Preview only show first 10 pages with watermark. For full document please download

Ad5764-ep Data Sheet

   EMBED


Share

Transcript

Enhanced Product Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output DAC AD5764-EP FEATURES GENERAL DESCRIPTION Complete quad, 16-bit digital-to-analog converter (DAC) Programmable output range: ±10 V, ±10.2564 V, or ±10.5263 V ±2 LSB maximum INL error, ±1 LSB maximum DNL error Low noise: 60 nV/√Hz Settling time: 10 µs maximum Integrated reference buffers Output control during power-up/brownout Programmable short-circuit protection Simultaneous updating via LDAC Asynchronous CLR to zero code Digital offset and gain adjust Logic output control pins DSP-/microcontroller-compatible serial interface Temperature range: −55°C to +105°C iCMOS process technology1 The AD5764-EP is a quad, 16-bit, serial input, bipolar voltage output DAC that operates from supply voltages of ±11.4 V to ±16.5 V. The nominal full-scale output range is ±10 V. The AD5764-EP provides integrated output amplifiers, reference buffers, and proprietary power-up/power-down control circuitry. The device also features a digital I/O port that is programmed via the serial interface. The AD5764-EP incorporates digital offset and gain adjust registers per channel. ENHANCED PRODUCT FEATURES Supports defense and aerospace applications (AQEC standard) Extended temperature range: −55°C to +105°C Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request APPLICATIONS The AD5764-EP uses a serial interface that operates at clock rates of up to 30 MHz and is compatible with DSP and microcontroller interface standards. Double buffering allows the simultaneous updating of all DACs. The input coding is programmable to either twos complement or offset binary format. The asynchronous clear function clears the data register to either bipolar zero or zero scale depending on the coding used. The AD5764-EP is ideal for both closed-loop servo control and open-loop control applications. The AD5764-EP is available in a 32-lead TQFP and offers guaranteed specifications over the −55°C to +105°C industrial temperature range. See Figure 1 for the functional block diagram. Additional application and technical information can be found in the AD5764 data sheet. Industrial automation Open-loop/closed-loop servo control Process control Data acquisition systems Automatic test equipment Automotive test and measurement High accuracy instrumentation 1 The AD5764-EP is a high performance converter that offers guaranteed monotonicity, integral nonlinearity (INL) of ±2 LSB, low noise, and 10 µs settling time. During power-up (when the supply voltages are changing), VOUTx is clamped to 0 V via a low impedance path. Table 1. Related Devices Part No. AD5764R AD5744R Description AD5764 with internal voltage reference Complete quad, 14-bit, high accuracy, serial input, bipolar voltage output DAC with internal voltage reference For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher voltage levels, iCMOS® is a technology platform that enables the development of analog ICs capable of 30 V and operating at ±15 V supplies, allowing dramatic reductions in power consumption and package size, and increased ac and dc performance. Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD5764-EP Enhanced Product TABLE OF CONTENTS Features .............................................................................................. 1 Timing Characteristics .................................................................6 Enhanced Product Features ............................................................ 1 Absolute Maximum Ratings ............................................................9 Applications ....................................................................................... 1 ESD Caution...................................................................................9 General Description ......................................................................... 1 Pin Configuration and Function Descriptions........................... 10 Revision History ............................................................................... 2 Typical Performance Characteristics ........................................... 12 Functional Block Diagram .............................................................. 3 Outline Dimensions ....................................................................... 17 Specifications..................................................................................... 4 Ordering Guide .......................................................................... 17 AC Performance Characteristics ................................................ 5 REVISION HISTORY 12/13—Revision 0: Initial Version Rev. 0 | Page 2 of 20 Enhanced Product AD5764-EP FUNCTIONAL BLOCK DIAGRAM PGND AVDD AVSS AVDD AVSS REFGND DVCC DGND 16 SDIN SCLK SYNC REFERENCE BUFFERS AD5764-EP INPUT SHIFT REGISTER AND CONTROL LOGIC INPUT REG A DATA REG A RSTOUT REFAB 16 RSTIN VOLTAGE MONITOR AND CONTROL ISCC G1 DAC A VOUTA G2 GAIN REG A AGNDA OFFSET REG A SDO INPUT REG B DATA REG B 16 G1 DAC B VOUTB G2 GAIN REG B AGNDB OFFSET REG B D0 D1 INPUT REG C DATA REG C 16 G1 DAC C VOUTC G2 GAIN REG C AGNDC OFFSET REG C BIN/2sCOMP INPUT REG D DATA REG D 16 G1 DAC D VOUTD G2 GAIN REG D AGNDD OFFSET REG D REFERENCE BUFFERS LDAC Figure 1. Rev. 0 | Page 3 of 20 REFCD 11843-001 CLR AD5764-EP Enhanced Product SPECIFICATIONS AVDD = 11.4 V to 16.5 V, AVSS = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = 0 V; REFAB = REFCD = 5 V; DVCC = 2.7 V to 5.25 V, RLOAD = 10 kΩ, CLOAD = 200 pF. Temperature range: −55°C to +105°C; typical at +25°C. All specifications TMIN to TMAX, unless otherwise noted. Table 2. Parameter ACCURACY Resolution Relative Accuracy (INL) Differential Nonlinearity (DNL) Bipolar Zero Error Max Unit ±2 ±1 ±2 Bits LSB LSB mV Bipolar Zero Temperature Coefficient (TC) 1 Zero-Scale Error ±2 ±3 ppm FSR/°C mV Zero-Scale TC1 Gain Error ±2 ±0.02 ppm FSR/°C % FSR ±2 0.5 ppm FSR/°C LSB ±10 7 ±1% for specified performance Typically 100 MΩ Typically ±30 nA 1 V MΩ µA V −10.5263 −14 +10.5263 +14 AVDD/AVSS = ±11.4 V, VREFIN = 5 V AVDD/AVSS = ±16.5 V, VREFIN = 7 V ±1 V V ppm FSR/ 500 hours ppm FSR/ 1000 hours mA mA 200 1000 0.3 pF pF Ω 0.8 ±1 10 V V µA pF Per pin Per pin V V V V µA pF DVCC = 5 V ± 5%, sinking 200 µA DVCC = 2.7 V to 3.6 V, sinking 200 µA DVCC = 5 V ± 5%, sourcing 200 µA DVCC = 2.7 V to 3.6 V, sourcing 200 µA SDO only SDO only Gain TC1 DC Crosstalk1 REFERENCE INPUT1 Reference Input Voltage DC Input Impedance Input Current Reference Range OUTPUT CHARACTERISTICS1 Output Voltage Range 2 Min Typ 16 5 1 Output Voltage Drift vs. Time ±13 ±15 Short-Circuit Current Load Current Capacitive Load Stability RLOAD = ∞ RLOAD = 10 kΩ DC Output Impedance DIGITAL INPUTS Input High Voltage, VIH Input Low Voltage, VIL Input Current Pin Capacitance DIGITAL OUTPUTS (D0, D1, SDO)1 Output Low Voltage, VOL Output High Voltage, VOH High Impedance Leakage Current High Impedance Output Capacitance 10 Test Conditions/Comments Outputs unloaded Guaranteed monotonic At 25°C; error at other temperatures obtained using bipolar zero TC At 25°C; error at other temperatures obtained using zero-scale TC At 25°C; error at other temperatures obtained using gain TC RISCC = 6 kΩ; see Figure 31 For specified performance DVCC = 2.7 V to 5.25 V, JEDEC compliant 2 0.4 0.4 DVCC − 1 DVCC − 0.5 ±1 5 Rev. 0 | Page 4 of 20 Enhanced Product Parameter POWER REQUIREMENTS AVDD/AVSS DVCC Power Supply Sensitivity1 ∆VOUT/∆ΑVDD AIDD AISS DICC Power Dissipation 1 2 AD5764-EP Min Typ ±11.4 2.7 Max Unit ±16.5 5.25 V V 3.75 −3 1.4 dB mA/channel mA/channel mA mW −85 275 Test Conditions/Comments Outputs unloaded Outputs unloaded VIH = DVCC, VIL = DGND, 750 µA typical ±12 V operation, output unloaded Guaranteed by design and characterization; not production tested. Output amplifier headroom requirement is 1.4 V minimum. AC PERFORMANCE CHARACTERISTICS AVDD = 11.4 V to 16.5 V, AVSS = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = 0 V; REFAB = REFCD = 5 V; DVCC = 2.7 V to 5.25 V, RLOAD = 10 kΩ, CLOAD = 200 pF. All specifications TMIN to TMAX, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE 1 Output Voltage Settling Time Slew Rate Digital-to-Analog Glitch Energy Glitch Impulse Peak Amplitude Channel-to-Channel Isolation DAC-to-DAC Crosstalk Digital Crosstalk Digital Feedthrough Output Noise 0.1 Hz to 10 Hz 0.1 Hz to 100 kHz 1/f Corner Frequency Output Noise Spectral Density Complete System Output Noise Spectral Density 2 1 2 Min Typ Max Unit Test Conditions/Comments 8 2 5 8 10 µs µs V/µs nV-sec mV p-p dB nV-sec nV-sec nV-sec Full-scale step to ±1 LSB 512 LSB step settling 37 80 8 2 2 0.1 45 1 60 80 Guaranteed by design and characterization; not production tested. Includes noise contributions from integrated reference buffers, 16-bit DAC, and output amplifier. Rev. 0 | Page 5 of 20 LSB p-p µV rms kHz nV/√Hz nV/√Hz Effect of input bus activity on DAC outputs Measured at 10 kHz Measured at 10 kHz AD5764-EP Enhanced Product TIMING CHARACTERISTICS AVDD = 11.4 V to 16.5 V, AVSS = −11.4 V to −16.5 V, AGNDx = DGND = REFGND = PGND = 0 V; REFAB = REFCD = 5 V; DVCC = 2.7 V to 5.25 V, RLOAD = 10 kΩ, CLOAD = 200 pF. All specifications TMIN to TMAX, unless otherwise noted. Table 4. Parameter 1, 2, 3 t1 t2 t3 t4 t5 4 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 5, 6 t16 t17 t18 Limit at TMIN, TMAX 33 13 13 13 13 90 2 9 1.7 480 17 500 10 17 2 25 13 2 170 Unit ns min ns min ns min ns min ns min ns min ns min ns min µs min ns min ns min ns max µs max ns min µs max ns max ns min µs max ns min Description SCLK cycle time SCLK high time SCLK low time SYNC falling edge to SCLK falling edge setup time 24th SCLK falling edge to SYNC rising edge Minimum SYNC high time Data setup time Data hold time SYNC rising edge to LDAC falling edge (all DACs updated) SYNC rising edge to LDAC falling edge (single DAC updated) LDAC pulse width low LDAC falling edge to DAC output response time DAC output settling time CLR pulse width low CLR pulse activation time SCLK rising edge to SDO valid SYNC rising edge to SCLK falling edge SYNC rising edge to DAC output response time (LDAC = 0) LDAC falling edge to SYNC rising edge Guaranteed by design and characterization; not production tested. All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V. See Figure 3, Figure 4, and Figure 5. 4 Standalone mode only. 5 Measured with the load circuit of Figure 2. 6 Daisy-chain mode only. 1 2 3 200µA VOH (MIN) OR VOL (MAX) CL 50pF 200µA IOH Figure 2. Load Circuit for SDO Timing Diagram Rev. 0 | Page 6 of 20 11843-005 TO SDO PIN IOL Enhanced Product AD5764-EP Timing Diagrams t1 SCLK 1 24 2 t2 t3 t6 t4 t5 SYNC t8 t7 SDIN DB0 DB23 t10 t9 LDAC t10 t18 t12 t11 VOUTx LDAC = 0 t12 t17 VOUTx t13 CLR t14 11843-002 VOUTx Figure 3. Serial Interface Timing Diagram t1 SCLK 24 t3 t6 48 t2 t5 t16 t4 SYNC t7 SDIN t8 DB23 DB0 INPUT WORD FOR DAC N DB23 DB0 t15 INPUT WORD FOR DAC N – 1 DB23 SDO UNDEFINED DB0 INPUT WORD FOR DAC N t9 t10 11843-003 LDAC Figure 4. Daisy-Chain Timing Diagram Rev. 0 | Page 7 of 20 AD5764-EP Enhanced Product SCLK 24 48 SYNC DB23 DB0 DB23 DB0 NOP CONDITION INPUT WORD SPECIFIES REGISTER TO BE READ DB0 DB23 SDO SELECTED REGISTER DATA CLOCKED OUT UNDEFINED Figure 5. Readback Timing Diagram Rev. 0 | Page 8 of 20 11843-004 SDIN Enhanced Product AD5764-EP ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Transient currents of up to 100 mA do not cause SCR latch-up. Table 5. Parameter AVDD to AGNDx, DGND AVSS to AGNDx, DGND DVCC to DGND Digital Inputs to DGND Digital Outputs to DGND REFAB, REFCD to AGNDx, PGND VOUTA, VOUTB, VOUTC, VOUTD to AGNDx AGNDx to DGND Operating Temperature Range Industrial Storage Temperature Range Junction Temperature (TJ max) 32-Lead TQFP θJA Thermal Impedance θJC Thermal Impedance Lead Temperature Soldering Rating −0.3 V to +17 V +0.3 V to −17 V −0.3 V to +7 V −0.3 V to DVCC + 0.3 V or 7 V (whichever is less) −0.3 V to DVCC + 0.3 V −0.3 V to AVDD + 0.3 V AVSS to AVDD Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION −0.3 V to +0.3 V −55°C to +105°C −65°C to +150°C 150°C 65°C/W 12°C/W JEDEC industry standard J-STD-020 Rev. 0 | Page 9 of 20 AD5764-EP Enhanced Product REFAB REFCD NC REFGND NC AVSS AVDD BIN/2sCOMP PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 32 31 30 29 28 27 26 25 24 AGNDA 23 VOUTA 22 VOUTB 21 AGNDB 20 AGNDC LDAC 6 19 VOUTC D0 7 18 VOUTD D1 8 17 AGNDD SYNC 1 PIN 1 SCLK 2 SDIN 3 AD5764-EP SDO 4 TOP VIEW (Not to Scale) CLR 5 NC = NO CONNECT 11843-006 ISCC AVSS PGND AVDD DVCC DGND RSTIN 10 11 12 13 14 15 16 RSTOUT 9 Figure 6. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 Mnemonic SYNC 2 SCLK 3 4 5 SDIN SDO CLR 6 LDAC 7, 8 D0, D1 9 RSTOUT 10 RSTIN 11 12 13, 31 14 15, 30 16 DGND DVCC AVDD PGND AVSS ISCC 17 18 AGNDD VOUTD 19 VOUTC 20 AGNDC Description Active Low Input. This pin is the frame synchronization signal for the serial interface. While SYNC is low, data is transferred in on the falling edge of SCLK. Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This input operates at clock speeds up to 30 MHz. Serial Data Input. Data must be valid on the falling edge of SCLK. Serial Data Output. This pin is used to clock data from the serial register in daisy-chain or readback mode. Negative Edge Triggered Input. Asserting this pin sets the data register to 0x0000. This logic input has an internal pull-up device. Therefore, this pin can be left floating and defaults to a Logic 1 condition. Load DAC. This logic input is used to update the data register and, consequently, the analog outputs. When LDAC is tied permanently low, the addressed data register is updated on the rising edge of SYNC. If LDAC is held high during the write cycle, the DAC input shift register is updated, but the update of the output is delayed until the falling edge of LDAC. In this mode, all analog outputs can be updated simultaneously on the falling edge of LDAC. The LDAC pin must not be left unconnected. Digital I/O Port. These pins can be inputs or outputs that are configurable and readable over the serial interface. When configured as inputs, D0 and D1 have weak internal pull-ups to DVCC. When configured as outputs, D0 and D1 are referenced by DVCC and DGND. Reset Logic Output. This pin is the output from the on-chip voltage monitor and is used in the reset circuit. If desired, this pin can be used to control other system components. Reset Logic Input. This input allows external access to the internal reset logic. Applying a Logic 0 to this input clamps the DAC outputs to 0 V. In normal operation, RSTIN should be tied to Logic 1. Register values remain unchanged. Digital Ground. Digital Supply Voltage (2.7 V to 5.25 V). Positive Analog Supply Voltage (11.4 V to 16.5 V). Ground Reference Point for the Analog Circuitry. Negative Analog Supply Voltage (−11.4 V to −16.5 V). Resistor Connection for Pin Programmable Short-Circuit Current. This pin is used with an optional external resistor to AGND to program the short-circuit current of the output amplifiers. Ground Reference Pin for DAC D Output Amplifier. Analog Output Voltage of DAC D. This buffered output has a nominal full-scale output range of ±10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load. Analog Output Voltage of DAC C. This buffered output has a nominal full-scale output range of ±10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load. Ground Reference Pin for DAC C Output Amplifier. Rev. 0 | Page 10 of 20 Enhanced Product Pin No. 21 22 Mnemonic AGNDB VOUTB 23 VOUTA 24 25 AGNDA REFAB 26 REFCD 27, 29 28 32 NC REFGND BIN/2sCOMP AD5764-EP Description Ground Reference Pin for DAC B Output Amplifier. Analog Output Voltage of DAC B. This buffered output has a nominal full-scale output range of ±10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load. Analog Output Voltage of DAC A. This buffered output has a nominal full-scale output range of ±10 V. The output amplifier is capable of directly driving a 10 kΩ, 200 pF load. Ground Reference Pin for DAC A Output Amplifier. External Reference Voltage Input for Channel A and Channel B. Reference input range is 1 V to 7 V. This pin programs the full-scale output voltage. VREFIN = 5 V for specified performance. External Reference Voltage Input for Channel C and Channel D. Reference input range is 1 V to 7 V. This pin programs the full-scale output voltage. VREFIN = 5 V for specified performance. No Connect. Reference Ground Return for the Reference Generator and Buffers. This pin determines the DAC coding. This pin should be hardwired to either DVCC or DGND. When the pin is hardwired to DVCC, the input coding is offset binary. When the pin is hardwired to DGND, the input coding is twos complement. Rev. 0 | Page 11 of 20 AD5764-EP Enhanced Product TYPICAL PERFORMANCE CHARACTERISTICS 1.0 TA = 25°C AVDD/AVSS = ±15V VREFIN = 5V 0.8 0.6 0.6 DNL ERROR (LSB) INL ERROR (LSB) 0.4 0.2 0 –0.2 –0.4 0.4 0.2 0 –0.2 –0.4 –0.6 –0.6 –0.8 –0.8 0 10000 20000 30000 40000 50000 60000 DAC CODE –1.0 11843-007 –1.0 TA = 25°C AVDD/AVSS = ±12V VREFIN = 5V 0.8 0 20000 30000 40000 50000 60000 DAC CODE Figure 7. Integral Nonlinearity Error vs. Code, AVDD/AVSS = ±15 V Figure 10. Differential Nonlinearity Error vs. Code, AVDD/AVSS = ±12 V 1.0 TA = 25°C 0.8 AVDD/AVSS = ±12V VREFIN = 5V 0.6 0.6 TA = 25°C AVDD/AVSS = ±15V VREFIN = 5V 0.4 INL ERROR (LSB) 0.4 INL ERROR (LSB) 10000 11843-012 1.0 0.2 0 –0.2 0.2 0 –0.2 –0.4 –0.6 –0.4 0 10000 20000 30000 40000 50000 60000 DAC CODE –0.6 –55 11843-008 –1.0 0.6 TA = 25°C AVDD/AVSS = ±15V VREFIN = 5V 0.4 INL ERROR (LSB) 0.4 0.2 0 –0.2 –0.4 –0.6 105 TA = 25°C AVDD/AVSS = ±12V VREFIN = 5V 0.2 0 –0.2 –0.4 –1.0 0 10000 20000 30000 40000 50000 60000 DAC CODE Figure 9. Differential Nonlinearity Error vs. Code, AVDD/AVSS = ±15 V –0.6 –55 –40 25 85 TEMPERATURE (°C) Figure 12. Integral Nonlinearity Error vs. Temperature, AVDD/AVSS = ±12 V Rev. 0 | Page 12 of 20 105 11843-112 –0.8 11843-011 DNL ERROR (LSB) 85 Figure 11. Integral Nonlinearity Error vs. Temperature, AVDD/AVSS = ±15 V 1.0 0.6 25 TEMPERATURE (°C) Figure 8. Integral Nonlinearity Error vs. Code, AVDD/AVSS = ±12 V 0.8 –40 11843-111 –0.8 Enhanced Product AD5764-EP 0.2 0.15 TA = 25°C VREFIN = 5V 0.10 0.1 DNL ERROR (LSB) DNL ERROR (LSB) 0.05 0 –0.1 –0.2 0 –0.05 –0.10 –0.15 TA = 25°C AVDD/AVSS = ±15V VREFIN = 5V 25 –40 85 105 TEMPERATURE (°C) –0.25 11.4 11843-113 –0.4 –55 –0.20 12.4 13.4 14.4 15.4 16.4 SUPPLY VOLTAGE (V) Figure 13. Differential Nonlinearity Error vs. Temperature, AVDD/AVSS = ±15 V 11843-025 –0.3 Figure 16. Differential Nonlinearity Error vs. Supply Voltage 0.2 0.8 TA = 25°C AVDD/AVSS = ±16.5V 0.6 0.1 0 INL ERROR (LSB) DNL ERROR (LSB) 0.4 –0.1 –0.2 0.2 0 –0.2 –0.4 –0.6 TA = 25°C AVDD/AVSS = ±12V VREFIN = 5V 85 105 TEMPERATURE (°C) –1.0 1 4 5 6 7 Figure 17. Integral Nonlinearity Error vs. Reference Voltage, AVDD/AVSS = ±16.5 V 0.5 0.4 TA = 25°C VREFIN = 5V TA = 25°C AVDD/AVSS = ±16.5V 0.3 0.4 0.2 DNL ERROR (LSB) 0.3 0.2 0.1 0 0.1 0 –0.1 –0.2 –0.1 –0.3 12.4 13.4 14.4 15.4 16.4 SUPPLY VOLTAGE (V) 11843-023 INL ERROR (LSB) 3 REFERENCE VOLTAGE (V) Figure 14. Differential Nonlinearity Error vs. Temperature, AVDD/AVSS = ±12 V –0.2 11.4 2 11843-027 25 –40 11843-114 –0.4 –55 –0.8 Figure 15. Integral Nonlinearity Error vs. Supply Voltage –0.4 1 2 3 4 5 6 7 REFERENCE VOLTAGE (V) Figure 18. Differential Nonlinearity Error vs. Reference Voltage, AVDD/AVSS = ±16.5 V Rev. 0 | Page 13 of 20 11843-031 –0.3 AD5764-EP Enhanced Product 0.6 0.6 VREFIN = 5V TA = 25°C 0.4 AVDD/AVSS = ±16.5V 0.5 BIPOLAR ZERO ERROR (mV) 0.2 0 TUE (mV) –0.2 –0.4 –0.6 –0.8 –1.0 0.4 AVDD/AVSS = ±15V 0.3 0.2 0.1 AVDD/AVSS = ±12V –1.2 0 1 2 3 4 5 6 7 REFERENCE VOLTAGE (V) –0.1 –55 11843-035 –1.6 25 –40 85 105 TEMPERATURE (°C) Figure 19. Total Unadjusted Error vs. Reference Voltage, AVDD/AVSS = ±16.5 V 11843-122 –1.4 Figure 22. Bipolar Zero Error vs. Temperature 0.8 14 VREFIN = 5V TA = 25°C VREFIN = 5V 0.7 13 0.6 GAIN ERROR (mV) |IDD| IDD/ISS (mA) 12 11 10 |ISS| 0.5 AVDD/AVSS = ±15V 0.4 0.3 AVDD/AVSS = ±12V 0.2 0.1 9 12.4 13.4 14.4 15.4 16.4 AVDD/AVSS (V) –0.1 –55 11843-037 8 11.4 25 –40 85 105 TEMPERATURE (°C) 11843-123 0 Figure 23. Gain Error vs. Temperature Figure 20. IDD/ISS vs. AVDD/AVSS 0.5 0.0014 TA = 25°C VREFIN = 5V 0.0013 DVCC = 5V 0.0012 0.3 0.0011 AVDD/AVSS = ±12V 0.2 DICC (mA) ZERO-SCALE ERROR (mV) 0.4 AVDD/AVSS = ±15V 0.0010 0.0009 0.1 0.0008 DVCC = 3V 0 –40 25 85 TEMPERATURE (°C) 105 0.0006 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VLOGIC (V) Figure 24. DICC vs. Logic Input Voltage Figure 21. Zero-Scale Error vs. Temperature Rev. 0 | Page 14 of 20 4.5 5.0 11843-041 –0.1 –55 11843-121 0.0007 Enhanced Product 7000 TA = 25°C VREFIN = 5V RISCC = 6kΩ AVDD/AVSS = ±15V TA = 25°C VREFIN = 5V AVDD/AVSS = ±15V 5000 AVDD/AVSS = ±12V 4000 3000 2000 0 –5 0 5 10 SOURCE/SINK CURRENT (mA) 11843-042 1 –1000 –10 1µs/DIV CH1 3.00V Figure 25. Source and Sink Capability of Output Amplifier with Positive Full Scale Loaded 10000 –120mV –4 TA = 25°C VREFIN = 5V RISCC = 6kΩ –6 8000 –8 AVDD/AVSS = ±15V 7000 –10 6000 –12 VOUT (mV) AVDD/AVSS = ±12V 5000 4000 –14 –16 3000 –18 2000 –20 1000 –22 0 –24 –1000 –12 CH1 Figure 27. Full-Scale Settling Time –7 –2 3 8 SOURCE/SINK CURRENT (mA) 11843-043 OUTPUT VOLTAGE DELTA (µV) 9000 M1.00µs 11843-044 1000 Figure 26. Source and Sink Capability of Output Amplifier with Negative Full Scale Loaded AVDD/AVSS = ±12V VREFIN = 5V TA = 25°C 0x8000 TO 0x7FFF 500ns/DIV –26 –2.0–1.5–1.0–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 TIME (µs) Figure 28. Major Code Transition Glitch Energy, AVDD/AVSS = ±12 V Rev. 0 | Page 15 of 20 11843-047 OUTPUT VOLTAGE DELTA (µV) 6000 AD5764-EP AD5764-EP Enhanced Product 10 AVDD/AVSS = ±15V MIDSCALE LOADED VREFIN = 0V SHORT-CIRCUIT CURRENT (mA) M1.00s CH4 26µV 8 7 6 5 4 3 2 1 0 0 20 40 60 80 100 RISCC (kΩ) Figure 31. Short-Circuit Current vs. RISCC Figure 29. Peak-to-Peak Noise (100 kHz Bandwidth) T AVDD/AVSS = ±12V VREFIN = 5V TA = 25°C RAMP TIME = 100µs LOAD = 200pF||10kΩ 1 2 CH1 10.0V BW CH2 10.0V CH3 10.0mV BW M100µs A CH1 T 29.60% 7.80mV 11843-055 3 Figure 30. VOUT vs. AVDD/AVSS on Power-Up Rev. 0 | Page 16 of 20 120 11843-050 50µV/DIV 11843-048 4 CH4 50.0µV AVDD/AVSS = ±15V TA = 25°C VREFIN = 5V 9 Enhanced Product AD5764-EP OUTLINE DIMENSIONS 0.75 0.60 0.45 1.20 MAX 9.00 BSC SQ 25 32 24 1 PIN 1 7.00 BSC SQ TOP VIEW 0.20 0.09 7° 3.5° 0° 0.08 MAX COPLANARITY SEATING PLANE 17 8 16 9 VIEW A VIEW A 0.80 BSC LEAD PITCH ROTATED 90° CCW 0.45 0.37 0.30 COMPLIANT TO JEDEC STANDARDS MS-026-AB A 020607-A 1.05 1.00 0.95 0.15 0.05 (PINS DOWN) 0° MIN Figure 32. 32-Lead Thin Plastic Quad Flat Package [TQFP] (SU-32-2) Dimensions shown in millimeters ORDERING GUIDE Model 1 AD5764SSUZ-EP-RL7 1 INL ±2 LSB max Temperature Range −55°C to +105°C Z = RoHS Compliant Part. Rev. 0 | Page 17 of 20 Package Description 32-Lead TQFP Package Option SU-32-2 AD5764-EP Enhanced Product NOTES Rev. 0 | Page 18 of 20 Enhanced Product AD5764-EP NOTES Rev. 0 | Page 19 of 20 AD5764-EP Enhanced Product NOTES ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11843-0-12/13(0) Rev. 0 | Page 20 of 20