to be remembered regarding Figures 4, 5 and - 15 - 6 6 . Addi­ are as follows: F O R M A T ION V E G E T A T IO N - c o n tin u e d 4 Saw Grass The Everglades was fo rm e d as a result of clim a tic ch a n g e to a w e t­ 5 Da ho on Holly 6 Red Bays te r clim ate, the fillin g of La ke 7 W illo w s O keechobee w ith fre s h w a te r and the seasonal accum ulatio n of ra in ­ W IL D LIF E fa ll in the shallow b e d ro ck basin underlying the E ve rglad es A rea is Fish deer, w a d in g b ird s , aquatic form ed in to a sh a llow w id e d ra in ­ m am m als age deoression d ra in in g fro m L a k e O keechobee and fed by M IC RO CLIM ATE ra in fa ll Tree islands e x p e rie n c e reduced insolation, w in d sp e e d and higher G EOLOGY hum idity in in te rio rs H olocene sedim ents of oeat, m ucic LAND USE SUITABILITY and m arl o verlyin g P le isto ce n e m a rin e and fre sh w a te r lim estones j No agricultural value at present as well as shelly sands Good w ildlife preservation Storm water retention SOILS P rim arily organic p e a ts w ith som e m a rls 3 - 9 ' deep VEGETATION ^ Everglades Marshes, Sloughs 81 Tree Islands W hite W ateriiiies Bladderw ort S edges and G ra s s e s DYNAM ICS A n n.jai flo o d in g a n d periodic fire s are im p o rta n t m maintaining m a rshes Tree is la n d s can be d e s ,r oyed by severe fire s or prolonged floo din g tre e isla n d 6 : L ' - V - W -v-l' CtS!£'-n * ^ F i g u r e 2. General Features of C o n s e r v a t i o n Areas o f the F lo rid a E ve r g l a d e s (2/) F i g u r e 3. AN OVERALL BACK PUMPING PERSPECTIVE ANALYSIS OF 4 S- 5A , F i g u r e 4', LINK-NODE REPRESENTATION CONSERVATION AREA I OF Figure 5, LINK-NODE REPRESENTATION CONSERVATION AREA 2A OF S NUMBER of NODES - 2 0 N U M R E H OF I I N K S - 5 4 AREA-730 SQ ------ HY P 0 T H K T I C A L ------- CANAL sr. a i f F i g u r e 6', MILES CANAL ACTUAL i"= 3 o , o o o LINK-NODE REPRESENTATION CONSERVATION A R E A 3A OF rff r 1. Link number appears on each link. 2. The purpose of showing a directional arrow on the link is to represent it easily in a computer simulation. The direction shown does not necessarily represent the direction of flow through the link. For example, if the velocity and discharge for a particular day through link 20 of Conservation Area 1 are positive, then flow takes place from node 5 to node 12 ; however, if in the next day both are negative, then flow occurs from node 12 to node 5 (see Figure 4). 3. Solid lines represent hypothetical links (usually in the marshes), whereas dotted lines represent existing canals, channels or ditches. 4. External inputs through existing wa te r control structures are shown by external arrows. Nodes at which these external inputs are c o n s i d ­ ered are known as inlet nodes. 5. The rationale for selection of a particular type of network for the three conservation areas goes back to the water quantity model. Since the water quality model uses the output of the water quantity model, the same network that is selected for the wat er quantity model is used in the quality model in order to maintain uniformity and continuity in these two related models. Furthermore, considering the trade-off between the a va i l ­ able computer memory and the realistic areal coverage, the suitable number of nodes and links are selected for the conservation areas as shown in Figure 4. 2.3.1 Formulations For a given link-node representation of a wa ter system, the water quality model is primarily geared to the following basic continuity equation where Cj = concentration at node j, (mg/litre), ACj = change in concentration at node j, (mg/litre), At = time (number of seconds in unit time step), V.} = velocity of entering link, (ft/sec), Qi = discharge of entering link, (cu .f t./ se c.), AX = length of entering reach (ft.), K = decay coefficient, Sj = source at node j (when +ve), or = sink at node j (when -ve), N = total number of incoming links at a given node j, i = incoming link, a C-j j = concentration gradient in the incoming link at node J, or = (concentration at node j) - (concentration of upstream node). To illustrate the working of this basic continuity equation, an illus­ trative node-1 ink system is presented in Figure 7. There are six nodes with node No. 4 as a central node where change in concentration during At time is sought. As shown in Figure 7, there are three incoming links (which are only to be considered) and two outgoing links. In addition, the velocities (V-|, V 2 and V 3 ), discharges (Q-), Q 2 and Q 3 ) and distances ( X ], X 2 and X 3 ) corresponding to three incoming links are also given. ilarly, concentrations at nodes 1, 2 and 3 (C-j, C 2 and C 3 ) are also required. Using such information, equation (1) can be expanded for an illustrative n o d e - 1 ink system as shown here: AC] _AC4. = _ [Qlvl X T At AC2 , Q2v2 X2~ AC3 Q3V3 Q-| + Q 2 + Q 3 - 22 - ] _ KC Sim­ Illustrative node-1 ink system for explaining the continuity expression for water quality model. FIGURE - 23 - 7 where AC 4 = change in concentration at node 4 = C 4 (t+1) - C 4 (t) C4 = C 4 (t) AC] = C 4 (t) - C-] (t) AC2 = c4(t) - C2 (t) AC 3 = C 4 (t) - C 3 (t) C 4 (t) = concentration at node 4 of previous time step, Ci(t) = concentration at node 1 of previous time step, C 2 (t) = concentration at node 2 of previous time step, C 3 (t) = concentration of current time step at node 4, and K = decay coefficient. 2.3.2 NATURE OF THE WATER QUALITY MODEL 1. The formulation around which the whole framework of the water quality model is built is a simple and basic finite difference version of double weighted procedures in which the concentration gradient along a link is first weighted according to incoming flows and second, is weighted according to distance traveled along the link by inflow during the unit time step for an advective transport. 2. In accordance with the generally accepted definition of steady and unsteady states, the water quality model is a simple form of unsteady state formulation and thus the model can estimate dynamic type water quality behavior of the wate r systems using physical, chemical and b i ol og­ ical factors. 3. The water quality model, based on the basic continuity equation, includes advective transport (first term on the right hand side of Equation 1), decay process (second term of Equation 1) and a combination of sources - 24 - or sinks (third term of Equation 1). For example, external water quality input through rainwater or an increase in concentration due to evaporation can be included in the model through the third term of sources and sinks. 4. The manner in which the receiving water quality part of the comprehensive SWMM Model was originally developed is applicable to the conservation areas as well as to urban, rural and to other types of water systems. Furthermore, it can handle conservative (such as chlorides) and nonconservative parameters (such as dissolved nitrogen and phosphorus). 5. There is no restriction on any kind of stability criteria because the outcome of the model is not based on an iterative procedures. However, since the advective term is a double weighted average of flows and distance, the time step should be such that one. T-- is always less than or equal to This puts some restriction on the model, although the restriction can be easily surmounted in many different ways. 6. Computational time is relatively small (a matter of minutes) as compared to the execution time of the water quantity model (which is a matter of hours). 7. It can be seen from Equation 1 that the receiving water quality model requires a set of velocities and discharges (for all the links) which are generated in the receiving water quantity part of the SWMM Model. Thus, it becomes very essential to have the output of the receiving water quantity model available as one of the major inputs to the water quality model. 2.3.3 COMPUTATIONAL PROCEDURE The basic computational procedure involved in the application of the water quality model to the three conservation areas is outlined in Figure 8. - 25 - - 26 - Figure 8, BASIC PROCEDURE OF THE WATER As a starting step, Conservation Area 1 is considered first. With the selected link and node representation of the conservation area (as shown in Figure 4) daily velocities and discharges of the full y e a r of 1974 for all of the links are transferred from the w a t e r quantity model and are stored on a tape in addition to the other necessary information (such as initial c o n­ centrations of chlorides, total dissolved nitrogen and total dissolved phosphorus for twenty nodes, decay coefficients for total dissolved nitrogen, (TDN) and total dissolved phosphorus (TDP) and historical inputs at inlet controlling structures). With such input information, the continuity equation of the wat er quality model is then used to estimate daily concentrations of chlorides, TDN and TDP at twenty nodes for the historical case of the y e a r 1974. To calibrate the model, generated concentrations are compared with the available historical wat er quality data set of Table 2. These comparisons also provide the direction in which the model should be further improved. After completion of such calibration processes for Conservation Area 1, Con­ servation Areas 2A and 3A, respectively. In this manner, three conservation areas are integrated in the model as they are connected in reality in terms of hydraulic movement and chemical transport. While working closely with the basic continuity equation, another type of basic w at e r quality formulation (based on mass-balance principle) is also tried. The basic form of such equation is as follows: TABLE 2. HISTORICAL WATER QUALITY DATA FOR CALIBRATING THE MODEL Cons. Area Water Quality Parameter Jan. 29, 1974 1 P, N and Cl 5 (FCD) Jan. 31, 1974 1 P, N and Cl 5 (FCD) Feb. 25, 1974 1 P, N and Cl 13 (FCD) Mar. 12, 1974 1 P, N and Cl 5 (FCD) Mar. 13, 1974 1 P, N and Cl 5 (FCD) Mar. 27, 1974 1 P, N and Cl 14 (FCD) Dec. 13, 1974 1 P, N and Cl 8 Sep. 26, 1974 3 P, N and Cl 12 Jan. 29, 1974 2A P, N and Cl 15 (FCD) Feb. 25, 1974 2A P, N and Cl 15 (FCD) Mar. 27, 1974 2A P, N and Cl 13 (FCD) May 30, 1974 2A P, N and Cl 13 (FCD) June 24, 1974 2A P, N and Cl 14 (FCDO July 24, 1974 2A P, N and Cl 15 (FCD) Sep. 29, 1974 2A P, N and Cl 15 (FCD) Dec. 20, 1974 2A P, N and Cl 15 (FCD) Date Source: Reference No. 8 - 28 - Number of Stations (USFSWS) (FCD) where At = number of seconds in unit time step, N = number of inflows, M = number of outflows, Q.J t + i = inflows in link i during t + 1 , (cfs) Q o t t + -| = outflows in link OT during CJ .= concentration at node t+1, (cfs) j at previous time step t, (mg/litre) D. . = depth in inches at node j at previous time step t, J 9^ A. = area in square ft. at node j, J C. . = concentration at upstream node i at previous time step, (mg/litre), I9L Rj t + .j = rainfall in inches at node j during time (t+ 1 ) CR = concentration of rainfall quality (mg/litre). Conceptually, mass balance equation and basic continuity equation include all the major characteristics of physical processes of the conservation areas; however, the parameters used in the computational procedures are slightly different. For example, velocity is used in receiving water quality f o r m u ­ lation whereas areas at the node are included in mass balance equation. It is emphasized that speculation twoard savings in computer time and perhaps better inclusion of sources or sinks at low water depths have encouraged the authors to try the mass balance equation. of these speculations, however. from Equations (1) and (2). Only results can prove the validity Other comparative differences are obvious Merits of each equation and the final selection will be fully discussed in light of the results in a later chapter. 2.3.4 ASSUMPTIONS 1. Considering the type of flow regime in the conservation areas, the phenomenon of diffusion seems to have insignificant contribution in changing the concentration of selected water quality parameters. Thus, the diffusion term in the basic continuity equation is assumed to be negligible. 2. The basic continuity equation considers only incoming links to estimate concentration change at a given node. In this technique, it is assumed that the water quality contributions of incoming links is well mixed and the resultant concentration is passed on through the outgoing links. 3. Due to very limited chemical information and related data base, the relationships between ( 1 ) total dissolved nitrogen and total nitrogen and (2 ) total dissolved phosphorus and total phosphorus are not yet well established for the three conservation areas. Therefore, the following mathematical relationships (which were developed using the available data for the S-10 structure) are assumed to hold good for converting these two parameters back and forth in the three conservation areas (1 0 ). TDN = TN for TN < 1.44 TDN = 2.1769(T N ) - 3.1597 for 1.44 < TN < 3 TDN = Tn for TN > 3 TDP = 0 . 8 2 5 7 (TP) + 0.002 4. The resultant concentration at an inlet node is assumed to be a weighted average of incoming concentration (through the controlling structure) and the computed concentrations in terms of their volumes expressed in depth units. 5. Nodes in the existing channels or borrow canals are assumed to be points in the main channel and thus, direct water quality contributions from rain to the channel nodes are assumed to be negligible. 6 . In any period of the ye ar (usually in the wet period), if the velocity in any link is observed to be high enough to pass the link length in a unit time step, then concentration change contributed by the advective term is assumed to be a weighted average of inflows at that node. 7. Although quantity contribution of rainfall is included in velocities and discharges of the water quantity model, the rainfall water quality inputs are included by assuming the physical mixing of surface water and rain water. An adequate parameter to take the weighted average of rain water quality and surface wate r quality is assumed to be a depth in inches. 2.3.5 INPUT DATA REQUIREMENTS As shown in Figure 6 , different kinds of input data sets are required in the water quality model. 1. These input data sets are related to Number of nodes and links considered in the network representation of the conservation areas, 2. Starting concentrations at every node of the conservation areas, 3. Velocities and discharges for all the links and depth, and area for each of twenty nodes. 4. Historical loading (i.e., concentration and discharge through the controlling structure) to the three conservation areas. 5. Backpumped loading and the point at which the backpumped inputs are delivered in the conservation areas. The network representation of the conservation areas with its links and nodes are shown in detail in Figures 4, 5 and 6 . Initial concentrations at every node of the conservation areas are essential to start the computational steps of the model. Since it is di f f i ­ cult to obtain water quality measurements at every node point, a valid approximation is made to obtain the starting concentration set. Such c o n ­ centration sets (derived from the available water quality data, the available distribution maps of the U. S. Geological Survey and other operational infor­ mation on the physical characteristics and water movement patterns in the conservation areas) used in the model for the three conservation areas are given in Tables 3, 4 and 5. - 31 - Node No. TN** TP** 1 3.45 0.092 176 2 2.65 0.070 272 3 2.65 0.070 242 4 2.65 0.070 253 5 2.45 0.008 19.25 6 2.45 0.008 16.50 7 3.57 0.092 148 8 3.55 0.090 115.50 9 3.53 0.088 83 10 2.45 0.008 18 11 2.45 0.008 37 12 2.45 0.008 24 13 2.45 0.008 33.50 14 2.95 0.076 325.50 15 2.45 0.008 37 16 3.49 0.084 281 17 3.51 0.086 189 18 3.47 0.082 141 19 3.25 0.073 187 20 3.59 0.080 138 Cl* * Based on general distribution of chlorides observed in CA 1 (See Figure 9) **USGS publication prepared in cooperation with the Corps of Engineers, Dec. 1975. (Reference No. 19) TABLE 3 INITIAL CONCENTRATIONS FOR CONSERVATION AREA 1 BEFORE JANUARY 1974 - 32 - Figure 9. c h io r id i v a r ia t io n s Source: <-. V .i'V— -- of surface water Reference No, 7 - 33 - in c o n s e r v a t io n area i Cl TN TP 20 3.12 0.006 249.3 19 3.12 0.006 249.3 18 3.45 0.092 176 17 3.45 0.092 176 16 2.72 0.004 158 15 3.01 0.002 178 14 3.45 0.092 176 13 3.12 0.006 195.9 12 3.12 0.006 142.5 11 5.14 0.002 142.5 10 2.35 0.030 227 9 2.35 0.030 227 8 5.83 0.003 185 7 5.86 0.003 187.5 6 2.62 0.010 150 5 2.62 0.010 160 4 2.62 0.010 160 3 2.35 0.003 157 2 2.62 0010 154 1 2.62 0.010 154 Node No. TABLE 4 INITIAL CONCENTRATION BEFORE JANUARY 1974 FOR CONSERVATION AREA 2A - 34 - Node No. TN** jp** 1 2.58 0.002 31.94 2 2.60 0.002 31.94 3 2.59 0.002 16.9 4 1.60 0.04 31.9 5 2.59 0.002 33.9 6 1.60 0.04 86 8 2.62 0.01 154 9 3.48 0.101 140 10 2.23 0.008 150 11 3.20 0.09 63.65 12 3.20 0.09 61 13 3.2 0.09 130 14 2.26 0.008 17.5 15 1.86 0.09 25.7 16 2.00 0.027 49 17 2 45 0.008 33,9 18 1.86 0.09 50 19 0.92 0.02 38 20 2.55 0.004 20.9 Cl* * Based on the unpublished data by Pat Gleason, Nov. 27, 1973 ** USGS publication prepared in cooperation with the Corps of Engineers, Dec. 1975. TABLE 5 INITIAL CONCENTRATION FOR CONSERVATION AREA 3 BEFORE JANUARY 1974 - 35 - One of the very important sets of input data is related to the collection of velocities, discharges, depth, rainfall, length of the links and the c o n ­ centrations of chemical parameters in the rain water along with the decay coefficients for TDN and TDP. Since velocities, discharges through the links and through the inlet and outlet structures, depth of water, rainfall amounts and link lengths are all parts of the output from the water quantity model, these values are available in the form of a series of magnetic tapes which are used as input tapes in the water quality model. As provided by the Water Chemistry Division of the South Florida Water Management District, the following concentrations of three wat er quality parameters of rain water along with the estimated decay coefficients are used in the water quality model ( 2 , 1 0 ). Chlorides = 4 mg/litre Total Dissolved Nitrogen = 1 . 2 mg/litre Total Dissolved Phosphorus = 0.045 mg/litre Decay coefficient (K) for TDP = 0 . 57/day Decay coefficient (K) for total inorganic nitrogen = 0.46/day Last, but not least, the input data set includes the concentrations of inflows. Although water quality sampling and measurements are made at di s ­ crete time steps, the recorded values are interpolated for each inlet structure in the computational steps. two A complete set of these concentration values inlets (S-5A and S - 6 ) of Conservation Area for 1, two (S-7 and S-10) inlet structures of Conservation Area 2A and seven ( S - l l , L-314, S-140, S-190, S-150, S - 8 and S-9) inlets of Conservation Area 3A are included in Exhibit 1. - 36 - 3. 3.1 RESULTS AND DISCUSSION NATURE OF THE OUTPUT Within a framework of input data, assumptions, formulations and simpli­ fications as presented earlier, the wat er quality model provides output for various conditions. As shown in Figure 10, the wat e r quality model output is generated for the following cases: 1. Historical case of 1974, 2. Four years (1968, 1969, 1970 and 1971) including wet and dry wat er years of 1968/69 and 1970/71. 3. Four years (1968, 1969, 1970, and 1971) including wet and dry water years o f 1968/69 and 1970/71 for each of the feasible backpumping schemes, and 4. Slug runs for a w e t y e a r of 1968 and dry y e a r of 1971 for each of the feasible backpumping schemes. Although the wat e r quality model is designed to simulate daily concentra­ tions o f chlorides, total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) at all the twenty nodes of Conservation Areas 1, 2A and 3A at the current stage, only chloride results will be examined to demonstrate the framework of the model. Thus, the output for different conditions (compiled in various data files of Reference No. 12) includes essentially the simulated daily values of chlorides. After complete scrutinization of the current chloride output, it is possible to generate nutrient output at a later date when sufficient field data is collected to support some of the nutrient related key parameters of the model. In essence, the current output from the wat er quality model provides the time and spatial distribution of chlorides as the w a t e r moves from C onserva­ tion Areas 1 through 3A under historical, wet, dry, slug and future backpumping conditions. The final goal of this section is to demonstrate the utilization of the model output (chloride results) in assessing the water quality impact of backpumping schemes. - 37 - Figure 10. FL OWC HAR T OF THE MODELING PROCEEDURE FOR FACILITATING THE WATER QUALITY — QUA NT ITY EV AL UAT ION OF BACKPUMPING ALTERNATIVES 3.2 DI SCUSSION A l th o u g h the computational steps o f the w a t e r q u al ity model look s t r a i g h t ­ forward, there are many i n t e r me di ate points that have to be consi de red and in ve sti gat ed before a final stage is achieved. An effo rt is made in the f o l l o win g sections to e l a b ora te on these points. 3.2.1 MASS BALAN CE A N D CON TIN UIT Y EQUATION A P P RO ACH ES As p resented e a r l i e r in Section 2.3.3, two indepen de nt approaches (one using c o nti nu ity eq uations and the o t h e r based on the mass balance principle) are tried to obtain time and spatial d ist ri but ion of chemical parameters. Results have clearly in dic at ed that m a s s - b a l a n c e equ ations have failed to si mu l a t e the chemical interactions in the c o n s e rv at ion areas. This is due to the c o mbi na tio n o f the f o l l owi ng factors: a. lack o f indirect or direct control on the m a g n i t u d e of the e x p r e s ­ sions in the n u m e r a t o r as well as in the d e n o m i n a t o r of the equation, b. conceptual in adequacies in separ ati ng the channel nodes from the marsh area, c. difficu lti es in volved in ca rry in g forward the acc umu l a t e d mass under dry conditions, and d. s e nsi tiv it y to m i n o r variations in outflows, inflows, depth and rainfall amounts. As com par ed to the results of the mass bala nc e equation, the m e t h o d o l o g y based on the c o n ti nui ty e qua ti on p rov id ed s a t i s f a c t o r y results and thus the c o n tin ui ty equation is sel ec ted as a final choice in simu lat ing w a t e r quali ty b e ha v i o r in the c o n s e rva tio n areas. 3.2.2 SLUG A NA LYS IS When the w a t e r q u a l i t y model is ext e n d e d to the future backp um pin g schemes with b a ck pum pin g inputs at spe ci fic nodes of c o n s e rva tio n areas, the si m ula te d c o n c ent ra tio ns are e s sen ti all y the net results of the ba ckpumping and historical loadings. Th e s e re sul tan t c o n ce ntr ati on s at various nodes represent the es t i m a t e d c o n ce ntr ati on s that are exp e c t e d to be observe d un d e r d i f f e r e n t b ac kpu mp ing schemes; however, the increase or decrea se due to the bac kp u m p i n g input alone cannot be sep ar ate d out due to the backg ro und c o n cen tr ati ons o f historical inputs. In ot h e r words, the d i s per sio n of b a ck p u m p e d input canno t be e v a l u a t e d easil y due to ad ditive or s u b tra cti ve m a s k i n g effects o f o t h e r incoming historical concentrations. With a ra t ion al e o f s tu dying the pattern o f disper sio n of only b a ckp ump ed inputs, the slug runs are designed. Th es e slug runs r eq uire all the input data sets and computational steps o f the w a t e r qu a l i t y model wi th the exc ep tio n that the c hl oride c o nce nt rat ion s o f the tr ations are set to zero. In historical inputs and the this manner, it is po ss ibl e to b a c kg rou nd c o n c e n ­ c lea rl y observe t he pattern of mo ve m e n t of the known c o n cen tr ati on s of back pu mpe d inputs. It is to be noted tha t the p r o c e d u r e of slug runs requires the same set of ve locities and discharges through the links, b ack p u m p e d inflows and rainfall inputs. T h e results o f these are co mpiled in Ref erence No. slug runs for each o f the b ac kpu m p i n g schemes 16. For ill ust ra tiv e purposes, Tables 11, 12, 13, 14 and 15 are pr epared for r ep res en t a t i v e nodes in the marsh and in the channels of C on ser va tio n Area 1. 1. From these tables, the fo llowing observat io ns can be made: As a net result of flo w pattern, initial dilutio n and rainfall, the ba c k p u m p e d w a t e r q ual it y inputs are disp ers ed in C on s e r v a t i o n Area 1 in varying amounts w i t h as high as 34.4 p e rce nt of input reaching node 15 during the w et season. 2. The increase in perc en tag e co ntr ib uti on of b a c k pum pe d input at inter io r nodes usua ll y occurs in the w e t season w he n r e la tiv el y more w a t e r enters the core o f C o n s e r vat io n Area 1. 3. A ny specific pattern of increases or de creases (due to the effects o f dry or w e t yea rs is not ap pa r e n t from the tables, alt hou gh some d i f f e r ­ ences in pe rcentage values can be at tr i b u t e d to the increase or decrease TABLE 6 . RESULTS OF SLUG ANALYSIS FOR NODE N O . 5 IN CONSERVATION AREA 1 ----------JAN. BACKPUMPING SCHEMES 68 ; FEB. 71 68 APRIL MARCH 71 68 n MAY 71 ! 68 68 JUNE 71 68 JULY 71 68 68 71 1 0 #1 #2 0 68 71 OCT. 71 68 NOV. 71 68 DEC. 71 68 71! 1 I j 1.0 .7 1.2 1.3 1.9 : 1.3 5.6 _____ U___ j SEPT. AUG. 3.4 7.6 3.7 9.3 i i 0 ■5 .211.2 *i 1 .3 14.9 4.3 14.2 3.9 14.8 4.4 13.3 ;4.8 .6 1.7 3.6 2.2 2.5 5.2 -1 : 1.0 12 3.7 10.7 3.6 1 [ 1 8.7 12.7 8.5 18.5 8.0 13.5 ;8.8 10.4 11.7 6.3 9.8! i t j 1.7 43 : ■ -1 4.4 .2;3.6 i 1.2 i 3.4 2.1 1 ( | 1 1 #4 ! *5 | o •. I I I ! ; I .1 ; .3 I1 1.2:1 .4 !! 1.6 I ! J j 0 0 ! 0 0 0 i 4.4 NOTES: .1 1.4 .2 3.1 1.3 8 . 7 ;7.2 j 1 1.1 4.7 ! i 1 i i j .1 • 0 2.9 4.6 | 3.9 ! 0 4.41i 0 { 5.3- t • 6.3 6.1 5.8 3.7 3.9 * 7 . 9 j 1 . 0 j 7.5 4.1 j 6.8 I i ; i i 1 I ! i. | 1 .0 6.1 I 2.1 !8 . 1 1 The numbers given in the table reDresent percentages of the concentration of the backpumoed 2. 3. The Doint of entry of backpumoed wa t e r in Conservation Area 1 is node 18 (see Figure 4). The numbers are given for a wet y e a r of 1968 and a dry year o f 1971. > 2.5 i -------- 1--- h - I { ! ! 8.1 7.9 \ 12.9*1.2 11.0 1 1. * 2.5 8.9 i 11.2 .a 6.1 5.9 8.2 5.0 T 5.1 9 i ; ■0 i 7.9 i i * 0 9.1 j i 1.0 9.6 :1.6 1 0 . 8 2 . 6 9.7 2.6 i 7.6 2.8 1 i | ! 9.3 1 I -! i ! .6!i 10.4 il .3 ! ! o lo 14.2 6.4 jl0.3 6.0 i . ----------- 0 3.5 6.9 3.8 ! water. 1 : 4 ! 11L7! TABLE BACK­ PUMPING SCHEMES 7 . RESULTS OF SLUG ANALYSIS FOR NODE NO. FEB. JAN. 68 1 68 ; i #1 .1 i 0 ! .5 #2 43 1 0 l . o! .2 i 0 71 .5 0 71 68 I I IN CONSERVATION AREA 1 MAY i APRIL -i----- ----- MARCH 68 ! 71 71 10 | 68 JULY JUNE 71 68 71 ------- !------- 68 I 71 68 1 .1 | .6 . 1.1 1.9! 0 l 1.0! 0 0 . 1 0 1.3 5.1 6 4.1 2.7 .8 4.2 1.4 . 71 OCT. I 68 T NOV. 68 71 71 68 3.5 6.5 3.7 I 7.3 ! 3.6 -6 NOTES: I -C* PO I 1 ,1 .1 j .9 .13.7 .31.5 1.04.9 68 71 .7 0 4.1 3.0 2.9 .9 5.6 ! .4 711 1.4 0 1.11 .5 1.8 .5 1 4.8 1.3 I 8.3 2.3 13.4! 1.84.2 0 ! 12.4. 6.0 4.2 ! 7.1 5.3 7.8 ‘ 5.5 i 7.4 15.5 ! 6.0 i 5.415.3 5.5 5.1 -5.4 5.4 i ___ L - 1 .312 8.10 9.2 n . 7 | i a 4 10.0 11.3 9.6 til.7 1 9.4 I 6.8 11.5 7.2 12.5 8.6 13.6 1. 6 8.413.8 -j----- \- l.Oi 3.5 j 2.41 i 6.5 t #5 DEC. ! #4 SEPT. AUG. .5 4.7 4.3 I 3.7 5 7.0 22.1 7.4 25.1 ‘ 7.9 124.8 7.9 4.2 ! 5.3 6.8 5.017.3 8.08.9! 20.18.2 > i 17.1)8.1 16.5 I 8 . a 16,8! -------- j---- ■ ------!----------j----- !-----1 « ; I « * i ! 1 I 7.519.7 8.110.9s 8 . 3 M 1 . 6 9.1 11.7! 9.7 The numbers given in the table reoresent percentages of the concentration of the backpumped water. The point of entry of b a ckpumoed w a t e r in Conservation Area 1 is node 18 (see Figure 4).____________ The numbers are given for a wet yea r of 1968 and a dry y e a r of T971 TABLE 8. RESULTS OF SLUG ANALYSIS FOR NODE NO. 12 IN CONSERVATION AREA 1 ■ ■ BACKJAN. -UMPING ! SCHEMES 71 168 FEB. 68 71 68 MAY APRIL MARCH 71 71 68 .. _ 68 JUNE 71 68 71 JULY AUG. ! 68 • 71 68 71 SEPT. 68 OC T. 71 68 71 ---- T ^1 .2 .3 1.0 1.3 .5 .9 1.4 2.0 3.1 3.1 5.7 4.4 5.9 5.6 5.0 6.4 4.9 6.6 4.9 7.1 NOV. - 1.3 -1 0 .2 2.1 .4 2.1 .8 4.8 3 | I , 5.8 7 ■ j I 0 .2! 1.5 I r i .2 3.7 6.5 7.0 1 7.9 .3 .2 2.3 1.0 .5 .— l . . : 5.0 8.3.16.2 8.2 15.1 1 1 I ,7.3 ! . i : 45 8.5 i r . j1, #4 8.7 i >| #3 7.0 21:1 7.1 34 5.8 7.0 6.6 5.1 4.9 6.6 32.1 j 8.4'22.6 8.1(17.2 7.9 7.7 • 8.8 9.7 10.7 10.211.7 The numbers given in the table represent oercentaqes of the concentration of the backpumoed The ooint of entry of backpumoed wa te r in Conservation Area 1 is node 18 (see Fiqure 4). The numbers are given for a wet year of 1963 and a dry year of- 1971. 1 r- i — f i ! 7 . 8 j7.0; 7.5 T i #2 68 | 71 1— '*1 I DEC. 1 j 71 68 ■ 9.8 11.7 water. 9.2 TABLE ■ ---------i 9 . RESULTS OF SLUG ANALYSIS FOR NODE NO. 15 IN CONSERVATION AREA 1 -"1 1 i APRIL MARCH • ] 68 71 68 1 FEB. JAN. BA CK ­ PUMPING :h e m e s 71 JULY JUNE MAY . r AUG. OC T. SEPT. NOV. 1 71 | 68 ! 68 j 71 I 1 68 , ... 71 68 68 71 68 71 71 71 68 68 71 68 I- . f 1.0 3.5 1.0 3.5 #1 3.5 4.3 3.0 4 6.8 4.9 9.4 5.1 7.9 10.4 4.9 j 4 r\5 3.2 #3 3.2 17.3 68 711 9.2 13.9 j i | 1 3.8 2.3 i 7.9 | j ! .5 1 71 i f ” i 11.8 9.2 1 2 . 3 17.8 i ---------j------ i i r 3.0 3.5 j .5 DEC. ; 2 . 3 | 7.9 I i __ L r « .4 7.9 .4 1 7.9 9.9 2.4 2.3 6.4 2.4 16.4 2 . 7 17.1 a . 31.0125.0 6 . 1 , 16. 4 1 3 . 9 : 34. 4 1 f II j ! ; i 1 . 1 1 1 1 . 5 ! 5 . 7 jlO.O 1 7 . 6 1 7 . 8 2 7 . 8 1 1 3 . 5 2 7 . 8 11 20.3 2 i t i 10.0 18.6 23.0 * 17.8 295 18.7 » i 1 17 5 ' 1 6 . 4 i J .... . : * V 1" 1 3 . 5 j .1 #4 i !i ( #5 i.— — ■ ■ NOTES: ^ r 0 2.5 -• r 1.0 3.5 • 1.3 3.4 4.0 ( • } 7.4 4.3 i j | 4 .4 3.8 I> *6 3.5 . .... 1 *1 ' ! .5 ! 1 .8 . 1 ,1 i 6.8 8.4 9.4'6.8 2.317.4 2.3 8.8 1............ 3.8 0 ■I 20.5 0 233 : 0 7.2' 2 . 4 10 5. 1 9.2 ' i | 4.9! 7.5 7.8 1 » ! i 1 7 . 0 5 . 9 114.6 j i i * 1 2 . 7 17. 9) 2 . 7 - 18. 2 } 1 4.3 2.7 9.2 7.1 i I t 2 . 7 ilO. 2 ’ 4 . 1 J 0 — ------- ---------- | 1 10.1 10.8 i 1 ! ! ' i 1 1 . 4 ! 1 1 . 9 1 8 . 2 11 S ; 1 6 . 2 2 1 . 9 17.2 9.2 i ! 1 ' ! 8.8 34.5 ! 152 20.8 1 1 : 9 . 8 131. 2 1 7 . 2 29. 4 1 4 . 7 ; 1. The numbers given in the table reoresent percentages of the concentration of the backpumped water. 2. The point of entry of backpumped wat er in Conservation Area 1 is node 18 (see Figure 4)._______ __ 3. The numbers are given for a wet year of 1968 and a dry year of 1971. TABLE 10. RESULTS OF SLUG ANALYSIS FOR NODE NO. BACK­ ! JAN. FEB. PUMPING I CHEMES ! 68 ! 71 ! 68 71 1 I MARCH 1 APRIL j 68 68 71 71 ! MAY 17 IN CONSERVATION AREA 1 ! JUNE 71 | 68 : 68 71 JULY AUG. r 68 | 71 68 ! 71 2.0 ; 6.1 2.2 7.1 OC T. NOV. 1-DEC. ; | I #1 SEPT. 71 68 68 T 71 68 r--- 71 68 71 i ,12.7 7 9 5 10.3 99.8:1.2 74.2 2.9 2 2 . 7 | 1 7 2 22.3 25.5 73.3113.9 46.3-^ I < t i»1 j ! i L i i« ; » 6 6 . 8 ll4.5 95.169.4 97.2* 542i76.7 21.2 58.0 49.2 36.3 4T.5 77.6 3 6 51 7 0 . 9 jfeO.2 } i I i ---- i — *'... t j ; 3.4 66.7j 2.5 68 2.9 80.3 i j #2 *3 i i 1 * i 1 78 4.4 ! 4.5 69.4! 305:99.8 17.1 77 ! I i i 25.7 5.7 30.9 17.1 87.2 51 . 3j 99.5 46.1 11.2 70.5|15.7 91.4 71.8 88.1 37.9 83.9 16.4 63.0|26.2 26.1 44.5 82.5 27. 74.8 t ; tI ! 1 I 1I _ , * J { * j | i i #4 i Ij i *5 2.0 28.3 | 2.2 35.5 2.9 8 6 . 1 j3.4 80.3 2.5 72.4 Il2.7 54.310.3139.1 1.2 iI « " 1 | | i i I j t 1 I 1 1 ! 1 4.4 9.8 67.5 11.1 99.6 52.3117.0; 51.4 46.2! 62.2! 14.7 9 1 .77 0. 8f 82.436.1 ) i ' J 46 NOTES: ' 27 1. _2. 3. 47.6- 72.6 47 I 87.4 3 1 .4i 99.6! 54 i 20.5 I1 2.9 9.1 17.2 2.2 25.5 44.9, 1 3 5 4 1 . 2 ; I 1 It 1 1 58.1 14.7' 65.6 31 3 19.9 37.7! 77.641.4: 72.5 j i \ J iI t 50 . 5i 74.2 15.7 833 7 1 . 2 8 3 . 6 54.2 77.5 22 I1 j! i 66.7:319 131.1 40.3)77.6 31.9 72.0 The numbers given in the table reDresent percentages of the concentration of the backpumped water. The ooint of entry of backpumped w a t e r in Conservation Area 1 is node 18 (see Figure 4). The numbers are given for a wet y e a r of 1968 and a dry year of T971. of flow volumes in wet and dry years, respectively. 4. The transfer of backpumped inputs in the channel nodes as against marsh nodes can be distinguished from the numbers of these tables. 5. The illustrative results of these tables and the results c o m ­ piled in Reference No. 16 indicate the usefulness of the slug runs in evaluating the relative dispersion of backpumped inputs under different backpumping schemes. In addition to the type of input data sets described earlier, chloride concentrations of backpumped input are also required. A set of chloride concentrations of backpumping inputs to the West Palm Beach Canal Hillsboro Canal (C-14) and Tamiami Canal (C-51), (C-4) used in the water quality model is given in Exhibit 1. 3.2.3 DIRECT RAINFALL QUALITY INPUTS After computing the concentration of chlorides at a given node, the concentration values of the rain (as given in section 2.3.5) are combined with the computed concentration according to the simulated depth of water in inches at the node and the rainfall amounts in inches. Such a weighing factor procedure considers a simple physical process of mixing rainfall concentration with the concentration of the water at a node. For example, when an inch of surface wa te r with 15 mg/litre of chloride), the resultant concentration becomes 10 mg/litre. Although such a simple mathematical procedure is valid from a physical standpoint, it may or may not follow the events that actually take place in the field as a result of numerous known and unknown interacting elements. To examine to the extent possible the various aspects of such thinking, all the possible combinations are tried for the historical case of 1974 as depicted in Figure 11. As shown in Figure 11, various runs for Conservation Areas 1, 2 and 3 are made to include and exclude the final weighing procedure for the chloride input from rain. The results of these combinations and the final selection of + 4- + R A IN C O N TR IB U TIO N I N C L U D E D IN F I N A L R A IN NOT Figure C O N T R IB U T IO N IN C LU D E D II IN OF C H L O R I D E S STAGE OF F IN A L IS C H L O R I D E S IS STAGE THE POSSIBLE A HISTO RICAL COMBINATIONS OF CASE OF 1974 CHLO RIDE RUNS FOR the combination is discussed in the subsequent section. 3.2.4 CORRELATIONS BETWEEN SIMULATED AND OBSERVED SETS As an essential step of any modeling effort, the water quality model is calibrated in light of the available historical data set as shown in Table 2. In such an effort, the output of the model observed field data for the three conservation areas. is compared with the Such comparisons are provided in Tables 11,12 and 13.These tables also include the chloride concentrations obtained under different conditions. tables indicate that the model These comparative is capable of generating the chloride c o n cen ­ trations which are in reasonable agreement with the observed field data of 1974. There are two important observations associated with these c o mp ara ­ tive tables. First, the inclusion of rainfall quality in the computations for Conservation Areas 1 and 3A seems to be very essential because otherwise, the concentrations in the interior marsh nodes tend to build up in the wet period when some mov ement of water into the marsh occurs under high con c e n ­ tration gradient. However, exclusion of rainfall quality in the computational procedure of the model for Conservation Area 2A seeems to produce results which are better matched with the field data as compared to the results of the procedure including rainfall quality (see Table 12). Although such nonuniformity in applying basic principles can be attributed to the different types of hydraulic and hydrologic regimes of these conservation areas, it was suspected that the observed nonuniformity is a result of inadequacies of simulated depths when the area goes dry. To clarify the suspicion, an effort was made to assume 1", 2" and 3" of mushy water in dry conditions so that the final weighing procedure was based on these depths and rainfall amounts. Unfortunately, results from such effort did not provide the rationale for adequately eliminating the observed nonuniformity. Und er ­ ground flow of water with high concentration of chlorides in Conservation Area 2A could be an important element in bringing uniformity in the modeling Ta b l e 11. Co mp a r i s o n of S i m u l a t e d and Rec o r d e d Values for Chlor id es for C o n s e r v a t i o n Area 1 for the Year 1974 NODE NU MB ERS Date 1 5 13 12 11 a) 159.9 169 44 40 30.8 28 20.3 28 22.1 a) 159.3 166.6 45.3 40 31.6 28 20.4 28 22.1 a) 166.9 185.7 Mar. 12, 1974 Marc. 13 , 1974 a) 164.4 196.6 45.15 45 31.1 35 20.5 35 21.15 25 Mar. 27, 1974 a) Jan. 29, 1974 b) Jan. 31, 1974 b) Feb. 25, 1974 b) b) b) Dec. 13, 1974 a) b) 161.1 202.2 8 9 .4 69.97 a) b) S i m u l a t e d chl oride concen tra ti ons . Historical data. * Node 14 38.6 43.3 31.8 39.3 15 16 16 46.97 (Node 5+6+10) 32 (Apr. 16, 1974) 145.2* 199.2 141.6 186.9 47.2 77.8 38.6 33.3 (Node 19) Table 12. Comparison of simulated and recorded values of chlorides for CA2A for the Year 1974 CONCENTRATIONS AT NODES 1 5 6 7 8 9 11 15 Jan. 29 a) 156.3 b) 160.4 c) 165 155.1 158.4 166.8 149.2 151.7 157.9 85.2 185.5 173.7 152 180.3 179.2 165.8 171.0 115.4 42.7 144.5 137.5 154.9 177.3 175.2 Feb. 25 a) 155.8 b) 160.2 c) 185.7 154.8 158.5 189.3 148.9 151.8 158.8 86.4 185.3 179.7 150.3 179.8 182.85 164.3 170.1 171.9 42.7 144.5 197.2 158.7 168.5 163 Mar. 27 a) 155.5 b) 162.8 c) 2 0 2 . 2 154.7 159.3 167.7 148.2 156.3 196 86.4 185.3 207.6 133 175.6 200 163.3 169.8 174.15 42.7 144.5 270.6 148.9 166.2 220.4 a) 106.5 b) 124.5 c) 191.7 120.2 112.6 122.2 80 179.3 40 165.2 116.8 118.0 51.2 146.9 115.6 155.3 183.2 165.3 209.6* 95.2 141.1 103.3 135.2 89.2 166.3 149.3 47.9 154.4 101.45 65.1 147.2 33.7 147.2 117.50 97.4 150.4 193.8 88.1 98.4 149.3 183.5 77.7 162.8 178.28 106.3 161.8 200.2 105 142.3 136.45 36.9 153.8 137.35 157.6 168.5 208.1 129.8 163.5 139 113.9 163.4 192.17 130.2 163.3 150 117.8 134.8 116.3 68.7 168.2 149.83 149.7 158.8 180.30 75.3 154.2 150.4 92.7 155.7 178.87 29.6 158.3 163.05 127.9 142.9 137.40 35.4 176 170.75 55.1 155.7* 150.4 May 30 June 24 a) 81.3 b) 137.3 c) 186.4 July 24 a) 85.8 b) 146.8 c) 184.5 Aug. 29 Dec. a) b) c) * 20 a) 119.7 b) 148.6 c) 161.5 a) 1 0 2 . 1 b) 141.1 c) 149.1 104.6 122.6 163.5 112.1 102.6 150 156.4 Final weighing procedure includes rainfall contribution of chlorides Final weighing procedure excludes rainfall contribution of chlorides Historical data Node 16 Table 13. Comparison of simulated and recorded values of the calibration runs for Conservation Area 3A for the year 1974 NODE NUMBERS 5 10 Date 2 Sept. 26 11 12 14 a) 79.6 75.1 78.2 16.3 b) 66 89 62 19.3 Apr. 15 a) 31.9 Apr. 16 b) 59 109.3 99 a) Simulated chloride concentration b) Historical data 33.9 150.5 28 140 -51- procedure for the three conservation areas. However, because of the lack of information on the spatial distribution of seepage water with its var y­ ing chloride concentration, any further improvement is not possible at this stage. Secondly, the analyses of Conservation Area 2A with and without rai n­ fall quality contributions seem to have no significant effect on the results of Conservation Area 3A. In other words, this means that outputs from Conservation Area 2A at node 1 (which is fed as an input to Co ns e r v a ­ tion Area 3A) for the cases with and without rainwater quality are not significantly different. Considering these two points, the final selection among the various combinations of Figure 11 is as shown in Figure 12. It should be noted that the combination shown in Figure 12 is used subsequently for generating chloride concentrations for various historical and backpumping conditions. As an additional part of the calibration task, an effort is made to examine the response of the model output to the stage variations observed for the calibration yea r and for dry and wet conditions in Conservation Area 1. Such stage-concentration responses for some illustrative nodes of Conservation Area 1 are presented in Figures 13, 14, 15, 16 and 17. Again, these figures indicate clearly that the water quality model output for the calibration ye ar of 1974, wet ye ar and dry years of 1968-71, is in general agreement with the variational pattern of stages that are observed at three gages (1-8, S-10, S-5A) in Conservation Area 1. These satisfactory correlations supplement further the reasonable calibration results of Tables 11, 12 and 13. 3.2.5 PARAMETRIC SENSITIVITY ANALYSIS Like any other useful planning oriented water quality model, sensi t­ ivity of various parameters to the final outcome is usually examined by a - 52 - + + + R A I N C O N T R I BU T I O N OF C H L O R I D E S I N C L U D E D IN F I N A L S T A G E IS R A I N C O N T R I B U T I O N OF C H L O R I D E S IS N O T I N C L U D E D IN F I N A L S T A G E F i g u r e 12 S E L E C T E D CO M BINATION OF CHLORIDE RUNS FOR THE H IS T O R IC A L W ET AND DRY Y E A R S AND FOR V A R IO U S BACKPUMPING SCH EM ES Chloride Cone. 1n mg/litre Chloride Cone. 1n mg/lltre Stage 1n msl Figure 17. Stage-Concentration Response for Some IV Ii/strative Nodes o f Conservation Area 1 for th e’?ea‘r*T§74 procedure which is called parametric sensitivity analysis. As far as chloride runs are concerned, the parametric analyses were performed on the unit time step to examine its sensitivity on the final result. In such analyses, runs were made using time steps of 24 hours, 12 hours, hours, 4 hours, 3 hours, 2 hours and 1 hour. water quality model 6 Among all these runs, the (based on computations at every hour) produced c o n ­ ceptually the most accurate results, but it took 45 minutes to generate one ye ar of chloride concentrations. 4 hours, 6 hours, 12 hours and 24 hours, the water quality model took 20 minutes, 15 minutes, spectively. For a time step of 2 hours, 3 hours, 12 minutes, 10 minutes, 8 minutes and 6 minutes, r e ­ A time step o f 24 hours provided results which were si g n i f i ­ cantly different from the most accurate results obtained for a unit step of 1 hour with 45 minutes of computer time. Comparisons of these numbers indicate clearly the necessity of trade-off considerations in selecting the optimum unit time step. Considering the realistic computer time r e ­ quirement without sacrificing the accuracy of the results, a time step of 2 hours is finally selected (with 20 minutes of computer time) to process one chemical parameter for one conservation area for a full year. 3.2.6 COMPUTER PROGRAM AND TIME REQUIREMENTS All the computational steps of the water quality model are included in the computer program which is designed for the CDC 3100 computer facility. The listing of such a program is given in Exhibit II. puter time requirements for that the The estimated c o m ­ various conditions are given inTable 14. estimates given in Table 14 are for a. Chloride parameter with the selected combination of Figure 12, b. Three conservation areas, and c. A unit time step of 2 hours. - 59 - Note Table 14. Case No. Computer time requirements of the water quality model for different conditions. Description Computer Time hour 1 Historical Case of 1974 1 2 Selected combination for a historical case of 1974 1 hour 40 min. To create disk files of the useful output of the water quantity model 1 hour 30 min. Four years including wet and dry water year of 68-69 and 70-71 6 hrs. 40 min. To create disk files and to run the model for four years for a backpumping scheme 8 hrs. 3 4 5 > - 60 - 10 min. 3.2.7 ANALYSIS OF THE MODEL OUTPUT IN EVALUATING BACKPUMPING SCHEMES After satisfactory calibration results of historical cases of dry, wet and average years, the model is used to obtain the time and spatial distribution of chlorides in the channel and marsh nodes of the three conservation areas for various backpumping schemes of Table 15. From a computational standpoint, the velocities and discharges of the links, depths at node points and inlet discharges will be different for each of these alternatives. As a consequence, the water quality model will generate different sets of spatial and time distribution of chlorides which can be compared with historical distribution to quantitatively define the water quality impact (adverse or status quo or beneficial) of these backpumping schemes. Looking at these different sets of spatial and time distributions of chlorides (also known as pollutographs) as depicted in Figures 18 through 37, the following points can be observed. 1. For channel nodes (i.e., nodes No. 1, 2, 3, 4, 7, 8 , 9, 14, 16, 17, 18, 19 and 20) the historical pollutograph is higher than pollutographs of backpumping schemes. This is further substantiated by the values of Table 16 for these nodes of Conservation Area 1. 2. For marsh nodes (i.e., Nos. 5, 6 , 10, 11, 12,-13 and 15), the historical pollutograph is surpassed by some pollutographs of backpumping schemes. 3. Although an increase in chloride concentrations was observed for two or three nodes for backpumping conditions, a similar increase also occurred historically for these nodes. Considering these observations, coupled with the information of Figures 13 to 17 and of Tables 6 through 10, results of Conservation Area 1 indicate that the backpumping schemes seem to have a status quo type water quality impact. It should be noted that this preliminary conclusion m ay be Table 15. Backpumping schemes and their proposed points of discharge in the three conservation areas. Backpumping Scheme # Points of Discharge* CA-1 CA-2 1 18 2 18 3 18 17 4 18 - 5 18 17 6 18 CA-3 - 1 - Note: CA-1 = Conservation Area 1 CA-2 = Conservation Area 2A CA-3 = Conservation Area 3A *Point of discharge is at a node (number of which is given in the table). -62- 1 UJ CL H _l \ O *0 UJ Q cr 0 _j 1 o UJ cn o 5 CO UJ o E 0 _l 1 o 19 6 8 Figure 18. P O L L U T O G R A P H CONSERVATION 19 6 9 OF 971 19 7 0 CH LO R ID ES AREA I FOR NODE I OF FIGURE 19. OUTPUT OF THE WATER QUALITY MODEL FOR THE COHSERYATIOH AREAS POLLUTOGRAPH OF CHLORIDES FOR N0DE2 OF CONSERVATION AREA 1 crcr figure 20. H T F U T OF »THE WATER QUALITY MODEL FOR THE CONSERVATION AREAS LU 280 H ISTOR IC AL ce \ (S) 5 2 24 0 200 BACKPUMPI NG I ------------ BACKPUMPING 2 ------------ BACKPUMPING 3 ------------ C/1 UJ Q CC 0 1 u J ___ I___ L J I I I M A M J J A S O N D J F M A M J J A J J 1968 L. J---- 1----L_J___I___ I___ I--- 1___ I___I___ I___ L 19 6 9 J__ I__ i___i__ i i i i ___i___ i__ i__ i___i___:__ l O N D J F M A M J J A S O N D I 971 1970 280 HISTORICAL 240 200 — BACKPUMPING 4 ------ BACKPUMPING 5 ------ BACKPUMPING 6 160 120 80 40 J F M A M J J A S O M A M J 196 8 F i g u r e 21, S O N D J F M A M J 19 6 9 POLLUTOGRAPH CONSERVATION J A J A S O N D J F M A M 1970 OF CHLORIDES AREA I FOR J J A 1971 NODE 4 OF S O N D F i g u r e 22, 1968 | 1968 j 1969 196 9 P O L L U T O G R A P H OF C O N S E R V A T IO N A R E A | 1970 | | I 970 | CH LO R ID ES I J FOR NODE 1971 I 97 I 5 OF g§ “8 S§ cn ra figure 23. ■ OUTPUT OF THE WATER QOALITY MODEL FOR THE CONSERYATIOH AREAS a * + HISTORICAL -JACKnj«Mt i i I ■- '■ -*4. -X3 + BHCuruwiHS ;s M.O»- 17 -w.7u figure 26. - OUTPUT OF THE WATER QUALITY MODEL FOR THE CONSERVATION AREAS 13 ® * * r<£ , *'i-*..X“£- . ir HISTOR I C A L 0«CKPtmf*tNi; ji * *■ . *.let* SBCKrimftiis *e SSCKrunflNS = S I * c n • >.-■< ,‘ *»7 fisure 27, OVTPUT OF THE WATER QUALITY MODEL FOR THE CONSERVATION AREAS '-J V H IS TO R IC AL BRCRflM PtN '3 2t FISURE 28 POLLUTOGRAPH OF C H L OR I DES H ISTO RICAL 3RCKF t ; - * : s• BflCKPUHriN G =6 BftCKPUHflMe *8 FOR N OOE I LOF CONSERVAT I ON AREA 1 figure 29. I I T P I T OF I K WATER QUALITY MOSEL FIR T IE C M S EIYA TN R AREAS FIGURE 30. ' OUTPUT OF THE WATER QUALITY MODEL FOR THE CONSERVATION AREAS POLLUTOGRAPH OF CHLORIDES FOR N0DE130F CONSERVATION AREA I ® nisraiicflc tJCO ° H IS T O R lb U L * ^CKFUMrtMtk =* • run TOUCH uf LurroLnvnuun nncn 1 -i - •* r;*' OUTPUT OF THE WATER QUALITY MODEL FOR THE COHSERVATIOH AREAS FIGURE 31. '1 POLLUTOGRAPH OF C H L OR I DES FOR N 0 0 E 1 4 0 F f t f t J J f t S -1968 M tS TC W IC flL 30CKP"HF?S-; x>■ ~ " ' 3 «C K P U H riN S 26 - C N 7> ' 9flC KrU M PlN G =S -* " ' 1 ’ ' O .,.17 '*■■ *' ■ CONSERVATION AREA I O 1971 1968 UJ | 1969 | 1970 | 1971 240 - a. i— H ISTO R IC A L 2 00 BACKPUM PING \ o 5 4 BACKPUM PING 5 BACKPUM PING 6 DC 0 _J 1 o J F M A M J J A 0 N F M A M D J M A M J P O LLU T O G R A P H CO N SER VA TIO N N D F M A M OF C H L O R ID E S AREA I FOR J J A S 19 7 1 I 9 70 196 8 F i g u r e 32, J A NODE 15 OF FIGURE 33. N TP H T OF THE WATER QUALITY MODEL FOR THE CONSERVATION AREAS UJ 280 HISTOR IC AL - oc. B A C K PUMPING I BACKPUM PING 2 BACKPUM PING 3 o s cn UJ o 5 o _i X o 160 20 80 J F M A M J J A S O N D 1968 J F M A M J I J A S O N D 196 9 F M A M J J A S O N 1970 HISTORICAL UJ ac t- BACKPUMPING 4 _i BA C KPU M PIN G 5 e> 5 B A C KPU M PIN G 6 NODE 17 94? 290*9 2*41 9 21494 30042 39?7fl 39709 11948 10196 279*58 960f)5 20416 215*8 2 ‘>?00 24697 232A4 16719 21300 I 309? 130^9 1193* 264*0 26341 14514 29 796 1 3541 20747 2*30? 2667n 9UOO 1«200 lf4on 2 ilo o 2 J 100 2*500 19600 19600 b e g t ** Nonr ? i i i l s 4 4 3 r i 9 8 3 n 8 10 q 11 1o 11 0 14 8 7 1* 7 6 * 15 16 17 15 14 13 11 12 14 13 19 13 1? 1 1 4 * ? 9 14 17 07/04/ftq END NODE 3 3 2 4 4 7 7 5 7 8 8 8 9 9 11 11 11 10 12 12 14 14 15 15 15 1ft 16 16 7 6 17 ' 17 18 18 18 14 13 13 19 19 20 20 20 2 4 5 6 9 10 18 18 I I - 93 - A Hp A ->b V E L OCI T Y r>J5CHrtRr;F -0.02507 -0.02632 -0.01380 .00822 -0.02685 -0.01691 -0.04313 -0.05915 .01960 -0,01391 -0,12224 -0.13488 .04381 -0.160U -0.05972 -0.08287 .03151 -0.11027 -0,01472 .00822 -0,03645 -0.0614] .02720 -0.07499 -0.03111 .06652 -0,01700 -0,09083 -0.01464 .00853 -0,01557 -0.05836 -0,02813 -0,04098 -0.01396 -0,02719 -0.01634 -0.00402 .02851 -0.00070 .00302 -0.00443 -0.00520 -0.15305 -0,294?i -0 ,58406 .08169 -2,13423 -1 .03809 -0.20289 - 0 . 4 l3on -1176.60490 -133.8020* -19.39110 10.35755 -421.19872 -2151.26769 -736*99068 -2136.68417 -499.91744 -1377.38156 -341?.5309? - 2 3 7 0 . 2 1 3 ?9 431.50254 -34*9.67964 - 3 1 1 3 . 4 2443 -9749.1393? fl!6.54ft«0 -1859.86799 -176.50941 73.70002 -550 .80714 -559.96503 *79.04201 -2584.16856 -1127.78873 1869.52646 -1130.97513 -1418.90743 -527.64250 -037.90740 -278.30816 -217.38106 - ? 4 4 .94697 -1059.58305 -177.03259 -161,91984 -407.567?? -141.57656 246.30195 -930.01961 ?0 . 4 6 1 6 9 - ? 0 « 8 8 l 04 -1?.7697? - ? 4 9 . 99866 - 4 1 5 . 7 074 0 -1799.06867 -491,36519 -2764.36085 - 1 1 4 Q . 36230 -133.38725 -266.35909 L IN * P A T « row C O N S r R V AT TOM LINK 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 IB 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35! 36 37 38 39 40 41 42 43 44 45 i 4.6^ ! l 47' 40 49 30 51 52 53 54 55 !5ft | EMGth 40004 20195 49500 5*0?3 61 2 9 5 40004 54601 40000 690 ] 0 7*500 5 9 n 10 4*049 50979 6420* 3*7*1 6 4944 319*3 ftft* 1 0 4*500 5*250 495P3 499«ft 4 14 a a 21944 3 «0o1 4 o500 4 ] 27 0 6 5 1 95 51 Ooo 3«270 7*000 4«ft75 5 ] 2°* 24 0 1 7 34 0 7 0 21 15ft 24573 39519 17100 252^3 4 5 144 1*000 414f)0 57000 71000 4*500 53*01 39710 47359 61515 30000 4*000 29000 37940 37940 5*2*0 hegtn NOOF 2 1 1 3 1 4 1 5 3 ? 5 4 ft 5 11 5 15 5 19 7 ft 10 7 0 7 9 0 9 10 11 9 19 13 1? 19 14 14 15 17 14 13 1-1 1ft 1 1 4 ft 7 a ft )1 1? 13 15 11 7 0 7/04/fto F. NO ,a velocity DT5<"HARftE -0.002ftft -0.01695 -0,02001 -0.01967 -0.02307 .0021ft -0.02204 .01410 -0.00950 -0.00973 -0.01495 -0.01624 -0.017*0 -0.02131 .00057 -0.01923 -0.02175 -0.02150 .01673 .01132 -0.02464 .02136 -0.02047 ,02049 -0,03112 .00331 .01709 -0.00209 -0.00420 -0.02207 -0.0211? - 0.02003 .0207ft .00667 .02140 .016*3 -o.ooou -0.01970 .01504 -0.00707 .010*5 -0.02432 •0 1 4 f 7 -0.42343 -0.36155 -0.28140 -0,40765 -0,53251 .22139 -0,33750 -0,43044 -530.02511 -7997.9055ft -77.044*? -? 4 *9 .3 7 ? i0 - 9 9 7 . 19 ft 17 9 4 4 . f t O905 -340?.0*739 10 1 ° « 3 1 4 * 1 - 1 1 47.ft0099 - O. OOQOO -7*9.6147? -700«6 0007 -040.340^5 -1 0 7 7 . 4 3 * 1 * 9 7 . -19?i ? - * f t l . 4 ft 7 4 9 -47*.9??4? -3 1 *.*?999 90 4 . 1 0 9 0 0 30 7 . 2 < » ? 5 f t -1 1 1 0 ,4 1 9 7 0 1 3 2 ? . 3 3 5 i^ft - 1 n * 4 . f t * l 49 2430 . 5 ? 5 4 5 - f t f t H , 0 3 J 44 1 ft4 . 3 9 0 3 f t 14*.9 ? 0 ft0 -6 ft.5*4*4 - 1 4 3 . 0 75 4 7 -7**.4?0*0 - 0 0 . 1?344 -1*60.7*5*1 *4.95617 9 9 0 * 5 5 3 '+Q 336.96074 1 7 0 . *34#,? -?.04909 - 0.00000 14 ? . 2 7 3 5 7 - 1 ?0 . 6 4 4 9 4 144.0020? -740.64170 \ 49 . 0 * 1 7 9 - 6 0 4 .593S0 - 1 5 J 3 . 256*** -496.03537 -*45.1090* -539,52790 6 3 , 3 1 14? -945.39419 -900.37015 - 3 0 * 5 * 75 7 7q -10.10416 -*5.39045 9 . 4fl?l5 1Q 9 . 1 1013 node 3 3 9 4 4 5 5 20 20 90 6 6 11 11 15 15 19 19 20 1I 7 11 10 10 0 10 9 12 12 12 13 13 14 14 15 15 10 10 10 17 17 J6 17 2 4 6 7 0 9 U 19 )3 16 10 15 11 - 94 - -0*53538 - 0 * 152*6 - 0 .28 9 47 .0073ft * ) 7061 r n N ^ F P V M ION APEA lurui-mode DATE DAY : {* CL ) (S-6) T-P04 fOT-N 2*650 2.65u 2.650 2.650 2.650 2.650 2.650 2 .650 2.650 2.650 2.650 2.650 2 »6 5 0 2.650 2 . b50 2.65U 2.650 * 2.67b 2.701 2.72/ 2 . 75 J 2.77^ 2. 80* + 2.830 2.85o 2.881 2.90 / 2.93 j 2.95V 2.984 3.01 0 1/ 1 / 7 4 1/ 2 / 7 4 1/ 3/74 1/ 4 / 7 4 1/ 5/74 1/ 6 /74 1/ 7/74 i / 8/74 1/ 9/74 1/10/74 1/11/74 1/12/74 1/13/74 1/14/74 1/15/74 1/16/74 1/17/74 1 / 1 8 / 74 1/19/74 1/20/74 1/21/74 1/22/74 1/23/74 1Z 2 4 / 7 4 1/25/74 1/26/7^ 1/27/74 1/28/74 1/29/74 1/30/74 1/31/74 1 2 3 4 5 h 7 8 9 10 ) 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 253.0 25 J • 0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 253.0 « 251 . 3 249.6 248.0 246.3 244.6 242.9 241 . 3 239.6 237.9 236.2 234.5 232.9 2 31 ; 2 229.5 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 .070 . 0 70 .070 .068 .066 .065 .063 .061 .059 .057 .056 .054 .052 .050 .049 .047 .045 2 / 1/74 2/ 2/74 2/ 3/74 2/ 4/74 2/ 5/74 2 / 6/74 2 / 7/74 2 / 8/74 2 / 9/74 2/10/74 2/11/74 2/12/7^ 2/13/74 2/14/74 2/15/74 2/16/74 2/17/74 2/18/74 2/19/74 2/20/74 2/21/74 2/22/74 32 33 34 35 36 37 38 39 40 41 42 43 227,8 226.1 22 4 . 5 222.8 2 2 1 .1 219.4 217.8 216.1 214.4 212.7 211.0 209.4 20 7 . 7 206.0 203.7 201.3 199.0 196.6 19*4. 3 191.9 189.6 187.2 .043 .041 .040 .038 .036 .034 .032 .031 .029 .027 .025 .024 45 46 47 48 49 50 51 52 53 * .022 .020 . 0 21 .022 .023 .024 .025 .026 .027 .028 * * * A C T U A L C URVF P O I N T (ALL O T H E R V A L U E S ARE I N T E R P O L A T E D ) 3 . 0 3b 3.06i 3.08 7 3 . 1 1J 3 . 139 3.16^ 3 . 190 3.21b 3.2M 3.26/ 3.293 3.119 3 . 3 4 <4 3 . 3 70 » 3.331 3*291 3.252 3 . 2 13 3.173 3 . 13<* 3.09b 3.05b C 0 M S F P V A T I i'N lUPUf-MOUt DATE DAY : 4 CL APEA 1 (S-6 ) T-P04 TOT- N 2/23/74 2/24/74 2/25/74 2/26/74 2/27/74 2/26/74 54 55 56 57 58 59 184.9 182.6 180.2 177.9 175.5 17 3 .2 .029 .030 .031 .032 .033 . 0 34 3.016 2.97/ 2.93b 2.898 2.859 3 / 1/74 3/ 2/74 3/ 3/74 3/ 4/74 3/ 5/74 3/ 6/74 3 / 7/74 3 / 8/74 3/ 9/74 3/10/74 3/1 1/74 3/12/74 3/13/74 3/14/74 3/15/74 3/16/74 3/17/74 3/18/74 3/19/74 3/20/74 3/21/74 3/22/74 3/23/74 3/24/74 3/25/74 3/26/74 3/27/74 3/28/74 3/29/74 3/30/74 3/31/74 60 61 62 63 64 65 6b 6 7 68 69 70 71 72 73 74 75 7b 77 78 79 80 81 82 83 84 85 86 87 8b 89 90 170.8 168.5 16 6 * 1 163.8 161 . 4 159.1 156.8 15 4 . 4 152. 1 149. 7 147.4 145.0 142.7 140.3 138.0 * 138. 1 138. 1 138.2 138.2 138.3 138.4 138.4 138.5 138.5 138.6 138. 7 138. 7 138.8 138.8 138.9 139.0 .036 .037 .038 .039 .040 .041 .042 .043 .044 .045 .046 .047 .048 .049 .050 .052 .054 .055 .057 .059 .061 .063 .065 .066 .068 .070 .072 .074 .075 .077 .079 2 .780 2.741 2*702 2.662 2.623 2.584 2 .544 2 • 50b 2 .46b 2.427 2*38/ 2 . 34« 2.30 9 2.269 2.230 * 2.27b 2.32ef 2.36/ 2.41 J 2 .459 2.50b 2.550 2.59b 2 . b^d 2*68 b 2.733 2 . 779 2.825 2.871 2.91b 2.96c! 4 / 1/74 4 / 2/74 4 / 3/74 4/ 4/74 4 / 5/74 4 / 6/74 4 / 7/74 4 / 8/74 4 / 9/74 4/10/74 4/11/74 4/12/74 4/13/74 4/14/74 4/15/74 4/16/74 91 92 93 94 95 96 97 98 99 139.0 139.1 139.2 139.2 139.3 139.3 139.4 139.5 139.5 139.6 139.6 139.7 139.8 139.8 139.9 139.9 .081 .083 .085 .086 .088 .090 .092 .094 .095 .097 .099 10 0 101 102 103 104 105 10b / a i i 2.020 * . 1 01 .103 .105 .106 .108 « A C T U A L C U R V E P OI NT P V Al IJFS APF I N T E R P O L A T Ell) n T H F 3.00b 3.054 3.099 3.14b 3.191 3.23/ 3.282 3.328 3.374 3.420 3.465 3.511 3.55/ 3.603 3.648 3.694 C D M S F P V A I JON M'F.A 1 I'lPUT-NODE : 4 IS-*) DATE DA r 4/17/74 4/18/74 4/19/74 4/20/74 4/21/74 4/22/74 4/23/74 4/24/74 4/25/74 4/26/74 4/27/74 4/28/74 4/29/74 4/30/74 107 1 08 1 09 110 1 11 1 12 113 1 14 1 15 1 16 117 118 1 19 5 / 1/74 5 / 2/74 5 / 3/74 5 / 4/74 5 / 5/74 5/ 6/74 5 / 7/74 5 / 8/74 5 / 9/74 5/10/74 5/11/74 5/12/74 5/13/74 5/14/74 5/15/74 5/16/74 5/17/74 5/18/74 5/19/74 5/20/74 5/21/74 5/22/74 5/23/74 5 / 2 4 / 7*4 5/25/74 5/26/74 5/27/74 5/28/74 5/29/74 5/30/74 5/31/74 121 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 1/74 2/74 3/74 4/74 5/74 6/74 7/74 8/74 T-P04 CL * .110 .108 .105 .103 .100 .098 .096 .093 .091 .088 .086 .083 .081 .079 12 3 12^ 125 126 127 128 129 1 30 131 132 133 1 34 135 1 36 137 138 1 39 140 141 142 143 144 145 146 147 148 149 150 151 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 * 141 . 2 142.3 143*5 144.7 145.9 147.0 148.2 149.4 150.6 151.7 152.9 154. 1 155.2 156.4 157.6 .076 .074 .071 .069 .067 .064 .062 .059 .057 .054 .052 .050 .047 .045 .042 .040 .040 .039 .039 .038 .038 .038 .037 .037 .037 .036 .036 .035 . 0 35 .035 .034 152 153 154 155 156 157 158 159 158.8 159.9 161.1 * 165. 7 170.4 175.0 1 79.6 184.2 .034 .033 .033 .032 .031 .030 .028 .027 120 122 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 TUT-n * 3. 740 « 3 *68b 3 *6 32 3.578 3 .523 1.469 3.41b 3.361 3.30 7 3.253 3 . 199 3 . 1 '44 3 . 09 0 3.03o 2 .98c 2.928 2 . 8 7*4 * 2.820 2 . 7Ob 2.7)1 2.65 / 2.603 2.549 2.495 2.44 1 2.38/ 2.332 2.278 2 . 22* 4 2.170 * 2.199 2.228 2.25b 2.28b 2.31*4 2.343 2 . 37N MVFA 1 J i-|pi 1! -NODE : / " (S-5* oatf i i 1 : ii» A 1 "•< ,V^|,Sv' r • ftff.' , s*. ,• >' f '’ J'rt ' fif. * 'a t ft ' 14i * / ’■il ’-i*l' ■••V! •y *.■ fI ! I 1 fV f1 i • •U>V-.y • (i *? i l { i . ■ DAY 1/ 1/74 1/ 2/74 1/ 3/74 1/ 4/74 1/ S/74 1/ 6 /7 4 1/ 7/74 1/ 8/74 1/ 9/74 1/10/74 1/11/74 1/12/74 1/13/74 1/14/74 1/15/74 1/16/74 1/1 7 / 7 4 1/18/74 1/19/74 1/20/74 1/21/74 1/22/74 1/23/74 1/24/74 1/25/74 1/26/74 1/27/74 1/28/74 1/29/74 1/30/74 1/31/74 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2 / 1/74 2/ 2/74 2 / 3/74 2/ 4/74 2/ 5/74 2/ 6/74 2/ 7/74 2/ 8/74 2 / 9/74 2/10/74 2/11/74 2/12/74 2/13/74 2/14/74 2/15/74 2/16/74 2/17/74 2/18/74 2/19/74 2/20/74 2/21/74 2/22/74 32 33 34 35 36 37 38 39 40 41 42 43 44 ^5 46 47 48 49 50 51 52 53 1 2 3 4 5 6 7 CL 138.0 138.0 138.0 13H.0 138.0 138.0 138.0 438.0 138.0 138,0 138.0 138.0 138.0 138.0 138.0 >138.0 * \1 3 7 .l 1 36» 1 135.2 134.3 133.3 132.4 131.5 130.6 129.6 128. 7 127.8 126.8 125.9 125.0 124.0 123.1 122.2 121.2 120.3 119.4 118.4 117.5 116.6 115.7 114.7 113.8 112.9 •M U . 9 J 111.0 112.2 113.4 114.5 115*7 116.9 118*1 119*3 120.4 * T-P04 TUT-n *080 .080 .060 .080 *080 .080 .080 .080 .080 .080 .080 • 080 .080 .080 .080 .080 .079 .077 .076 .074 .073 .072 .070 .069 .068 .066 .065 .063 .062 .061 .059 3.590 3.590 3 »59u 3.590 3.59 0 3.590 3.59 0 3.590 3.590 3.590 3*590 3.590 3.590 3.590 3.59D 3.590 * 3.535 3.48U 3.4^6 3.371 3.316 3.261 3.20b 3.151 3.09 7 3.042 2.9fW 2.932 2.07 t 2 . 8 22 2 - 7 f> .058 .057 .055 . 054 .052 .051 .050 .048 .047 .046 • 044 .043 .041 .040 .040 *040 .040 .040 .040 .040 .040 .040 * * * ACTUAL CUPVF POINT (ALL O T H F P V A L U E S A^E I N T E R P O L A T E D ) 2 . 7 1j 2.658 2-603 2 • 54 2.49 j 2.43V 2.384 2 . 32V 2.274 2.21v 2 . 1 64 2.110 2.05b 2.000 2.011 2.022 2.033 2 . 044 2.055 2.066 2.078 2.08V * C O N S F R V A T T O N APF A 1 I N P U T - N O D E : 20 {5 “5». DATE DAY CL T-P04 TU T - n 2/23/74 2/24/74 2/25/74 2/26/74 2/27/74 2/28/74 54 55 56 57 58 59 121.6 12 2 . 8 124.0 125.1 126.3 127.5 .040 .040 .040 .040 .040 .040 2.100 2.111 2 . 122 2.133 2.144 2 . 155 3/ 1/74 3/ 2/74 3 / 3/74 3/ 4/74 3/ 5/74 3/ 6/74 3 / 7/74 3/ 8/74 3/ 9/74 3/10/74 3/1 1/74 3/12/74 3/13/74 3/14/74 3/15/74 3/16/74 3/17/74 3/18/74 3/19/74 3/20/74 3/21/74 3/22/74 3/23/74 3/24/74 3/25/74 3/26/74 3/27/74 3/28/74 3/29/74 3/30/74 3/31/74 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 128.7 129.9 131.0 13 2 . 2 133.4 134.6 135.8 136.9 138. 1 139.3 140.5 141.6 142.8 144.0 » 143.0 142.0 141.0 140.0 139.0 138.0 137.0 136.0 135.0 134.0 133.0 132.0 131.0 130.0 129.0 128.0 127.0 .040 .04 0 .040 .040 .040 .040 .040 .040 .040 .040 .040 .040 .040 .040 * .040 .039 .039 .039 .039 * 038 .038 .038 .037 .037 .037 .036 .036 .036 .036 .035 .035 2 . 1 66 2.177 2 . 18b 2 . 19 9 2 . 2 J0 2.221 2.232 2.244 2.25b 2 • 266 2.27 7 2.28b 2.299 2.310 * 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2 . 31 o 2 . 3 10 2 . 3 10 2 . 31o 2.310 2.310 2.310 2 . 3 10 4 / 1/74 4 / 2/74 4 / 3/74 4 / 4/74 4 / 5/74 4 / 6/74 4 / 7/74 4 / 8/74 4 / 9/74 4/1 0/74 4/11/74 4/12/74 4/13/74 4/14/74 4/15/74 4/16/74 91 92 '->3 94 4b yh 97 9H cj9 100 101 102 103 1 04 1 05 1 06 126.0 125.0 124.0 123.0 12*.0 121.0 120.0 119.0 118.0 117.0 1 16.0 1 15.0 114.0 113.0 112.0 111.0 . 0 35 .034 .034 .034 . 0 34 .033 .033 .033 .032 .032 .032 .031 .031 .031 .031 .030 2.310 2.310 2.310 2.31U 2.31U 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2.310 2.30b 2.301 (All « A C T U A L C U R V E PO INT OTHFR VALUES a p e INTERPOLATED) * CONSF.MVAt [ON INPUT-MOOfc : 20 1 (S-5*, DA IF. DA r 4/17/74 4/18/74 4/19/74 4/20/74 4/21/74 4/22/74 4/23/74 4/24/74 4/25/74 4/26/74 4/27/74 4/28/74 4/29/74 4/30/74 107 108 1 09 110 111 112 113 114 115 1 16 117 1 18 119 1 20 * 110.0 1)0.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 .030 .031 .031 .032 .033 *034 .034 .035 .036 .036 .037 .038 .039 .039 5/ 5/ 5/ 9/ 5/ 5/ 1/74 2/74 3/74 4/74 5/74 6/74 9/ 7 / 7 4 5 / 8/74 5 / 9/74 5/10/74 5/11/74 5/12/74 S/13/74 5/14/74 5/15/74 5/16/74 5/17/74 5/18/74 5/19/74 5/20/74 5/21/74 5/22/74 5/23/74 5/24/74 5/25/74 5/26/74 5/27/74 5/28/74 5/29/74 5/30/74 5/31/74 121 122 123 124 1 25 126 127 128 129 130 131 132 1 33 1 34 1 35 1 36 1 37 1 38 139 140 141 142 143 14U 145 14b 14 7 14 H 149 150 151 1 1 0 .0 1 1 0 .0 1 1 0 .0 1 1 0 .0 110.0 110.0 110.0 110.0 110.0 1 1 0 .0 110.0 110.0 110.0 110.0 1 1 0 .0 * 124 . 5 139.0 153.5 167.9 182.4 196.9 211.4 225.9 240.4 254.8 269.3 283.8 298.3 312.8 327.3 341.7 .040 .041 .041 .042 .043 .044 .044 .045 .046 .046 .047 .048 .049 .049 .050 .050 .050 .050 .051 .051 .051 .051 .051 .051 .052 .052 .052 .052 .052 .052 .053 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 152 153 154 155 156 157 158 154 356.2 370.7 385.2 363.5 341.8 320.1 298.3 276.6 .053 .053 .053 .060 .067 .074 .082 .089 1/74 2/74 3/74 4/74 5/74 6/74 7/74 8/74 110.0 110.0 T OT -r«j T-P04 CL ° * * * * A C T U A L C U R VF P O IN T (ALL O T H F R V A L U E S a p e I N T E R P O L A T E D ) 2.29b 2.29* 2.28/ 2.283 2.27b 2.274 2.269 2.265 2.260 2.25b 2.251 2.24 7 2.242 2.23b 2.23J 2.22V 2.224 2.220 2.215 2.211 2.20b 2.201 2.19? 2 . 193 2 . 18b 2 . 184 2 . 1 79 2.17b 2.170 * 2.542 2.91u 3.28b 3.658 4.031 4 . 40J 4 . 7 75 5.14/ 5.51V 5.891 6.26J 6.63b 7.00b 7.380 7.752 8 . 124 8.49b 8.860 9.240 9.612 9.98b 10.357 1 0 . 72V 11.101 C O N S E R V A t i o n AREA l I N P U T - N O D E : S<) (S-bJ, DATE DAY T-P04 CL TO T - n 6 / 9/74 6/10/74 6/11/74 6/12/74 6/13/74 1 . 720 2 . 19a 2.669 3 . 143 3.617 4.091 4 .566 5.040 4 . 556 4.071 3.587 3.103 2.619 2 . 13a 1 .650 1 . 786 1.921 2.057 2 . 193 2.329 2.464 2.600 2.967 3.33a 3.70 1 4.064 4.436 4.H0J 5 . 1 70 5.050 4 .931 *♦.811 4 . 69c; 4 . 5 72 4 . 4 5 J ft 4.33J 4.21a 4 . 0 9 a 3 . 9 75 1 .8 5 b <.736 .0 6 1 3 .6 1 b .062 .063 .064 .065 .067 .068 .069 .070 .063 .057 3.49 7 3.37 7 3 . 2 5 « 3 . 138 3.019 2.894 2.780 ft ft A C T U A L C U R V E P O I N T (ALL O T H E R V A L U E S AWE I N T E R P O L A T E D ) 2 . 6 6 0 3.054 3 . 4 5 4 C O N S R P V A t I O N APEA 2* i inII-NODE : 10 (S-7) DATE HAY 8 / 1/74 8 / 2/74 8 / 3/74 8/ 4/74 8 / 5/74 8/ 6/74 8/ 7/74 8 / 8/74 8 / 9/74 8/10/74 8/11/74 8/12/74 8/13/74 8/14/74 8/15/74 8/16/74 8/17/74 8/18/74 8/19/74 8/20/74 8/21/74 8/22/74 8/23/74 8/24/74 8/25/74 8/26/74 8 / 2 7/74 8/28/74 8/29/74 8/30/74 8/31/74 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 24 1 242 24 3 9 / 1/74 9 / 2/74 9 / 3/74 9/ 4/74 9 / 5/74 9/ 6/74 9 / 7/74 9 / 8/74 9/ 9/74 9/10/74 9/11/74 9/12/74 9/13/74 9/14/74 9/15/74 9/16/74 9/17/74 9/18/74 9/19/74 9/20/74 9/21/74 9/22/74 244 245 246 247 248 249 250 2 51 252 253 254 255 256 257 258 259 260 261 262 263 264 265 T-P04 TOT-n 145. 1 132.9 120.6 106.3 96.0 « 101.2 106.4 11 1 . 6 116.8 122.0 127.2 1 3 2 . 4 ft 131.9 131.5 131.0 130.6 130.1 129.7 129.2 128.7 128.3 127.8 127.4 126.9 126*5 1 2 6 . 0 ft 128.3 130.6 132.9 135.2 137.5 .050 .043 *036 .030 .023 .030 .038 .045 .052 .059 .067 .074 .069 .064 .059 .055 *050 .045 .040 .035 .030 .025 .021 .016 .011 *006 .007 .009 .010 .011 .013 3 .858 4.257 4.656 5 .056 5.45b 5.85a 6.254 6.653 7.052 7 .451 7.851 8 . 2 5 U ft 8.059 7.867 7.676 7.484 7.29J 7.101 6 . 9 11) 6.71V 6 . S df 6 • 3 3b 6 . 144 5.953 5.761 5.570 5.379 5.187 4.996 4 . flOa 4 . 6 1J 139.8 142. 1 144.4 146. 7 149.0 151.3 153.6 155.9 1 5 8 . 2 ft 151.5 la4 .9 138.2 131.6 124.9 118.3 111.6 « 114.7 117.8 120.9 124.0 127. 1 130.2 .014 .016 .017 .018 .020 .021 .022 .024 .025 *028 .030 .033 .036 *039 .041 .044 .040 .036 .032 .027 .023 .019 CL ft ft ft ft « « A C T U A L CUR\7E P O I N T (ALL O T H E R V A L U E S ARE I N T E R P O L A T E D ) 4 . 4 21 4.230 4 .039 3 . 84 7 3 . 65t> 3.46a 3.273 3.081 2 . 8 9 0 ft 2.828 2 . 766 2 . 704 2 * 64 1 2.579 2.51 7 2.455 2.393 2.331 2.26V 2.206 2 . 144 2.082 C O N S E R V A T I O N A^F A 2/ I N P U T - N O D E j M> 8 2 . 0 9 6 2 • 0 u 3 2 . 09 J 2 . 0 9 1 2 .0 9 0 2 . 0 8 8 2.086 2 . 0 8 3 2 . 08 J 2.082 * 2 . 08o 2 . 0 7 6 2 . 0 7 2 2 . 0 6 9 2 . 0 6 3 2 . 0 6 1 2.057 2.053 2.05O 2.04o 2.04c; 2 . 0 38 2.034 2 . 0 3 0 2 . 0 2 7 .020 .020 2.02 J 2.019 . 0 2 0 2 . 0 1 3 . 0 2 0 2.011 2.008 2.004 2.000 1 .995 .020 .020 .020 .021 * * A C T U A L CURVF. P O I N T (ALL O T H F R V A L U F S ARF T M T F R P O L A T F D ) « CONSERVATI ON APE A ?t I i ' *' 11 - NOW. : ' '* ( '{> ’ T-P04 TOT-IM 188. 7 188.5 188.4 188.2 188. 1 187.9 187.8 187.6 187.5 187.3 187.2 187.0 186.8 186. 7 186.5 186.4 186.2 186. 1 185.9 185.8 185.6 185.5 .022 .022 .023 .024 1 .991 1 .986 1.982 1.97/ .025 .025 .026 .027 .028 .028 .029 .030 .031 .032 .032 .033 .034 .035 .035 .036 .037 .038 1.972 1.968 1 .963 1 .958 1 • 95a 1.949 1.94 5 1.940 1.935 1 .931 1.926 1 .922 1.91/ 1.912 1.908 1.90 3 1 .898 1.89a 185.3 185.2 185.0 184.8 184. 7 184.5 184.4 184.2 184. 1 183.9 183.8 183.6 183.5 183.3 183.2 183.0 * 183.2 183.4 183.5 183.7 183.9 184. 1 184.3 184.5 184.6 184.8 185.0 185.2 185.4 185.5 185. 7 .038 .039 .040 .041 .042 .042 .043 .044 .045 .045 .046 .047 . 048 .048 .049 .050 * .051 .052 .053 .054 .055 .055 .056 .05 7 .058 .059 .060 .061 .062 .063 .064 1 .889 1.885 1.880 1.875 1.871 1.866 1.862 1 .857 I .852 I .848 1.843 1.8 3 8 1.834 1.82v 1.82b 1.820 1.844 1.868 1.892 1.916 1 . 94U 1.964 1.988 2.012 2.03b 2.059 2.083 2.107 2.131 2 . 1 5b 2.179 DAY CL 6/ 9/74 6/10/74 6 /1 1 /74 6 / 1 ?/74 6 / 1 J / 74 6/14/74 6/15/74 6/16/74 6/17/74 6 / 18/74 6/19/74 6/20/74 6/21/74 6/22/74 6/23/74 6/24/74 6/25/74 6/26/74 6/27/74 6/28/74 6/29/74 6/30/74 160 161 16? 16 3 164 16 5 166 167 168 169 1 70 1 71 1 7? 173 1 74 1 75 I 76 177 1 78 179 180 181 7/ 1/74 7/ 2/74 7/ 3/74 7/ 4 /7 4 7/ 5/74 7/ 6 / 7 4 7/ 7/74 7/ 8/74 7/ 9 /7 4 7/10/74 7/1 1 /74 7/12/74 7/13/74 7/14/74 7/15//4 7/16/74 7/17/74 7/18/74 7/19/74 7/20/74 7/21/74 7/22/74 7/23/74 7/24/74 7/25/74 7/26/74 7/27/74 7/28/74 7/29/74 7/30/74 7/31/74 182 183 184 185 186 187 188 189 190 191 192 193 19*4 195 196 197 198 1 99 20 0 20 1 ?02 203 20a 205 DATE ?0h 20 7 208 209 210 21 1 2 12 » A C T U A L C U R V E P OI NT (ALL O T H E R V A L U E S Ai-?E I N T E R P O L A T E D ) * CONSEPVATI OM AREA " lUPUT-NOOt r U ( S- 1 0 > DATE DAY CL 8 / 1/74 8 / 2/74 8 / 3/74 0/ 4/74 8 / S/74 8 / 6/74 0 / 7/74 8 / 0/74 8 / 9/74 8/10/74 8/11/74 8/12/74 8/13/74 8/14/74 8/15/74 8/16/74 8/1 7/74 8/18/74 8/19/74 8/20/74 8/21/74 8/22/74 8/23/74 8/24/74 8/25/74 8/26/74 8/27/74 8/28/74 8/29/74 8/30/74 8/31/74 213 214 215 216 217 218 219 221) 221 222 22 3 224 225 226 227 220 229 230 231 232 233 234 235 236 237 238 2 39 ?4 0 ?4l 242 243 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 244 245 246 24 7 240 24 9 250 251 252 253 254 255 256 257 250 259 260 261 262 263 264 265 1/74 2/74 3/74 4/74 S/74 6/74 7/74 8/74 •J/ 9 / 7 4 9/10/74 9/11/74 9/12/74 9/13/74 9/14/74 9 / 1 S / 74 9/16/74 9/17/74 9/18/74 9/19/74 9/20/74 9/21/74 9/22/74 T-P04 TOT- N 105.9 106. 1 186.3 186.5 186.6 106.8 107.0 187*2 187.4 187.5 107.7 18 7 . 9 188.1 188.3 108.5 188.6 108.8 189.0 * 186.5 184.0 181.5 179.0 1 76.5 1 74.0 171.5 169.0 166.5 164.0 161.5 159.0 156.5 .065 .065 .066 .067 .068 .069 .070 .071 .072 .073 .074 *075 .075 * 0 76 *077 .078 *079 .080 .077 .075 .072 .069 *066 .064 .061 *058 *056 *053 .050 .047 .045 2.203 2.22/ 2.251 2.275 2.29V 2.32J 2.34 7 2.371 2.39b 2.41d 2 . 44c! 2 .466 2.490 2.51a 2.538 2.562 2.586 2 .6 1 0 '* 2 «6 5 9 2 . 70 / 2 . 756 2.80a 2.853 2.901 2.950 2.999 3.04 7 3.096 3 . 1 4a 3 . 193 3.241 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 154.0 15 4 . 0 154.0 15 4 . 0 154.0 154.0 15 4 . 0 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 .042 *042 .042 .042 .042 • U42 .042 .042 * * « * ACTUAL CURVE POINT (ALL O T H E R V A L U E S APE I N T E R P O L A T E D ) 3.290 * 3.290 3.290 3.290 3-290 3.290 3.290 3.29 0 3 .290 3.290 3.29 0 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.29U 3.290 3.290 3.290 COMSF.MVAT fOM A^FA 2 / | MPIIT-Nn|)t : In (b-10, OATE DAr 9/23/74 4/24/74 9/25/74 9/26/74 9/27/74 9/28/74 9/29/74 9/30/74 266 267 268 269 270 2 71 0 / 1/74 0/ 2/74 0/ 3/74 0/ 4/74 0/ 5/74 0/ 6/74 0 / 7/74 0 / B / 74 0/ 9/74 0/10/74 0/11/74 0/12/74 0/13/74 0/14/74 0/15/74 0/16/74 0/17/74 0/18/74 0/19/74 0/20/74 0/21/74 0/2?/74 0/23/74 0/24/74 0/25/74 0/26/74 0/27/74 0/26/74 0/29/74 0/30/74 0/31/74 274 275 276 2 77 ? 78 279 280 2B1 2H2 2H3 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/74 2/74 3/74 4/7a 5/74 6/74 7/74 8/74 ]/ 9 / 7 4 1/10/74 1/1 1 /7 4 1/12/74 1/13/74 1/14/74 ?1d 273 ?H5 2B6 287 2HH 2*4 290 291 292 293 2 9 4 2 9 5 2 9 6 29 7 2 9 8 2 ^ 9 30 0 301 302 JO 3 104 305 3 06 30 / 30B 309 310 31 1 »12 U 3 U 4 313 316 31 7 11 H CL T-P04 TOT- N * .042 .042 .042 .042 .042 .042 .042 .042 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.2^0 148. 1 142. 1 136.2 130.3 124.3 1IB .4 112.5 106.5 100.6 94.7 88. 7 82.B 76.9 70.9 65.0 » 65.0 65 . 0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65. 0 65.0 65.0 65.0 65.0 65.0 65.0 .041 .040 .040 .039 .038 .037 .036 .036 .035 .034 .033 .032 .032 .031 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 154.0 154.0 154.0 154.0 154.0 154.0 154 . 0 154.0 65. 1) 65. 0 65.0 65 . 0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65. 0 «■ * « .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 * ACTUAL CURVE POINT (ALL O T H F P V A L U E S APE I N t F R P O L A T E D ) « 3.2 W 3.147 3 . 0 76 3.00b 2.93.1 2 • 86c! 2.791 2.7 lv 2 * 648 2.5 7 / 2.503 2 * 4 3a 2 • 36 3 2.291 2.220 * 2.22V 2.23V 2.24o 2.25/ 2 »2 6 2 . 2 /b 2 . 2 8 o 2.29'+ 2.304 2.31J 2 . 3 2 2 2.331 2.341 2.350 2. 35v 2 . 36V 2 . 3 78 2 . 3 8 / 2.396 2 . 4 0 6 2.415 2.42a 2.434 2 . 4 4 3 2.452 2 . 46 1 2.471 2.480 * 2.^80 2 . 4 8 0 r o i j s r Mv A I | PM Au p A 2 A \ f j!M) T-NOH|- : l ' t (S-10» oatf: r-P04 T0 T— im 0 0 0 0 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 2.480 2.480 2.4B0 2.480 2.48U 2.480 2.480 2.480 2.480 2.48 0 2.480 2.48 0 2.48 0 2.480 2.480 2.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 hb. 0 .030 *030 .030 ,030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 *030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 2.48 0 2.480 2.480 2.480 2*480 2.48o 2.48o 2.48o 2.480 2.480 2.480 2.480 2.480 2.480 2.48 0 2.480 2.48 0 2 .48 0 2 .48 0 2 .480 2.480 2 . 480 2.480 2.480 2.480 2 .480 2.480 2.480 2 • 4 H0 2.480 2.48 0 day cl 1/15/74 1/16/74 1/17/74 1/18/74 1/19/74 1/20/74 1/21/74 1/22/74 1/23/74 1/24/74 1/25/74 1/26/74 1/27/74 1/28/74 1/29/74 1/30/74 319 320 321 322 32J 324 325 326 327 328 329 3 30 331 332 333 334 65. 65. 65* 65. 65. 65* 65. 65. 65. 65. 65. 65. 65. 65. 65. 65. 2 / 1/74 2 / 2/74 2/ 3/74 2/ 4/74 2 / 5/74 2 /6 /7 4 2 / 7/7h ?/ 8 / 7 4 1.600 1.586 1.571 1.55 / 1.54c 1.526 1 .513 1.4 9 V 1 . 4H'+ 1 . a 7o 1 . 4 7 .) 1 . 4 7o 1.480 1.48 3 1*486 1.489 1.49^ 1. 4 % 1.499 1 . 50c 1.503 1 *50 9 1.512 1.513 1.516 1 .521 1.523 52.7 53.0 53.2 53.5 53.8 5 4 . () 54.3 54.5 54.8 55.0 55.3 * 5S.2 55.1 55.0 54.9 54.8 .023 .023 .023 . 0 23 .023 .023 .023 .022 .022 .022 .022 .022 .022 .022 .023 .023 4 / 1/74 4 / 2/74 4 / 3/74 4 / 4/74 4 / 5/74 4 / 6/74 4 / 7/74 4 / 8/74 4 / 9/74 4/10/74 4/11/74 4/12/74 4/13/74 4/14/7^ 4/15/74 4 / 1 6 / 7 4 iu 73 76 77 76 79 80 HI M2 83 H4 83 8* 67 MR 89 90 91 9? 93 94 95 96 97 98 10 0 101 10 2 103 1 04 1 03 1 0* * * * ACTUAL CURVE POINT (ALL O T H F P V A L U E S APE TNTFRPOl ATFfn 1 .526 1 .531 1.534 1.536 1.54 1 1 a 54^ 1. 5 4 / 1.550 1.554 1.557 1.560 1.56b 1.57 1.576 1.584 1.591 (.ONSFWVAT I n« * APE A 3 J UPtl I - MODE : I * (L-3/ DAY CL 4/1 7/74 4/18/74 4/19/74 4 / ? 0 / 74 4/21/74 4/22/74 4/23/74 4/24/74 4/25/74 4/26/74 4 / 2 7/74 4/28/74 4/29/74 4/30/74 10 7 1 08 1 09 1I 0 111 1) ? 1 I .< 1la 1 15 I 16 t 17 1 16 1 19 1?0 5 / 1/74 5 / 2/74 5 / 3/74 5 / 4/74 5 / 5/74 5 / 6/74 5 / 7/74 5 / 8/74 5 / 9/74 5/10/74 5/11/74 5/12/74 5/13/74 5/14/74 5/15/74 5/16/74 5/17/74 5/18/74 5/19/74 5/20/74 5/21/74 5/22/74 5/23/74 5/24/74 5/25/74 5/26/74 5/27/74 5/28/74 5/29/74 5 / J O / 74 5/31/74 6/ 6/ 6/ 6/ 6/ 6/ 6/ 1/74 2/74 3/74 4/74 5/74 6/74 7/74 6 / 6 / 7 4 DATE , T-P04 TOT- N 54.8 54. 7 54.6 54.5 54.4 54. 1 54 . 2 54. 1 54.0 53.9 53.8 53. 7 53. 7 53.6 .023 .023 .023 .023 .023 .024 .024 .024 .024 .024 .024 .024 .024 .025 1.597 1.6 0 J 1.609 1.61b 1.62 I 1.6?/ 1.6 1. * 3v 1. * 4 b I • 65^: 1 .65tt 1.66a 1.670 1.67b 12 J ) 22 12 J 124 1 25 1 26 127 1 26 129 1 30 131 1 32 13 J 1 3«* 1 3 L> 1 36 137 1 36 139 140 141 142 14 \ 14a 1a -> j a6 1a 1 | aH 149 150 15 1 53.5 53.4 53. 3 53.2 53.1 53.0 52.9 52.8 52.7 52.6 52.5 52.5 52.4 52.3 52.2 52.1 52.0 * 51.6 51.6 51.4 51.2 51.0 50.8 50.7 50.5 50.3 50. 1 49.9 49. 7 49.5 4V. 3 .025 .025 .025 .025 .025 .025 .026 .026 .026 .026 .026 .026 .026 .027 .027 .027 .027 .027 .027 .026 .026 .026 .026 .026 .026 .025 .025 .025 .025 .025 .024 1*6 8 ^ 1.6 6 6 1.6 9m 1 . 701 1 . 70 ' 1 .7 li 1.71V 1.72b 1 . 731 1 . 73 7 1 • 74 J 1 . 749 1 * 75b I .762 1.76 8 1.77m 1 . 78u 1 . 7b £ 1.74a 1 .72b 1 . 7UV 1.691 1 . 6 7J 1.65b 1.b3/ 1.61V 1.60 I 1 . S6a 1. 5bb 1 . 5at > 1.530 152 153 15 a 155 49. 1 48.9 48. 7 48.5 48.3 48. 1 48.0 47.8 .024 .024 .024 .024 .024 .023 .023 .023 156 15 7 15H I 59 ( A l l * * A C T U A L CUP VF P O I N T \1 A l t l F S APF INTERPOLATED) O T H F P I .512 I .494 1.47b 1.459 1.44 1 1.42J 1.405 1.38 7 {"ru s f r V A T I or i /.;•>F A I iPUl-NODE : 1>> DATE 6 / d a CL r 3 (1-3. > T- P 0 4 TOT - i * 1 • 36 v 9 / 7 4 160 4 7 . 6 . 0 2 3 6 / ) 0 / 7 4 161 4 7 . 4 . 0 2 3 1 . 3 5 1 6 / 1 1 / 7 4 162 4 7 . 2 . 0 2 3 1 . 3 3 a 6 / 1 2 / 7 ' * 163 4 7 . 0 . 0 2 2 1 . 3 1 b 6 / 1 3 / 7 4 . 0 2 2 1 . 2 9 « . 0 2 2 1 .2 8 U 1 6* 4 4 6 . 8 6 / 1 4 / 7** ) 65 4 6 . 6 6 / 1 5 / 7 4 I 6d 4 5 . 8 . 0 3 3 1 .2 7 b 6 / 1 6 / 7 4 16 7 4 5 . 0 . 0 4 4 1 .2 7 u 6 / 1 7 / 7 4 1bH 4 4 . 2 . 0 5 5 1 . 2 6 b 6 / 1 8 / 7 4 16 9 4 3 . 4 . 0 6 6 1 . 2 5 v 6 / J9 / 7 4 I 70 4 2 . 5 . 0 7 7 1 • 2 5 a 6 / 2 0 / 7 4 1 71 4 1 . 7 . 0 6 8 1 . 2 4 v 6 / 2 1 / 7 4 1 72 4 0 . 9 . 0 9 9 1 . 2 4 4 6 / 2 2 / 7 4 I 73 40 . 1 . 1 1 0 1 . 2 3 9 6 / 2 3 / 7 * + I 74 3 9 . 3 .1 2 1 1 . 2 3 * 6 / 2 4 / 1 7S 3 8 . 5 . 1 3 2 1 . 2 2 8 6 / 2 5 / 7 4 1 7b 3 7 . 7 . 143 1 . 2 2 3 6 / 2 6 / 7 4 1 7 7 3 6 . 9 . 1 5 4 1 . 2 1 8 6 / 2 1 78 3 6 . 0 . 1 6 5 1 . 2 1 3 74 7 / 7 4 w * * 6 / 2 8 / 7 4 1 79 3 5 . 2 . 1 7 6 1 . 2 0 8 6 / 2 9 / 7 4 180 3 4 . 4 . 1 6 7 1 . 2 0 3 6 / 3 0 / 7 4 1*1 3 3 . 6 . 1 9 8 1 . 1 9 b 7 / 1 / 7 4 182 3 2 . 8 . 2 0 8 1 . 1 9 2 7 / 2 / 7 4 183 3 2 . 0 . 2 1 9 1 . 1 8 7 7 / 3 / 7 * 1 8'-* 3 1 . 2 . 2 3 0 1 . 1 8 2 7 / 4 / 7 4 185 3 0 . a .2 4 1 1 .1 7 7 / 5 / 7 4 I 8b 2 9 . 5 . 2 5 2 1 . 1 7 / 6 / 7 4 J « 7 2 8 . 1 . l b / 7 7 It 7 / 7 / 7 4 I 88 2 7 . 9 . 2 6 3 . 2 7 4 7 / 6 / 7 * 189 2 7 . 1 . 2 8 5 I . 15b 7 / 9 / 7 4 190 2 6 . 3 . 2 9 6 1 .1 5 1 7/J 0 / 7 4 19 1 2 5 . 5 . 3 0 7 1 . 14 b 7/ 1 1 / 7 4 19? 2 4 . 7 . 3 1 8 1 . 1 4 1 7 / 1 2 / 7 4 193 2 3 . 9 . 3 2 9 l « 1 3 b 7 / 1 3 / 7 4 194 2 3 . 0 . 3 4 0 1 . 1 3 1 7 / 1 4 / 7 4 195 2 2 . 2 .3 5 1 1 . 12b 7 / 1 5 / 7 4 19b 21 .4 . 3 6 2 1 . 120 7 / 1 6 / 7 4 1 ,J 7 2 0 . 6 . 3 7 3 1 . 1 1 5 7 / 1 7 / 7 4 19H 1 9 . 8 7 / 1 8 / 7 4 199 7 / 1 9 / 7 4 2 0 0 7 / 2 0 / 7 4 ?U 1 * . 3 8 4 I . 162 * 1 . 1 1 0 1 9 . 7 . 3 7 6 1 . 1 1 4 1 9 . 6 * 3 6 8 1 . 1 1 / 1 9 . 5 . 3 6 0 1 .1 2 1 1 . ) 2b 7 / 2 1 / 7 4 2 0 2 1 9 . 3 .3 5 1 7 / 2 2 / 7 4 ? 0 3 1 9 . 2 . 3 4 3 1 . 1 2 8 7 / 2 3 / 7 4 ?0a 1 9 .1 . 3 3 5 1 . 1 3 2 7 / 2 4 / 7 4 ;»<)'-> 1 9 . 0 . 3 2 7 1 . 1 3b 7 / 2 5 / 7 4 ?0b 1 8 . 9 . 3 1 9 1 . 14U 7 / 2 6 / 7 * ?( ) 7 1 8 . 8 .3 1 1 1 . 1 4 3 7 / 2 7 / 7 4 ?0 8 1 8 . 7 . 3 0 2 1 . 1 4 / 7 / 2 8 / 7 4 2 0 9 1 8 . 6 . 2 9 4 1 . 1 5 1 7 / 2 9 / 7 4 2 1 0 1 8 . 4 . 2 8 6 1 . 154 7 / 3 0 / 7 4 21 1 1 8 . 3 . 2 7 8 1 . 1 5 8 7 / 3 1 / 7 4 ? ) 2 1 8 . 2 . 2 7 0 1 • a c t u a l c u rve p o i n t (AIL n m - R V A L U E S ARE I N T E R P O L A T E D ) » _ 1?fi - Iht * O M ' I S E W V A 1 !(v j M-’FA '1 : I <: ( L - 3/ 'It IM - MOOt oatf; OftY CL T-P04 1U T - n 1 . 16b 1.169 1.173 1.177 1 .180 1* I Ba 1 . 18b 1.191 1.19b 1.199 1. 2 0 ^ I .20o 1.210 1.213 1 .21 7 1.221 1 .22b 1. 22« 1.232 1.23b 1.239 ) . r: a j 1- 2 * 7 1.250 1 • 2 5a 1 . 25 a 1. 2 * ^ 1.26d 1.269 1. ? 73 1 . 2 7o 6/ 1 / 7 * 8/ 2/7* 8 / 3/74 8/ 4/74 8/ S/7* 8/ 6/7* 8 / 7/74 8/ 8/7* 8/ 9/7* 8/10/74 8/1 1/7* 8/12/7* 8/13/7* 8/14/7* 8/1S/7* 8/16/7* 8/17/7* 8/18/74 8/19/7* 8/20/74 8/21 /7 * 8/2?/7* 8 / 2 3 / 7m 8/2*/7* 8/25/7* 8/26/7* 8 / 2 7 / 7't 8/28/7* 8 / 2 9 / fa 8/30/7 4 8/31/7* 213 21* 21 5 ? 1b ?1 7 ? 18 219 220 ?21 222 ?23 224 225 22b 227 228 229 2 JO ?3 1 ? 32 2 J3 2 34 2 35 ? 3b 23 7 2 38 239 24 0 24 1 24? 2a 3 18.1 16.0 17.9 17.8 17.* 17.5 17.4 17.3 17.2 17.1 17.0 lb .8 lb . 7 lb.b lb . 5 lb .4 1b . 3 1b . 2 lb. 1 15.9 15.8 15.7 15 . b 15 • S 15.4 15.3 15.1 15.0 14.9 1* . 8 « 20.9 .262 .253 .2*5 .237 .229 .221 .213 .205 .196 .188 .180 .172 .16* .156 .147 .139 .131 .123 . 1 15 .107 .098 .090 .082 .07* .066 .058 .0*9 .041 .033 • 025 .061 9 / 1/74 9 / 2/74 9 / 3/74 ^ / 4/74 9 / 5/7a 9/ 6/74 9/ 7/74 9/ 8/74 9 / 9/74 9/1 0/74 9/11/74 9/12/74 9/13/74 9/14/74 9/15/74 9 / l b / 74 9/17/74 9 / 1 8 / 74 9/19/7* 9/20/74 9/21/74 9/22/7* 244 2*5 2*6 2* 7 ?4 8 24 9 250 ?5 1 252 25 3 25* 25S 2 5b 25 7 ?5H 259 2b0 261 2*2 2b 3 ?b4 ?^S 2b. 9 « 26.9 26.9 26.9 26.9‘ 26.9 26.9 26.9 26.9 26.9 26.9 26,9 26.9 26.9 26.9 2b. 9 26.9 26.9 26.9 26.9 26.9 26.9 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 .096 * ( Al l fltMFp ACTUAL CUPVF \/AlltPS APf * » POI NT TNTFRPfH ATFH) 1.280 1.28u 1.280 1 . 2 b0 1.280 1 . 280 1.280 1.280 1 .28w 1,200 1 . 2bu 1.28 0 1 .280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1 .280 1.?8o COMSFRV/AT I ON AMFA 1 fMRni-MODfc. : 1* <1. - 3/ DAY CL 9/23/7^ 9/24/74 9/25/74 9/26/74 9/27/74 9/28/74 9/29/74 9 / 3 0 / 74 266 267 268 269 P70 271 2 72 2 73 26. 26. 26. 26. 26. 26. 26. 2*. 0 / 1/74 0/ 2/74 0/ 3/74 0/ 4/74 0/ 5/74 0/ 6/74 0 / 7/74 0/ 8/74 0/ 9/74 0/10/74 0/11/74 0/12/74 0/13/74 0/J4/74 0/15/74 0/16/74 0/17/74 0/18/74 0/19/74 0/20/74 0/21/74 0/22/74 0/23/74 0/24/74 0/25/74 0/26/74 0/27/74 0/28/74 0/29/74 0/30/74 0/31 /74 2 74 2 75 2 7b 277 2 78 2 79 28 0 2 81 282 283 284 285 286 28 7 288 289 290 291 292 293 294 295 296 297 ?98 299 J0 0 30 1 30 2 30 3 304 1/ 1/74 1/ 2 / 7 4 1/ 3/74 1/ 4/74 1/ 5/74 1/ 6/74 1/ 7/74 1/ 8/74 1/ 9 / 7 4 1/10/74 1/11/74 1/12/74 1/13/74 1/14/74 305 30 6 307 308 10 9 310 31 1 312 313 314 315 3 16 31 7 318 DATE T-P04 tot- n 9 9 9 9 9 9 9 9 .096 .096 .096 .096 .096 .096 .096 .096 1.280 1 .280 J . 2 8 \i 1 .280 1 .280 1 .280 1.280 1*280 * 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36* 36. 36. 3b. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 3b. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 ,072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 .072 36. 36. 3b . 36. 36. 36. 36. 36. 36. 3b. 3b. 36. 36. 36. u 0 0 0 0 0 0 0 0 0 0 0 a 0 0 (J 0 0 0 0 f) * * * .070 . 0b9 .067 .066 .064 .062 .061 .059 .057 .056 .054 .053 .051 .049 * A C T U A L C U R VF POINT (ALL O T H F P V A L U E S A P E I N T E R P O L A T E D ) 1*450 « 1.45o 1.450 1.450 1.450 1 »4 5 o 1.450 1.450 ) .450 I .450 1 *450 1.45o 1.450 1.450 1.450 1.450 1.450 1 • 45o 1.450 1.450 1.450 1.450 1.450 1 . 450 1. 450 1.450 1.450 1.450 1.450 1.450 1.450 * I . 4 7b 1.502 1.527 1.553 1.5 7 * 1 . bOb 1.631 1 . 65b 1 • 68e? 1.70b 1.734 1.760 1 .78b 1 .811 C O N S E R V A T I O N A ^E A 3 | »P•11 - N O D E * 1* (L- »/ 1-P04 1 OT-IM 36. 0 36. 0 36. 0 36. 0 36. 0 .36. 0 36. 0 36. 0 36. 0 3b. 0 36. 0 36. 0 36. 0 36. 0 36. 0 36. 0 .048 .04b .045 .043 .041 .040 .038 .037 .035 .033 .032 .030 .028 .027 .025 .024 1.837 1 .86 J 1.889 1.91b 1 . 94 0 1.96b 1.99^ 2.01b 2. 04* 4 2 . 0b 9 2.095 2.121 2.147 2 . 173 2.198 2.224 0 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 .022 date day cl 11/15/74 11/16/74 11/17/74 11/18/74 11/19/74 1 1/ 2 0 / 7 4 11/21/74 11/22/74 11/23/74 11/24/74 11/25/74 11/26/74 11/27/74 11/28/74 11/29/74 11/30/74 .119 320 3?1 322 32 3 324 325 326 327 328 329 330 331 332 333 334 12/ 1/74 12/ 2/74 12/ 3/74 12/ 4 /7 4 12/ 5/74 12/ 6/74 12/ 7/74 12/ 8/74 12/ 9/74 12/10/74 12/11/74 12/12/7'* 12/13/74 12/14/74 12/15/74 12/16/74 12/17/74 12/18/74 12/19/74 12/20/74 12/21/74 12/22/74 12/23/74 12/24/74 12/25/74 12/26/74 12/27/74 12/28/74 12/29/74 12/30/74 12/31/74 335 336 337 338 339 340 341 342 343 344 345 346 347 3^8 349 3 50 351 352 353 354 355 35b 35 7 358 359 3b0 361 362 363 36^ 165 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 3b. 3b. 36. 36. 36. 3b. 36. 36. 36. 36. 36. 36. 36. 3b. 36. 36. 3b. 36. 3b. 36. 3b. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 129 - * 2.250 * 2.250 2.250 2.250 2 . 2 5o 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.25U 2.25 0 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.25o 2.250 2.250 C H N S F P V A f p'f.j I i J P M I - M O D E : |M DAY DATE 3 (S-14 TO T - N T-P04 CL 1/ 1 / 7 4 1/ 2 /7 4 1/ 3/74 1/ 4 /7 4 1/ S/74 1/ 6 / 7 4 1/ 7 / 7 4 1/ 8 /7 4 1/ 9 /7 4 1/10/74 1 / 1 1 / 7^* 1/12/74 1/13/74 1/14/74 1/ I S / 7 4 1/I 6 / 7 4 1/ 17 / / 4 1/ 1 8 / 7 4 1/19/74 1/20/74 1/21/74 8 9 10 1 1 I2 1 J 14 15 )6 1 7 18 19 20 21 50.0 50 .0 5 0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 .0 50.0 50.0 50.0 50.0 1/22 1/23 1/24 1/25 1/26 1/27 4 4 4 4 4 4 22 2 3 24 25 26 2 7 50.0 50.0 50 .0 50.0 50 .0 50.0 .021 .022 .023 .023 .024 .025 1/ 2 1/2 1/3 1/3 8/ 74 9/74 0/74 1/74 2d 29 50.0 JO 5 0.0 50 .0 .02 .02 .02 .02 2/ 1/74 50.0 .029 2/ 2/ 50.0 .030 I .37u 1 . 36r> 2/ 2 3 4 5 32 33 34 2/ b/74 2/ 7/74 H/74 9/74 50 . 0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 . 0 50.0 50.0 .031 .032 .033 .033 . 0 34 .035 1.400 1.4 lb 1.431 1.44 7 1.46^ 1 . 4 7b 2/ 2/ r?/ / / / / / / / / / / 7 7 7 7 7 7 7 7 7 7 4 4 4 4 2/10/74 2 /1 1/74 2/12/74 2/13/74 2/14/74 2 / 15/7<4 2/16/74 2/17/74 2 2 2 2 / / / / 1 1 2 2 8 9 0 1 / / / / 7 7 7 7 4 4 4 4 ?/22/74 1 2 .* 4 S b 7 31 J5 3b 37 38 39 40 I 42 4 3 44 45 ab 4 7 4 8 49 50 51 52 b 3 (AM .0 so.o 50 .0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 * . . . . 0 0 0 0 9 8 8 7 0 6 3 9 . . . . . . 0 0 0 0 0 0 7 7 6 6 6 5 6 3 9 6 2 8 .055 .051 .048 .044 .041 .038 .0 34 .030 .027 .023 .020 * * 1.*62 1.629 1 .59b 1 .56 J 1.530 1.49/ I . 4b* + 1.4 Ji 1.39b 1 .365 1.33^ 1.299 1.26b 1.23J 1 .200 1.215 1 .231 1.24b 1.262 1.27/ 1 .293 1 • 3 0 rt 1 .323 1.339 1.354 6 7 8 8 1.49 J .036 .037 1 .508 1. 5 2 4 .038 .038 .039 .04 0 1 . 86u 1 .827 1 .794 1.761 1.72b 1.69b 1 .539 1.55b .039 1.570 1 .554 1.53b .0 38 1.521 .037 .037 .036 .035 . 0 34 1.5 1. 4 1.4 1. 4 * .039 * A C T U AL c u r v e p o i n t oTHFP VALUES AD E INTERPOLATED) 05 89 7j 5 7 1.440 r O M S F h’ V A f pMi 1 H Ii| l)A IF OA f APF A 1 l CL T-P04 T 01 - U 2 /2 3/74 2/2 4/74 a/25/74 2/26/74 2/27/74 2/2B/74 54 55 56 57 58 59 50.0 50.0 50 . 0 50.0 50.0 50.0 .034 .033 .032 .032 .031 . 0 30 I «4 2 ‘4 1.408 1 • 392 1.37b 1 .359 1 . 34 J 3 / 1/74 3/ 2/74 3 / 3/74 3/ 4/74 3 / 5/74 3/ b/74 3 / 7/74 3/ 8/74 3/ 9/74 3/10/74 3/1 1/74 3/12/74 3/13/74 3/14/74 3/15/74 3/16/74 3/17/74 3/18/74 3/19/74 1/20/74 J/21/74 3/22/74 3/23/74 3/24/74 3/25/74 3/26/74 3 / 2 7 / 74 3 / 2 8 / 7m 3/29/74 3/30/74 3/31/74 60 * 1 b2 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8J *2 83 .030 .029 .028 .028 .027 .026 .026 .025 .024 .023 .023 .022 .021 .021 .020 1.32 7 1.311 1.294 1.278 1 *?hd 1 .2*+ 0 ) . 23 U 1 .21 J 1.19/ 1.181 1 • 1* b 1.14^ 1 . 1 32 1.11b 1 . 10 0 * 1.118 1.138 1 . 15* I . 1 Id 1.190 1. 08 1.22b 1*244 1.26 £ . 0 2 0 1 .280 85 8b 87 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 . 0 50.0 50.0 50.0 50.0 50 ,0 50.0 50.0 50.0 50.0 50 . 0 50.0 so .u 50 . 0 50.0 5 0 .0 5(J • 0 50.0 50 . 0 50 . 0 50.0 .020 1.298 1.31b . 0 2 0 1 . 3 3 ^ 8 8 5 0 . 0 . 0 2 0 1 . 3 5 ^ 89 5 0 . 0 .020 1 . 3 7 0 90 5 0 . 0 .020 1 . 3 88 84 . 0 2 0 * . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 .020 .020 .020 .020 . 0 2 0 4/ 1/74 91 5 0 . 0 . 0 2 0 1 . 4 0 b 4 / 2 / 7 4 92 5 0 . 0 .020 1 .424 4 / 3/74 4 / 4/74 4 / 5/74 4 / 6/74 4 / 7/74 4 / H/74 4 / 9/74 4/10/74 4/11/74 4/12/74 4/13/74 4/14/74 4/15/74 4/1*/74 93 5 0 . 0 . 0 2 0 94 50 .0 . 0 2 0 1 *4 4 d 1.46 u 95 5 0 . 0 .020 1 . 4 7 8 9 b 5 0 . 0 9 7 1 99 50 . 0 50 . 0 50.0 .020 .020 10 0 5 0 . 0 10 1 50.0 50. U 50 . 0 50.0 50.0 50.0 98 102 103 104 ). 05 10 b U U .020 .020 1.49b . 5 1 <♦ 1 .532 1.550 1. 5 6 o .020 1 .5 8 b .020 .020 1.604 1.bdd 1.64 0 .020 .020 1 .858 1 .6 7 b .020 .020 ACTUAL CURVE POINT O T H f W V A L U E S A W E INTEP PO LA Tf I )) COMSEPV*' f IIV.| A P h A 3 It i- 111 - m m in (S-14 DA V Cl 4 /] 7/ V+ 4 / )8 / 7 4 4 /]9/74 4/20/74 4/21/74 4/22/74 4/23/74 4/24/74 4/25/74 4/25/74 4 / 2 7/74 4/28/74 4/29/74 4/30/74 10 7 108 109 1 10 111 1 12 1 13 114 1 15 1lb 1I 7 1 18 ) 19 1 20 50 50 50. 50, 50, 50, 50, 50, 50, 50 50, 50, 50, 50 0 0 o 0 0 0 5 / 1/74 5 / 2/74 5 / 3/74 5/ 4/74 5 / 5/74 5/ 6/74 5 / 7/74 5/ 8/74 5 / 9/74 5/10/74 5/11/74 5 / 1 a / 74 5/13/74 5 / 1 ' 4/ 74 5/15/74 5/16/74 5/17/74 5/18/7*4 5/19/74 5/20/74 5 / a 1 / 74 5/22/74 5/23/74 5/24/7^ 5/25/74 5/26/74 5 / 2 7/74 5/28/74 5/29/74 5/30/74 5 / J 1/74 121 122 123 12* 125 126 127 12 * 12 y 1 30 131 1 32 1 33 1 34 I 35 1 38 ) if 1 38 139 14 0 14 1 142 14 J ] 44 145 14 h 14 7 14 * 14 V 15 0 1s 1 50 50 50, 50. 50 50, 50. 50, 50. 50 50. 50. SO 50. 50. 50. 50 50 50. 50, 50, 50 bu 50. 50 50, 50 50, 50, 50, 50. 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ft/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 152 153 154 155 15S 157 158 1 59 50. 50. 50. 50, 50. 50. 50, 50, 0 0 o 0 0 0 0 0 DA IE 1/74 2/74 3/74 4/74 5/74 6/74 7/74 8/74 T-P04 0 0 U 0 0 0 o o TU T - n .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 1 . 6 9 4 1.712 1 . 7 30 «• 1 . 730 I . 73U 1 . 730 1 .73U 1 .730 1 . 730 1 • 73 0 1 . 730 I . 730 1.730 1.73u .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .024 .025 .026 .027 .028 .030 .031 .032 .033 .035 .03ft .037 .038 1 . 7j u 1.730 1 . 73U 1*730 I -73u 1.730 1 .730 1.730 1.730 1 . 730 J . 730 1 . 7 JO 1 .730 1 .730 1 .73U 1.730 * 1 .727 1 . 724 1 . 721 1 . 7ltt 1-71b 1 • 7 ] r. 1*709 1 *70b 1 . 70 J 1 . 70u I .69 7 1 . 69<+ 1• 69 1 .1 • 60fci 1.68b .039 .041 .042 .043 .044 .045 .047 .048 I . 6 8 c.' 1.678 1.67b 1 . 67^; 1.669 1 -66b 1.6 6 J 1.660 . 0 2 0 . 0 2 0 .020 .020 . 0 2 0 .020 « .0 2 1 . 0 2 2 * ACTUAL CURVF POINT (ALL O T H E R V A L U E S ARE I N T E R P O L A T E D ) f OMSf PVA T IPIJI-MODfc OATF r> A y Cl 6 / 9/74 6/ 10/74 6/11/74 b/12/74 6/13/74 6/14/74 6/15/74 6/16/74 6/17/74 6/10/74 6/19/74 6/20/74 6/21/74 6 / 2 2 / 7'+ 6/23/74 6/24/74 6/25/74 6 / 2 6 / 74 6/27/74 6/20/74 6/29/74 6/30/74 1*0 161 162 163 164 16b 1* 6 167 1*0 1 69 I 70 171 1 72 17 i 1 7a J 75 1 76 1 77 1 78 1 79 18 0 181 7/ 1/74 7/ 2 /7 4 7 / 3/ 7* * 7/ 4 / 7 4 7/ 5/7** 7/ 6/74 7 / 7/ 7** 7/ 0/74 7/ 9 /7 4 7/10/74 7/ 1 1 / 7 4 7/12/74 7/13/74 7/14/74 7/15/7*4 7/J 6 / 7 n 7/)7/74 7/18/74 7/19/74 7/20/74 7/21/74 7/22/74 7/23/74 7/2*4/74 7/25/74 7/26/74 7/27/74 7/28/74 7/29/74 7/30/74 7/31/74 182 183 ] 84 18 ] 86 1H 7 188 189 1^ 0 191 192 193 I 94 19 in 196 19 7 1 98 I 99 200 20 1 2 02 203 204 2 05 20* 20 7 208 209 210 211 212 Ii l l : | f\ u p A IH 3 ( S -l T-P04 1 OT — im 50.0 50.0 50.0 50.0 50.0 50.0 50 .0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 . 0 50 . 0 50.0 50.0 50 . 0 50 .0 .049 .050 .052 .053 .054 .055 .056 .050 .059 .060 .066 .071 .077 .003 .008 .094 .100 .105 .111 .117 . 122 .128 1.65/ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 .0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 .0 50 . 0 50.0 50.0 50.0 50 . 0 50 . 0 50 . 0 5 0.0 .134 .139 .145 .151 .156 .162 .160 .173 .179 .105 .190 .196 .202 .207 .213 .219 .224 .230 .223 .216 .209 .201 .194 .107 .100 . 1 73 .166 .159 .151 .144 .137 * # » ACTUAL CURVF POINT (ALL O T H F H V A L U E b A«E I N T E R P O L A T E D ) 1 .684 1.651 1 . 64b 1.64b 1 • 642 1.639 1 . 63b 1.633 1.630 1.634 1.63/ 1 ♦ 64 1 1 . 64b I . *4d 1. 6b* 1 • 65b 1. *b9 1 . * 6 .3 1 .66 7 1 . f Wo 1 .6 7m 1 . * 7b 1.*81 1.60b I .*89 1.69* 1.696 1.70O 1.7 0 j 1.70/ 1.711 1.714 1. 7la 1.72* 1.72b 1.729 1.733 1.73b 1.740 1 . 7 3b 1 . 733 1.72V 1.72b 1.72* 1.719 1.71b 1.7U 1.70b 1.704 1.701 1.69 7 1.694 I IV-I--I v t T |M'vJ /\L'f ft I 'Ii OATf- ua r CL : \n (s-| 4 , F- P 0 4 8 / 1/74 8 / 2/74 8 / 3/74 8 / 4/74 8 / 5/74 8 / 6/74 8 / 7/74 8 / 8/74 8/ 9/74 8 / 1 0 / 7« 8/11/74 8/12/74 8 / 1 J / 74 8 / 14 / 74 8/15/74 8/16/74 8/17/74 8/18/74 8/19/74 8/20/74 8/21/74 8/22/74 8/23/74 8 / 2 4 / 7<* 8/25/74 8/26/74 8/27/74 8/28/74 8/29/74 8/30/74 8/11/74 213 21' * 21 S 2 16 21 7 2 18 2 1V 220 22 1 222 22 i 22* 226 22* 22 7 P28 229 230 231 2 32 233 234 235 2 36 23 7 2 38 239 240 241 24 2 24 3 50.0 50.0 50 . 0 50.0 50.0 50.0 50 . 0 50 . 0 50.0 5 0 .0 50.0 5 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50 . 0 50.0 50.0 50.0 50.0 50.0 50 . 0 50.0 50 . 0 .130 .130 .130 .130 .130 .130 .130 .130 .130 .130 .130 . 1 30 .130 . 1 30 .130 .130 .130 .130 .130 .130 .130 .130 .130 .130 .130 .130 . 130 . 130 .130 . 1 30 .130 9 / I /74 9 / 2/74 9 / 3/74 9 / 4/74 9/ 5/74 9 / 6/74 9 / 7/74 9 / 8/74 9/ 9/74 9 / 10 / 7 4 9/1 1/74 9/12/74 9/13/74 9/14/74 9/15/74 9/16/74 9/17/74 9/18/74 V I 9/74 9/20/74 9/21/74 9/22/74 24 4 24b 24 6 >4 7 24 8 ^49 250 25 t 252 253 264 255 2b6 267 258 259 26 0 261 2b2 2* ) 26' * 265 50.0 50.0 50.0 50.0 50 . 0 50 . 0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5 0.0 50.0 50.0 .124 .118 . 112 .106 .099 .093 .087 .081 .075 .069 .063 .057 .051 .044 .038 .03? .026 .020 .021 .021 .022 .023 (AH I (M — N * * * * A C T U A L CIJPVF P O I N T 0 1 H F k V A L U E S APE 1N T E P P O L A T F D ) I . b90 1 .690 1 .690 1.69u 1 .690 1.690 1 .690 1 .690 1.690 1.690 I .690 1.69 0 1.69 0 1.690 1.690 1 .69U 1 .690 1 .690 1.690 1.690 1.690 I .690 1 .690 1.690 1.690 1.690 1.690 1.690 1.690 1 • 6 ’-J(j 1.6 9 0 1.68 / 1.68 J 1 .680 1.677 1 .6 7J 1.670 1 * 66 / 1.66 3 1.6 6 0 1.6 5 / 1 . 6b j 1.650 1 .64 / 1.643 1.640 ] .63/ 1.633 1 .630 1.644 1.65b 1.671 1.68b (JOMSFPVA I I '* i A<- F A 3 I (S-l< I * 'P* I » -MODE D A TF. DA f CL 9/ ? J / 74 ^/24/74 9/25/74 9 / 2 b / 74 9 / 2 7/74 9/28/74 9/29/74 9/30/74 26b 26 7 / b8 2b 9 270 271 2 72 2 7.3 50. 50. 50. 50. 50. 50. 50 . 50 . 0 / 1/74 0/ 2/74 0/ 3/74 0/ 4/74 0/ 5/74 0/ 6/74 0/ 7/74 0/ 8/74 0/ 9/74 0/10/74 0/11/74 0/12/74 0/13/74 0 / 14/74 0/15/74 0/16/74 0/17/74 0/18/74 0/19/74 0 / 2 0 / 74 0/21/74 0/22/74 0/23/74 0/24/74 0/25/74 0/2b/74 0/27/74 0/28/74 0/29/74 0/30/74 0/31/74 ? 74 ?75 276 277 27* 2 79 28 1 .920 1.93 J 1.94/ l.^b 1 I .97b 1.9bv 2 . 0 0 c; 2 . 01b 2.030 « 2.01 / 2 . 0 04 1 .991 1.97b 1.963 1.95* 1.93b 1.925 1.912 1.899 1. 88b 1.8/3 1.860 1.84 / 50 . I) 50. 0 50 . 0 50. 0 50. 0 50 . 0 50. 0 50. 0 50. 0 so. 0 50. 0 50. 0 50. 0 50. 0 .046 .046 . 04 7 . 0 47 .047 . 048 .048 .048 .049 .049 .050 .050 * .049 .049 1 .834 1 .821 I . 8 0b 1 . 7 95 1 . 78/ ? 1 . 7b b 1 . 75b 1. 74* I . 729 1. 7 I b 1 . 70 3 1• b9U * 1.68b 1.6 7V 2H4 28-? 28b 2« 7 2*8 2 MW 290 29 1 292 29 3 294 295 29 b 29 7 29H 2 v r-) 10 0 10 I P)2 i0 < «tl4 *0 5 UJ / <0b IU <1J 11 -J 1) * »14 315 ilb 31 7 11 H TOT- , , .023 .024 .025 .026 .026 .027 .028 .028 1 .6 9 9 1 . 7 1 .1 I .72/ 1 . 740 1 . 75h 1 * 7 bo I .7bc 1.79b * A C T U A L CUMVF P O IN T (/ML O T H L P V A L U E S APF IN T E R P O L A T E D ) > O CL • 1/ 1/74 1/ 2/74 1/ 3/74 1/ 4 /7 4 1/ 5/74 1/ b/74 1/ 7/74 1/ H/74 J/ 9/74 1/10/74 1/11/74 1/12/74 1/13/74 1/ I 4 / 7 4 28 * 0 0 0 0 0 0 0 0 T-P04 1.823 1.83/ 1 .851 w ■ wk Ul LT. Cm ■V lP ru rvi ru rv fM l \ ) I\1 X X X X X X X O' UI X X X '■J £ X1 £* X Ui rv r— X X X X -*4 x- X > x- x- UJ w**‘ i — U. Ui rx X v-fc* •v ■JVUJ wJ UJ Ui u ■p wJ u U/ u» u> J" X :'-w .•v — vC ’r o vT a a lt •—_ ___ W -_ X X X X X liJ rv ru ru ru o •c 00 — 4O' X X X X X 'W ''J x* x- X - x~ X u» ■P _ X X (V ru J1 X X X -J X £• _ ,_, „ — _ — _ „ X X X X X X X X • —* — 1«- *-* rv>ro ro i— •cX -'i O' ro •— ■ X X X X X X X X -J -si 'J "J -x x- X x- •i- X X X X -X _ X ru u X W k^ Ui Ui w Ui u> U) u UJ ui v-*-« u» u. U# U- tu V IX ro r>j ;>j i\; f\> ru ru >— o m3 o >£ /> cr Ui x> u ru o > — < ~n •— ^ -< LP J1 c o • • o o Ul LP i/1 OO o c • • • • o o o o U 101 o c c • • J o o c Ui G • O cn UI o o • * o C: cTo~ ui o o o • • • o o c ui o > o ui o ♦ w u: o « o ui > — •o • • o o UI U: c c • • o UI o • o 5 J1ui •vPUI » UI c o o o o o c • • • • • • • o o o <3 o o o u~ UI U Tui o o o • • • o o o U: o • o UI o • o u: o • o •J' o • o U TU I O o • 9 c o UI Ui o o • * o o L Tui o o o • • • o C: o Hi * ^ I~ S ) • ui U" o o e • • • o o o : KION- lllrKU u OJ u UJ w L i a/ Lfl u" J1 ul ac O' CP O' — O vC ■ x ■ j1 X* ru J- u"1 Pu M ru X X X > — o vC X X X X 'J -J S ' £ £ • • • ♦ • • • » • • • • • • • • • • o o o o o o o o o o o o o o o o o o r «£ > o o o o o o o o o o o o o o o o o o • t-ri sD c « • • • UI u i tn m v0 nC c <3 cr c • • ui NO c c • • • LT u i UI c o c c: • • • • UI u i u^ UI sC vC c c: c: * • UI •vH £ sC cr c: • ■r vC c •• Ui vC c: • • • • • • • • ♦ * • • • o o o o o o c c: c o o o o p' o o o o o o o o o o o o o • • • « • • « • • • • V • • • • o o o o o o o o o o o o o o o o 4> -si ’X CD U I u i cj^ >ru UJ UJ * - >— f\ • • u ; u* sC c: c • • • • * O' UJ O' cr *— *£ o c U >— 0“ *— a • J1 vC C- • • • • • • • « • • S' UI U"» U“ UI Lr Ul ui *c 'C vlD 0 wC ■c >£• c c: c: cr c: c; c c c c • • a O' rv» ru rv. • • O' -> UJ UJ r\ • T' Lfu a U • IT £- • • • • • O' O' O' U ' iT 0s ■V4 a sC — 1 • T T r“ % •O ^2 —* 1 JL. K(/J l^AfCJSNd.) r\J <\j rv ru ro ru ro i\J ro ru IXi ru ru \X X X X X X X X X X X X X — ■ — ■ '— ■ > —» — *— • — >-— *1 ru fv f\ j ru ru > u rv —• £ u>ro _ o ■ 0 s Is c cc X X X X X X X X X X X X X X 'Vl -Nl ~N4 •>1 -J ■w - x> "f X £ £ £ x X -£ X *X -X £ X t V^iV AJ rvj rv ru rvj rv ro \% \ \ x \ \ U oj rv O J fu iMru — o > ■ «•O £ ct — ' Oi X X \ \\ X -J -si £ x x- S' •e- £- X CONSFRVAT I r»N AREA 3 J1 u i - r i d o l : I j ( s- Is . / DATE day CL 1/ 1/74 1/ 2/74 1/ 3/74 1/ 4 /7 4 1/ 5 /7 4 1/ 6/74 1/ 7/74 1/ 8 /7 4 1/ 9 / 7 4 1/]0/74 1/11/74 1/12/74 1/13/74 1/14/74 1/15/74 1/16/74 1/17/74 1/18/74 1/19/74 1/20/74 1/21/74 1/22/74 1Z 2 3 / 7 4 1/24/74 1/ 2 S / 7 4 1/26/74 I / 2 7/74 1/28/74 1/29/74 1/30/74 1/31/74 21 22 2 4 2'+ 25 26 27 2M 29 30 31 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 2 / 1/74 2 / 2/74 2 / 3/74 2/ 4/74 2/ 5/74 2 / 6/74 2 / 7/74 2 / H/74 2 / 9/74 2/10/74 2/11/74 2/12/74 2/J 3/74 2/14/74 2/15/74 2/16/74 2/17/74 2/18/74 2/19/74 2/20/74 2/21/74 2/22/74 32 33 34 35 3h 37 38 39 40 41 42 4,i 44 45 46 4 7 48 4V 50 51 52 53 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 1 2 J 4 5 6 7 H 9 10 11 1a 13 14 15 16 17 18 19 20 * T-P04 TOT - N .020 * .021 .021 .022 .022 . 0 23 .023 .024 .024 . 0 24 .025 .026 .026 .026 .027 .028 .028 .028 .029 .030 .030 * .031 .033 .034 .035 .037 .038 .039 .041 .042 .04 3 .920 * • 91« .91b .913 .910 .906 .90b .903 .900 .898 .895 .893 .890 .88 7 .88b .88* . 88 u .878 . 8 75 .87^ .870 « .888 .9ob .923 .94] .958 .976 .994 1.011 1.029 1 .04 7 .045 .046 .047 .049 .050 .051 .053 .054 .055 .057 .058 .059 .061 .062 .063 .065 .066 .067 .069 .070 .069 .068 1.064 1 . 08c; 1.100 1.117 1 . 1 3b 1 . 153 1.170 1 • 1 88 1.206 1.223 1.24 1 1.25* 1.270 1.294 1 .3 k 1.329 1.34 7 1.36b 1.38d 1.400 * 1.389 1.37y * * actual curve point (ALL O T H E R V A L U E S ARE I N T E R P O L A T E D ) C0N5F I i g P UT - i j i j O L DATE 54 5b 56 57 5H 3/ i/74 3/ 2/74 3/ 3/74 3/ 4/74 3/ 5/74 3/ 6/74 3 / 7/74 3/ 8/74 3/ 9/74 3/10/74 3/11/74 3/12/74 3/13/74 3/14/74 3/15/74 3/16/74 3/ I 7/74 3/18/74 3/19/74 3/20/74 3/21/74 3/22/74 3/23/74 3/24/74 3/25/74 3/26/74 3/27/74 3/28/74 3/29/74 3/30/74 3/31/74 60 61 62 4 / 1/74 4 / 2/74 4 / 3/74 4/ 4/74 4 / 5/74 4/ 6/74 4 / 7/74 4 / 8/74 4 / 9/74 4/10/74 4/1 1/74 4/12/74 4/13/74 4 / 1 4 / 74 4/15/74 4/16/74 CL DAY P/23/74 2/24/74 2/25/74 2/26/74 2/27/74 74 59 6 .? 64 6 b 6 * 6 7 hH 69 70 7I 72 73 74 7b 7b 7/ 7H 79 80 81 82 83 84 8b T-P04 TOT- N 38.0 38.0 38.0 38.0 38.0 38.0 .067 .066 .065 .064 .063 .062 1.36b 1 . 350 1.34 / 1.337 1 .326 1.31b 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 .061 .059 .058 .057 .056 .055 .054 .053 .052 .051 .050 .049 .048 .047 .047 .046 .045 .044 .043 .042 .042 .041 .040 .039 .038 .037 .037 .036 .035 .034 .033 1.30b 1 .29b 1.284 1.2/4 1.263 1.253 1 .24c 38.0 38.0 38.0 38.0 38.0 86 87 8M 89 90 38.0 38. 0 38.0 38.0 91 92 93 94 9b 9* 97 98 99 10 0 38.0 38.0 38. 0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38. 0 38.0 101 1 02 10 3 10 4 1 05 10 * ( A l l I nf'l A M E A 4 : 19 (S -l\ n * . 0 33 .032 .031 .030 .029 .028 .028 .027 .026 .025 .024 .023 .023 .022 .0 21 .020 * <> a c t u a l c u p v f p o i n t TM F W V A L U E S APE I N T E R P O L A T E D ) 1 • ? id 1. 2 2 i 1. 21 i 1 *2 0 0 1.203 1. 20o 1.209 1. 21* 1. 21b 1.218 1 .2 21 1.224 I . 22b I .231 1.234 1.23/ 1.240 1.243 1.24b 1.24V 1.25^ 1. 2 5 b 1.25b 1.26 1 I .264 1.26/ 1 .270 1.273 1.27b 1.279 1.283 1 .28b 1.28v 1.292 1 .29b 1.29b 1 .301 I .304 1.30/ 1 . 31 u t \ J £ < D O \i-T i)X > o o o o o o o o o o o o o o (virsjrvirsjoacvirvjcvirvjojcvirvjfvjfvi o o o o o o o o o o o o o o Z> \ l J OI 3 MS ’ X >D 3 'V J ♦£ i C 3 ^ / ! ’U>CJ-1 C il T 3 > • 4- 4 T) \ i n rn 7 'Ki r, rr >*) ro r^, »»i «o ,,) r ' " i n n ' ,i(,i(v)!,i n ( ,'rtf"r](,iri mr^, ro n ^ fr r'j r-i o o o o o o o o o o o o o o o o > - « r r)4'int'-xor-*rvj4’i n x > x ! 0 ' 0 x> -y — x r> '■> 3 j rvjrvjrvj— — -rinin o o o o o o o o o o o o o o o o o o o o o o o o o o s o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x X X X X X C*} f*) r^) n~) -+) rir)'^rr)T)'v,)rr'.r O rr)rf) ^ T) ^ H H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o - S) j 'jriON-1 o.tn i l.u 1 I t f A r H S u l O t I 0 0 0 0 0 0 0 0 0 0 0 3 0 0 X X X X X X X X X X X X X X >— < r~ — \J ’’ I 4- IT >D X S' o 4 -T f*« rX •v X .—. — \ \ -3- 4 -J_ >4 K K rX X \ O' o _ o.< tv V \ V 4- *3- 4 <9 3 -3 \ iT rv X -T \ X rvj X 4 r>- b- r*. X X X X X O' o rv rvj tv rr X X X X 4- 4^ •S’ 4- .3- -3" 4 J- 4 NNr\ X X X V — (V rn >3 tn X X X X X lO if! IT) in in ~r r- rX X X £■ X \ X X 1/1 in m -3K X a X tn 4 —• f\j OJ Tv "Vj t v ' V rvj i \ j rvj rn ^ ^r - -3 -T 4 -3r*- rX X X X o — "V r . —4 — —. X X X X tn S ' ^ 4 -j -3 ■T >?• >3 4r- r>- K-. r-. N X X X X X X X y 3 —Htv —> — fV rv (V X X X X X X in in -n IT) ■n tn in ■n <3 4 r-~ X X -3 if' — — X X -3 !■-. X x — X X : f-X t> = : — -3- -? 4 -3 -j- ln m 4 -T 4 4 4 4 r»K- ts. l“* X X V X X X rr~i •3- ;n •£> K- X r\i tv rv C X) ,y 4 4 rX X X 4 X X X vT vT vD 4 4 4 r- rX X X k ■C . X V X X XI X1 I 70 I 71 1 72 1 73 1 74 I 75 178 17 7 1 78 1 79 180 181 38. 38. 38. 38. 38. 38. 38. .38 . 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 7/ 1/74 7/ 2/74 7/ 3 /7 4 7/ 4 /7 4 7/ 5 / 7 4 7/ 6/74 7/ 7/74 7/ 8 / 7 4 7/ 9/74 7/10/74 7 /1 1 /74 7/12/74 7/13/74 7/14/74 7/15/74 7/16/74 7/17/74 7/18/74 7/19/74 7/20/74 7/21/74 7/22/74 7/23/74 7/24/74 7/25/74 7/26/74 7/2 7/74 7/28/74 7/29/74 7/30/74 7/31/74 182 183 1 H4 1 85 18 8 i M7 18 8 } 89 19 0 191 192 193 194 1 9S I 96 197 198 1 99 20 0 20 1 202 20.1 20 u 205 2 08 20 1 208 ' 209 2 10 21 1 did CL ) T-P04 tot- n 0 0 0 0 0 .051 .052 .052 .053 .053 .054 .054 .055 .055 .056 .056 .057 .057 .058 .058 .059 .059 .060 .060 . 061 .061 . 06? 1.2 9 / 1 »29 1 1.284 1 .278 1 .27^ 1 . 2*S 1.259 1.252 I . 24o 1.239 1.233 1.22 / 1 -220 1 *214 1 .20 / 1.201 I . 19b 1 . J 8b I .18* 1 . 17b 1 .169 1 . 163 38 . 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38 . 0 38. 0 38. 0 38. 0 3 8 . I) 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 38. 0 3 8 . {) .062 .063 .063 .064 .064 .065 .065 .066 .066 .067 .067 .068 .068 .069 .069 .070 .071 .072 .073 .074 .075 .075 .076 .077 .078 .079 .080 .081 *082 .083 .084 1 . 15b 1 . 150 1.143 1.13/ 1.131 1 . 124 1 .1 l b 1 . J 11 1 . 1 0b 1 .09b 1.09^ 1.08b 1 .079 1.073 1 • U6b l.ObO 1 .07tf 1 . 08b 1.0 9 / 1.110 1. 12c! I . 13b 1.14/ 1.159 1 . 172 1 - 184 1.19/ 1.209 1 .222 1.234 1. 2 4 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 « « ACTUAL CURVE POINT (ALL O T H F W V A L U E S a r e I N T E R P O L A T E D ) * CONSEM V A I I *)t | 1f IPlIT -I M)IIf : 19 date 48 ?4 V ?S0 .-*5 1 252 25 3 26m 25b 2b 6 2b 7 2b 8 259 26 0 2* 1 262 ?6 1 ^b' 4 ?b'? 38.0 38.0 38.0 38.0 38.0 3b.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 3b. 0 38.0 38.0 38.0 38.0 * A C T U A L C U R V E POINT (All. O T H E R V A L U E S ARE I N T E R P O L A T E D ) TOT- N f.OMSF 9 V A 1 I O M lm p u I - N o u t : I DATE 9/23/74 V / 2 4 / 74 9/25/74 9/26/74 9/27/74 9/28/74 9/ 39/74 9/30/74 DAY CL 26* ?6 7 268 P69 270 ?7l 2 7? 27 3 38. 38. 38. 38. 38. 38. 38. 38. 2 74 275 2 76 ? 77 0 / 1/74 0 / P/74 0 / 3/74 U/ 4 / 7 4 0/ 5/74 i)/ 6 / 7 4 0 / 7/74 0 / H/ 7 4 0/ 9/74 0 / 10 / 7 4 0/11/74 0/1P/74 0/13/74 0/14/74 0/15/74 0/16/74 0/1 7/74 0/18/74 0/19/74 0/P0/74 0 / P 1 / 74 0/PP/74 0/P3/74 0/24/74 0 / ? 5 / 74 0/26/7'+ 0/27/74 0/28/74 0/29/74 0 / 3 0 / 74 0 / 3 1 / 74 2/8 ? 7V ?8 0 ?H 1 ?H2 2^3 284 ?HS 286 28 7 ?88 289 29 0 29 1 29? 29 3 ?9 4 295 296 29 7 ?9 8 299 U'O 30 1 10 2 10 3 <04 38. 38. 38. 38. 38. 38. 38 . 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38. 3b. 38. 38. 38. 1 / 1 / 7M ) / 2/74 I / 3/74 1/ 4 / 7 4 1/ 5 / 7 4 1/ 6 / 7 4 1/ 7/74 1/ 8/74 1/ 9 / 7 4 1 / ] 0 / 7'* 1/11/74 1/12/74 1/13/74 1 / 1 4 / 74 H>5 JO 6 30 7 U>8 10 9 <10 3 11 3I 2 3 13 .11 4 115 116 U 7 318 38. 38. 38. 38. 38. 38. 38. 3b. 38. 38. 38. 38. 38. 38. iftll * MTMI-P 1-P04 T(*T - N 0 0 0 0 0 0 0 0 .080 .080 .080 .080 .080 .080 .080 .080 1. 30U 1.300 1 . 300 1.300 1.300 1.300 1 .300 1.300 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 o 0 o .078 .076 .075 .073 .071 .069 .068 .0 66 .064 .062 .061 .059 .057 .055 i 054 .052 .050 .050 .051 .051 .052 .052 .052 .053 .053 . 0b3 .054 .054 .055 .055 .055 (I 0 0 0 u 0 0 .056 .056 .057 .057 .057 .058 .058 (J . 0 5 8 1 .2 1.215 1.20b 1 . 194 1 . 18 4 1.1/3 1 • 162 1 . Ibd 1.141 1.131 1.12 0 1.12b 1.13* 1.13/ 1 . 14 J 1.14V 1 . 15b 1.160 1.166 1.17^ 1 . 1 7b 1 . 1 8J * 1 . 189 1 . 19t> 1 .2 0 1 1 .? 0 7 1 . 2 1 c 1 .2 1 b 1 . 2 2 4 1 1 .230 .23b 1 .2 4 # i . 2b J 1 . 2 / 0 . 0 8 3 1 . 2 6 b . 105 1 . 2 6 6 CIJRVF p o i n t TNTEPPOLATFO) a c t u a l VAI iJES # * CONSFfW VAT I t |lv|J I — ! If 1p L oatf i >a r It i M • I> cl 1 /1 5 / 7 4 114 Jtt • 1 / 1 6 / 7 4 320 3 8 . 1 / 1 7 / 7 M 32 i 3d . 1 / J 8 / 7 M 322 3 d . 1 / 1 9 / 7 * 323 3 8 . 1 / 2 0 / 7 4 32 m 3 d . 1 / 2 1 / 7 M 3 2 5 3 8 . 1 / 2 2 / 7 4 3 2 6 3 d . 1 / 2 3 / 7 4 3 2 7 3 8 . 1 / 2 4 / 7 4 32 R 3 8 . 1 / 2 5 / 7 M 3 2 9 3 8 . 1/ 2 6 / 74 330 3 8 . 1 / 2 7 / 7 4 331 3 8 . 1 / 2 8 / 7 4 3 3 2 dB. 1 / 2 9 / 7 4 )3 3 3 8 . 1 / 3 0 / 7 M U .2 4 1 3 d . 3m 6 2 / 1 . 2 5 0 . 2 1 9 1 . 2 3 3 2 / 1 3 / 7m 3 3 7 . 1 9 6 .1 5 1 . M 68 2 / 1 2 / 7 4 3 / 7 4 . 173 1»26m 1. 2 6 2 1. ? 6U . 1 2 8 I . 2 3 / 3 4 5 2 / n 1 . 2 3b 2 / 1 1 / 7 M 33b - . 4 4 5 3 3 3 5 t o t . 4 2 2 2 / 1 0 / 7 4 1/7M 2 / 7 4 1* T -P 0 4 0 0 3 d. 0 3 d . 0 3 8 . 0 3 8 . u 3 8 . 0 3 8 . 0 3 8 . 0 Jo . u < 8 . I) 2 / 2 / 3 (S- . 6 0 4 1.227 1. 22b 1. 22J 1 .221 . 6 2 6 1 . 2 1 9 . 6 4 9 1 . 2 1 7 . 5 3 6 . 5 5 8 .5 8 1 . 7B5 1. 21^ 1 .21 J 1.211 I . 20v 1 .2 0 7 1. 20b . 8 0 8 1 . 2 0 J . 8 3 0 1.201 . 8 5 3 1 . 1 9 9 . 8 7 * 1 . 1 9 / . 8 9 8 1 . 1V 4 . 6 7 2 . 69M . 7 1 7 . 7M0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . 0 3 4 1 . ld<: 1 . 0 5 7 1 . 1 HU 2 / 2 6 / 7 M 3 b 0 J*. 0 2 / 2 7 / 7 M 361 3 ^ . (J . 762 .9 2 1 l . 19c; . 9 4 3 1 . 1 9 . 9 6 6 1 . 1 8 ^ I . I . 9 * 9 1.011 J .0 0 80 1 . 1 B<4 1 . 1 7 79 h 1 . 102 1 . 1 2 5 1 . 1 7m 3bM 3d. 0 0 0 1 . 1 / 0 <*5 3 8. 0 1 . 1 7 0 2 / 2 8 / 7 M 3 b 2 3 8. 2 / 2 9 / 7 ^ 3 6 1 3d. 2 / 3 0 / 7 4 2 / 3 1 /7 M - 143 - 1 . 1 4 7 1 * 1 / 2 * I . 1 7u * OATF 0 A Y 1 -P 0 4 CL 1 / 1 / 7 4 1 14 0 . 0 1 / 2 / 7 4 2 I 1 * 0 . 0 40 . 0 TUT - N .1 0 1 3 . 4 b 0 .101 3 . 4 8 0 .1 0 1 3 . 4 8 U 1 / 3 / 7 4 J 1 / 4 / 7 4 4 14 0 . 0 .1 0 1 3 . 4 8 0 1 / S / 7 4 S 1 4 0 . 0 .101 3 . 4 8 0 1 / 6 / 7 4 6 1 4 0 . 0 .1 0 1 3 . 4 8 0 ) / 7 / 7 ^ 7 1 * 0 . 0 .1 0 1 3 . 4 8 0 1 / 8 / 7 4 H 1 4 0 . 0 1 / 9 / 7 9 1 4 0 . 0 . 1 01 .101 3 . 4 8 0 m 3 - 4 80 1/1 0 / 7 4 10 1 4 0 .0 .1 0 1 3 . * 8 0 1 / I 1 / 7 4 1 1 1 4 0 , 0 . 1 01 3 . 4 8 0 1 / I P / 7 4 1/ 1 4 0 . 0 .1 0 1 3 . 4 8 0 1 / 1 3 / 7 4 1 * 1 4 0 . 0 1 / 14 / 7 4 14 14(1.0 3 . 4 8 0 1 / 1 5 / 7 4 ] ^ 1 4 0 . 0 .10 1 .1 01 .1 01 1 / 1 6 / 7 4 16 J 4 0 . 0 .1 0 1 1 / 1 7 / 7 4 1 7 1 4 0 . 0 1 / 1 8 / 7 4 1H 14 0 . 0 1 / l M / 7 4 19 14 0 . 0 .10 1 .101 .1 01 1 / 2 0 / 20 1 4 0 . 0 .1 0 1 74 3. 4 b 0 3 . 4 8 0 3 . 4 8 0 3 . 4 8 0 3 . 4 8 0 3 . 4 8 0 3 . 4 8 0 1/ 2 1/ 7 4 2 1 1 4 0 , 0 .1 0 1 3 . 4 8 0 1 / ( A l l O T H T P A C T U A L V A L U E S ARC. A •* 3 < S -I5 t, T-P04 tot- n .1 0 1 3 .480 3.480 3.480 3.480 3.480 3.48 0 .1 0 1 .1 0 1 .1 0 1 . 1 0 1 .1 0 1 . 1 01 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .101 .1 0 1 . 10 1 .1 01 .1 0 1 .1 0 1 .1 0 1 .1 0 1 .1 0 1 . 101 .1 0 1 . 1 01 .1 0 1 .1 0 1 . 1 01 .1 0 1 .1 0 1 .10 1 .1 0 1 .101 0 0 .101 I) 0 0 0 t) 0 0 0 0 0 0 0 0 0 .101 C W R VF ARE .1 0 1 . 1 0 ) .1 0 1 .101 .101 .101 .101 .101 .101 .101 . 1 01 .101 .101 .101 P O IN T IN T E R P O L A T E D ) 3.480 3.480 3.480 3.480 3.480 3.480 3.48 0 3.480 3.400 3.480 3.480 3.*80 3.*80 3.*80 3.*80 3.*80 3.480 3.480 3.480 3.480 3 . 4 80 3 .480 }. * 80 3**80 3*480 3 .48o 3.480 3.480 3.480 3.480 3.480 3.480 3.480 3.480 3 .*80 3 . 48O 3.400 3*4oo 3.480 3 . * 80 3.480 3*480 3.480 3.480 3.480 3.400 3. * 80 C O N S E R V A T I O N t ' l l M l F - N O D f OATF • A W I- A > J ( S - 1 5 1 DAY Cl 4/17/7* 4/18/74 4/19/74 4/20/74 4/21/74 4/22/74 4/23/74 4/24/74 4/25/74 4/26/74 4 / ? 7 / 74 4/28/74 4/ ?S»/ 74 4 / 1 0 / 74 10 7 108 1 09 1 10 11 1 1 12 113 1 14 1 15 lib ) t t 1 18 1rv 1 /<) 140. 140. 1* 0 . 14 0 . 140. 140. 140. 140 . 140. 14 0 . 140 . 1*0. 140 . 1*0. o 0 0 0 0 0 0 0 0 0 0 5 / 1/74 5/ 2/74 5 / 3/74 5/ 4/74 5/ 5/7* 5 / b/74 5 / 7/74 5/ 8/74 5 / 9 / 74 5/10/74 5 / I 1/74 5/12/74 5/)3/74 5 / 1 * / 74 5/15/74 5/16/7* 5/ I 7/7* 5/18/74 5/19/74 5/20/74 5/21/74 5/22/7* 5/23/7* 5/2*/74 5/25/74 5/26/74 5/27/7* 5/28/7* 5/29/74 5/30/74 S / 3 1 /74 121 122 123 1 24 125 I 2b 12/ 124 I 2 -> 1 30 1 JJ 1 32 1 3.1 1 34 1 15 1 Jb 13 7 138 1 39 14 0 14 1 14 ? 14 1 ] 4u 0 0 0 0 0 0 0 0 0 0 0 0 I) 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .101 .101 .101 .101 145 14 b 14 7 |4H 14 4 ) 50 15 1 14 0 . 1*0. 1*0 . 1* 0 . 140. 1* 0 . 1*0. 140. 140. 140. 1*0. ] *0 . 1*0 . 140. 140. 1 40 . 140. 14 0 . 1*0. 1*0. 140. 140. 140. 140, 1*0, 1*0. 1*0. 1*0. l*u, 1*0. 140 .1 01 .1 01 .101 .101 .101 .101 .101 .101 .101 . 10 1 .101 .101 .10 1 .10 1 . 1 01 .101 .101 .101 .101 .101 .101 .101 .101 .101 .101 .1 01 .101 3.480 3.48 0 3.480 3.48 0 3. * 8 0 3.480 3 • 4y u 3.480 3 .4 8 0 3.48 0 3.480 3 .48 0 3.48u 3.480 3.48 0 3.480 3.480 3*480 3 . 480 3.48 0 3.480 3.480 3.480 3.480 3.480 3.480 3.480 3.480 3.480 3 .48 0 3 .48 0 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 152 153 1 54 155 156 157 158 159 1*0 14 0. 140. 140. 140. 140. 140. 140 0 0 0 0 0 0 0 0 .101 .101 . 101 .101 . 101 .101 .101 .101 3.480 3.48 0 3. * 8 0 3.480 3.480 3.480 3.480 3.480 1/74 2/74 3/74 4/74 5/74 6/74 7/74 8/7* * ( A L L 0 THF R A C T U A L VALU F.S 0 0 0 C U P V F APE T-P04 1 UT —IM .101 .101 3.480 3.480 3 . 4 80 3.480 3.480 3.480 3.480 3.480 3.48 0 3.480 3.480 3.480 3. 481) 3.*80 .101 .101 .101 .101 .101 *101 . 10 1 .101 .101 .101 .101 .101 P O IN T 1 M T E R P O L A I E f.)) *— r— _ o s> O 3> -D z> o X X X X X x X X X X XX X 4 3- >3N <* m w o is X X' X X >r >r -3• » • t r> -r o o X X X X X • r o o o X X X X 3 * >3“> • • • • m n ro n -*s o o 3 3 3 3 3 3 X X X X 00 X X X X r X X X X 5 X X X -s«» ■ 3 >« « » • • • • * • • • * • • • • • • • t r> m rr n m r:- <—> m n rr 3 3 3 3 b o r X X X X X X X .?■ •T N. 3 X » ■ , p < f— 4 * “ « 4 r— < O o o o o o o o o o o o o o o o o o o o o o 1 “^ * M « “S * “■ * *' — - — * «< *■ * t— « •—* r—* o o o o c o o o o o o o o o o o o o o o o o o o o o o o o o o »'^ r— * •— rH 4 ~1 — i < — 4 — • — *p-< -J u o o o 0 o o o o o o o o o —o o o o c o 0 • • « ♦ • • V • • ■ • ■ • • V • • • • • • • o o o c; o o 3- o 9 o o o o o o o o 3 3- 3* >3- 'tf 3 !> o o o o o © o o o o o o o o o 3- 4- 4>3*3“ 3- 4* 3* -3* >3 >3“ >T >3“ 4“ >1 >3* 4* • 3 ■J 1—1—*•—« « ■« ~*4 I—1f-4 H r— c >c ^ >3 J~ X; rs- x y- o X X X t* X > X X X L L . f— •c J r~- X 3 ' o >— *— — —‘ rvi — <— — r—— t— \V X X X X X X X X X X nC 0 n — ;r i X r ^ X •£* vT 3 >c • s-fw*^_»^r^r^- N - . s - r > w f > w X ' X 33 •3 33 3-■ 3 3 4 ♦■ fs. rr—r*. f*. r" r~ X X X X X X X X X X — 1rvi X r- X o rv rv rv < V J rv M (V rv rv «r* X X X X X X X V X X > £) 1 c X v C 'C X X) Xi X X re _r ^ T’ - > 7 s ? 7 5^ > —* X 7* O a VT O — rv o — X 3 - iT> >C fs_ X l »—< C 3 © 3 3 Q: o o —1 r— \ <\ rv. rv 'V. c\. Oi o. rv rv. rvi rv — >3 4 3 •3 -■ - •3 T«3 'T 3 -> 3 <3 T > 3 > 3rs. •s. . K. K r- s r^. 1^ r^ —r~ r—p T “~r^f*“ \ V V \ \ X X X X X X X X X X X X \ \\ \ \ X - X S' o — c r< » — H—— 4 —— * — rv f\j rv rv (V rv n j rvj no (V T r r X X X X X X X X X X V V \\V \ X \V V \V X X X X X X X X X K *. rr*^ r> ■ » r> r*^ N. fsf*^ r- r- N. r»-r*. f». * 3> 3 •3 '3 - ~ f 3i^. p^. r^. r—f'X X X X X X X r— 0/27/74 10/28/7* 10/29/7* 10/30/74 10/31/74 2 74 275 276 27 7 278 279 28 0 281 282 28 3 284 285 286 287 288 289 290 241 29? 293 294 295 296 ?9 7 298 299 10 0 Hi 1 302 30 3 118.0 11 8 . 0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 1lti.0 118.0 118.0 1 18 . (J .034 .034 .034 . 0 34 .034 . 0 34 .034 .034 . 0 34 .034 .034 .034 .034 .034 .034 .034 . 0 34 . 0 34 .034 .034 .034 .034 .034 .034 .034 .034 . 0 34 .034 .034 .034 . 0 34 8 . ?50 8 . ?50 8.250 8.250 8.250 8.250 8.250 8.25U 8.250 8.250 K.250 8.250 8 . ?50 8.250 8.250 8.250 8.250 8 . ?50 8.250 8 . ?50 8 . ?50 8 • 25o 8.25U 8 . ?50 8 .?50 8.250 8 . ?5 0 8 . ?5 0 8.250 8.250 8.250 11/ 1/74 11/ 2/74 11/ 3/74 11/ 4/74 11/ 5 /7 4 1 1 / b / 74 11/ 7/74 11/ 8/74 11/ 9/74 11/10/74 I 1/ 1 1 / 7 4 11/12/74 11/13/74 11/14/74 105 306 30 7 308 309 310 31 1 31? 3 13 3 14 315 31b 11 7 31 8 118.0 118.0 118.0 118.0 118.0 118.0 118.0 ) 18.0 118.0 118.0 118.0 118.0 118.0 .034 . 0 34 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 8.250 8 . ?5 0 8.250 8.250 8.250 8.250 8.250 8 . ?5o 8 . ?50 8 . ?50 3 1) 4 « (ALL O T H E R 1 1 8 . 0 actual curvf v a l u e s 4 4A»E A point TNTEpPOLATED 1 8 . 2 5 0 8 . 2 5 0 8 . ?50 8 . 2 5 0 CONSF.KVAT TOM 'H-'F a < | Mpt H - U O h L : I C^-lSb, HATE 1/15/74 HAY CL T-P04 To T- N l / l h / 7* 1/17/7m 1/18/74 1/19/74 1/20/74 1/?1/74 1/22/74 1/ 2 3 / 7 4 1/ 2 4 / 7 4 1Z 2 5 / 7 4 I/26/74 1/ ? 7 / 7 4 1/ P 8 / 7 4 1/29/74 1/30/74 31 9 1^0 *2 1 122 123 324 325 326 32 7 328 32 9 330 331 3 32 333 ,43m 11 8 . 0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 .034 .034 . 0 34 .034 .034 .034 .034 .034 .034 .034 .034 . 0 34 .034 .034 .034 .034 8.250 8.250 8.250 8.25U 8.250 8.250 8.25U 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 ? / 1/74 2 / 2/74 2/ 3/7* 2/ 4/74 ? / 5/74 2 / 6/7M 2/ 7/7* ?/ 8/7* 2/ 9/74 2/10/74 2/11/74 2/12/74 2/13/74 2/14/74 2/15/74 2/16/74 2/17/74 2/18/7* 2/14/74 2/20/74 2 / 2 1 / 7m 2/22/74 2/23/74 2/24/74 2/25/74 2/26/74 2 / 2 7/74 2/28/74 ? / ? 4 / 7<4 2/30/7* 2/31/74 335 3 36 33/ 338 3 3'-* Jm U 34 J 34? 34 3 34 m 34 5 3 4b 34 / 3* M 34 w 350 351 352 35 3 15* 355 356 35 7 35H 359 360 361 36? 3b 3 36m 3*>S 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 1 18.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 118.0 . 0 34 .034 .034 .034 . 0 34 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 . 0 34 8.250 8.250 8.25U 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8 .250 8.250 8.250 8.250 8.250 8.25U 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 8.250 - 150 - CONSERVATION 1rjp'i I -U O P L DATE 1/ 1/74 1/ 2/74 1/ 3/74 1/ 4/74 1/ S /7 * ] / 6/74 ] / 7/74 1/ 8/74 1/ 9 / 7 4 1/ 1 0 / 7 4 1/ 1 1/7*4 1/12/7* 1/13/7* 1/14/74 1/15/7* 1/16/74 1/17/7* 1/18/7* 1/19/74 1/20/74 1/21/74 1/22/74 1/23/74 1 / ? 4 / 7i, 1/ 2 5 / " 7 * 1 / 2 6 / 74 1/ 2 7/ 7 4 1/ ? 8 / 74 1 / 2 9 / 7* 1/ 3 0 / 7 * 1/31/7* 2/ 1/7* 2/ 2/7* 2/ 3/7* 2/ 4/74 2/ 5/74 2 / 6/7M 2/ 7/7* 2/ 8/7* 2/ 9/7^ ? / 1 0 / 7'* 2 / 1 1 / 74 2/12/7* 2 / 1 3 / 7'* 2 / 1.4/ 74 2 / 1 5 / 7'* 2 / 1 6 / 7*» 2/17/7* 2 / 18 / 7'-* 2/19/7“ 2/20/7* 2/21/7* 2/22/74 DAY I 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2b P6 27 PM 24 30 b * 7 ■4.3 ‘♦ V 50 5 1 5 5 1 T-PO* 1O I -IM .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .090 .040 3*20 0 3.200 3.20U 3.200 3.200 3.200 3.200 3.20 0 3.200 3.200 3.200 3 . 20 0 3.200 3.20 0 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3 . 2 00 3.200 3 . 20u 3.20t» 3.200 3.200 3 . 2 0 0 <} .0*0 « .04 0 . 0*0 .0*0 . 0*0 . 0*0 . 0*0 .04 0 .0*0 .04 0 . 0*0 .04 0 .04 0 .04 0 .040 . 0 40 . 040 . U4 0 .04 0 .040 .040 .04 0 P . 590 « 2.590 2.590 2 .590 2 . 5 vu 2.54u 2 . 59u 2 . 59u 2.590 2.540 2 • 5y 0 2.590 2.590 2.590 2.590 2 .590 2 . 59 0 2 .54 0 2.590 2.590 2.590 2.54U <> A C T U A L CURVF P O I N T U T H F P V A L U E S Al >f I N T E R P O L A T E D ) £■ £ & ■S' -c- i' ■eX* £ XX XX X XXX XX\ X\ x \ » — 1 — — •— 1 *—— — c? ui -F U rv — £ 'X :r 01 J> LtJ rv. — XX XX X \ V V X X X \ \ X X -N "s "■M -J -4» 4* £ .c- ■p £■ s- ■fr £ X \ :" o <= o e o o o c vc c vC vC -c vC sC -c iv .— UI y u* U. u» UJ u> u - u> UJ Uu Ui u u> Uj u U- L«J ^A. w U u» w Ui Ui U* Ui u. Uj Ui Ui Ui u . X X X XX X X X X X X X X X XXX X X X X X X X X X X X X X X —N- —► —t— * —*—> UJ VjJ ru ■"U(V IMru r\J ru ru ru ru ———V —© >o OC ->j rr- ■■ji u "U o vC ■--»nr*- ~sj cr CT! t> ru — o «c X --4 cr lT ru —. X \ X \ X X X X X X X X X X X XX X X X X XX X X X X X X \ X 'si 'si ^>j ~xj "•** ^4 "J 'si 'J ''J "s* ~*i 'J ->* ~>j ~w -vi ->i ->l 4> X ' 1^ X - -C f £■ -C- c- ■ff- «• -f £ Jr £• £Xc -C -T *• ■c- -S' v i 'sj > j *> j> j X OC .1 ■ > isj O' O' J J cr ? j ? ? cr XT X X X X X ^ LJ \ J ^ C X -s X i i 1 ^ U fV ■“ C X X -M cr r 'J- t"\. J -J •■<-». •C vt X X fU ru i\j ru ru XXX XXX ■V \J ru ru X -~ j O' O' UJ X X X X X X " S J ■ s . ~ S4 'J f t ■e > ,T| ♦* -C- r> -< J1 'jr c r j " u4_ -4 cr 'J" « ACTUAL C'.Jt’ Vf POI h|1 ( P VAI.UFS 4iH‘ P' TFPPOLATF. P> zr ) vC *c C C r (X cr ■ • • • • c o o o S C ■ > csc l«^ a a oc cc • • • • • ■ .— • © o *c n £ n C £ s£ 'C X a a a •X X • • • • • • • ©©©©© o © £ —— — * —j— —i— —« —r — —V —•— «► ** . — .— > — > *r—— ► ——— —•— — ■ *—i—> -V . ,— j ru rv rv rv ru P Uru rv .vru ru «>j ru ru (V ru ru ru ro ru rv ru rv rv rv r>j ru r\ X* (V k — > — > > —•——— *—* ► — — ► — * — — —► > > —> — > — * — » — •—V *— • • • • • • • • • • • • • • • • • • • • • • • ♦• • * • • • • © © ©© © © © © © © © o © © © © •* ©© ©© © ©© c W© > • • © OJ Ui o o • © Ui o • • • • • © © o © © u U) U) o © © © © u u • • • * • • * • © © © © © © © Ui Ui U) U) Ui u © © © © © © o © u u> c NC c yQ C un \T u~ i /! IT o~ lT C- c o c: c C c • • • « • • • • « • • vO sD vO nC C cr © • • • • • • • « • • • • • © © © © © © © © © © © © © * * £ X© © © © © © © © © © © © « • • • « • • • • • • • • • • • • © © © © © © © © © © © © © © © © © -x £ ♦> fc1? p ♦ -F x© © © © © © © © o © © © © © © © © • © X' © • • • • • © © © © > p- © © © ?V • CT! >C fV • ir vC • ©© & x- © © © —. 1 T —* cr c • * • • 0 s cr LP a 1 cr LT C- © © • • • c* cr O' LT UI © o © * • • • • • ■ • • O' cr O' cr ’7s cr cr LP cn lh tx U" W £ c nC sC c c © —* c 1 4*. ( < ii , r - ,i t-’ \i ii T 11 )[J | )!••<) | -i >(i '| U A fF l)A f CL 7 /7* 1u / 9 8 . 4 / 1 8 / 7 * 1 On 98 « 4 / J 9 / 7 * 10 4 Si B. * / if 0 / 7* 1 10 9 8 . 4 / 2 7‘* * / 1 1 1 1 9 8 . 4/?>?/ 7* 1 1/ 9 b . * / ? 3 / 7 * 1 I * 9 8 . 1/ 4 / 2 4 / 7m 1 1* 9 8 . 4 / 2 5 / 7 * 1 15 9 8 . 4 / 2 6 / 7m 1 16 4 8 . 4 / 2 7 / 7 4 1 I t 9 8 . 4 / 2 8 / 7 4 1 18 9 8 . 4 / 2 9 / 7 4 i rv 9 8 . * / 3 0 / 7 <« 120 9 8 . 5 / 1 / 7 * 121 9 8 . 5 / 2 / 7 * 12 2 9 8 . 3 / 3 / 7 4 12 3 9 8 . 5 / * / 7 * 12 * 9 8 . 5 / 5 / 7 * 12 5 9 8 . 5 / 6 / 7 * 1 2'- 9 8 . S / 7 / 7 * 1' > 9 8 . 5 / 8 / 7 * 12*1 98 . 5 / 9 / 7m 1.'V 9 8 . 5 / 1 0 / 7 * I i!» 9 b . 5 / I 1 / 7 * 1 1I 98 . 5 / 1 2 / 7 * I 9b . 5 / 1 3 / 7 * I < 1 9b • 5 / 1 5 / 7 M 1 ' *<* r> 9 8 . 5 / 16 / 1 *"■ 9 8 . 5 / 1 5 /J m /7 M 7M 7 / 7m 1 1 M 9 b . 9 b . 5 / 1 8 / 7 4 1 9 8 . 5 / 1 4 / 7 4 9 b . 5 / 2 0 / 7 * 13 9 ) -1 5 / 2 1 / 7M 1 1 1 9 8 . 5 / 2 2 / 7M 1M / 9 b . 5 / 2 3 / 14 A 9 8 . 5 / 2 4 / 7 M | ' *' » 9 8 . 5 / 2 5 / 7 4 1 5 / 2 6 / 7 * 1 <• n 9 8 . 'M » 9 8 . 9 8 . : 0 0 0 0 0 0 0 U 0 0 0 0 0 I) 0 0 0 0 0 0 0 0 0 I) 0 0 0 0 0 0 0 (J 0 0 0 0 0 0 0 0 0 0 0 0 1 / 7* ] «♦ 7 98 . 5 / 2 8 / 7 * 1M M 9 8 . 5 / 2 9 / 7 * 1* 9 8 . 5 / 3 0 / 7 * 15 j 9 b . S / 3 1 >1 9 b . o 6 5 / 2 1/ 7M * 6 / 1/ 7 * )S2 1 0 0 . 6 / 2 / 7 ^ 15 * 1 0 3 . 6 / 3 / 7 * 15 « 1 0 5 . 6 / * / 7 m 155 10 5 . 6 / 5 / f * 156 1 OM . 6 / 6 / 7 * 157 1 0 3 . M 6 / 7 / 7 158 1 02 . 6 / 8 / 7 * 159 101 . m 2 8 0 2 6 a 1 > M ’F A 3 (S - 6 ) T-PO* TtM-N .030 . 0 30 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 . 0 30 . 0 30 1.950 1.950 1 . 950 1.950 1.^5u 1 . 9SO 1.960 1.950 1 .950 I .95U 1.950 1.950 1.950 1 . 95u .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 .030 . 0 30 .030 .030 .030 .030 .030 . 0 30 .030 .030 .030 .030 .030 .030 .030 . 0 30 .030 .030 1 . 860 1.860 1.8 6 0 1 . 8t»0 1 .860 1.860 I . 8 fi u 1.8 6 U 1.86 0 1 . 8 '. u 1. 86 u 1 . 860 1 • 8 h (j 1 . H A , (J 1.860 1. H 6U 1.860 1.860 1 . 8 Ml 1 . H6 K) 1 . ^6 0 1 . M60 1 . b! 1.78 b 1.76* 1.7*0 1.71^ 1.69^ 1 . 6 f>b ( dMSf- l DA I » i ' PV/\T 1 —r J» M i! D Vf 6 / 9 / 7 <■* 6 / 1 0 / 7m 6/ 1 1 / 7m I i) 1 1 8 .1 l b . 0 2 3 .022 . 0 21 .020 7 * TOT -iM » . 0 1 6 • 38 j . 6 3 / . 1M b 1 7 . m 0 o 0b 1 4 . 1 0 . 7 1 7 1 2 . 3 8 6 m 9 . 0 4 3 7 . 3 7 1 * 5 . 7 0 0 . 0*1 .0 6 6 5 . 6 6 7 5 . 6 3 .0 9 1 5 . 6 0 6 / 2 6 / 7 * 17 7 1 1 6 . 3 6 / 2 7 / 7 * 1 7" 6 / 2 8 / 7 * 1 79 . l i b 5 . 5 6 9 6 / 2 9 / 7 * 1H U t H 1. 1 1* . 6 1 12.8 111.1 . 1 4 0 5 . 53t> 1 0 9 . 3 . 1 6 5 5.S0_i 6/ < 0 / 7<* 7 / 1 / 7 * 1M 2 7/ 2 / 7 * 1*3 10 7 . 6 9 9 . « 1 . 1 9 0 * 5 * 4 7 U .200 5 . 0 9 u 8 2 . . 2 0 6 4 . 9 0 0 7J . .211 .216 .221 4 . 7 . 2 2 7 4 . 1M0 3 / 7 * * / 7 * 7 / b / 74 1 8<4 1M b | Kh 7 / 6 / 7 * 18 7 18 H 18 '-# 4 8 . 9 0 . 6 1 6 6b . 1 b 6 . 6 7 / 7 / / * 7 / 8/ 7 ^ 7/ 9 / 7* 190 S O . 3 7 / 1 0 / 7 * 191 b 2 1 * 1U 4 . 5 2 u 4 . 3JU . 2 3 2 3 . 9 5 0 . 2 3 7 3 . 7bo 7 . 2 4 2 3 . 5 7 0 .0 . 2 4 7 3 . 3 8 U .b 7 / 1 1 / 7 * 192 5 4 . 7 / 1 2 / 7 * 193 b7 7 / 1 3 / 7 * 19M 5 9 . 2 . 2 5 3 3 . 7 / 1 4 / 7 * 19b 6 1 . * . 2 5 8 3 .0 0 U 7 / 1 b / 7* I9b 6 3 . 6 7 / 1 6 / 7 * 19 7 8 1 . 4 . 2 3 3 * . 2 6 3 7 / 1 7 / 7 * 198 9 9 . 3 . 2 0 3 7 / 1 8 / 7 * 199 1 1 7 .1 . 1 7 3 7 / 1 9 / 1 3 * . 9 . 1 *4 1b 2 . 7 . 114 7 / 2 1 / 7 * 20 0 20 I 20 2 7 / 2 2 / 7 4 20 3 1HM.4 7 / 2 * / 7m 20* 20 b 17b. 2 162.1 7 / 2 b / 7* / 0 6 1 * 6 . 9 7 / 2 6 / 7* 20 7 1 3 b . 7 . 0 6 3 7 / 2 7 / 7 * 20 M 1 2 2 . 5 .065 .068 .070 .077 .085 7 /? 7M 0 / 7 * 7 / 2 3 / 7 * 7 / 2 8 / 7 * 2 0 9 7 / 2 9 / 7 * Sl0 P) 1 ?]/ 7 / 3 0 / 7 * 7 / 3 1 / 7 * 1 5 . 2 8 u 7/ 1 70 . 4 8/ 6/7* 8 / 7/74 8/ 8/74 8 / P / 74 H / 1 0 / 7b 8/11/7* 8/12/74 8/13/74 8/14/74 8/15/74 8/16/74 8/17/7* 8 / I «/74 8 / I P / 7'* 8 / ? ( J / 74 8/21/74 8/22/74 8/23/7** H / 2 4 / 74 8/25/74 8 / 2 h / 74 8 / 2 7/74 8/28/74 8/29/74 8 / 3 0 / 74 8/31'7 4 21 3 2 1'* 2 15 216 ?! 7 2 1H 219 220 221 ?22 223 224 225 22m 22 7 22* 22P 230 231 2 ? 31 2 3'* 2 3b 2 36 237 2 38 239 24 0 2a 1 242 24 ] P/ 9/ 1/74 ?./ f't ■>/ 3 / 7 4 ? 4 '4 /45 2 4 (■> 9/ 9 / V/ 4 / 74 5/74 6/74 24 7 9/ 7/74 9 / 8/74 9/ 9/74 9/10/74 9/11/74 9/12/74 9/13/74 9 / 14/74 9/15/7“ 9 / 16/74 9/17/74 9/18/74 9/19/7* 9 / ? ( . l / 74 9/21/74 9/22/74 r •>1I 6b. 6 25 1 66.4 6 4 .? 111.9 117.2 122.4 12/. 7 1 3 r ! . P ,:' 124. 7 1l b . 4 108.2 100.0 91 . 8 83.5 75.3 • 76. 7 78. J 79.5 80.8 82.2 83,6 85.0 86.4 8 7. < 8^.2 90. b 91.9 93.3 94.7 92.5 90.3 88.2 86.0 H3.H 24 H 81 . 6 7 P . r7 7.3 75. 1 72.9 24' -* 70 . 7 25 f 25 i 254 25b 25* ?58 2b v 26 U 261 262 26 3 26 4 265 (A(l M * « 6P . 3 74 . 3 79.4 84 . 4 89.5 94.5 9 9 . 6 *• 95.8 92.0 88.2 84. } 80.5 76. 7 3 ( S->< ) T-P04 T O T - im .092 .100 .107 . 1 15 .122 • . 1 16 .110 .104 .098 .092 .086 .080 * .075 .070 .065 .060 .055 .050 .046 .04 1 .036 .031 .026 .021 .016 .011 * .016 .020 .024 .029 .033 2.629 2.451 2.2/4 2.09 7 1.920 2.96J 4.00b 5.044 6.091 7 . 1 34 8.17/ 9.220 8 . PPb 8.77b 8. 55F I N T E R P O L A T E O ) 2.90U * 2.95i 3 . 00 J 3.054 3.106 3.157 3-209 3.260 * 3.221 3 . 18 J 3 * 14 4 3 . 1 0t> 3.06 / 3.029 2.99U 2.819 2.64 ( 2.47b 2.304 2 . 1 3J 1.961 1.79U 1.813 1.830 1.859 1 .88 1 1.904 1.9 2 / 1.950 1.961 1.973 1.984 1.995 2.006 2.01 / 2.029 2.040 2.08/ 2.133 0 * « * 2 . 180 2.22/ 2.273 2 . 32o * 2.32/ 2.334 2.34 l 2.349 2.35b 2.36J 2.370 2.37 7 2.384 2.391 ( 9 2 . 0 . 0 4 9 ? / • 29m 2 . 2 3 1 9 1 . 7 2/ l 0Jb .0 3 8 9 1 . 8 2 . 0b 2 0b 6 1 Oo 2 . 0 7 m 2 . 0mj « 2.011 1.9 8 0 2/ 2/ 7m )J 7 9 1 . 3 . 0 5 9 1 -9 4 V M/7<4 < 44 9 1 . 2 . 0 5 5 1 . 9 1 7 ?. / b/7* 3 49 9 1 . 1 .O b i 2/ 6/ 4-* U 9 1 . 0 . 0 4 6 1. 8 Bb 1.85m 1 9 0 . 9 . 0 4 2 1 . 8 2 J .0 1 . 791 7m 3* 4 2 / 7 / 7 4 2 / 8/7 4 4*2 90 2/ 9 / 7 4 44. 4 90 . 7 . 0 34 1* 7 6 0 2 / 1 0 / 7 4 3 4 '4 .6 . 0 3 0 1 . 7 2 v 2 / 1 1 / 7 4 44 b 2 / 1 2 / 7M 44 6 90 .8 . 0 2 6 1 . 6 9 7 9 0 . b .022 .0 1 7 1 .660 1 .6 3- 4 1.6 0 j 34 7 90.4 2 / 1 4 / 7 4 3^ +H 9 0 . 3 2 / 1 5 / 7 4 J4S» 90 . 2 2 / 1 6 / 7 4 3b 0 90 . 1 2 / 1 7 / 7 4 35 I 9 b . 2 / 1tt/7M 4b2 4b J 101.2 10 6 . y 2 / 2 0 / 7 4 35 1 1 2 . 4 2 / 2 1 / 7 4 3b 2 / 2 2 / 7 4 35b 2 / 2 3 / 7 ^ 4b 2 / 2 4 / 7 4 *58 I 34 . 7 2 / 2 5 / 7 4 4b 9 14 0 . J 2 / 2 6 / 7 4 < 6(1 > 11 8 . 0 1 2 -4 . b 7 1 2 9 . 1'♦ b . 1 8 2 / 2 9 / 7 ^ 1 362 .46 3 2 / 3 0 / 7 4 3 * 4 1 6 8 . 2 / 3 1 / 7 4 J6 b 1 7 3 . 7 2 / 2 7 / 7 4 2 / 2 8 / 7 4 36 * 7 2 / 1 9 / 7 4 m 38 9 0 . 5 2 / 1 3 / 7 4 1b 1 . 4 lb 7 .0 I 62 .6 .0 1 3 .0 0 9 . 00b 1 .5 7 1 * 1 . 5 9 b .006 1. 6b 2 . 0 0 7 I . 7 0 a .0 0 8 1 *7 . 0 0 8 bm 1*820 . 0 0 9 1 . 8 7 b .010 .0 10 .0 11 . 01? .012 .0 13 1.9 - 157 - . 0 1b * 3 2 1 . 9 8 b 2 .0 m M 2 • 10 u 2 . 15b 2 . 2 J2 2 • 260 2.32m . 0 14 * 1 . 5 Mu . 0 0 6 . 0 1 4 1 v 32o • 3 32 //• 2 « ’* 2 0 . 0 2 4 3 f) 2 . 3 8 9 9 2 . 4 326 1 «> 9 2 . 32 7 43 2 . 3 9 -< 13 1/ 2 6 / 74 1 / ? 7 / J‘> 1/ ? H / 7 U 1 / .10 / lot-,., I - I 04 CL 9 1 *6 74 \/? b /7 h At /f A V 1 . V 7M /?.<*/74 11 319 1/ 2 0 / ] t : 320 1 / 2 1 / ) / 2 3 / 7 4 I I f •• 11 - • | * 2 . 3 8 0 « C O N S E R V A T I O N Anti A 3 INPUT-NODE 7 /7* 3/20/74 3/21/74 3/22/74 3/23/7** 3/24/74 3/25/74 3/26/74 3/27/74 3/28/74 3/29/74 3/30/74 3/31/74 60 9b.2 9b.5 9b. 8 96. 1 9b.4 96. 7 97.1 97.4 97.7 98 . 0 98.3 98.6 98.9 99. 3 99.6 99.9 100.2 100. b 10 0 . 8 101.2 101.5 101.8 10* . 1 1 0 c*. 4 102.7 103.1 10 3 . 4 10 3 . 7 10 4 . 0 10 4 . 3 10* . 6 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 10 4 . 9 105.3 1 0 b .6 10b . 9 106.2 10 6 . 5 1 0 b .8 107.2 107.5 1 0 7 .8 10 8 . 1 108.4 108. / 1 0 9 . 1. 109.4 109.7 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .02 0 .020 4 / 1/74 4 / 2/74 4 / 3/74 4 / 4/74 4 / 5/74 4/ b/7 4 4 / 7/74 4/ 8/7* 4/ 9/7* 4 / 1 0 / 74 4/1 1/7* 4/12/74 4/13/74 4 / ] 4 / 74 4/15/74 4/1 6/74 6 1 62 b3 64 65 66 67 bH 69 70 71 72 73 74 75 76 77 78 79 80 81 82 8 1 84 8b 86 87 88 89 90 91 92 93 94 9b 96 97 98 99 10 0 10 1 102 1 03 1 O' * 1 Ob 106 » ACTUAL CURVE POINT (AIL OTHI-P VAL'JFS APF I N T E R P O L A T F H ) TUT - H I . 9 1 0 1 . 8 7 9 ! .84* 1.817 1 * 7 8b 1 . 754 I . 7 2 3 I . 6 9 2 1 . 66 1 1 . f>3 o l .599 1 . 5 6 8 1 . 5 3 / 1.50b 1.475 1 .44*+ ) .41 J 1 •38c' 1 .3 5 1 I . 3 2 U I -3** 1 . 36b 1 . 3 8 / 1. 4 0 4 1.43^ 1.454 1 . 4 7 b 1 . 4 9 9 1 .5 2 1 1 . 5 4 4 1 . 5 6 b 1 . 5 8 8 1 .6 1 1 1 .6 3 J 1 . 65b 1 . 6 7 8 1 . 7 0U 1 . 7 2 * 1 . 7 4 5 1 . 7 6 / 1 . 7 8 9 1 . 8 1 2 1 . 8 3 4 1 . 8 5 b 1 . 8 7 9 1 .9 0 1 .9?4 .94b 1 . 96et 1 1 1 .9 9 1 2.013 2 . 03b 2 . 0 5 8 «■ ^vinjl.rVH 1 IM M > II ' I I — f J() I ' ^ DA H DAY : CL AMF A f ? ( S-9 ) T-P04 1U T - N 4/17/74 4/18/7'* 4/19/ 7 4/20//<♦ 4 / 2 1/ 7** 4/22/74 4 / 2 3 / 7* H/ 2U/ 7U , 4/25/74 4 / 2 6 / 74 4 /2 7/74 4/28/74 4/29/74 4/30/7 A 10 7 1 08 I 09 1I 0 111 1 12 1 1J 1 14 1 15 1 16 11 7 1 18 11 v 1 20 110.0 * 110.0 110. 1) 110.0 110.0 110.0 110.0 110.0 1 1o . o 110.0 1 10 . 0 110.0 ! 10 . 0 110.0 . 020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 2.080 1. M8U 1 . 8 7b 1 .873 1 -KbS 1 . Hbb 1.861 1.«5d 1.854 1 . HbU 1-84 / 1.8 4 J 1.839 1. 8 3 b 5 / 1/7* 5/ 2/74 5 / 3/7'* 5/ 4/7* 5 / 5/74 5 / b/74 5/ 7/7* 5/ H //4 5/ 9/74 5/10/74 5/1 1/74 5/12/74 5/13/7* 5/14/7* 5/15/7* 5/16/7* 5/1 7/74 5/18/74 5/19/74 5/20/7* 5/21/7* 5/22/74 5/23/7* 5/24/7* 5/25/74 5/26/74 5/27/7* 5/28/7^ 5/29/7* 5/30/74 5/31/74 12 1 122 123 1 24 12 5 1 26 127 I 28 12 9 1 30 131 1 32 13 3 1 34 1 35 1 3to I 37 1 38 1 .39 14 () 14 1 1* 2 i* 3 14 4 14 5 146 147 148 ) 49 150 151 110.0 110.0 110.0 110.0 1 10 . 0 1 1o . 0 110.0 1 1o . 0 110.U 1 1 0 . f) 1)0. 0 1 10.0 110.0 1 10.0 1Io. o 110.0 110. 1) 1 1o . 0 110.0 1 1u . 0 110.0 110.0 1)0.0 J 10.0 1 1o . o 110.0 1 10 . 0 110.0 110.0 110.0 1 1 0 . (> .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .020 .021 .021 .021 .022 .022 .022 .022 .023 .023 .023 .024 .024 .024 .025 .025 1. ^ 3 * 1.82b ) .8?* 1.821 1.8]/ 1 . « 13 1.HI 0 J . HOb 1.80* 1 . 799 1 . 79b 1.791 1.7 8 / ) - 78* 1 . 78u * 1 . 78 / 1 . 79 3 I .800 1 .MO t 1 .81 j 1.820 1.R2/ I . 83 J 1 .84U I .84/ 1.853 1.860 1 . M6 / 1. 8 7j 1 .880 1.88 / 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 152 15 3 110.0 110.0 110.0 110.0 110.0 1 10 . 0 110.0 11 o . o .025 .025 .026 .026 .026 .027 .027 .027 1/7* 2/74 3/7^ 1 b4 4/74 5/74 6/74 7/74 155 15 b 157 1 SM t 59 H /74 * a c t u a l C U P V F POINT (ALL O T H E R V A L U F S APE I N T E R P O L A T E D ) * 1.893 1.900 1.9 0 / 1.913 1.9*0 I .92/ 1.933 1 ,V4(\ * * f'MNSF WVA I f O'J A^F A 3 I • JPU f - N O U L : < (S-9) OATF. DA V CL 1 bO 161 162 16 3 164 16 5 16 b 110. 110. 110. 110. 110. 6 / 9/74 6/]0/74 6/1 1/74 6/12/74 6/13/74 6/1*/7 * 6 / 1S / 74 6/16/7* 6/17/74 6/18/7* 6/19/74 6/20/7* 6/21/7^ 6/22/7* 6/23/7* 6/?*/7 * 6/25/7* 6 / ? 6 / 7* 6/27/74 6 / 2 8 / 7* 6/29/7* 6/30/7* 1 72 1 7J t 74 1 7S 176 177 1 78 1 79 180 181 7/ J/ 7 * 7/ 2 /7 * 7/ 3/74 7/ * / 7 * 7/ 5 /7 * 7 / f t / 74 7/ 7/74 7/ 8/74 7/ 9/74 7/10/7* 7/11/74 7/12/7* 7/13/74 7/14/7* 7/1 S / 7 * 7/16/7* 7/ 1 7 /7 * 7/18/7* 7/19/7* 7/20/74 7/21/7* 7/22/7* 7/23/7* 7/?*/7* 7 / 2 * 5 / 7* 7/26/74 7/2 7/74 7/28/7* 7/29/7* 7/30/74 7/3 1/7* 182 183 184 18b 1 86 187 188 189 190 191 192 193 19 ^ 195 196 19 7 1 98 199 200 20 1 202 20 3 204 20b 206 20 7 208 209 210 211 212 167 I 68 1 69 1 70 171 (ALL no. 110. 0 o 0 0 0 0 (J 110. o no. 10 9 . u 9 109. 9 10 9 . 8 109. 7 10 9 . 7 109. 6 109. 5 10 9 . 5 109. * 10 9 . 3 109. J 10 9 . 2 109. 1 10 9 . 1 109. 0 108. 9 108. 9 10 8 . 8 10 8 . 7 ) Ott . 7 1 U8 . 6 1 0 8 . '5 10 8 . 5 108. 4 1 Od. 3 10 8 . 3 10 8 . 2 10 8 . 1 108. 1 10 8 . 0 10 7. 8 10 7. S 107. 3 107. 1 106. 9 106. 10 6 . 10 6 . 1 Ob. 105. 105. 105. 1 OS. 104. 6 <4 2 0 7 5 3 0 8 T-PO* T OT - N .028 .028 .028 .028 .029 .029 . 029 .030 .030 .031 .031 .032 . 0 33 . 0 33 .034 . 0 35 .035 .036 .037 .037 .038 .039 1.94 / 1 • 95 J 1.960 1 .967 1 . 97. 1 1 .980 1.9 8 / I • 99 J 2 . 0 0 0 <> 1 .991 1.981 1.97* 1.963 1.953 1.9 4 * 1.93b 1.92b 1-91b 1.90 7 1.89 7 1.888 1.879 «■ . 0 39 .040 .041 .041 .042 .043 .043 .044 .045 .045 .046 .047 .047 .048 .049 . 049 .050 * .050 .050 . 049 .049 .049 .049 .04 8 .048 .048 .048 .047 .047 .047 .047 * A C T U A L CUr->VF P O I N T o T H f P V A L U F S ARF I N T E R P O L A T E D ) 1.864 1 .860 1 .851 1.841 1.832 1.823 1.813 1.80* 1.79b 1 . 78b I .77b 1.76 7 I . 7b / 1. 7*m 1 .739 1 .729 1.720 « 1 .720 1.720 I .721 1 .721 I . 721 1 . 721 1.722 1 . 722 I . 72* I .72* 1.7 2 * 1.723 I .723 1.723 ' I'M " i f N v m |I il 11f\ t r 6/ i / m 6/ 2/lb 8 / 3/7'* 8/ 4 / 7 4 8/ b/7b 6 / b / 74 8/ 7 /7 4 8/ B/74 8/ 9/74 9 / J0/7 4 9/11/74 8 / 1? / 7 4 8 / 1 3/ lb 8/14/74 8 / l b / 74 8/)6/74 8/17/74 8 / I B/74 8/19/74 8 / ? 0 / 7b 8 / ? 1/74 8/??/74 8 / 2 3 / lb 8 / ?.b / lb 8 / 2 5 / 7b 9/?b/74 6 / 2 7 /lb 6/2.8/ 74 8 / ? 9 / 74 8 / 3 0 / 74 ►4/ < | / 74 9/ 9/ 9/ 4/ 9/ v/ 9/ 9/ 1/74 ?/74 3/74 a / 74 S/74 6/74 7/74 B/74 4 / 9/74 4 / 10 / 7 4 4 / 1 1/74 4/18/74 9/13/7'. 4 / 14 / 7 4 9 / 1b/74 9 / 1 b/74 9/17/74 V I8/74 9/19/74 4/20/74 9/21/74 4/??/74 DM ? 13 ?14 ? 1b ?16 ? 17 2 1M ? 19 22 V 22 1 ??? ??3 ?24 ??b ??6 22 7 226 229 2 30 23 1 232 ?3 3 ?34 / 3b ?36 237 236 /39 ?4 0 ?<+1 ?bp 7b ) ?‘ *b 7b^ 2bh 7b 7 ?4B 7b 9 / SO /SI I I -*MH.'t 1 ' CM * • A* A C t l l A L CIJPVF P O I N T U T M H v v/ A| IIF S A P F I N T E P P O L A T F O ) n f r\ filMSF | » V i\ I I <" I it-",! I —' " 1( I t DArr. iia r CL S t/^ 3 /7 4 86b 9 / 8 4 / 7 4 ?6 7 9 / 8 3 / 7 4 A ‘•'F- A J : 1 ( S - 9 ) T -P 0 4 roT-N 9 9 . 0 . 0 1 0 1 .6 4 U 9 9 . 0 . 0 1 0 1 . 6 4 0 868 9 9 . 0 . 0 1 0 1 . 6 4 0 9 / 8 6 / 7 4 86 9 9 9 . 0 . 0 1 0 1 . 64 0 9 / 8 87 0 9 9 . 0 . 0 1 0 1 . 6 4 0 9 / 8 B / 74 8 M 9 9 . 0 . 0 1 0 1 . 6 4 0 9 / 8 9 / 7 * * ?78 9 9 . 0 . 0 1 0 1 . 6 4 0 9 / 3 0 / 7 4 87 3 9 9 . 0 . 0 1 0 * 1 .6 4 0 * * 1 * 6 6 0 ■ ** 7/7** 1 0 / 1 / 7 4 2 7. 4 9 9 . 0 . 0 2 0 1 0 / 2 / 7 4 2 7 3 9 9 . 0 . 0 2 0 1 .6 6 0 «6 6 0 1 0 / 3 / 7 4 8 76 9 9 . 0 . 0 2 0 1 1 0 / 4 / 7 4 ? 9 9 . 0 . 0 2 0 1 . 6 6 0 1 0 / S / 7 4 ?7M 9 9 . 0 . 0 2 0 1 . 6 6 0 1 0 / 6 / 7 4 ^ 7 9 9 9 . 0 . 0 8 0 1 . 6 6 0 1 0 / 7 / 7 4 280 9 9 . 0 . 0 8 0 I. 6 1 0 / B / 7 4 881 9 9 . 0 . 0 8 0 1 . 6 6 0 1 0 / 9 / 7 4 8 B8 9 9 . 0 .0 8 0 1 1 0 / 1 0 / 7 4 8 8 3 9 9 . 0 . 0 8 0 1 .6 6 0 1 0 /1 1/7** ^B4 9 9 . 0 . 0 8 0 1 .6 6 0 1 0 / 1 8 / 7 4 2 8 3 9 9 . 0 . 0 8 0 1 . 6 6 0 7 7 6 0 .6 6 0 .6 1 0 / 1 3 / 7 4 8 8 6 9 9 . 0 . 0 2 0 1 1 0 / 1 4 / 7 4 88 7 9 9 . 0 . 0 2 0 1 . 6 6 0 1 .6 6 0 6 0 1 0 / 1 3 / 7 4 8 BB 9 9 . 0 . 0 2 0 1 0 / 1 6 / 7 4 2 8 9 9 9 . 0 . 0 2 0 1 .6 6 0 1 0 / ) 7 / 7 4 290 99 . 0 . 0 8 0 1 . 6 6 0 1 0 / 1 8 / 7 4 891 9 9 . 0 . 0 8 0 1 . 6 6 0 10 / 1 9 / 7 ' . ?98 9 9 . 0 . 0 2 0 1 .6 6 0 1 0 /8 0 /7 * + 8 9 3 9 9 . 0 . 0 8 0 1 .6 6 0 1 0 / 2 1 / 7 4 ^ 94 9 9 . 0 . 0 8 0 1 10 / 8 8 / 7 * . 8 9 3 9 9 . 0 . 0 8 0 1 1 0 / 2 3 / 7 4 89<> 9 9 . 0 . 0 8 0 1 10 / 8 4 / 7 4 ?9 7 9 9 . 0 . 0 8 0 1 . 6 6 0 10 / 8 3 / 7 4 8 9 8 9 9 . 0 . 0 8 0 1 .6 6 0 .660 .660 .660 10 / 8 6 / 7 4 8 9 9 9 9 . 0 .0 8 0 1 .6 6 0 1 0 / 8 7 / 7 4 30 0 9 9 . 0 . 0 8 0 1 . 6 6 0 1 0 / 8 B / 74 40 1 . 0 8 0 1 . 6 6 0 10 lO^ 9 9 . () 99.0 . 0 8 0 1 . 6 6 0 10 / 3 0 / 7 4 10 1 9 9 . 0 . 0 8 0 1 .6 6 0 1 0 / 3 1/7/4 U>4 9 9 * 0 .0 8 0 1 .6 6 o / ^ 9 / 7' * .680 1 1 / 1/7** 40 3 100 .3 . 0 8 0 1 1 1 / 8/7'+ <0 J 0 8 . . 0 8 0 1 . 7 1 ^ 1 1 / (7 1 3 / 7 4 30 7 10 3 . 6 . 0 8 0 1 . 736 1 1 / 4 / 7 4 JOH 10 3 . ? . 0 2 0 1 . 7 6 b 1 1 / 5 / 7 4 30 9 1 0 6 . 7 . 0 2 0 1 . 791 1 1 / 6 / 7 4 310 1 0 8 . 8 . 0 8 0 1 . 8 1 7 1 1 / 7 / 7 4 31 1 ) 0 9 . 8 . 0 8 0 1 • 84 J 1 1 / B / 7 4 ;? 1 8 1 1 1 . 3 . 0 8 0 1 . 8 6 9 1 1 / '->/ 31 1 1 2 . 8 . 0 8 0 1 1 1 /1 0/7** 314 1 1 4 . 4 .0 8 0 1 .9 8 ^ 1 1 / 1 1 / 7 ' * US 1 1 3 . 9 . 0 8 0 1 . 9<+b 1 1 / 1 8 / 7 '+ 316 1 1 7 . 3 1 1 /1 4 I 7 1 1 9 . 0 11B 1 1 8 . 6 74 3/7'+ 1 1 / 14 / 74 ( ALI 1 . 0 8 0 » . 0 8 0 * .8 9 b 1 .97*+ * . 0 8 0 n A f j U A L CIJUVF POI NT OTMt u VAI . UF5 APP I f ' T E P P OL M F f l ) 8 . 0 0 0 1 .990 « v_i r»'t *>r v' v i\ t M 'N A»< F A T iII M » - »ul + : DA f f DA t Cl 1 1 / 1 5 / 7 4 319 1 I B . 8 11 11/ ? 5 / 7 4 1 1 / 8 6 / 74 1 1/ ? 7 / 7 4 11/ 8 B / 7 4 1.1/89/74 1 1 / JO/7« 180 381 388 18.3 J84 <85 38s 32 7 388 38V 3 JO 1 11 1 1/ 1 11 J I'l 18/ 18/ 18/ 18/ 18/ 18/ / 1 6 / 7 4 / ^ ) T -P 0 4 TOT-IS) . 0 1 9 1 . 9 7 9 . 1 1 7 . H . 0 1 9 1 1 1 7 . 4 . 0 1 9 1 . 9 5 9 1 1 7 . 0 . 0 1 8 1 . 9 4 8 1 1 6 . 6 . 0 1 8 1 1 1 6 . 8 . 0 18 I .928 1 1 5 . R . 0 1 8 1 . 9 1 e llb o 115.1 114.3 113.9 113.5 113.1 112.7 11 8 . 3 .017 .017 .017 - 0 16 . 0 1B .016 .013 . 0 13 .013 1.907 1.89 7 1.88 7 1 . 8 76 1.866 1.856 1.845 1 . 8 35 1 .B8S 5/74 B/74 3 J5 1 IB 137 33 b 339 <4 0 111.9 1 11.3 111.1 110.7 110.3 109.9 .015 .01^ .014 .014 .013 .013 1.81b 1 .P0« 1 . 79<4 1 . 784 1. 77j 1 . 763 1 8 / 7 / 7 4 34 1 10 9 . 5 . 0 1 3 1 . 7 5 3 1 8 / B/74 3 4 / 1 0 9 .8 . 0 1 8 1 1 8 / 9 / 7 4 34 J 10 B . B . 0 1 8 1 . 7 3c.’ 1 8 / 1 0 / 7 4 /74 34 143 1 8 / 1 8 / 7 4 /I 7/7A 1 / 1 8 / 7 4 1 / 1 S>/ 7 4 1 1 1 1 11 / 2 0 / 7 4 ) 1 / 8 1 / 74 11/28/74 1J/?3/74 I j Z 8 4 / 7 4 1/74 ?/74 3/74 4 / 7 4 1 1 4 . 7 9 b 9 38 .74 / 1 0 8 . 4 . 0 1 8 1. 1 OB . 0 .0 1 . 7 ){** 10 7 . 6 .0 1 1 18/13/74 34 7 1U 7 . 8 .0 1 1 1 . 6 9 1 1 8 / 1 4 / 7 4 J/ 4 M 1 Ob. H .o n 1 . 68 j 1 .670 1 8 / 1 1 1 8 / I S / 74 1 8 / 1 6 / 7 4 18/17/74 18/18/74 18/19/74 18/80/74 18/81/74 18/88/74 1 8 / 8 3 / 74 1 8 / 8 4 / 7 4 18/85/74 )8 / 8 6 / 7 4 1 8 / 8 7 / 7 4 18/8B/74 1 8 / 8 4 / 7/+ 18/30/74 18/31/74 34 ^ 35 0 351 358 353 3 34 355 1S6 157 J5B 359 36 0 16 I 3*8 36 3 36 4 36 S 1Ob.u 18 10 6 . 4 .010 .0 10 .010 .010 106.6 10 6 .H .010 .010 107.0 . 0 10 10 7 . 8 107.4 .010 .010 10 7 . 6 . 0 10 1Q 7.B .010 .010 .010 .010 .010 .010 . 0 10 106.0 106.8 » 10 8 . 0 I 08.8 10 B . 4 1U8.6 1 08 . 8 109.0 - 164 - *! 7 8 / 1c 1.701 <► 1 1 1 1 1 .660 . 68 .69c 1 . 7 0u 1 . 7 0 <-» 1.716 1 . 78'* 1 . 7 3 / . 740 1 . 74 « 1 . 75b 1 . 76 4 1 1 - 7 7 ^ 1 . 7B u n CONSf H V M ! r |P ! i OATF 1/ 1/74 1/ 2 /7 4 1/ 3 /7 4 1/ 4 /7 4 1 / '> / 74 1/ H/74 1/ 7/74 1/ 8 / 7 4 ) / 9/74 1/10/74 1/ I 1 / 7 4 1/12/74 1 / ) 3/74 1/14/74 1/1 S / 7 4 1/ 1 6 / 7 4 1/17/74 1/18/74 1/19/74 1 / -111 A t. F - T- P 0 4 TUT- N .010 100.0 10U.0 l 00.0 100.0 100.0 100.0 100.0 10 0 . 0 10 0 . 0 100.0 10 0 . 0 100.0 100.0 100.0 10 0 . 0 * 10 1 . 7 103.3 10 3 . 0 10 6 . 7 10 6 . 3 110.0 111.7 113.3 1)3.0 116.7 1IB. 3 120.U * 120.0 120.0 « .010 .010 .010 .010 .010 .010 .010 . 0 10 .010 .010 .010 .010 .010 .010 .010 .010 * .010 .010 .010 .010 .010 .010 .010 .010 .010 . 0 10 .010 .010 * .011 . 0 11 2.620 2.61 1 2.602 2.59J 2 • 3 H14 2.373 2.56b 2.557 2.549 2.540 2 . 5 31 2.522 2 .51 j 2.^04 2.49b 2.48b 2.47 7 2.46a 2.459 2.450 2.441 120.0 120.0 120.0 120.0 12 0 . 0 12 0 . 0 1 2 1) . u 12 0 . u 120 . 0 120. 0 12 0 . 0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 .012 .013 .013 . 0 14 .013 .013 . 0 16 .017 .017 .018 .019 .019 .020 . 0 20 .020 .020 .020 .020 .020 .020 .020 .020 2.332 2 . 346 2 . 34 0 2.334 2 . 32o 2.322 2 . 3 1 e> 2.310 2.304 2 . 2 9 1? 2.292 2.28b 2.280 2.272 2.26b 2.23 7 2.230 2 • ?4^ 2.234 2.22 7 2.219 2.212 100.0 100,u 4 S 27 ( ALL T - N L M j E. * At i uAt. CU^Vf- POI NT v| lit-S A,JF I M Tt WPOL A 7 F f l ) 2.432 2.424 2.41b 2 . 4 06 2-39 7 2.36b 2 . 3 79 2 . 3 7o 2 . 364 2.330 Ot K' SLPVAT I Of I APT A 3 i " H - iiint. DATE 2/23/74 ? / ?Ia / 74 2 / 2 5 / 74 2/26/74 2/27/74 2/28/74 3 / 1/74 3/ 2/74 3/ 3/74 3/ A/74 3 / 5/74 3/ b/74 3 / 7/74 3 / H/74 3/ 9/74 3/10/74 3/11/74 3/12/74 3/13/74 3/14/74 3/15/74 3 / 1 6 / 74 3/17/74 3/18/74 3/19/74 3/20/74 3/21/74 3 / 2 2 / 7*. 3/23/74 3 / 2 4 / 7'* 3/25/74 3/26/74 3/27/74 3/28/74 3/29/74 3/30/74 3/31/74 4 / 1/74 4 / 2/74 4 / 3/74 /4 / A / 7 4 4 / 5/74 4 / 6/74 4 / 7/74 4 / B/74 4 / 9/74 4/10/74 4/1 1/74 4/12/74 4/1 3/74 4/14/74 4/15/74 4 / | * / 74 1) A 1 : CL - -11) CL HAY OATF T 0 T -N T -P 0 4 4 / ) 7 /7 4 107 1 2 0 . 0 4 / 1 8 / 7 4 108 1 2 0 . 2 . 0 2 0 1 . 9 8 M / J <-1/ 1 09 1 2 0 . 4 .0 2 1 1 . 9 7 4 1 10 12 0 . 5 JU 4 / 2 0 / 7 4 * . 0 2 0 « 1 . 4 9 u d .0 2 1 1 . 9 6 5 1 1 I 12 0 . 7 .0 2 1 1 .9 5 7 1 12 12 0 . v . 0 2 2 1 • 4 / 2 3 / 7 4 1 1 3 1 2 1 .1 . 0 2 2 1 .9 4 1 4 / 2 4 / 7 4 1 1m 121 . 3 . 0 2 3 1 . 9 3 2 4 / 2 5 / 7 4 1 IS 121 .4 . 0 2 3 1 .9 2 4 4 / ? 6 / 74 1 16 1 2 1 . 6 . 0 2 3 1 . 9 1 6 4 / ? 7 / 7 4 1 1 7 121 .8 . 0 2 4 1 . 9 0 8 4 / 2 8 / 7 4 1 IB 12 2 . 0 . 0 2 4 1 .9 0 0 4 / 2 9 / 1 1^ 1 2 2 . . 0 2 4 1 .8 9 1 1 2 2 . 3 . 0 2 5 I . 8 8 3 . 0 2 5 1 . 8 7 b . 0 2 5 1 . 8 6 7 4 / 2 1 / 7 4 74 4 / 3 0 / 7 4 120 ’ 1 5 / 1 / 7 4 121 12 2 . 5 5 / 2 / 7 4 12? 1 2 2 . 5 / 3 / 7 4 123 1 2 ^ . 4 . 0 2 6 1 . 8 5 9 3 / 4 / 7 4 12 1 2 3 . 0 . 0 2 6 I .8 3 0 . 0 2 6 1 .84c? m 5 / S / 7 125 12 3 , ? 5 / 6 / 7 4 126 12 3 5 / 7 / 7 4 12 7 m 7 .*4 7 1 .83*4 1 2 3 . 6 . 0 2 7 1 .8 2 6 . 0 2 5 / 8 / 7 4 I2B 1 2 3 . 8 . 0 2 8 1 . 8 1 8 5 / 9 / 7 4 129 1 2 3 . 9 . 0 2 8 1 . 8 0 9 5 / 1 0 / 7 4 130 1 2 4 .1 . 0 2 8 1 . 8 0 1 5 / 1 1 /7 4 13 1 12*4.3 .0 29 1. 7 9 J S / 1 2 / 7 4 132 1 2 4 . 5 . 0 2 9 1 . 7bb 5 / 1 3 / 7 4 13 f 12 4 . 6 . 0 2 9 1 . 7 7 b 5/ 4 / 74 1 3** 12 4 . 8 . 0 3 0 5 / I S / 7^ 1 35 1 2 S .U I / «■ .0 30 1. 7*8 * 1 . 760 5 / 1 6 / 7 M 136 1 2 5 . 0 .0 3 1 1. 79 5 / 1 7 / 7 4 1 37 1 2 5 . 0 .0 3 1 1 . 8 2 8 m 5 / 1 8 / 7 4 1 38 1 2 5 . 0 . 0 3 2 1 • 86c: b / 1 9 / 7 4 139 12 5 . 0 . 0 3 2 1 . 8 9 b 5 / 2 0 / 7 4 140 I 2 5 . 0 . 0 3 3 1 . 9 3 0 5 / 2 1 141 12 5 . 0 . 0 3 4 1 . 9 6 142 12 5 . 0 . 0 3 4 I . 9 9 8 / 7*4 5 / 2 2 / 7 ^ m 5 / 2 3 / 7 4 14 .0 35 2.03c! 1 3 uu 125.1* 5 / 2 4 / 7 4 12 5 . 0 . 0 3 5 2 . 0 6 b 5 / 2 5 / 7 4 14 5 12 5 . 0 .0 36 2 . 0 9 9 5 / 2 6 / 7 4 14 h 12 5 . 0 . 0 3 7 2 . 13 J 5 / 2 7 / 7 4 1 4 / 1 2 b . 0 . 0 3 7 2 . 1 6 7 5 / 2 8 / 7 4 14 8 12 5 . 0 . 0 3 8 2 . 2 0 1 5 / 2 9 / 74 J *44 12 3 . U . 0 3 8 2 . 2 3 b 5 / 3 0 / 74 ISO 12 3 . 0 .0 39 2 • 2 6 9 5 / 3 1 / 7 •+ 1s 1 1 2 3 . 0 . 0 4 0 2 . 3 0 3 152 1 2 3 .0 . 0 4 0 2 . 3 3 / 1 2 3 . 0 . 0 4 1 2 . 3 7 1 6 / 1/7*4 6 / 2 / 7 4 153 6 / 3 / 7 4 154 12 3 . 0 . 0 4 2 2 . 4 0 b 6 / 4 /7 M 13 5 12 b . 0 . 0 4 2 2 . 4 3 ^ . 6 / 5/7*4 1 6*' 12 5 . 0 .0 M 3 2 . 4 7J 6 / 6 / 7 4 IS 7 1 2 5 . 0 . 0 4 3 2 . 5 0 6 / 7/7*4 158 12 5 . 0 . 0 4 4 2 . 5 4 1 6 / 8 / 7 4 154 12 5 . 0 . 0 4 5 2 . 5 7 b (a l l * A C T U A L CUPVI- P O I N T OTHt-P V A L U E S APE I N T E R P O L A T E D I 7 CONSERVATION ape a 3 1N l,UT - N O D E : 8 (5-1 I ) DA r CL 6 / 9 / jU 6 / 1 0 / 7** 6 / 1 1 / 7** 6 / 1 ? / 7'* 6/13/74 <■ 20 3 2 0'* 20b 20 b 20 7 208 209 210 21 1 212 125. 125. 125. 125. 125. 125. 125. 125. 125. 125. 125. 125. 125. 125. 12 5 . 125. 12b. 12b. 125. 12b. 12b. 126. 127. 127. 127. 128. 128. 128. 129. 129. 12 9 . 0 A 1E T-P04 T OT — w 0 0 0 0 0 u 0 0 0 0 0 0 0 0 I) 0 .045 .046 .046 .047 .048 .048 .049 .049 .050 .051 .052 .053 .054 .055 .056 .057 .058 .059 .060 .061 .062 .063 2.60b 2 .642 2.67b 2.710 2 • 74*+ 2.77h 2.81^ 2 • 8 4 t> 2.880 « 2.857 2.833 2.812 2 . 789 2 . 767 2 . 74** 2 . 721 2 .699 2.67b 2 * 65 j 2 . M3 1 2.60 b 2.5«b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 0 3 7 0 3 7 0 3 7 0 3 7 .064 .065 .066 .067 .068 .069 .070 .071 .072 .073 .074 .075 .076 .077 .078 .079 .080 .076 .071 .067 • 0b3 .059 .054 .050 .046 .042 .037 .033 .029 .025 .020 0 0 0 0 0 0 * * * A C T U A L CURVf P O I N T (ALL O T H K P V A L U E S APE I N T E R P O L A T E D ) 2.563 2 »5** 0 2.51 7 2.495 2.47^ 2.449 2.42 7 ? . 4 0<+ 2 . 381 2.359 2.33b 2.313 2.291 2 • 26b 2 . 24b 2.223 2.200 * 2 . 18b 2 . 1 71 2 . 156 2.141 2 . 12 7 2 . 1 12 2.097 2.083 2.06b 2.053 2 . 0 39 2.024 2.009 1.99b f . MMSfTPV A T I OH ?1IPI IT - NOOK OATF UA r : C APFA B 1 ( S- 1 1 ) T-P04 TUT-h 1.980 * 1.980 1 .980 1 .980 1.980 1.980 1.980 1.980 1.980 1.980 1.980 1 .980 1.980 1.98 0 1.980 1.980 1 .980 1.980 1.980 1.980 1.980 I .980 1.980 1.980 1.980 1.980 1.980 1.4«u 1.980 1.980 1 . 9 8 0 <> 8 / 1/74 8 / 2/74 8 / 3/74 8 / 4/74 8 / 5/ 7<* 8 / 6/74 8 / 7/74 8 / 8/74 8 / 9/74 8/10/74 8/11/74 8 / 1 2 / 7<4 8/13/74 8/14/74 8/15/74 8/16/74 8/17/74 8/18/74 8/19/74 8/20/74 8/21/74 8/22/74 8/23/74 8/24/74 8/25/74 8/26/74 8/27/74 8/28/74 8/29/74 8/30/74 8/31/74 ?1 3 21 + 215 216 ?1 7 ? 18 219 220 221 222 22 3 224 225 22m 22 7 22* 224 2 30 231 2 32 2 33 2 34 2 35 23M 2 37 ?38 2 39 24 0 241 24? ?4 3 1 30 130 1 30 130 1 30 130 130 130 130 130 1 30 130 130 1 30 130 130 130 130 130 130 130 130 130 1 30 130 130 1 30 130 130 130 130 (J 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .016 .016 .016 .016 .01* .016 .016 .016 .016 .016 .016 .016 .016 .016 . 0 16 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 .016 . 0 18 9 / 1/74 9 / 2/7^ 9/ 3/74 9 / 4/74 9/ 5/74 9 / 6/74 9 / 7/74 9/ 8/74 9 / 9/74 9/10/74 9/1 1/74 9/12/74 9/13/74 9/14/74 9/15/74 9/16/74 9/17/74 9/18/74 9 / 1 9/ 7<* 9/20/74 9/21/74 9/22/74 24** 245 246 24 7 248 24 9 250 251 ?52 253 25** 25b 256 25 7 258 259 260 261 262 263 ?64 265 130 130 130 131 131 131 131 1 32 1 32 132 1 33 133 133 133 1 34 134 134 135 1 35 135 1 35 135 3 6 8 1 4 7 9 2 5 8 1 3 .020 .021 .023 .025 .027 . 029 .030 .032 .034 .036 .037 .039 .041 .043 .045 .046 .048 .050 .050 .050 .050 .050 (A|J. 6 9 2 4 7 0 0 0 0 0 * ACTUAL CURVE POINT v a l u e s APE T N T E P P O L othfp a * 2.02d 2.063 2.10b 2.147 2 . 188 2.23o 2.27? 2.313 2.35b 2.39 7 2.43b 2.480 2.522 2.563 2.605 2.64 7 •a Tp n ) 2.688 2.730 2.730 2 . 730 2.730 2.730 * r u j n s *- w v f l i i nw a we A 3 r ' l PHT- MOl j E : ' (5-11) OA 1F. 9 / 2 3 / 7* 9/24/74 9/25/74 9/26/74 9/27/74 9/2H/74 > / 2 4 / 7<4 9/30/74 10/ 1/74 10/ 2/74 10/ 3/74 10/ 4/74 10/ 5/74 10/ 6/74 10/ 7/74 10/ 8/74 10/ 9/74 10/10/74 io/i i nu 10/12/74 10/13/74 10/14/74 10/15/74 10/)6/74 10/17/74 10/18/74 10/19/74 10/20/74 10/21/74 1 0 / 2 £ / /<♦ 10/23/74 ] 0/24/74 1 0/25/74 1 0/26/74 10/27/74 10/28/74 10 / 2 9 / 7 4 10/30/74 10/31/7" 11/ 1/74 1 1 / 2 / 74 11/ 3/74 11/ 4 / 7 4 11/ 5/74 11/ 6 /7 4 11/ 7/74 11/ 8/74 11/ 9/74 11/10/74 11/11 /7 4 11/12/74 11/13/74 1 1 / 1 4 / 7 4 OA Y CL 266 267 26>< 269 2 70 27 1 ? 72 27J 2 7u 2 75 27m 27 7 2 7H 2 74 ?H0 28 1 28? 2*3 2Ha 285 2 hm 2H 7 2H8 2H9 290 24 1 T-P04 TOT- N 135.0 135.0 135.0 135.0 13 5 . 0 135.0 13 5 . 0 13 5 . 0 .050 .050 .050 .050 .050 .050 .050 .050 2.730 2.730 2.730 2.730 2 . 730 2.730 2.730 2.730 135.0 135.0 135.0 1 35.0 135.0 135.0 1 35. 0 135.0 135.0 135.0 135.0 13 5 . 0 135.0 135.0 135.0 13 5 . 0 1 35.0 13 5 . P 135.0 135.0 13 5 . 0 13 5 . 0 135.0 135.0 1 35.0 135.0 135.0 13 5 .0 135.0 135.0 135.0 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 2.730 2 . 730 2.730 2 . 7 30 2 . 730 2 . 730 2 . 730 2.730 2.730 2.730 2 .730 2.730 2.730 2.730 2.730 2.730 2.730 2.730 2.730 2 . 730 2.730 2.730 2 . 730 2.730 2.73U 2.730 2.73U 2.730 2 . 73u 2.730 2.73o 30 7 13 5 . 0 I 35.0 I 35.0 10 8 1 3 5 . 0 .050 .050 .050 .050 .050 .050 .050 .050 .050 .05 0 .050 .050 .050 . 050 2.730 2.730 2 . 730 2 . 73u 2 . 730 2 . 730 2 . 7 30 2 . 7 30 2 . 730 2 . 730 2.73 0 2 . 7 30 2 . 7 .3u 2 . 7 30 2 4 2 24 3 244 29 M 297 24r< ? 49 100 4U 1 *02 10 3 Ml 4 30 b 30M 104 n o 31 I 312 3 13 3 1 «* J 15 3 1M 3 1 1 3 1M 13 b . 0 J35.0 13 b . 0 13 5 . 0 135.0 135.0 1 35.0 13 5 . 0 13 5 . 0 135.0 » A C T U A L C U P VF P O I N T (ALL 0 7 H E P V A L U E S APE I N T E R P O L A T E D K V « » I U'N « w t « J ! i I P ( •I - M o l ’ h : 8 Q 1 ( 3 1 ) * 0 22 ((331D) ** Q 3 ( l3 1l)) * Q 44 ( 331D )** 0*5 O S (C33 1 )> ** 0 6 ( 3 1 ) .* 0 7 ( 3 1 ) Q 8 ( 31 ) * Q0 *9 9 ((3311)) ** D E P t H SS((;?? 0 ) *. R AA I NN ( 92 0 ))•• A R EE AA ( 2 0 ))** Q I N ( 2 0 ) 0 X (3 1 ) * S A v C Q N ( 2 0 ) , D F I T t ( 3 ) * N O R A I N ( 2 ) R C O N (3) NSKIP(20), TS K I P 1(9)* ISKIP2(9), t SKIP3(9) R E A P IN C O N S E R V A T I O N A R E A S READ (60*1) NCA* LOOP* N O R A I m WRIte (6i,p NCA* LOOP* N O R A I n F O R M A T ( 1 8 X * A 2 , X , 1 2 * X * 2A/+) NUP = 1 I N I T = i d n »<>« RFAO CALL CALL o r> NL, be N G E T ( M C A , 1 , 1 ) LN8D = NLINKS(NL) w*# R F A O IN P A R A M E T E R NjODFS R F A O (60,2) ISKIP, N S K I P W R I T E (61.2) ISKIP, NSKIP o d no 2 IN O A T E S O F R p P O R T READ (lDATpS.l ,20,NER) PRINT (I D A t E S , 1 * 2 0 , N E R ) format <2113) PREPARE DATES CALL TIME *** RFAO IN LINK F q R DATA PRINT FORMAT (LENGTH, BE^IN-JUNCTION, FND-JUNCTION) m s f o p t R a n ( 4 . 3 ) / m s o s 0 ? / 2 8 / 7 7 5 . 1 HAG RFAO ( 1 ) L I N K S WRI TE < 6 l * 3 > L I N K S ** FORMAT ( 6 X , 12) 1 1 REAH I N NUMBER oF READ ( 1 ) I N L E T S 1? FORMAT ( 1 3 X f I T ) rt rt rt rt 00 TO I = I » L I N K S READ ( l ) L , L F N G T W ( L ) , L B E G ( L ) , L e N D ( L ) WRI TE ( M » 5 ) L« LENGTH ( L ) » L 9 e G ( L ) , L E N D ( L ) 5 FORMAT ( 5 X , I ? , 3 * , 3 1 5 ) 10 c o n t i n u e rt rt m a ll I NPUT NODES FOR T H I S AREA DATA F I L E S ? 1 4 5 6 7 A READ I N NEW CHEMI CAL PARAMETEo AND DECAY C O F F F I C I E N T READ ( 6 0 , 2 0 ) KN a ME, DECAY FORMAT ( ? A 4 » F 7 , 2 ) IF ( E O F C K F { 6 0 ) . E Q . 1) GO TO * 0 0 rt 20 REWTND REWTND REWTND REWTND RFWTND REWTND REWTND REWTND INLFT *** (K N A M E (1) , E O . ( K N A M E (1) . E Q . (KNAME(l) .EQ. READ I N I N I T I A L • RF a D ( 9 ) CON 21 FORMAT ( 8 F 1 0 ■ 3 ) rt ~> rt rt IF IF IF 4HT-P0) NCHf M 4HCL )N C H f M 4 H T 0 T A ) NCH e M TOTAL = 1 = ? = 3 CONCENTRATI ON CO N D I T I O N S 2? MO = IMOB I Y R = I YRB DAY = 0 . MO1 = MO - 1 DO ? 2 I = 1 » MO I day = day + k d a y S(T ) CONTI NUE 27 READ i n RANGF. - L i MT t S FOR q u i c k A N A L Y S I S o f READ ( 6 0 , 2 7 ) (RGMTN(I), RGMAX(I), T = 1,4) FORMAT ( 8 F 1 0 . 4 ) rt rt rt dd READ TN CHEMI CAL CONCENTRATION! CURVES FOR do * 0 N = 1 * I N L F T S - 175 T o RI NTOUT I NODES TO DI SOLVEO n 25 I F T - P O 4 OR T O T - N , CONVERT TOTAL CONCENTRATI ONS I F (NCHEM , N E , ?) T A L L DSOLV ( C O N , N C H E M , 1 ) WRI TE ( 6 1 . 2 5 ) (CO N(I), I a 1,?0) FORMAT ( / / / (10F13.S)) AT ALL n LE-T-NODES VALUE MSFOPTRAN 30 (4.3) / M 5OS READ ( 1 ) N O D E ( N ) , FORMAT ( 4 * t 2 1 3 ) MMPTS = N F T S ( N ) OP/28/77 5.1 NPTS(N) C GO TO (31, 32, 33, 34, 35, 36 , 37, 38, 39), N c 31 RFAO ( 1 ) ( CHEMl ( 1 , 1 ) , CHEM1 (2 . I ) * I s 1 , NNP TS) CALL CONVERT ( C w E M i , N N P T S ) I F (NCHFM , N E . ?) CALL OSOLV ( CHEM 1 , NCHEm, 2 ) WPI TE ( 6 1 , 2 5 ) ( CH E M1 ( 2 , 1 ) * I = 1 , N N P T S ) GO TO 60 3 2 RFAO ( 1 ) ( C H E M 2 ( l * r ) * CHEM2 ( 2 , 1 ) * I = 1 * NN P t S) CALL CONVERT ( Ch EMP, NN PT S) I F (NCHFM . N E . ?) CALL OSOLV ( CHEM2 * NCHEM* 2 ) WPI TE ( 6 1 , 2 5 ) ( C H F M 2 ( 2 , I ) , I s 1 , NNP T S ) GO t o 6 n 3 3 RFAO ( 1 ) ( C H E M 3 ( 1 , t ) , CHEM3 (2 , I ) * I a 1 * NNPTS) CALL CONVERT ( C m E M! » N N P T S ) I F (NCHFM , N E . ?) CALL OSOLV ( C H E M 3 , N C H E M , 2 ) WRI TE ( 6 1 * 2 5 ) ( C H E M 3 (2 * I) , I = l.NNPTS) GO TO 6 0 3 4 RFAO ( 1 ) { CH E M4 ( 1 , 1 ) , CHEM4( 2 , I ) , I = 1 , NNPTS) C a L L CONVERT ( ChEM 4 , NNPTS> I F (NCHFM , ME. 2) CALL DSOLV ( C H E M 4 , N C H E M , 2 ) WRI TE ( 6 1 , 2 5 ) ( C H E M 4 ( 2 * I ) * I = 1 , NNPT S ) GO TO 60 3 5 REAP ( 1 ) ( CH E M5 ( 1 , 1 ) , CHEM5( 2 , I ) * I = 1 * NN P t S) CALL CONVERT ( C h E M ^ , N N P T S ) I F (NCHFM , N E . 2) CALL OSOLV ( CHE MS * NCHEM, 2 ) WRI TE ( 6 1 , 2 5 ) ( CHEM5 ( 2 * 1 ) * I = 1 * NN PT S ) GO TO 60 3 * RFAO ( 1 ) ( C H E M * ( l . T ) » CHEM6( 2 . I ) * I = 1 * NNPTS) CALL CONVERT ( C m E M * , N N P T S ) I F (NCHEM . N E . 2) CALL OSOLV ( CHE Mf , , N CHE M, 2 ) WRI TE ( 6 1 * 2 5 ) ( CHFM6 ( 2 * 1 ) * I = 1 * NNPT S) GO TO 6 n 3 7 PEAO ( 1 ) ( C H E M 7 ( 1 # D » CHEM7 ( 2 . I ) * I = 1 * NNPTS) CALL CONVERT ( CHEM7 * NNPTS) I F (NCHFM , N E • ?) CALL DSOLV ( CHE M7 , NCHEM, 2 > WPlTf (6 1*25) ( CH E M7 ( 2 * 1 ) * I = 1 , NNPTS) GO t o 6 fl 3 8 r FAD ( 1 ) ( C H E M R ( 1 , t ) , CHEM8( 2 . 1 ) , I * 1 , NNPTS) CALL CONVERT ( CHEMp * NNPTS) I F (NCHFM . N E , 3) CALL DSOLV ( CHEMf l * NCHEM* 2) WRI TE ( 6 1 , 2 5 ) ( C H F m B ( ? , I ) , I = 1 * NN PT S ) GO T 0 6 r> 3 0 RE AO ( 1 ) ( C H E M P ( 1 , j ) , CHF.M9(2 . 1 ) , I = 1 * NN P T S ) CALL CONVERT ( Ch E MQ, NNP TS) I F (NCHFM . N E . 3>) CALL OSOLV ( C H E M q , N C H E M , 2 ) WRI TE ( 6 1 * 2 5 ) ( C H F M 9 ( 2 * I ) » I = 1 * NNPTS) C 40 60 r c FORMAT ( 8 F 1 0 • 4 ) CONTI NUE <><># RFAO RFAO TN AREAS F q W ALL NODES (4) (AREA( I ) , I s 1 , 2 0 ) - 176 - H AGE MSFORjRAN U.3) / MSOS 5.] DO 7 0 I = 1 , 2 0 Apt A ( I ) s AKEA(x) SA VrOM (D = 0.0 QTN ( I J s 0 . 0 7 o CONTI NUE # 02/28/77 l o #w6 C C ■»*# STAPT NEW PAGE FOP EACH MONTH 90 CALL HEAONG K * 1 C CRFAD I N L E T - N O D E DI SCHARGES FQ r ENTTRE MONTH RFAD ( 2 ) NDAY, I NODES DO 1 0 0 I a I f I NODES RFAn (?) NNODE GO TO ( 9 1 . 9 2 , q 3 , 94» 9 S , 9 6 , 9 7 , 9 8 , 9 9 ) , I C 91 READ ( 2 ) ( 0 1 ( N ) , N = 1 * NOA Y ) N O DF ( 1 ) a NNODE GO TO 100 9 ? R e a d ( 2 ) ( Q 2 ( N ) , N = 1 * NDAY) NO O F ( ? ) a NNOOF GO TO l n o 9 3 I F ( NL . E Q , 2) GO TO 91 READ ( ? ) ( Q 3 ( N ) , N ■ 1, , ND A Y ) NODF ( 3 ) = NNOOE GO TO l o O 94 RFAD ( 2 ) ( Q 4 ( N ) , N a I , NDAY) NODF( 4 ) a NNODE GO TO l n o 9 5 READ ( 2 ) ( Q b ( N ) , N a i , N D A Y ) N O D F ( ^ ) = NNODE GO TO I nO 9 * REAn ( 2 ) ( Q6 ( N ) , N a 1 , NDAY) NODF- ( 6 ) a NNODE GO TO 100 97 Read ( 2 ) ( 0 7 ( N ) , n a i , n d a y ) NOOF (7) a NNODE GO TO l o o 9R READ ( 2 ) ( 0 8 ( N ) , N a 1 , NDAY) NOOF( R) a NNODE GO TO 100 99 READ ( 2 ) ( Q9 ( N ) , N a ] , NDAY) NOOF( P) a NNODE 100 CONTI NUE C C READ I N E X I T - N O n E DI SCHARGE FoR E N T I R E MONTH I F f NL . N E . 1) READ ( 6 ) ( Q X ( I ) * I a 1 , NDAY) 61 FORMAT < 1 4 X i l 0 F 6 . 0 , / 1 4 X , 1 0 F * . 0 » / 1 4 X » 1 1 F « , , 0 ) C c CALCULATE a n ew DATLY CONCENTRATI ON FOR EACH NODE DO 7 0 0 I a I . n o a Y K a K ♦ 1 DAY a DAY ♦ 1 C c read i n d a i l y r a i n f a l l for a l i nodes read (3) (RAIN(N), N a 1,20) -177 - hage m (4.3) S F Q R T R A N rift or» o n C »»» 0?/28/77 / M s O S 5.T PAGF RFAO I N D & I L v DFPTHS FOR ALL NODES RF AH ( 4 ) ( Df cPTHS{ N ) , N a 1 , 2 0 ) RFAn RF An I N D A I L Y V E L O C I T I E S FOR (5) ( V t L ( L ) , L = 1 , LNRR) aLL LINKS RFAD REAn I N D A I L Y DI SCHARGES FOR (5) ( O ( L ) , L a 1 * LNBR) a LL LINKS INLET NODE o I NTFRPOL AT E I NPUT CURVES TO 0>f T D A I L Y CONCENTRATI ONS AT DO 115 J s 1 . I N L E T S 1 0 6 , 1 OT» I n f l * 1 0 9 ) , j GO TO ( 1 0 1 , 1 0 2 , l f t 3 , 1 0 4 , 1 0 * 101 10? 103 1 04 10*5 10A 10 7 10R (CHFMl,DAY»NPTS( J) VALUE) (CHEM?,DAY,NPTS( J) VALUE) < chfm 3,day»npts(J).valuE ) ( CHEM4, D A Y »N P T S ( J ) ♦ V A L U E ) ( CHf Mr , 0 AY , NPT S ( J ) , VALUE ) ( CHFMf t , D A Y , N P T S ( J ) , V A L U E ) ( CHEM7, DAY , NPTS { J ) , V ALUF.) ( CHf MR, D A Y , N P T S ( J ) , V A L U E ) (CHpMg , DA Y . NPTS ( J ) , VALUE ) r» 100 CALL I NTERP QVA|_ = O l d ) GO T 0 110 CALL I NTERP OVAL = 0 2 ( 1 ) GO t o 110 c a ll tntE rp OVAL - 0 3 ( 1 ) GO TO n o CALI. I NTERP OVAL = 0 4 ( 1 ) GO T 0 H O CALL I NTERP OVAL a 0 5 ( 1 ) GO TO H O CALL I NTERP OVAL a 0 6 ( 1 ) GO TO 1 \ 0 CALL I NTERP OVAL = 0 7 ( I ) GO TO H O CALL I NTERP OVAL = o f l ( I ) GO T-0 1 10 CALI. I NTERP QVAL = 0 9 ( 1 ) o r> 1 1 o NN a N O n E ( J ) SAVCON(MN) a V A| UE QTN f NN) s QVAL 1 15 CONTI NUE ### C C 114 IF IF IF IF IF NOT C A - 1 » GET TNLET- NODE DI SCHARGE FROM PREVI OUS APEA (NL . E Q . 1) GO TO 114 (NL . E Q . ?) Q I N ( 1 4 ) = Q I N ( i 7 ) =Q I N ( 1 8 ) - Q X(I>/3 ( NL . E Q . 3) Q I N ( 8 ) = Q X ( I ) (NL . E Q . 3 .AND. QX( I ) .GE.1 5 0 0 . ) 0 I N ( 8 ) = Q I N ( 9 ) a QX r> IF (LREG(L) IF (LENrKL) GO TO 160 120 . E Q . N) . E Q . N) GO TO 1 20 GO TO 130 I F L I N K V E L OCI T Y FOR R E GI N- NO n E I F ( V E L ( L ) . G E . 0 . ) GO TO 1 60 NUR = L F N D ( L ) IS POSITIVE. SKIP CALCULATI ONS r> o INIT a L 5 EG(L) GO TO 140 IS on IF L I N K V E L O C I T Y F q r E N D - N O D E I F ( V E L ( L ) . L E . 0 .) G O T O 1 6 0 NUP a LREG(L) INIT = LEND(L) C A L C U L A T E C O N C E N T R A T I O N G R A D I c NT GRAD = C O M I N I T ) - C O N (N U P ) on 130 C A L C U L A T E CHANGE OF C O N C E N T R A T I O N AQ a A B S F ( Q ( L ) ) AVEL = A R S F(VEL(L) ) NEGATIVE. ACROSS PER <;KlP LINK day or* F L I M I T = AVEL / L F N G T H ( L ) * FijOGE IF (FLIMIT .GT. l , n ) FLIMIT = 1.0 DFLTAC a - ( «Q # GRAD * F L I M I t ) ACCUMULATE DELTAC AND 0 FOR A l.L CONNECTI NG | I NKS TOTDEL = TOTDEL ♦ DELTAC o r> TnTo no 16n a ToTq * END OF OO- LOOP FOR L I N K S CONTI NUE CALCULATE N t w I F (TOTQ , E O . DK = DECAY 17? AO CONCENTRATI ON FOR T H I S 0 . 0 ) GO TO 170 DO 172 KK a 1 . I S K I P IF (N . N E . N S K I P ( K K ) ) G O T O DK a DK / 2 IF (M O . G E . 6 , A N n . M O . L E , CONTinUf NODE 172 1 i ) DK - 179 - = 0.0 CALCULATIONS m SFORTRAN 173 o n 170 ### / WSOS 02/20/77 5.1 PAGE 00 173 J J a 1 , 9 I F (N . N E * I S K I P K j J ) ) GU TO ] 73 DK = DK / ? I F (MO . G E . 6 . A N D , MO . L E . 1 \ ) DK * 0 . 0 CONT i n U f XTOT « T O T D E L / T n T O - OK/ LOOP » CON( N) XCOM( N) ■ CON( N) ♦ XTOT HP N O D E < N , I H H ) = XCON(N) XTOT s 0 . 0 TOTO - 0 . 0 TOTnEL = 0 . 0 I F ( I HR . L T . LOnP) GO TO 1R0 I S T H I S VALUE WTT h t N ONE OF OuRD E S I RA B L E R a NGES DO 1 7 5 M r 1 , 4 I F f X COISI { N ) . G F , R n M I N ( M ) . A N n . XCON(N) . L E . RGM AX ( M) ) CONT I NU f GO TO I RO 178 KFEP TRACK OF T h e NUMBER OF D a YSf a l l i n g MnAYS(M.N) = MpAYS(M,N) ♦ 1 MTD AYS ( M, IM) = MT D A Y S ( M, N ) ♦ 1 **« 180 END OF nO- L OUP CONTI NUE 18] DO 1 8 5 M * 1 . 2 0 CON( M) s XCON(M) X r OM( M) a 0 . 0 CONTI NUF CDNTI NUF I F (MO . E G , I ) WRI TE ( 6 1 . 8 0 0 ) EnRMAT ( I X , 2 OFf , . 1 ) w ithin thfse GO TO 178 ranges FOR NODES o r> o o r» 175 (4 .3) 18* 190 or> 800 average on CALL 18* C hourly AVnOOT concentrations ( ( HRNODE( N »M) , N *l,2 n ), Msl,LOOP) FOR FACH NODE ( XCON, LOOP) NE w METHOD f o r CAL CUL ATI NG F I m a L D A I L Y DO 1 8 7 N = 1,20 DO 1 8 6 M = 1 , ISKIP I F (N . F Q . N S K I P ( M ) ) GO TO 187 CONTI NUE RAIMI » R A I N ( N) I F (NORA I N ( 1 ) , F Q . 4HN0RA) RA j N I s 0 , 0 D F P T l = DEPT h S ( n ) ♦ D F I T T ( N L ) Q A H T A = Q I N ( N ) » R f 4 0 0 * 12 / A R E A (N) CONCENTRATI ON I F TNLET NODES. SET R A I N F A L L 3 0 DO 188 m = 1.9 IF ( NL . E G . 1 . A N D . N . E Q . I S k I P 1 ( M) I R A I N I a 0 . 0 IF ( NL .EQ.2 .AND. N .EQ. I S k I P 2 ( M ) ) RAINI s 0 .0 IF ( NL . E G . 3 .AND. N .EQ. I S « I P 3 ( M ) ) RAINI 3 0 .0 18R CONTI NUF I F ( R A l M l . L E . O . . A N D . D E P T I . L f . O . . A N D . Q A R F A . L E . O . ) GO TO 187 I F ( D E P T I . L E . o . . A N n . QAREA . L E . 0 . ) GO To 1 8 7 X r O M( N ) = ( RCON?N C H E M ) « R A I N I ♦ XCON( N ) * Q E P T j ♦ S A V C O N ( N ) * Q A R £ A ) - 180 - MSFOQTRAN ( A . 3) y 187 C c / / MSOS (RAINI PAGF 0P/2S/77 5.1 ♦ DEPTI ♦ O A r EA) CONTINUE p p i m t T0 OUT RESULTS FOR ONE DAY (191, 19?, 193). N C H E M n r» GO ### 191 o o 1 q e> « « « o o 19? 19* FORMAT FOR PHOSPHATES (F6.3> W R I T E ( 6 1 . 1 9 5 ) M O . I, I Y R , X C o N FORMAT (X, 1 2 , 1 H / * T 2 * 1 H / * I 2 * * X * GO TO 199 F O R M A T F O R C H L O R I D E S (F 6 • 1 ) W R I T E ( 6 1 , 1 9 6 ) M O , I, I Y R , X C n N F O R M A T ( X , 1 2 , 1 H / , T ? . 1 H / , I ? , frX * ? 0 F 6 , 1 ) GO T q lqq f o r n j t r o g f n (F*.3) W R I T F ( 6 1 * 1 9 7 ) M O , I* I Y R , X C o N FORMAT (X, 1 2 , l H / , t 2 * 1 H / . 1 2 . * X , f o r m a t o o 193 197 199 o n * » « 204 205 206 rt rt 210 20F6.3) E N D OF M O N T H L Y nO-|.OOP DO 198 M a 1,20 C o n < m ) = x c o n (M) XcON(M) a 0.0 Q I N fM ) a 0 . 0 SAVCON(M) a 0.0 1 9fl C O N T I N U E I F ( N L . L T . 3) W R I T E I F (K ,|_T. 1 0 ) O O T O C A L L S K I P (1H ,iCH) K = 0 200 CONTINUF o r» 20F6.3) (8) ?00 C O N (i ) PRINT WRITE N U M B E R OF D A Y S T H A T F E L L W I T H I N D E S I R E D P A N G F S T H I S (61*204) FORMAT ( / X , 3 3 ( 4 H # # * * ) » 2 H « « . / ) W p IT E ( 6 1 * 2 0 5 ) F O R M A T (1 5 H N U M r e p O F D A Y S * / 1 5 H W I T H I N R A N G E S ) DO 210 M a 1*4 WPI TE ( 6 1 * 2 0 6 ) r G M T N ( M ) , R G M A y ( M ) , ( Mf) A Y S ( M . N ) , N a 1 , 2 0 ) F O R M A T (/ 5 H M I N ? * F 0 . 3 / 5 H m A X J * F 8 . 3 » X , 2 0 1 6 ) 00 ?10 M = 1*?0 MpAYS(M.N) = 0 CONTINUE GO IF MO IF IYR MO GO O N T O N E X T M q N T h IF E N O - D A t E (IYR .EQ. I Y R E . A N D . MO . G f . a MO ♦ 1 ( MO . L E . 12) G O T o 90 a IYR ♦ 1 a 1 TO 9 o PRINT TOTAL NUMREP 300 CALL HEADNG WDITE (61,301) OF DAYS THa T - 181 - IS N O T R E A C w E D IMOE) GO TO 300 FELL WITHIN DESIRED RANGES M O N IH MSfOb t RaN 301 310 C C *** 400 SAVE LAST REWIND 9 WRI TE ( 9 ) CALL FXTT END 07l?0 00016 I OOOO2 I 1*20) C O ND I T I O NS variables CHEM1 CHEM2 CHEM3 CHEM4 CHEM5 CHEM6 CWEM7 CHEMB CWFM9 CON DAY DFLTAC OFPTHS DFPTI ofitt 04570 07124 07113 07116 07045 07156 0?0l3 0^050 0 7 0 76 07041 06771 o7oo? 07013 070*4 071 00 07142 07n?4 00704 R R R R I I I I I I I I I I T I T I DUM I NOnES ISK i P ISK y Pi ISKiP2 I 5 K y P3 I YR J JJ K KDA y S 07140 07046 0023? 00326 00136 0704? 07035 07030 07145 04761 07061 07067 05103 07070 07057 07075 07037 07034 I I I I I I I I I I I 1 I I I I I I IDYf I OYP I HR 0001? oooo i 00004 I I I FLIMIT FUQ g E GRAn I I CH IN It in lfts LNBR LOOP M MOAYS MO MO 1 MTOAYS N NCHEM NDAY NER NL 0476( 0710! 0707' 07071 0 0662 0674; 0067: 0674! 0703J 0047J 0524: 0534: 0543' 0553! 0563 0573 0602 0612 TMN I MOB IMOE 0000 0 0 00 0000 KK L LBEG lend length lin ks DK V A R I A r LES decay hrnode ioates 00005 I 0001 0 T 0 0 01 1 T inyR statfmfnt 1 2 3 5 10 12 15 20 21 22 25 27 30 FOR NEW I N I T I A L N s 00 CON avel common 00023 PAGE 0?/28/77 DAYS CONCENTRATI ONS AO AREA R 06441 R 07l?2 R O HIO R 014?0 R 01730 R 02240 R 02550 R 03060 R 03370 R 03700 R 0421 0 R 004?2 R 07065 R 07130 R 06321 R 07151 R 06735 R 07136 R R R / M SOS 5 . 1 FORMAT (ft h TOTAL.) WPI TE ( 6 1 , 2 0 5 ) DO 3 1 0 M = 1 , 4 WPI TE ( 6 1 • ? Q 6 ) R G M T N ( M ) , RGMAx ( M ) , ( MT DA YS( M, N ) * DO 3 1 0 N s 1 , 2 0 MT D A Y 5 ( m , N ) = 0 CONTI NUF WPI TE ( 6 1 * 2 0 4 ) I F ( I Y R , E Q , I y p E . A N D . MO , G e . I MOE) GO TO 15 program 01723 ( a . 3} ooooo 0 0 0 05 00007 00011 0754* 0 0 015 07563 OOnl ? 0002? r \ 7733 0 0 024 00030 0 0 03? NUMBERS 10166 10247 10330 10411 10472 10553 10634 00034 60 1 07 14 61 0 0 0 3 6 70 1 0 7 6 0 <*0 1 0 7 7 0 91 1 1 0 3 2 33 34 35 36 37 38 39 40 93 94 95 96 97 90 99 100 101 1 0? 103 104 105 11076 11126 1115o 11173 11214 11236 11 2 6 o 11301 11464 11501 1151* 11533 1155o 107 108 109 110 114 115 1 16 117 120 130 140 160 1 70 11602 11617 11634 11650 11/41 11661 12007 12016 12100 12120 12137 12*11 12337 MSFORTRAN (4.3) / MgOS SUBROUTI NE t ) 50 L\ / C c C C RoUTj NE VAL UES. To OI MFNS I ON 5.1 02/28/77 HAGE f x KON* NCHEMt K) CONV f p T T - P 0 4 , AND T o T - N CONCENTRATI ONS TO O I S o LVEU XKON< 1 0 0 ) c c CONTROL-PARAMETERS FOR T1 * 1 12 = 20 13 * 1 I F fK . F Q . 1) RO TO 5 0 C c *** CONTROL- PARAMETERS II ■ 2 FOR I N I T I A L COND I T I ONS I N L E T - m ODE CONCENTPATI ON curves I? = ion 13 = 2 c 5o DO \ 00 I = U . I 2 . T 3 I F (NCHEM , E Q . 1) GO TO 60 I F ( X K O N ( I ) . G T . 1 . 4 4 . A N D . Xk O N ( I ) , L T . y X K O M ( I ) = Xk O N ( I ) * 2 . l 7 6 ( j - 3 . 1 5 9 7 GO TO 100 3 . o) C 60 X K O M ( I ) = XKON( T) 1 00 CONTI NUE .3257 ♦ »o02 c return END ) PROGRAM V A R I A B L E S 0000T I I STATFMFNT 50 00000 I II I 12 numbers o 0062 60 001 11 100 FORTRAN DI A G N O S T I C com piled 0 ERRORS EWIND.54 00002 lengths of dsolv - p RESULTS 00164 ROSSREF - 183 - 0011* FOR c 00000 OSOLV o 00000 000 WSFORTR&N (4.3) SUBROUTI NE C C C C / M SOS AVGOljT 5.1 0?/2R/77 HAQF Of ( XCON* LOOP) ROUTI NE TO ACCUMULATE ALL I NT E RVA L D I V I D E RY THE Ni j MqpP OF I NT E RVA L S CONCENTRATI ONS FOR EACH NOUE AN COMMON I Y R B , I M n R . I D Y H * I Y R E , I MOE* TOYE* X* I HR» I M N * NCA. K N A M E ( 2 ) , I D A T E S ( 5 > X* H R N O D E (2 o *24) v* nECAY t YRR* I MOP. I OYR C DI MF NS I O N XCON(?0) r DO ? 0 I 3 DO 10 J = XCON( I ) = 10 CONT I NU f XCON(I) = 20 CONTI NUE 1*20 1 * LOOP XCON(I) « HRNODE( I » J ) XCON( I ) / LOOP C RFTURN E nd PROGRAM V A R I A B L E S 00001 I I 00003 I 00005 00010 00011 I I I COMMON V A R I A B L E S 01723 00023 00016 rt R I 00002 I DFCAY HPNOD f I dates I DYB I OYF IDYr I HR 00012 I 0 00 01 00004 I I I MN IMOB IMOE S T A T F m En T NUMBERS 10 0004* EXTFRNAL 20 00063 REFERENCES SYSTFM EXTERNALS only FORTRAN DI A G N O S T I C COMPI LED LENGTHS OF AVGOUt 0 ERRORS - P RESULTS 0012* i - 184 - FOR C 01725 AVGOUT 0 00000 0000^ 0000< oooo; MSFOPTRAN (4.3) SUBROUTI NE C c ROUTI NE C COMMON X* y* y, / MSOS 5.1 02/28/77 PAGE ( HEAD n G TO S K I P TO NEW PAGE A t F I R S T I YRB * I * o B , I D Y B , TYRE, I H R , I M N , MCA, KNAME( 2 ) * HRNODE( 2 0 * 2 4 ) OEC&Y OF EACw MONTH AND P R I N T I MOE* I D Y E * I0ATES(5) I YRR * I MOR. TITLE I DYR r DATA (IPAGE ■ 0) C I PAGE s I PAGE * 1 C 10 WPI TE ( 6 1 * 1 0 ) KNAME, I MOR, I O v R * I YRR* I PAGF FORMAT ( 1 H1 , 1BH CHEM- PARAMET f R I , 2 A 4 , 3 l y , 1 3HWATER QUAL I TY y* 6H MODEL. 2 4 X * t 2 * 1 H / * I 2 , 1 H / , I 2 , 1 9 X , 5HPAGE * 13) WRI TE ( 6 1 * 2 0 ) I H R * I MN* I MOB* I OY B * I YRH* I m OE* I D Y E * I Y R E f NCA X* OFCAY 20 FORMAT ( 6 5 X * 3HFOR, 3 5 X * I 2 * 1 h 1 « I 2 * / X* 1 2 , 1 H / , 1 2 * 1 H / * 12* 3H 1 2 * 1 H / , T 2 , 1 H / , 1 2 , 3 7 X , 18HC0NSERVATT0N AREA , A 2 , 51X X* 4HK = * F 3 . 2 * / ) X« WPI TE 25 format WPI TE WRI TE FORMAT 45 write format 1 *20) (14X, 2 0 (4X,12) * ) (61*45) ( 1K« 33( 4H format c 30 (61*25) ( I X , 3 3 ( 4 H * * # « ) * 2 H» « ) (61,30) ( 3 X , 4 H DA T E , RX * 20 ( 2 X , 4HNQDE) /) rfturn END program 00120 I variables I 00114 I I PAqE 00005 0U010 0 0 0 11 I I I IDYf IDYr I HR COMMON V A R I A B L E S 01723 00023 00016 00002 R R I I DFCAY hpnodf io ates I I I NUMBERS 20 00000 EXTFRNAL 00031 25 30 0006* REFERENCES SYSTFM EXTERNALS ONLY FORTRAN D I A G N O S T I C COMPI LED ERRORS 0000 0000 0000 IMN IMO0 IMOE I OYP STATFMFNT 10 0001? 00 0 01 00004 LENGTHS OF HEADNG - P RESULTS 0024? EOR C 01725 HFADNG D 00000 00U73 MSFOPTRAN (4.3) SURBOUTTNE C c #** C ROUTI NE / MSOS I NT E PP 5.1 (CHEM*DAY.NpTS*VALUE) TO I NTERPOLATE DI MENS I ON PAGE ( 0?/28/77 OAILY VALUES FROM CHf M- CURV e S CHEM( 2 • 5 f t ) C I F (DAY . G T . C H E M ( i , D ) VAL'»E = CHEM ( 2 » I ) Rf TUR n GO TO IQ c 10 I F (DAY , L T . C H E M ( 1 , N P T S ) ) VALUE 3 C H E M ( 2 . N P T S ) R f TUR n 2ft DO 10 I s 2 » N P T s I F (DAY . L E . CHf M ( i , I ) ) 3n continue 40 XI Y\ X2 Y? GO TO 20 c GO TO 40 c = a a e CHFM(1*I-1) CH f M ( 2 * 1 * 1 ) CH FM (l,I) CHFM( 2 * 1 ) c VALUE s Y1 ♦ (Y?-Yl) * (DAY-Xj) R XI / (X2-X1) C RETURN END VARIABLES PROGRAM 00001 I I statfment 10 00004 00010 R oooc X2 numbers 00055 20 00070 FORTRAN DI A G N O S T I C COMPI LED LENGTHS OF ERRORS I NTERP - P 30 RESULTS 0022* t - 186 ^ 0010 J FOR C 00000 40 I NTERP 0 00000 00111 MSFORTRAN (4*3) SUBROUTI NE C C *** ROUTI NE / MSOS CONVERT 5.1 0?/28/77 PAGE ( CHEM* NPTS) TO CONVFRT J U L I A N DATp I NTO D A Y - O F - y EAR C OI MFNS I ON CHEM( 2 * 5 0 ) * C c DATA (KDAYS * KDAYS( 1 ? ) J a N FEB MAR 31* ?8* 31* APR MAY 30* 31* U n JUL A'lG 30* 31* 3 l * SEP OCT 30* 31* j NOV DEC 30* 31) C DO ?0 I I mo = iny = * 1 * NPTS Ch e w ( 1 * 1 ) Ch E M ( 1 , 1 ) / t oo - TMO * 100 C NDAY = I DY IMO = IMO - 1 C DO 10 NpA Y J = = 1 * IMO NDaY ♦ K0AY<;(J) 10 CONTI NUE 20 CHEM(1 * i ) CONTINUf C s NDAY C RFTURN ENO PROGRAM 00014 000?1 I I va ria b le s I I DY STATFMFNT 10 OOOlfc NU m RERS 0007? EXTFPNAL 20 00105 REF f RENCES SYSTr M EXTERNALS ONLY FORTRAN D I A G N O S T I C COMPI LED LENGTHS OF CONVERT - P RES i.jLTS 0014* errors - 187 - FOR C 00000 CONVERT D 00000 I IMO0 M S F O P T R A N ( 4 . 3 ) / MSOS 5 . 1 PAGF 0 p / 2 8 / 7 7 subroutine timf. ROUTI NE HHEP a HF DATES C C to AND TI ME FOR P R I N T - O U T C COMMON t YRR ♦ I MOR, I D Y R . I Y R E . X* I H R * I M N , No A *KNAME( 2 ) , X* HRNODE(?0«?4 > X* DECAY I MOE* IDYE* IDATES(5) I YRR * I MOR* I DYR C DI MENS I ON C C KDATE( 5 ) . K TI ME(5) CALCULATE TI ME AND DATE OF T H r S CALL CDATE ( K D A T E , D CALL J T I M E ( KT I m E , i ) RIJN FOR THE T I T L E C I MOP I DYR I VHR I HR IMN - = = s * NGET(KDATE*i *2) NGET(KDATE*3*4> NGET(KDAT E , 5 , 6 ) MGET(KTIME,1*2) NGET{KTIMF t 3 . 4 ) C C SEPARATE r e g i n a n d e n d d a t e s I YRR S N G E T ( I D A t E S . 7 , 8 ) I MOn s N G E T ( I D A t E S . R * 10) I DYR = N G E T ( I D A T E S f 1 1 * 1 2 ) C I Y RF I MOF IDYF = NGET( I D A T E S . 1 4 * 1 5 ) = NGET( I D A T E S , 1 6 . I 7 ) = NGET(IDAt E S .1 8 .1 9 ) C Re t u r n end PROOPAM V A R l A B L E S 00000 I KDATE COMMON 00005 I K T I mE variables 0 1 7?3 R DFCAY 00023 00016 00002 R I I HRNODF I DAT ES I DYR external 00005 00010 00011 I I I IDYf IDYp I HR IMN IMOB IMOE references CDATE J T I mE FORTRAN D I A G N O S T I C COMPI LED ERRORS 0001? I 00001 I 00004 I LENGTHS OF TI ME - P RESULTS 0015a - 188 f NGET FOR C 01725 T I ME D 00000 00 00 00 31 32 92 10024 101 OS EXTFRNAL 11054 106 11565 172 REFFRENCES FORTRAN DI A G N O S T I C STATEMFNT NUMBERS 181 117 COMPI LED LENGTHS OF Q U A L I T * HEADNG I NTEHP NGFT DSOt V EO F r K F EXIt AnsF AVGOUT CONVERT RESULTS FOP QUALITY IULL 40 - 30 P 13340 - 189 - 21 C 01725 0 12 00000 12260 EXHIBIT III Illustrative Numerical Examples - 190 - NOTATIONS USED IN EXHIBIT III Q Discharge in cfs N Number of incominq links i V Velocity in ft/sec Cup Initial concentration of upstream node C. Initial concentration at node j(mg/litre) Length Length of the link in ft. «J GRAD = ' Cup> --------- L i H ^ h --------- TOTQ N = E i=l At Q. 1 N TOTDEL = E i=l XTOT (mg/litre), GRAD = Total change in concentration in a unit time step, (mg/litre) TOTDEL TOTQ XCON = Final concentration as a result of hydraulic transport, * C. + XTOT J - 191 - (mg/litre) EXAMPLE # 1 CONSERVATION AREA: CA-2A DATE: NODE # 15 Jan. 25, 1974 TIME PERIOD: CHEMICAL PARAMETER: 1st 2 hours CL (174.9) Conventional representation of a link *- Flow direction -- Channel link Note: Numbers in the brackets represent concentrations at a given node for a previous time step. (81.8) C. J (Node #) Cup 23 148.2 174.8 19126 21.35740 .00952 24 148.2 148.2 27958 -196.24736 -.01919 - Outgoing Link 25 148.2 148.2 26005 -14.89673 -.00659 - Outgoing Link 26 148.2 148.2 20436 23.34822 .00722 - Outgoing Link 31 148.2 176.0 16739 -17.80044 -.00970 -27.8 Incoming Link 34 148.2 174.9 13039 -82.74562 -.02063 -26.7 Incoming Link LINKS LENGTH TOTDEL TOTQ XTOT XCON Note: Q V GRAD -26.6 REMARKS Incoming Link = 29.2683674 = 121.90346 = .2400946 = C- + XTOT = 148.2 + 0.24 = 148.44 tl Only Incoming Links are considered in the computations for the reasons stated in the "assumption" section. - 192 - EXAMPLE # 2 I CONSERVATION AREA: CA-1 DATE: NODE # 5 Jan. 8, 1974 TIME PERIOD: CHEMICAL PARAMETER: 1st 2 hours CL ^ Conventional representation of a link Flow direction — Channel Note: LINKS (Node #) LENGTH Cup link Numbers in the brackets represent concentrations at a given node for a previous time step. Q V GRAD 10 - - 27183 3.00738 -.00168 - 11 - - 23545 14.99045 -.00262 - 31221 5.64755 -.00703 12 13 22.6 - 239.1 - 19623 -113.41767 .01052 -216.50 - 22.6 250.2 26658 110.95354 .00499 -227.60 17 22.6 29.4 25270 -40.87087 -.00286 -6.80 20 22.6 22.8 26702 -9.58686 -.00218 C \J • 1 TOTDEL TOTQ XTOT XCON = 36.2443152 = 167.05882 = .2169554 = 22.8169 - 193 - O 15 EXAMPLE # 3 CONSERVATION AREA: CA-2A DATE: NODE # 2 Jan. 13, 1974 TIME PERIOD: 1st 2 hours CHEMICAL PAR AMETER:CL (2270) ^ Conventional representation of a link ►- Flow direction -- Channel 1 ink Note: LINKS cj (Node #) LENGTH Cup Q Numbers in the brackets represent concentrations at a given node for a previous time step. V GRAD 1 154.0 154.0 9535 812.90212 .00384 0 3 154.0 154.0 22260 -59.01257 -.00251 0 12 - - 25140 -344.01346 0 - 18 - - 23424 -15.96152 0 - 21100 -87.61436 -.00456 23500 -149.93053 44 49 154.0 - 154.0 - TOTDEL TOTQ XTOT = = = 0.0 0.0 0.0 XCON = 154.0 - 194 - 0 - EXAMPLE #4 CONSERVATION AREA: DATE* CA-1 NODE # 14 Jan* 7, 1974 TIME PERIOD: CHEMICAL PARAMETER: 1st 2 hours CL -> Conventional representation of a link Flow direction (325 --- Channel link Note: LINKS 35 36 cj (Node #) - 325.5 C up - 33.0 Numbers in the brackets represent concentrations at a given node for a previous time step. LENGTH Q V 26951 0 0 30620 1.69304 .00028 GRAD - 292.5 37 - - 43293 0 0 - 39 - - 24152 0 0 - 48 325.5 325.5 21450 -100.06011 -.03850 49 325.5 187.0 12210 -226.92740 -.09475 TOTDEL TOTQ XTOT XCON = -1756.0659 = 228.62044 = -7.6811416 = 317.818 - 195 - 0 138.5 t! 5 EXAMPLE CONSERVATION AREA: CA-3A DATE: NODE # 4 Jan. 26, 1974 TIME PERIOD: 1 st 2 hours CHEMICAL PARAMETER: CL Conventional representation of a link Flow direction - - Channel link Note: LINKS C. J (Node #) LENGTH Cup 1 Numbers in the brackets represent concentrations at a given node for a previous time step. Q V -2.11915 0 - GRAD 4 - - 55823 5 - - 61225 0 0 - 6 - - 40804 9.55580 0 - 46049 -.12680 -.00042 71000 -392.23118 0 46500 -336.95778 -.21995 12 45 46 132.8 - 132.8 156.0 - 156.0 TOTDEL TOTQ XTOT XCON = 266.2363178 = 337.08458 = .7898205 = 133.589 - 196 - -23.20 - -23.20