Preview only show first 10 pages with watermark. For full document please download

Ad8231-ep Data Sheet

   EMBED


Share

Transcript

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP ENHANCED PRODUCT FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range (−55°C to +125°C) Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request –INA +INA NC CS 13 A0 14 15 16 NC A1 FUNCTIONAL BLOCK DIAGRAM 1 12 LOGIC 2 11 IN-AMP 3 10 4 9 +VS –VS OUTA REF AD8231-EP OP 09707-001 8 OUTB 7 –INB 6 +INB 5 AMP SDN Digitally/pin-programmable gain G = 1, 2, 4, 8, 16, 32, 64, or 128 Specified from −55°C to +125°C 50 nV/°C maximum input offset drift 10 ppm/°C maximum gain drift Excellent dc performance 80 dB minimum CMR, G = 1 15 μV maximum input offset voltage 500 pA maximum bias current 0.7 μV p-p noise (0.1 Hz to 10 Hz) Good ac performance 2.7 MHz bandwidth, G = 1 1.1 V/μs slew rate Rail-to-rail output Shutdown/multiplex Extra op amp Single-supply range: 3 V to 6 V Dual-supply range: ±1.5 V to ±3 V A2 FEATURES Figure 1. Table 1. Instrumentation and Difference Amplifiers by Category High Performance AD8221 AD82201 AD8222 AD82241 1 Low Cost AD623 1 AD85531 High Voltage AD628 AD629 Mil Grade AD620 AD621 AD524 AD526 AD624 Low Power AD6271 Digital Gain AD82311 AD8250 AD8251 AD85551 AD85561 AD85571 Rail-to-rail output. GENERAL DESCRIPTION The AD8231-EP is a low drift, rail-to-rail, instrumentation amplifier with software-programmable gains of 1, 2, 4, 8, 16, 32, 64, or 128. The gains are programmed via digital logic or pin strapping. The AD8231-EP also includes an uncommitted op amp that can be used for additional gain, differential signal driving, or filtering. Like the in-amp, the op amp has an auto-zero architecture, railto-rail input, and rail-to-rail output. The AD8231-EP is ideal for applications that require precision performance over a wide temperature range, such as industrial temperature sensing and data logging. Because the gain setting resistors are internal, maximum gain drift is only 10 ppm/°C for gains of 1 to 32. Because of the auto-zero input stage, maximum input offset is 15 μV and maximum input offset drift is just 50 nV/°C. CMRR is 80 dB for G = 1, increasing to 110 dB at higher gains. The AD8231-EP includes a shutdown feature that reduces current to a maximum of 1 μA. In shutdown, both amplifiers also have a high output impedance, which allows easy multiplexing of multiple amplifiers without additional switches. The AD8231-EP is specified over the military temperature range of −55°C to +125°C. It is available in a 4 mm × 4 mm 16lead LFCSP. Additional application and technical information can be found in the AD8231 data sheet. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. AD8231-EP TABLE OF CONTENTS Features .............................................................................................. 1  ESD Caution...................................................................................7  Enhanced Product Features ............................................................ 1  Pin Configuration and Function Descriptions..............................8  Functional Block Diagram .............................................................. 1  Typical Performance Characteristics ..............................................8  General Description ......................................................................... 1  Instrumentation Amplifier Performance Curves......................9  Revision History ............................................................................... 2  Operational Amplifier Performance Curves .......................... 15  Specifications..................................................................................... 3  Performance Curves Valid for Both Amplifiers ..................... 17  Absolute Maximum Ratings............................................................ 7  Outline Dimensions ....................................................................... 18  Thermal Resistance ...................................................................... 7  Ordering Guide .......................................................................... 18  Maximum Power Dissipation ..................................................... 7  REVISION HISTORY 5/11—Revision 0: Initial Version Rev. 0 | Page 2 of 20 AD8231-EP SPECIFICATIONS VS = 5 V, VREF = 2.5 V, G = 1, RL = 10 kΩ, TA = 25°C, unless otherwise noted. Table 2. Parameter INSTRUMENTATION AMPLIFIER Offset Voltage Input Offset, VOSI Average Temperature Drift Output Offset, VOSO Average Temperature Drift Input Currents Input Bias Current Test Conditions/Comments Min Typ Max Unit 4 0.01 15 0.05 15 0.05 30 0.5 μV μV/°C μV μV/°C 250 500 5 100 0.5 pA nA pA nA 0.05 0.8 % % 10 20 30 ppm/°C ppm/°C ppm/°C ppm ppm VOS RTI = VOSI + VOSO/G TA = −55°C to +125°C TA = −55°C to +125°C TA = −55°C to +125°C Input Offset Current Gains Gain Error G=1 G = 2 to 128 Gain Drift G = 1 to 32 G = 64 G = 128 Linearity CMRR G=1 G=2 G=4 G=8 G = 16 G = 32 G = 64 G = 128 Noise Input Voltage Noise, eni Output Voltage Noise, eno Current Noise Other Input Characteristics Common-Mode Input Impedance Power Supply Rejection Ratio Input Operating Voltage Range Reference Input Input Impedance Voltage Range 20 TA = −55°C to +125°C 1, 2, 4, 8, 16, 32, 64, or 128 TA = −55°C to +125°C 3 4 10 3 5 0.2 V to 4.8 V, 10 kΩ load 0.2 V to 4.8 V, 2 kΩ load 80 86 92 98 104 110 110 110 en = √(eni2 + (eno/G)2), VIN+, VIN− = 2.5 V f = 1 kHz f = 1 kHz, TA = −55°C f = 1 kHz, TA = 125°C f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz, TA = −55°C f = 1 kHz, TA = 125°C f = 0.1 Hz to 10 Hz f = 10 Hz 100 0.05 dB dB dB dB dB dB dB dB 32 27 39 0.7 58 50 70 1.1 20 nV/√Hz nV/√Hz nV/√Hz μV p-p nV/√Hz nV/√Hz nV/√Hz μV p-p fA/√Hz 10||5 115 4.95 GΩ||pF dB V +5.2 kΩ V 28 −0.2 Rev. 0 | Page 3 of 20 AD8231-EP Parameter Dynamic Performance Bandwidth G=1 G=2 Gain Bandwidth Product G = 4 to 128 Slew Rate Output Characteristics Output Voltage High Output Voltage Low Short-Circuit Current Digital Interface Input Voltage Low Input Voltage High Setup Time to CS High Hold Time after CS High OPERATIONAL AMPLIFIER Input Characteristics Offset Voltage, VOS Temperature Drift Input Bias Current Test Conditions/Comments RL = 100 kΩ to ground RL = 10 kΩ to ground RL = 100 kΩ to 5 V RL = 10 kΩ to 5 V TA = −55°C to +125°C TA = −55°C to +125°C TA = −55°C to +125°C TA = −55°C to +125°C Min 4.9 4.8 Typ MHz MHz 7 1.1 MHz V/μs 4.94 4.88 60 80 70 V V mV mV mA 1.0 V V ns ns 15 0.06 500 5 100 0.5 4.95 120 120 110 20 0.4 μV μV/°C pA nA pA nA V V/mV dB dB nV/√Hz μV p-p 1 0.5 MHz V/μs 4.96 4.92 60 80 70 V V mV mV mA 5 0.01 250 Input Offset Current 20 TA = −55°C to +125°C Output Voltage Low 0.05 100 100 100 f = 0.1 Hz to 10 Hz RL = 100 kΩ to ground RL = 10 kΩ to ground RL = 100 kΩ to 5 V RL = 10 kΩ to 5 V Short-Circuit Current BOTH AMPLIFIERS Power Supply Quiescent Current Quiescent Current (Shutdown) 4.9 4.8 4 0.01 Rev. 0 | Page 4 of 20 100 200 4.0 50 20 TA = −55°C to +125°C Unit 2.7 2.5 TA = −55°C to +125°C Input Voltage Range Open-Loop Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Voltage Noise Density Voltage Noise Dynamic Performance Gain Bandwidth Product Slew Rate Output Characteristics Output Voltage High Max 100 200 5 1 mA μA AD8231-EP VS = 3.0 V, VREF = 1.5 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted. Table 3. Parameter INSTRUMENTATION AMPLIFIER Offset Voltage Input Offset, VOSI Average Temperature Drift Output Offset, VOSO Average Temperature Drift Input Currents Input Bias Current Conditions Min Typ Max Unit 4 0.01 15 0.05 15 0.05 30 0.5 μV μV/°C μV μV/°C 250 500 5 100 0.5 pA nA pA nA 0.05 0.8 % % 10 20 30 ppm/°C ppm/°C ppm/°C VOS RTI = VOSI + VOSO/G TA = −55°C to +125°C Input Offset Current Gains Gain Error G=1 G = 2 to 128 Gain Drift G = 1 to 32 G = 64 G = 128 CMRR G=1 G=2 G=4 G=8 G = 16 G = 32 G = 64 G = 128 Noise Input Voltage Noise, eni Output Voltage Noise, eno Current Noise Other Input Characteristics Common-Mode Input Impedance Power Supply Rejection Ratio Input Operating Voltage Range Reference Input Input Impedance Voltage Range 20 TA = −55°C to +125°C 1, 2, 4, 8, 16, 32, 64, or 128 TA = −55°C to +125°C 3 4 10 80 86 92 98 104 110 110 110 en = √(eni2 + (eno/G)2) VIN+, VIN− = 2.5 V, TA = 25°C f = 1 kHz f = 1 kHz, TA = −55°C f = 1 kHz, TA = 125°C f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz, TA = −55°C f = 1 kHz, TA = 125°C f = 0.1 Hz to 10 Hz f = 10 Hz 100 0.05 dB dB dB dB dB dB dB dB 40 35 48 0.8 72 62 83 1.4 20 nV/√Hz nV/√Hz nV/√Hz μV p-p nV/√Hz nV/√Hz nV/√Hz μV p-p fA/√Hz 10||5 115 2.95 GΩ||pF dB V +3.2 kΩ||pF V 28 −0.2 Rev. 0 | Page 5 of 20 AD8231-EP Parameter Dynamic Performance Bandwidth G=1 G=2 Gain Bandwidth Product G = 4 to 128 Slew Rate Output Characteristics Output Voltage High Output Voltage Low Short-Circuit Current Digital Interface Input Voltage Low Input Voltage High Setup Time to CS High Hold Time after CS High OPERATIONAL AMPLIFIERS Input Characteristics Offset Voltage, VOS Temperature Drift Input Bias Current Conditions RL = 100 kΩ to ground RL = 10 kΩ to ground RL = 100 kΩ to 3 V RL = 10 kΩ to 3 V TA = −55°C to +125°C TA = −55°C to +125°C TA = −55°C to +125°C TA = −55°C to +125°C Min 2.9 2.8 Typ MHz MHz 7 1.1 MHz V/μs 2.94 2.88 60 80 40 V V mV mV mA V V ns ns 15 0.06 500 5 100 0.5 2.95 120 120 110 27 0.6 μV μV/°C pA nA pA nA V V/mV dB dB nV/√Hz μV p-p 1 0.5 MHz V/μs 2.96 2.82 60 80 40 V V mV mV mA TA = −55°C to +125°C 20 TA = −55°C to +125°C Output Voltage Low 0.05 100 100 100 f = 0.1 Hz to 10 Hz RL = 100 kΩ to ground RL = 10 kΩ to ground RL = 100 kΩ to 3 V RL = 10 kΩ to 3 V Short-Circuit Current BOTH AMPLIFIERS Power Supply Quiescent Current Quiescent Current (Shutdown) 2.9 2.8 3.5 0.01 Rev. 0 | Page 6 of 20 100 200 0.7 5 0.01 250 TA = −55°C to +125°C Unit 2.7 2.5 2.3 60 20 Input Offset Current Input Voltage Range Open-Loop Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Voltage Noise Density Voltage Noise Dynamic Performance Gain Bandwidth Product Slew Rate Output Characteristics Output Voltage High Max 100 200 4.5 1 mA μA AD8231-EP ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Output Short-Circuit Current Input Voltage (Common-Mode) Differential Input Voltage Storage Temperature Range Operational Temperature Range Package Glass Transition Temperature ESD (Human Body Model) ESD (Charged Device Model) ESD (Machine Model) Rating 6V Indefinite1 −VS − 0.3 V to +VS + 0.3 V −VS − 0.3 V to +VS + 0.3 V –65°C to +150°C –55°C to +125°C 130°C 1.5 kV 1.5 kV 0.2 kV 1 For junction temperatures between 105°C and 130°C, short-circuit operation beyond 1000 hours can impact part reliability. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 5. Thermal Pad Soldered to Board Not Soldered to Board θJA 54 96 Unit °C/W °C/W The θJA values in Table 5 assume a 4-layer JEDEC standard board. If the thermal pad is soldered to the board, it is also assumed it is connected to a plane. θJC at the exposed pad is 6.3°C/W. MAXIMUM POWER DISSIPATION The maximum safe power dissipation for the AD8231-EP is limited by the associated rise in junction temperature (TJ) on the die. At approximately 130°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the amplifiers. Exceeding a temperature of 130°C for an extended period can result in a loss of functionality. ESD CAUTION Rev. 0 | Page 7 of 20 AD8231-EP 12 +VS 11 –VS 10 OUTA (IN-AMP OUT) 9 REF 14 A0 NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD CAN BE CONNECTED TO THE NEGATIVE SUPPLY (–VS) OR LEFT FLOATING. 09707-002 OUTB (OP AMP OUT) 8 –INB 7 TOP VIEW (Not to Scale) SDN 5 NC 4 AD8231-EP +INB 6 +INA (IN-AMP +IN) 3 13 CS PIN 1 INDICATOR NC 1 –INA (IN-AMP –IN) 2 15 A1 16 A2 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration Table 6. Pin Function Descriptions Pin Number 1 2 3 4 5 6 7 8 9 Mnemonic NC −INA (IN-AMP −IN) +INA (IN-AMP +IN) NC SDN +INB −INB OUTB (OP AMP OUT) REF 10 11 12 13 14 15 16 OUTA (IN-AMP OUT) −VS +VS CS A0 A1 A2 EPAD Description No Connect. Do not connect to this pin. Instrumentation Amplifier Negative Input. Instrumentation Amplifier Positive Input. No Connect. Do not connect to this pin. Shutdown. Operational Amplifier Positive Input. Operational Amplifier Negative Input. Operational Amplifier Output. Instrumentation Amplifier Reference Pin. It should be driven with a low impedance. Output is referred to this pin. Instrumentation Amplifier Output. Negative Power Supply. Connect to ground in single-supply applications. Positive Power Supply. Chip Select. Enables digital logic interface. Gain Setting Bit (LSB). Gain Setting Bit. Gain Setting Bit (MSB). Exposed Pad. Can be connected to the negative supply (−VS) or left floating. Rev. 0 | Page 8 of 20 AD8231-EP TYPICAL PERFORMANCE CHARACTERISTICS INSTRUMENTATION AMPLIFIER PERFORMANCE CURVES 1000 1400 N: 5956 MEAN: 0.977167 SD: 11.8177 N: 5956 MEAN: –48.0779 1200 SD: 21.0433 800 1000 600 HITS HITS 800 400 600 400 200 –60 –40 –20 0 20 40 60 80 100 CMRR (µV/V) 0 –500 –400 –300 –200 –100 Figure 3. Instrumentation Amplifier CMR Distribution, G = 1 200 300 400 500 1400 N: 5956 MEAN: 2.06788 700 SD: 1.07546 1200 INPUT OFFSET (nV) 600 500 HITS 100 Figure 6. Instrumentation Amplifier Gain Distribution, G = 1 800 400 300 200 1000 800 600 400 200 100 –10 –5 0 5 10 15 VOSI (µV) 0 –55 –45 –35 –25 –15 –5 09707-101 0 –15 0 GAIN ERROR (µV/V) 5 15 25 35 45 55 65 75 TEMPERATURE (°C) 09707-207 –80 09707-100 0 –100 09707-103 200 Figure 7. Instrumentation Amplifier Input Offset Voltage Drift, −55°C to +125°C Figure 4. Instrumentation Amplifier Input Offset Voltage Distribution 20 800 N: 5956 MEAN: 10.3901 700 SD: 3.9553 15 OUTPUT OFFSET (µV) 600 HITS 500 400 300 10 5 0 200 –20 –10 0 VOSO (µV) 10 20 30 –10 –55 –45 –35 –25 –15 –5 09707-102 0 –30 Figure 5. Instrumentation Amplifier Output Offset Voltage Distribution 5 15 25 TEMPERATURE (°C) 35 45 55 65 75 09707-208 –5 100 Figure 8. Instrumentation Amplifier Output Offset Drift, −55°C to +125°C Rev. 0 | Page 9 of 20 AD8231-EP 6 VREF = MIDSUPPLY VCM = MIDSUPPLY 0V, 4.96V 1000 500 3V 0 5 4 5V SINGLE SUPPLY 0V, 2.96V 2 3V SINGLE SUPPLY 1 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 09707-209 5 Figure 9. Instrumentation Amplifier Bias Current vs. Temperature 0 2 3 4 5 6 Figure 12. Instrumentation Amplifier Input Common-Mode Range vs. Output Voltage, VREF = 0 V 6 INPUT COMMON-MODE VOLTAGE (V) 1.5 1.0 0.5 0 –0.5 –1.0 +VS = +2.5V –VS = –2.5V VREF = 0V –2.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 VCM (V) 4 0.02V, 4.22V 5V SINGLE SUPPLY 1.5V, 2.96V 3 2 0.02V, 2.22V 4.98V, 3.22V 2.98V, 2.22V 4.98V, 1.78V 3V SINGLE SUPPLY 1 2.98V, 0.78V 0.02V, 0.78V 1.5V, 0.04V 0 0 09707-006 –1.5 1.5V, 4.96V 5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 OUTPUT VOLTAGE (V) 09707-004 BIAS CURRENT (nA) 1 OUTPUT VOLTAGE (V) 2.0 Figure 13. Instrumentation Amplifier Input Common-Mode Range vs. Output Voltage, VREF = 1.5 V Figure 10. Instrumentation Amplifier Bias Current vs. Common-Mode Voltage, 5 V 6 1.0 INPUT COMMON-MODE VOLTAGE (V) 0.8 0.6 0.4 0.2 0 –0.2 –0.4 –0.6 +VS = +1.5V –VS = –1.5V VREF = 0V –0.8 –1.0 –1.5 –1.2 –0.9 –0.6 –0.3 0 0.3 0.6 0.9 1.2 VCM (V) Figure 11. Instrumentation Amplifier Bias Current vs. Common-Mode Voltage, 3 V 1.5 2.5V, 4.96V 5 5V SINGLE SUPPLY 4 4.98V, 3.72V 0.02V, 3.72V 3 2.5V, 2.96V 2.98V, 2.72V 2 0.02V, 1.72V 3V SINGLE SUPPLY 0.02V, 1.28V 2.5V, 0.04V 4.98V,1.28V 1 2.98V, 0.28V 0 0 09707-007 BIAS CURRENT (nA) 2.92V, 1.5V 0V, 0.04V 5V –500 –55 –40 –25 –10 4.92V, 2.5V 3 0.5 1.0 1.5 2.0 2.5 3.0 3.5 OUTPUT VOLTAGE (V) 4.0 4.5 5.0 09707-005 BIAS CURRENT (pA) 1500 09707-003 INPUT COMMON-MODE VOLTAGE (V) 2000 Figure 14. Instrumentation Amplifier Input Common-Mode Range vs. Output Voltage, VREF = 2.5 V Rev. 0 | Page 10 of 20 AD8231-EP 50 40 15 G = 64 G = 32 30 5 G=8 CMRR (µV/V) G=4 10 G=2 G=1 0 G=1 10 G = 16 20 –10 G=8 G = 128 0 –5 –10 –15 –20 –20 –30 –25 1k 10k 100k 1M 10M FREQUENCY (Hz) –30 –55 –40 –25 –10 09707-009 –40 100 5 20 35 50 65 80 95 Figure 18. Instrumentation Amplifier CMRR vs. Temperature Figure 15. Instrumentation Amplifier Gain vs. Frequency 140 1000 800 G=1 120 G=8 600 POSITIVE PSRR (dB) GAIN ERROR (µV/V) 900 200 0 G=1 –200 –400 110 125 TEMPERATURE (°C) 09707-218 GAIN (dB) 20 G = 128 G = 128 100 G = 128 80 60 40 –600 20 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 09707-216 –1000 –55 –40 –25 –10 1 10 100 Figure 16. Instrumentation Amplifier Gain Drift vs. Temperature 10k 100k Figure 19. Instrumentation Amplifier Positive PSRR vs. Frequency 140 140 G = 128 G=1 120 120 NEGATIVE PSRR (dB) G=8 G=8 100 G=1 80 100 80 G = 128 60 40 60 40 10 100 1k 10k 100k FREQUENCY (Hz) Figure 17. Instrumentation Amplifier CMRR vs. Frequency 0 1 10 100 1k 100k 100k FREQUENCY (Hz) Figure 20. Instrumentation Amplifier Negative PSRR vs. Frequency Rev. 0 | Page 11 of 20 09707-147 20 09707-010 CMRR (dB) 1k FREQUENCY (Hz) 09707-146 –800 AD8231-EP G = +128, 0.4µV/DIV 09707-012 G = +1, 1µV/DIV 1s/DIV 10 1 0.1 0.01 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 21. Instrumentation Amplifier 0.1 Hz to 10 Hz Noise 100 09707-107 CURRENT NOISE (pA/ Hz) 100 Figure 24. Instrumentation Amplifier Current Noise Spectral Density G = +1 G = +8 G = +128 90 80 NOISE (nV/ Hz) 70 60 50 40 30 10 1 10 100 1k FREQUENCY (Hz) Figure 22. Instrumentation Amplifier Voltage Noise Spectral Density vs. Frequency, 5 V, 1 Hz to 1000 Hz 1000 Figure 25. Instrumentation Amplifier Small Signal Pulse Response, G = 1, RL = 2 kΩ, CL = 500 pF G = +1 G = +8 G = +128 900 5µs/DIV 09707-011 20mV/DIV 0 09707-013 20 300pF NO LOAD 500pF 800pF 800 NOISE (nV/ Hz) 700 600 500 400 300 100 1 10 100 1k FREQUENCY (Hz) 10k 100k 4µs/DIV 09707-008 20mV/DIV 0 09707-014 200 Figure 23. Instrumentation Amplifier Voltage Noise Spectral Density vs. Frequency, 5 V, 1 Hz to 1 MHz Figure 26. Instrumentation Amplifier Small Signal Pulse Response for Various Capacitive Loads, G = 1 Rev. 0 | Page 12 of 20 AD8231-EP G = +8 G = +32 G = +128 2V/DIV 10µs/DIV 0.001%/DIV Figure 27. Instrumentation Amplifier Small Signal Pulse Response, G = 4, 16, and 128, RL = 2 kΩ, CL = 500 pF 100µs/DIV 09707-018 20mV/DIV 09707-015 17.6µs TO 0.01% 21.4µs TO 0.001% Figure 30. Instrumentation Amplifier Large Signal Pulse Response, G = 128, VS = 5 V 25 20 SETTLING TIME (µs) 2V/DIV 3.95µs TO 0.01% 4µs TO 0.001% 0.001% 15 0.01% 10 0 1 10 100 1k 09707-019 10µs/DIV 1k 09707-020 0.001%/DIV 09707-016 5 GAIN (V/V) Figure 28. Instrumentation Amplifier Large Signal Pulse Response, G = 1, VS = 5 V Figure 31. Instrumentation Amplifier Settling Time vs. Gain for a 4 V p-p Step, VS = 5 V 25 0.001% 20 SETTLING TIME (µs) 2V/DIV 3.75µs TO 0.01% 3.8µs TO 0.001% 15 0.01% 10 0.001%/DIV 10µs/DIV 09707-017 5 0 1 10 100 GAIN (V/V) Figure 29. Instrumentation Amplifier Large Signal Pulse Response, G = 8, VS = 5 V Figure 32. Instrumentation Amplifier Settling Time vs. Gain for a 2 V p-p Step, VS = 3 V Rev. 0 | Page 13 of 20 AD8231-EP –0.2 –0.4 –0.6 –0.8 –1.0 +1.0 +0.8 +0.6 +0.4 +0.2 –VS 0.1 +25°C –55°C 1 10 100 OUTPUT CURRENT (mA) –0.2 –0.4 –0.6 –0.8 –1.0 +1.0 +0.8 +0.6 +0.4 +0.2 –VS 0.1 +25°C –55°C 1 10 100 OUTPUT CURRENT (mA) Figure 34. Instrumentation Amplifier Output Voltage Swing vs. Output Current, VS = 5 V Figure 33. Instrumentation Amplifier Output Voltage Swing vs. Output Current, VS = 3 V Rev. 0 | Page 14 of 20 09707-234 OUTPUT VOLTAGE SWING REFERRED TO SUPPLY VOLTAGES (V) +VS 09707-233 OUTPUT VOLTAGE SWING REFERRED TO SUPPLY VOLTAGES (V) +VS AD8231-EP –100 60 –110 40 –120 76° PHASE MARGIN 20 –130 0 –140 800pF 1nF 1.5nF 20mV/DIV 1k 10k 100k 1M –150 10M FREQUENCY (Hz) Figure 38. Operational Amplifier Small Signal Response for Various Capacitive Loads, VS = 3 V 60 –110 40 –120 72° PHASE MARGIN 20 –130 0 –140 RL = 10kΩ CL = 200pF –20 10 100 1k 10k 100k 1M –150 10M FREQUENCY (Hz) Figure 36. Operational Amplifier Open-Loop Gain and Phase vs. Frequency, VS = 3 V 800pF 1nF OUTPUT VOLTAGE (0.5V/DIV) –100 OPEN-LOOP PHASE SHIFT (Degrees) 80 1nF║2kΩ 1.5nF║2kΩ TIME (5µs/DIV) Figure 39. Operational Amplifier Large Signal Transient Response, VS = 5 V NO LOAD 2nF OUTPUT VOLTAGE (0.5V/DIV) NO LOAD 1.5nF 20mV/DIV NO LOAD 09707-022 –90 5µs/DIV 1nF║2kΩ 1.5nF║2kΩ 09707-023 OPEN-LOOP GAIN (dB) Figure 35. Operational Amplifier Open-Loop Gain and Phase vs. Frequency, VS = 5 V 100 5µs/DIV TIME (5µs/DIV) Figure 37. Operational Amplifier Small Signal Response for Various Capacitive Loads, VS = 5 V 09707-026 RL = 10kΩ CL = 200pF –20 10 100 300pF 09707-024 80 NO LOAD 09707-025 –90 OPEN-LOOP PHASE SHIFT (Degrees) 100 09707-021 OPEN-LOOP GAIN (dB) OPERATIONAL AMPLIFIER PERFORMANCE CURVES Figure 40. Operational Amplifier Large Signal Transient Response, VS = 3 V Rev. 0 | Page 15 of 20 AD8231-EP +VS 800 700 600 500 400 300 200 0 10 100 1k 10k 100k FREQUENCY (Hz) BIAS CURRENT (nA) 2.5 2.0 1.5 1.0 0.5 +0.6 +0.4 +0.2 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 10 100 –0.2 –0.4 –0.6 –0.8 –1.0 +1.0 +0.8 +0.6 +0.4 +0.2 +25°C –55°C 1 10 100 Figure 45. Operational Amplifier Output Voltage Swing vs. Output Current, VS = 5 V 400 140 300 120 +PSRR 200 100 PSRR (dB) 100 VS = ±2.5V –100 VS = ±1.5V 80 –PSRR 60 40 –200 20 –2 –1 0 1 2 3 VCM (V) 09707-109 –300 –400 –3 1 OUTPUT CURRENT (mA) Figure 42. Operational Amplifier Bias Current vs. Temperature 0 +25°C –55°C –VS 0.1 09707-242 0 BIAS CURRENT (pA) +0.8 +VS VS = ±2.5V VS = ±1.5V –0.5 –55 –40 –25 –10 –1.0 +1.0 Figure 44. Operational Amplifier Output Voltage Swing vs. Output Current, VS = 3 V OUTPUT VOLTAGE SWING REFERRED TO SUPPLY VOLTAGES (V) 3.0 –0.8 OUTPUT CURRENT (mA) Figure 41. Operational Amplifier Voltage Spectral Noise Density vs. Frequency 3.5 –0.6 09707-245 1 –0.4 –VS 0.1 09707-141 100 –0.2 0 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 46. Operational Amplifier Power Supply Rejection Ratio Figure 43. Operational Amplifier Bias Current vs. Common Mode Rev. 0 | Page 16 of 20 09707-148 SPECTRAL NOISE DENSITY (nV/ Hz) 900 09707-244 OUTPUT VOLTAGE SWING REFERRED TO SUPPLY VOLTAGES (V) 1000 AD8231-EP 160 6 140 CHANNEL SEPARATION (dB) 7 5 4 +25°C 3 –55°C 2 1 G = 128 120 G=1 100 80 60 40 3.1 3.5 3.9 4.3 4.7 5.1 SUPPLY VOLTAGE (V) 5.5 5.9 0 10 SOURCE CHANNEL: OP AMP AT G = 1 100 1k 10k FREQUENCY (Hz) Figure 48. Channel Separation vs. Frequency Figure 47. Supply Current vs. Supply Voltage Rev. 0 | Page 17 of 20 100k 09707-149 0 2.7 G=8 20 09707-247 SUPPLY CURRENT (mA) PERFORMANCE CURVES VALID FOR BOTH AMPLIFIERS AD8231-EP OUTLINE DIMENSIONS 4.00 BSC SQ 3.75 BSC SQ 0.75 0.60 0.50 0.80 MAX 0.65 TYP 12° MAX 1.00 0.85 0.80 0.65 BSC TOP VIEW SEATING PLANE 16 13 12 9 PIN 1 INDICATOR 1 2.25 2.10 SQ 1.95 8 5 4 0.25 MIN 1.95 BSC 0.05 MAX 0.02 NOM 0.35 0.30 0.25 (BOTTOM VIEW) 0.20 REF COPLANARITY 0.08 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-VGGC 072808-A PIN 1 INDICATOR 0.60 MAX 0.60 MAX Figure 49. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-16-4) Dimensions shown in millimeters ORDERING GUIDE Model 1 AD8231TCPZ-EP-R7 1 Temperature Range −55°C to +125°C Package Description 16-Lead LFCSP_VQ, 7” Tape and Reel Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 Package Option CP-16-4 AD8231-EP NOTES Rev. 0 | Page 19 of 20 AD8231-EP NOTES ©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09707-0-5/11(0) Rev. 0 | Page 20 of 20