Preview only show first 10 pages with watermark. For full document please download

Accelerated Testing Of Harmonic Surgical Blades

   EMBED


Share

Transcript

Accelerated  Tes,ng  for  Design   Improvement  of  Harmonic  Surgical   Blades   ASTR  Presenta,on   September  2014   Presenter:  Nabeel  Jadeed     September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   1   Nabeel  Jadeed   •  B.S.  Materials  Science  &  Engineering     –  University  of  Cincinna,   •  Currently  a  Quality  Engineer  (5yrs)  at  Ethicon  in   Cincinna,,  OH  (Johnson  &  Johnson)   •  16yrs  Experience  in  the  medical  device  field   –  Wide  range  of  product  experience  (staplers,  trocars,  clip   appliers,  energy-­‐based  devices)  in  manufacturing,  quality,  and   R&D   •  ASQ  Cer,fied  Quality  Engineer,  Reliability  Engineer,  and   Six  Sigma  Black  Belt   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   2   Background   •  Harmonic  Blades  are  used  for  spine  soZ  ,ssue  access.   •  Instrument  blade  can  become  cracked  due  to  inadvertent   contact  of  ac,ve  blade  by  the  surgeon  with  metal  objects   in  surgical  field.   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   3   Harmonic  Technology  Basics   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   4   Harmonic  Technology  Basics   •  Energy  transformed  into  mechanical  mo,on,  longitudinal   vibra,on  at  ultrasonic  frequencies   •  Mechanical  mo,on  cuts  and  coagulates  simultaneously   Blue Areas Denote Nodes Antinodes •  Nodes:   •  An,-­‐nodes   –  Zero  movement   –  Maximum  stress  and  strain   September  5,  2014   –  Maximum  movement   –  Minimum  stress  and  strain   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   5   Blade  Cracking   •  Each  Type  of  Blade  Has  a  Sensi,ve  Area   Where  Metal  to  Metal  Contact  Will  Most   Easily  ini,ate  a  crack.   •  The  Red  Areas  in  FEA  show  the  Most   Sensi,ve  Areas  of  Each  Blade.   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   6   Problem   •  Tradi,onal  life  data  analysis  proves  difficult  to   compare  alternate  designs   –  Time  consuming  due  to  long  failure  ,mes  with  some   samples  taking  days  of  abuse  without  failing   –  Inconclusive  due  to  high  variability  in  life  data   Difficult  for  new  product   teams  to  make  ,mely   design  improvement   decisions   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   7   A  Beber  Way   •  Accelerated  Life  Tes,ng   –  Evaluate  life  using  an  accelera,ng  stress  factor  to   obtain  failures  more  quickly  without  inducing   unrealis,c  failures  modes1.   –  In  the  case  of  the     Harmonic  blade,  we  can     use  simulated  metal   contact  at  increasing  levels   of  contact  pressure  to   accelerate  failures.   September  5,  2014     ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   8   Test  Procedure   •  Main  stressor  iden,fied  as  contact  force  of  metal  object   at  areas  of  high  stress  on  the  ,p  of  the  blade.   •  Points  of  high  localized  stress  are  iden,fied  with  FEA   •  The  points  are  validated  by  comparing  product  returns   •  A  Carbide  “hiber”  is   posi,oned  at  these   points  to  simulate   contact  with  metal  while   the  blade  is  vibra,ng   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   9   Force  –  Deflec,on  Curves   •  Force-­‐deflec,on  curve  are  generated  as  input  to  the  test  fixture   •  Unique  to  different  designs  depending  on  overall  length  and  loca,on  of   high  stress  area.   0.7   L  /  Blue   y  =  22.432x  +  0.0501   R²  =  0.9948   0.6   Force  [lbf]   0.5   C  /  Red   y  =  21.618x  +  0.0514   R²  =  0.9944   0.4   L   0.3   C   Linear   (L)   0.2   0.1   0   0   0.005   0.01   0.015   0.02   0.025   Deflec,on  [in]   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   10   Test  Procedure   •  With  main  stressor  iden,fied  and  force-­‐deflec,on  curves   generated  suitable  stress  points  were  needed.   •  These  suitable  stress  points  determined  through   experimenta,on:   Carbide   –  Balance  between   instantaneous  cracking  and   excessive  ,me  to  failure                           (>300  sec)   probe   Test   Specimen   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   11   Design  Comparison   •  New  Design   –  More  cross-­‐sec,onal  area  at  high  stress  areas   –  Blade  waveguide  op,mized  for  less  stress  over   control  blade,  i.e.  more  balanced   –  Minimize  stress  risers  at  high  points  of  stress   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   12   Life  Test  Data   Commercially  available  blade  (control)  benchmarked   against  new  design   Control   New  Design   State   End  Time   State     End  Time   (sec)   (F  or  S)   (sec)   Force  (lbf)    (F  or  S)   0.0769   F   66.7   -­‐  -­‐  -­‐   -­‐  -­‐  -­‐   0.0769   F   68.7   F   59.5   0.0769   F   68.8   S   360   0.0769   F   160.4   S   360   0.151   F   37   F   34.2   0.151   F   48.6   F   35.2   0.151   F   66.5   F   39.9   0.3   F   10.4   F   20   0.3   F   27.1   F   21   0.3   F   40.4   F   28.6   0.4853   F   16.1   F   17.5   0.4853   F   23.5   F   29   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   13   Data  Analysis  –  Model  Assump,ons   •  ReliasoZ  ALTA®  used  for  ALT  analysis   •  Determining  best  fit  for  life  distribu,on:   –  Likelihood  values  compared  for  both  control  and  new:   New  Design   Weibull   Beta  =  1.513228   K  =  0.204756   n  =  1.596630   LK  Value  =  -­‐43.343574   Exponen-al   K  =  0.242417   n  =  1.696578   LK  Value  =  -­‐44.309122   Lognormal   Std  =  0.721576   K  =  0.192337   n  =  1.349473   LK  Value  =  -­‐42.533399   September  5,  2014   Control   Lognormal   best  fit  for   new  design   Weibull   Beta  =  2.943067   K  =  0.096996   n  =  0.904398   LK  Value  =  -­‐50.445923   Exponen-al   K  =  0.101116   n  =  0.861578   LK  Value  =  -­‐57.582688   Lognormal   Std  =  0.394616   K  =  0.109249   n  =  0.864066   LK  Value  =  -­‐50.575704   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   Based  on  similar   LK  values,   lognormal  used   for  consistency   14   Data  Analysis  –  Model  Assump,ons   •  Lognormal  used  for  life  distribu,on   •  Inverse  Power  Law,  common  for  single,  non-­‐     thermal  stresses2,   was  used  for  Life-­‐ Stress  model   ReliaSoft AL TA 7 - www.ReliaSoft.com Use Level Probability Lognormal –  No  evidence  that   shape  parameters   differ  at  each  stress   level  based  on   Likelihood  ra,on   test   September  5,  2014   U n re l i a b i l i ty 99.000 Use L ev el Control\Data 1 Inv erse Power L aw L ognormal .05 F=12 | S=0 Data Points Use L ev el L ine New Design\Data 1 Ey ring L ognormal .01 F=9 | S=2 Data Points Use L ev el L ine 50.000 10.000 5.000 1.000 10.000 100.000 1000.000 10000.000 100000.000 1000000.000 Nabeel Jadeed Ethicon Endo-Surgery 8/15/2014 4:36:08 PM 1.000E+7 Time Control\Data 1: Std=0.3946; K=0.1092; n=0.8641 New Design\Data 1: Std=0.6850; A=-1.7023; B=0.0805 ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   15   Model  Diagnos,cs   •  The  standardized  residuals  should  follow  a  normal   distribu,on  if  the  assumed  life-­‐stress  model  and   distribu,on  are  a  good  fit3.       ReliaSoft AL TA 7 - www.ReliaSoft.com Standardized Residuals 99.000 Standard Residuals ARIES-2\Data 1 Inv erse Power L aw L ognormal Residual L ine 0.0769 F=1 | S=2 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals P ro b a b i l i ty –  No  excessive  devia,on   of  residuals  from   expected  values   HK105-2\Data 1 Inv erse Power L aw L ognormal Residual L ine 0.0769 F=4 | S=0 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals 50.000 10.000 5.000 1.000 -10.000 Nabeel Jadeed Ethicon Endo-Surgery 8/6/2014 9:45:12 AM -6.000 -2.000 2.000 6.000 10.000 Residual ARIES-2\Data 1: Std=0.7216; K=0.1923; n=1.3495 HK105-2\Data 1: Std=0.3946; K=0.1092; n=0.8641 September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   16   Model  Diagnos,cs   •  Cox-­‐Snell  residuals  should  follow  an  exponen,al   distribu,on  if  the  assumed  life-­‐stress  model  and   distribu,on  are  a  good  fit3.       September  5,  2014   Cox-Snell Residua ls 99.000 Cox-Snell Residuals Control\Data 1 Inv erse Power L aw L ognormal Residual L ine 0.0769 F=4 | S=0 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals 95.000 P ro b a b i l i ty –  Residuals  are  derived   from  the  nega,ve   natural  log  of  es,mated   reliability  of  each   observa,ons,  which   should  be  uniform   –  Based  on  plot.  no   excessive  devia,on  of   residuals  from  expected   values   ReliaSoft AL TA 7 - www.ReliaSoft.com New Design\Data 1 Inv erse Power L aw L ognormal Residual L ine 0.0769 F=1 | S=2 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals 90.000 50.000 1.000 0.000 Nabeel Jadeed Ethicon Endo-Surgery 8/12/2014 8:08:36 AM 2.000 4.000 6.000 8.000 10.000 Residual Control\Data 1: Std=0.3946; K=0.1092; n=0.8641 New Design\Data 1: Std=0.7216; K=0.1923; n=1.3495 ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   17   Model  Diagnos,cs   •  The  residuals  vs  the  fibed  values  should  appear  random   with  minimal  outliers.       ReliaSoft AL TA 7 - www.ReliaSoft.com New  Design   ReliaSoft AL TA 7 - www.ReliaSoft.com Standardized vs F itted Value 10.000 10.000 Standard - Fitted 6.000 Slight  pabern     New Design\Data 1 Arrhenius Weibull 0.0769 F=1 | S=2 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals Standard - Fitted Control\Data 1 Inv erse Power L aw L ognormal 0.0769 F=4 | S=0 Residuals 0.151 F=3 | S=0 Residuals 0.3 F=3 | S=0 Residuals 0.4853 F=2 | S=0 Residuals 6.000 2.000 Re s id u a l 2.000 Re s id u a l Control   Standardized vs F itted Value 0.000 0.000 -2.000 -2.000 -6.000 -6.000 -10.000 10.000 100.000 Nabeel Jadeed Ethicon Endo-Surgery 8/12/2014 10:21:45 AM 1000.000 Fitted Value Fitted Value New Design\Data 1: Beta=2.2378; B=0.2739; C=10.3747 Nabeel Jadeed Ethicon Endo-Surgery 8/16/2014 11:01:37 AM 100.000 -10.000 10.000 Control\Data 1: Std=0.3946; K=0.1092; n=0.8641 Abnormal  behavior  at  low   stress  point:  2  out  3  blades   suspended  at  300  sec.   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   September  5,  2014   18   Life  Comparison   Control  vs.  New  Design     ReliaSoft AL TA 7 - www.ReliaSoft.com Lif e vs Stress 10000.000 L ife Control\Data 1 Inv erse Power L aw L ognormal .05 F=12 | S=0 Median L ine 0.0769 Stress L ev el Points Median Point Imposed Pdf 0.151 Stress L ev el Points Median Point Imposed Pdf 0.3 Stress L ev el Points Median Point Imposed Pdf 0.4853 Stress L ev el Points Median Point Imposed Pdf New  Design   L i fe 1000.000 New Design\Data 1 Inv erse Power L aw L ognormal .01 F=9 | S=2 Median L ine 0.0769 Stress L ev el Points Median Point Imposed Pdf 0.151 Stress L ev el Points Median Point Imposed Pdf 0.3 Stress L ev el Points Median Point Imposed Pdf 0.4853 Stress L ev el Points 100.000 Control   10.000 0.010 0.100 1.000 Stress Control\Data 1: Std=0.3946; K=0.1092; n=0.8641 New Design\Data 1: Std=0.7216; K=0.1923; n=1.3495 September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   New  design  predicted  to   last  longer  with  a   probability  of  97.88%   19   Benefits  of  this  Method   •  Faster  design  itera,on  -­‐  allows  for  comparison  in  a   maber  of  1-­‐2  days.   –  Previous  abempts  could  take  several  days  for  1  blade   with  inconclusive  results   •  Anecdotal  informa,on  from  preclinical  use  in   cadaver  indicates  improved  robustness  to  cracking   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   20   Benefits  of  this  Method   •  Test  has  demonstrated  a  degree  of  repeatability   based  on  replicated  experiments.   –  Repeated  twice  with  new  samples  of  the  same  design   –  Direc,onally  the  same  conclusions  (new  design  beber   than  old  design)   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   21   Benefits  of  this  Method   •  Subsequently  used  to  test  addi,onal  design   enhancements  (surface  treatment)       September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   22   Poten,al  Weaknesses   •  Assump,ons:   –  Constant  contact  pressure  not  realis,c,  intermibent  in   actual  prac,ce   –  Metal  can  contact  any  part  of  the  blade,  not  just  the   high  stress  areas   –  Blade  FEA  model  accuracy     •  Is  higher  stress  crea,ng  unrealis,c  failure  modes?   –  Actual  use  stress  difficult  to  determine   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   23   Ques,ons?   September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   24   References   1.  "Quan,ta,ve  Accelerated  Life  Tes,ng  Data  Analysis."  Accelerated  Life  Tes/ng  and  Data   Analysis.  ReliasoZ.  Web.  6  Aug.  2014.  .     2.  “Inverse  Power  Law  Rela,onship.”  Accelerated  Life  Tes/ng  Data  Analysis  Reference,   ReliasoZ.  Web.  6  Aug.  2014.  .   3.  "Residual  Plots  in  Accelerated  Life  Tes,ng  Data  Analysis."  Reliability  Hotwire  105  (2009).   ReliasoZ.  Web.  6  Aug.  2014.  .     September  5,  2014   ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN   25