Transcript
Data Sheet
100 MHz to 4000 MHz RF/IF Digitally Controlled VGA ADL5240
FEATURES
GENERAL DESCRIPTION
Operating frequency from 100 MHz to 4000 MHz Digitally controlled VGA with serial and parallel interfaces 6-bit, 0.5 dB digital step attenuator 31.5 dB gain control range with ±0.25 dB step accuracy Gain block amplifier specifications Gain: 19.7 dB at 2.14 GHz OIP3: 41.0 dBm at 2.14 GHz P1dB: 19.5 dBm at 2.14 GHz Noise figure: 2.9 dB at 2.14 GHz Gain block or digital step attenuator can be first Single supply operation from 4.75 V to 5.25 V Low quiescent current of 93 mA Thermally efficient, 5 mm × 5 mm, 32-lead LFCSP The companion ADL5243 integrates a ¼ W driver amplifier to the output of the gain block and DSA
The ADL5240 is a high performance, digitally controlled variable gain amplifier (VGA) operating from 100 MHz to 4000 MHz. The VGA integrates a high performance, 20 dB gain, internally matched amplifier (AMP) with a 6-bit digital step attenuator (DSA) that has a gain control range of 31.5 dB in 0.5 dB steps with ±0.25 dB step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface. Both the gain block and DSA are internally matched to 50 Ω at their inputs and outputs and are separately biased. The separate bias allows all or part of the ADL5240 to be used, which facilitates easy reuse throughout a design. The pinout of the ADL5240 also enables either the gain block or DSA to be first, giving the VGA maximum flexibility in a signal chain. The ADL5240 consumes just 93 mA and operates from a single supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully specified for operation from −40°C to +85°C. A fully populated evaluation board is available.
APPLICATIONS Wireless infrastructure Automated test equipment RF/IF gain control
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
FUNCTIONAL BLOCK DIAGRAM
32
31
30
29
28
27
26
25
24
VDD
NC 2
23
NC
NC 3
22
NC
21
DSAOUT
20
NC
19
NC
18
NC
17
NC
VDD 1 SERIAL/PARALLEL INTERFACE
DSAIN 4 0.5dB
1dB
2dB
4dB
8dB
16dB
NC 5
NC 6
ADL5240 AMP
NC 7
NC
NC
14
15
16
09430-001
AMPOUT/VCC
13
NC
12
AMPIN
11
NC
10
NC
9
NC
NC 8
Figure 1.
Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility isassumed by Analog Devicesfor its use,norfor any infringements of patents or other rights of third parties thatmay resultfrom its use.Specificationssubject to changewithoutnotice.No license is granted by implication or otherwise under any patent or patent rights of Analog Devices . Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com
ADL5240* Product Page Quick Links Last Content Update: 11/01/2016
Comparable Parts
Reference Materials
View a parametric search of comparable parts
Product Selection Guide • RF Source Booklet
Evaluation Kits • ADL5240 Evaluation Board
Documentation Data Sheet • ADL5240: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data Sheet
Software and Systems Requirements
Design Resources • • • •
ADL5240 Material Declaration PCN-PDN Information Quality And Reliability Symbols and Footprints
Discussions View all ADL5240 EngineerZone Discussions
• ADL5240 and ADL5243 Evaluation Board Software
Tools and Simulations • ADIsimPLL™ • ADIsimRF • ADL5240 S-Parameters
Sample and Buy Visit the product page to see pricing options
Technical Support Submit a technical question or find your regional support number
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.
ADL5240
Data Sheet
TABLE OF CONTENTS Features .............................................................................................. 1
Applications Information .............................................................. 16
Applications ....................................................................................... 1
Basic Layout Connections ......................................................... 16
General Description ......................................................................... 1
SPI Timing................................................................................... 18
Functional Block Diagram .............................................................. 1
Loop Performance ...................................................................... 20
Revision History ............................................................................... 2
Amplifier Drive Level for Optimum ACLR ............................ 22
Specifications..................................................................................... 3
Thermal Considerations............................................................ 22
Absolute Maximum Ratings............................................................ 8
Evaluation Board ............................................................................ 23
ESD Caution .................................................................................. 8
Outline Dimensions ....................................................................... 28
Pin Configuration and Function Descriptions ............................. 9
Ordering Guide .......................................................................... 28
Typical Performance Characteristics ........................................... 10
REVISION HISTORY 6/13—Rev. 0 to Rev. A Changes to Table 1 ............................................................................. 4 Changes to Table 3 ............................................................................. 9 Changes to Figure 3 .........................................................................11 Changes to Figure 16 .......................................................................12 Added Figure 29, Renumbered Sequentially ...............................14 Changes to Table 5, Figure 35, and Figure 36 ..............................18 Added Amplifier Drive Level for Optimum ACLR Section and Figure 39 ....................................................................................22 Changes to Evaluation Board Section ...........................................23 Changes to Figure 41 and Table 8 ..................................................24 Added Figure 42...............................................................................25 Changes to Figure 43 and Figure 44 ..............................................26 Added Figure 45...............................................................................27 7/11—Revision 0: Initial Version
Rev. A | Page 2 of 28
Data Sheet
ADL5240
SPECIFICATIONS VDD = 5 V, VCC = 5 V, TA = 25o C Table 1. Parameter OVERALL FUNCTION Frequency Range AMPLIFIER FREQUENCY = 150 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 450 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 748 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 943 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
Test Conditions/Comments
Min
Typ
100
Max
Unit
4000
MHz
Using the AMPIN and AMPOUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone
17.6 ±1.0 ±0.04 ±0.04 −10.4 −7.7 18.3 30.0 2.8
dB dB dB dB dB dB dBm dBm dB
20.3 ±0.11 ±0.36 ±0.01 −18.3 −15.7 20.2 39.0 2.9
dB dB dB dB dB dB dBm dBm dB
20.6 ±0.01 ±0.31 ±0.01 −25.7 −23.7 20.2 40.0 2.7
dB dB dB dB dB dB dBm dBm dB
Using the AMPIN and AMPOUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone Using the AMPIN and AMPOUT pins ±50 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone Using the AMPIN and AMPOUT pins 19.0 ±18 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 18.5 ∆f = 1 MHz, POUT = 4 dBm/tone
Rev. A | Page 3 of 28
20.5 ±0.01 ±0.27 ±0.01 −30.3 −24.8 20.1 40.0 2.7
22.0
dB dB dB dB dB dB dBm dBm dB
ADL5240 Parameter AMPLIFIER FREQUENCY = 1960 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 2140 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 2630 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMPLIFIER FREQUENCY = 3600 MHz Gain vs. Frequency vs. Temperature vs. Supply Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure DSA FREQUENCY = 150 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept
Data Sheet Test Conditions/Comments Using the AMPIN and AMPOUT pins
Min
Typ
Max
19.8 ±0.03 ±0.26 ±0.03 −11.9 −12.6 19.8 40.0 2.9
±30 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone
Unit dB dB dB dB dB dB dBm dBm dB
Using the AMPIN and AMPOUT pins 18.0 ±30 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 17.5 ∆f = 1 MHz, POUT = 4 dBm/tone
19.7 ±0.02 ±0.25 ±0.04 −11.0 −12.0 19.5 41.0 2.9
22.0
dB dB dB dB dB dB dBm dBm dB
19.6 ±0.01 ±0.22 ±0.04 −11.0 −13.3 19.9 41.0 2.9
22.0
dB dB dB dB dB dB dBm dBm dB
Using the AMPIN and AMPOUT pins 18.0 ±60 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 18.0 ∆f = 1 MHz, POUT = 4 dBm/tone Using the AMPIN and AMPOUT pins ±100 MHz −40°C ≤ TA ≤ +85°C 4.75 V to 5.25 V S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone Using the DSAIN and DSAOUT pins Minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Rev. A | Page 4 of 28
19.6 ±0.03 ±0.05 ±0.10 −15.1 −12.2 18.8 37.0 3.1
dB dB dB dB dB dB dBm dBm dB
−1.5 ±0.12 ±0.09 28.8 ±0.18 ±1.35 −13.3 −13.4 47.9
dB dB dB dB dB dB dB dB dBm
Data Sheet Parameter DSA FREQUENCY = 450 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept DSA FREQUENCY = 748 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input Third-Order Intercept DSA FREQUENCY = 943 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 1960 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 2140 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept
ADL5240 Test Conditions/Comments Using the DSAIN and DSAOUT pins Minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Using the DSAIN and DSAOUT pins Minimum attenuation ±50 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Using the DSAIN and DSAOUT pins Minimum attenuation ±18 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Using the DSAIN and DSAOUT pins Minimum attenuation ±30 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Using the DSAIN and DSAOUT pins Minimum attenuation ±30 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Rev. A | Page 5 of 28
Min
Typ
Max
Unit
−1.5 ±0.02 ±0.10 30.7 ±0.14 ±0.42 −17.6 −17.6 45.0
dB dB dB dB dB dB dB dB dBm
−1.6 ±0.02 ±0.11 30.9 ±0.15 ±0.32 −17.4 −17.4 43.5
dB dB dB dB dB dB dB dB dBm
−1.6 ±0.01 ±0.12 30.9 ±0.13 ±0.30 −16.6 −16.5 30.5 50.9
dB dB dB dB dB dB dB dB dBm dBm
−2.4 ±0.02 ±0.16 31.0 ±0.15 ±0.29 −12.0 −11.5 31.5 49.5
dB dB dB dB dB dB dB dB dBm dBm
−2.5 ±0.02 ±0.17 31.0 ±0.12 ±0.26 −11.9 −11.2 31.5 49.2
dB dB dB dB dB dB dB dB dBm dBm
ADL5240 Parameter DSA FREQUENCY = 2630 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DSA FREQUENCY = 3600 MHz Insertion Loss vs. Frequency vs. Temperature Attenuation Range Attenuation Step Error Attenuation Absolute Error Input Return Loss Output Return Loss Input 1 dB Compression Point Input Third-Order Intercept DIGITAL STEP ATTENUATOR GAIN SETTLING Minimum Attenuation to Maximum Attenuation Maximum Attenuation to Minimum Attenuation AMP-DSA LOOP FREQUENCY = 943 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure AMP-DSA LOOP FREQUENCY = 2140 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
Data Sheet Test Conditions/Comments Using the DSAIN and DSAOUT pins Minimum attenuation ±60 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation Using the DSAIN and DSAOUT pins Minimum attenuation ±100 MHz −40°C ≤ TA ≤ +85°C All attenuation states All attenuation states Minimum attenuation Minimum attenuation Minimum attenuation ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation
Min
Typ
Max
Unit
−2.6 ±0.04 ±0.19 31.2 ±0.16 ±0.19 −13.1 −12.0 31.5 47.6
dB dB dB dB dB dB dB dB dBm dBm
−2.8 ±0.03 ±0.21 32.1 ±0.37 ±0.31 −20.2 −18.2 31.0 48.5
dB dB dB dB dB dB dB dB dBm dBm
36 36
ns ns
18.9 ±0.01 30.8 −20.5 −19.7 18.6 36.0 2.7
dB dB dB dB dB dBm dBm dB
18.2 ±0.01 31.3 −14.9 −16.4 17.9 37.5 3.0
dB dB dB dB dB dBm dBm dB
Using the AMPIN and DSAOUT pins, DSA at minimum attenuation ±18 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 1 dBm/tone Using the AMPIN and DSAOUT pins, DSA at minimum attenuation ±30 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 1 dBm/tone
Rev. A | Page 6 of 28
Data Sheet Parameter AMP-DSA LOOP FREQUENCY = 2630 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure DSA-AMP LOOP FREQUENCY = 943 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure DSA-AMP LOOP Frequency = 2140 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure DSA-AMP LOOP Frequency = 2630 MHz Gain vs. Frequency Gain Range Input Return Loss Output Return Loss Output 1 dB Compression Point Output Third-Order Intercept Noise Figure LOGIC INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINH/IINL Input Capacitance, CIN POWER SUPPLIES Voltage Supply Current Amplifier Digital Step Attenuator
ADL5240 Test Conditions/Comments Using the AMPIN and DSAOUT pins, DSA at minimum attenuation
Min
±60 MHz S11 S22 ∆f = 1 MHz, POUT = 1 dBm/tone
Typ
Max
Unit
17.7 ±0.11 31.5 −15.2 −9.6 16.9 33.7 3.0
dB dB dB dB dB dBm dBm dB
18.9 ±0.01 30.8 −17.2 −23.7 20.2 40.0 4.4
dB dB dB dB dB dBm dBm dB
18.0 ±0.01 31.1 −13.7 −10.0 19.7 37.5 4.9
dB dB dB dB dB dBm dBm dB
18.2 ±0.01 31.7 −15.7 −16.9 19.8 40.8 5.2
dB dB dB dB dB dBm dBm dB
Using the DSAIN and AMPOUT pins, DSA at minimum attenuation ±18 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone Using the DSAIN and AMPOUT pins, DSA at minimum attenuation ±30 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone Using the DSAIN and AMPOUT pins, DSA at minimum attenuation ±60 MHz Between maximum and minimum attenuation states S11 S22 ∆f = 1 MHz, POUT = 4 dBm/tone CLK, DATA, LE, SEL, D0~D6 2.5 0.8 0.1 1.5
V V µA pF
Using the VDD and VCC pins 4.75
Rev. A | Page 7 of 28
5.0
5.25
V
93 0.5
120
mA mA
ADL5240
Data Sheet
ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Supply Voltage (VDD, VCC) Input Power AMPIN DSAIN Internal Power Dissipation θJA (Exposed Pad Soldered Down) θJC (Exposed Pad is the Contact) Maximum Junction Temperature Lead Temperature (Soldering, 60 sec) Operating Temperature Range Storage Temperature Range
ESD CAUTION Rating 6.5 V 16 dBm 30 dBm 0.5 W 36.8°C/W 6.9°C/W 150°C 240°C −40°C to +85°C −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. A | Page 8 of 28
Data Sheet
ADL5240
32 31 30 29 28 27 26 25
SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1 2 3 4 5 6 7 8
PIN 1 INDICATOR
ADL5240 TOP VIEW (Not to Scale)
24 23 22 21 20 19 18 17
VDD NC NC DSAOUT NC NC NC NC
NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
09430-002
NC AMPOUT/VCC NC NC NC NC AMPIN NC
9 10 11 12 13 14 15 16
VDD NC NC DSAIN NC NC NC NC
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions Pin No. 1, 24 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23 4 10
Mnemonic VDD NC
Description Supply Voltage for DSA. Connect this pin to a 5 V supply. No Connect. Do not connect to this pin.
DSAIN AMPOUT/VCC
15 21 25 26 27 28 29 30 31 32
AMPIN DSAOUT D6 D5 D4 D3 D2/LE D1/DATA D0/CLK SEL
RF Input to DSA. RF Output from Amplifier/Supply Voltage for Amplifier. A bias to the amplifier is provided through a choke inductor connected to this pin. RF Input to Amplifier. RF Output from DSA. Data Bit in Parallel Mode (LSB). Connect this pin to the supply in serial mode. Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. Data Bit in Parallel Mode/Latch Enable in Serial Mode. Data Bit in Parallel Mode (MSB)/Data in Serial Mode. Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode. Select Pin. Connect this pin to the supply to select parallel mode operation; connect this pin to ground to select serial mode operation. Exposed Pad. The exposed pad must be connected to ground.
EPAD
Rev. A | Page 9 of 28
ADL5240
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS OIP3
40
30
45
28
40
26
35
24
30
22
25
20
20
35
GAIN
25 20
OIP3 (dBm)
P1dB (dBm)
30
15
5 0
18
NOISE FIGURE 0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
FREQUENCY (GHz)
16
Figure 3. AMP: Gain, P1dB, OIP3 at POUT = 4 dBm/Tone and Noise Figure vs. Frequency
15
+85°C +25°C –40°C 0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
10 3.6
09430-006
P1dB
10
09430-003
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
FREQUENCY (GHz)
Figure 6. AMP: OIP3 at POUT = 4 dBm/Tone and P1dB vs. Frequency and Temperature
46
21.0 20.5
943MHz
42 –40°C
2140MHz
1960MHz
44
748MHz
40
20.0
OIP3 (dBm)
GAIN (dB)
38 19.5
+25°C +85°C
19.0
36
450MHz
34 32
2630MHz
30
18.5
28
150MHz
26
18.0
3600MHz
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
FREQUENCY (GHz)
22 –5
09430-004
0
–3
–1
1
3
5
Figure 4. AMP: Gain vs. Frequency and Temperature
9
11
13
15
17
3.6
4.0
Figure 7. AMP: OIP3 vs. POUT and Frequency
0
4.5
–5
4.0
–10
+85°C
S22
NOISE FIGURE (dB)
S-PARAMETERS (dB)
7
POUT PER TONE (dBm)
09430-007
24 17.5
–15 –20
S12 –25
3.5 +25°C
3.0
–40°C
2.5
–30 2.0
–35
0.9
1.3
1.7
2.1
2.5
FREQUENCY (GHz)
2.9
3.3
3.7
4.1
Figure 5. AMP: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency
Rev. A | Page 10 of 28
1.5
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
FREQUENCY (GHz)
Figure 8. AMP: Noise Figure vs. Frequency and Temperature
09430-008
0.5
09430-005
S11 –40 0.1
Data Sheet
ADL5240
0
1.0
0dB
0.8
–5
31.5dB
0.6
30.5dB
16dB
STEP ERROR (dB)
–15 –20 –25
0.4 0.2 0 –0.2 –0.4
–30
31dB
–0.6 –35
–0.8
31.5dB 0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0 0.1
09430-009
–40 0.1
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 9. DSA: Attenuation vs. Frequency
–1
0.5
09430-016
ATTENUATION (dB)
–10
Figure 12. DSA: Step Error vs. Frequency, All Attenuation States
1.0
0dB
748MHz 0.8
450MHz 4dB 8dB
–11
1960MHz
0.6
ABSOLUTE ERROR (dB)
ATTENUATION (dB)
–6
–16
16dB –21
+85°C +25°C –40°C
–26
0.4 0.2
2140MHz 0
943MHz
2630MHz
–0.2 –0.4 –0.6
–31
3600MHz
–0.8 0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0
09430-010
–36 0.1
0
16
20
24
28
32
0
INPUT RETURN LOSS (dB)
–5
0.2 0.1 0 –0.1 –0.2
–10
0dB
–15 –20 31.5dB –25 –30
–0.3
–0.5 0
4
8
12
16
20
24
ATTENUATION (dB)
28
32
Figure 11. DSA: Step Error vs. Attenuation
–40 0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
FREQUENCY (GHz)
Figure 14. DSA: Input Return Loss vs. Frequency, All States
Rev. A | Page 11 of 28
4.1
09430-013
–35
–0.4 09430-011
STEP ERROR (dB)
0.3
12
Figure 13. DSA: Absolute Error vs. Attenuation
1960MHz 2140MHz 2630MHz 3600MHz
450MHz 748MHz 943MHz
0.4
8
ATTENUATION (dB)
Figure 10. DSA: Attenuation vs. Frequency and Temperature
0.5
4
09430-012
31.5dB
ADL5240
Data Sheet
0
OUTPUT RETURN LOSS (dB)
–5 –10
0dB
–15 3
–20 31.5dB –25
4
–30
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
CH3 2.00V
55
35
50
M10ns 10GS/s A CH3 IT 1.0ps/pt
1.24V
Figure 18. DSA: Gain Settling Time, 0 dB to 31.5 dB
Figure 15. DSA: Output Return Loss vs. Frequency, All States
36
CH4 200mV
09430-018
–40 0.1
09430-014
–35
45
33
40
32
35
IIP3 (dBm)
IP1dB (dBm)
IIP3 34
3
4
IP1dB
30 0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
25 3.6
FREQUENCY (GHz)
CH3 2.00V
Figure 16. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum Attenuation State
M10ns 10GS/s A CH3 IT 1.0ps/pt
1.24V
Figure 19. DSA: Gain Settling Time, 31.5 dB to 0 dB
200
22
100
2140MHz
50
2630MHz
20
0 –50 –100
943MHz 4
8
12
16
GAIN 16 14 12 10 8 6 NOISE FIGURE
4 2
–150 0
18
20
24
ATTENUATION (dB)
28
32
Figure 17. DSA: Phase vs. Attenuation
0 0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 20. AMP-DSA Loop: Gain and Noise Figure vs. Frequency, Minimum Attenuation State
Rev. A | Page 12 of 28
09430-020
1960MHz
GAIN AND NOISE FIGURE (dB)
150
09430-017
PHASE (Degrees)
CH4 200mV
09430-019
30
09430-015
31
Data Sheet
ADL5240
0
22 20
–5 S11
–10 –15 –20 –25
S12 –30 –35
GAIN 16 14 12 10 8 6 4
NOISE FIGURE
2 0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
0 0.1
09430-021
–40 0.1
18
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 21. AMP-DSA Loop: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
09430-024
S-PARAMETERS (dB)
GAIN AND NOISE FIGURE (dB)
S22
Figure 24. DSA-AMP Loop: Gain and Noise Figure vs. Frequency, Minimum Attenuation State
40
0
38 –5
36
S22
S-PARAMETERS (dB)
943MHz
OIP3 (dBm)
34 32 2140MHz
30
2630MHz
28 26
–10
S11 –15 –20 –25
S12
24
–30
–4
–2
0
2
4
6
8
10
12
14
16
POUT (dBm)
–35 0.1
09430-022
20 –6
Figure 22. AMP-DSA Loop: OIP3 vs. P OUT and Frequency, Minimum Attenuation State
2.1
1.7
1.3
2.5
2.9
3.3
3.7
4.1
Figure 25. DSA-AMP Loop: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
44
19.5
42 40
943MHz
38 OIP3 (dBm)
18.5 2140MHz 18.0 2630MHz 17.5
943MHz
36 34 32
2140MHz
30 17.0 28 16.5
–2
0
2
4
6
8
10
12
14
16
18
POUT (dBm)
20
Figure 23. AMP-DSA Loop: Gain vs. P OUT and Frequency, Minimum Attenuation State
24 –6
–4
–2
0
2
4
6
8
10
12
14
POUT (dBm)
Figure 26. DSA-AMP Loop: OIP3 vs. P OUT and Frequency, Minimum Attenuation State
Rev. A | Page 13 of 28
16
09430-026
16.0 –4
2630MHz
26 09430-023
GAIN (dB)
0.9
FREQUENCY (GHz)
20.0
19.0
0.5
09430-025
22
ADL5240
Data Sheet
20.0
35
19.5
30 943MHz
19.0
09430-029 09430-030
0
20.4
20
20.5
18
20.5
16
20.4
14
20.2
12
20.3
10
20.1
8
20.0
6
POUT (dBm)
19.8
4
19.9
2
19.7
0
19.6
–2
19.4
16.0 –4
19.5
5
19.3
16.5
19.2
10
09430-027
17.0
19.1
15
18.9
2630MHz 17.5
20
19.0
GAIN (dB)
2140MHz 18.0
18.8
PERCENTAGE (%)
25 18.5
GAIN (dB)
Figure 27. DSA-AMP Loop: Gain vs. P OUT and Frequency, Minimum Attenuation State
Figure 30. AMP: Gain Distribution at 2140 MHz 30
110
25
PERCENTAGE (%)
SUPPLY CURRENT (mA)
105 5.25V 100 5.00V 95 4.75V
20
15
10
90
5
TEMPERATURE (°C)
20.3
20.2
20.1
20.0
19.9
P1dB (dBm)
Figure 31. AMP: P1dB Distribution at 2140 MHz
Figure 28. AMP: Supply Current vs. Voltage and Temperature
30
110
25
100
–40°C
95
+25°C
PERCENTAGE (%)
105
20
15
10
90 5
+85°C
0
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
80 –6
–4
–2
0
2
4
6
8
10
12
14
16
18
20
POUT PER TONE (dBm)
22
Figure 29. AMP: Supply Current vs. P OUT and Temperature
Rev. A | Page 14 of 28
OIP3 (dBm)
Figure 32. AMP: OIP3 Distribution at 2140 MHz
09430-031
85
09430-100
SUPPLY CURRENT (mA)
19.8
90
19.6
80
19.7
70
19.5
60
19.4
50
19.3
40
19.2
30
19.1
20
19.0
10
18.9
0
09430-028
0 80 –40 –30 –20 –10
18.8
85
Data Sheet
ADL5240
70 60
40 30 20 10 0
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
NOISE FIGURE (dB)
4.0
09430-032
PERCENTAGE (%)
50
Figure 33. AMP: Noise Figure Distribution at 2140 MHz
Rev. A | Page 15 of 28
ADL5240
Data Sheet
APPLICATIONS INFORMATION BASIC LAYOUT CONNECTIONS The basic connections for operating the ADL5240 are shown in Figure 34. SERIAL PARALLEL INTERFACE
VDD
VDD
0.1µF
C8
3
100pF
DSAIN
4
C6
VDD
NC
NC
NC
DSAIN
5
NC
6
NC
7 8
VDD
NC
ADL5240
DSAOUT NC NC
NC AMPOUT/VCC NC NC NC NC AMPIN NC
1 2
SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6
32 31 30 29 28 27 26 25
NC NC
NC NC
24 23 22
100pF
DSAOUT
21 20
C7
19 18 17
9 10 11 12 13 14 15 16
0.1µF
0.1µF
C2
AMPIN
C1 L1
470nH
C3 68pF C4
VCC
1.2nF C5
1µF
Figure 34. Basic Connections
Rev. A | Page 16 of 28
09430-033
AMPOUT
Data Sheet
ADL5240
Amplifier Bias The dc bias for the amplifier in ADL5240 is supplied through Inductor L1 and is connected to the AMPOUT pin. Three decoupling capacitors (C3, C4, and C5) are used to prevent RF signals from propagating onto the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC test point on the evaluation board. Digital Step Attenuator Bias The bias for the DSA is provided through the VDD pin. At least one decoupling capacitor (C8) is recommended on the VDD trace. The voltage ranges from 4.75 V to 5.25 V and should be connected to the VDD test point on the evaluation board. The DSA is shown to work for dc voltages as low as 2.5 V. Amplifier RF Input Interface Pin 15 is the RF input for the amplifier of ADL5240. The amplifier is internally matched to 50 Ω at the input; therefore, no external components are required. Only a dc blocking capacitor (C1) is required. Amplifier RF Output Interface Pin 10 is the RF output for the amplifier of ADL5240. The amplifier is internally matched to 50 Ω at the output; therefore, no external components are required. Only a dc blocking capacitor (C2) is required. The bias is provided through this pin via a choke inductor.
DSA RF Input Interface Pin 4 is the RF input for the DSA of ADL5240. The input impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C6) is required. DSA RF Output Interface Pin 21 is the RF output for the DSA of ADL5240. The output impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C7) is required. DSA SPI Interface The DSA of the ADL5240 can operate in either serial or parallel mode. Pin 32 (SEL) controls the mode of operation. To select serial mode, connect SEL to ground; to select parallel mode, connect SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are the data bits, with D6 being the LSB. Connect Pin 31 (D0) to ground during the parallel mode of operation. In serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used in serial mode and should be connected to ground. Pin 25 (D6) should be connected to VDD during the serial mode of operation. To prevent noise from coupling onto the digital signals, an RC filter can be used on each data line.
Rev. A | Page 17 of 28
ADL5240
Data Sheet
SPI TIMING
Table 4. Mode Selection Table
Table 5 provides details about the timing characteristics for the SPI signals—namely, the clock (CLK), latch enable (LE), and data (DATA) signals—and Figure 35 shows the corresponding SPI timing diagram.
Pin 32 (SEL) Connect to Ground Connect to Supply
Functionality Serial mode Parallel mode
SPI Timing Sequence Figure 36 is the timing sequence for the SPI function using a 6-bit operation. The clock can be as fast as 20 MHz. In serial mode, Register B5 (MSB) is first and Register B0 (LSB) is last. Table 5. SPI Timing Setup Limit 10 25 25 10 10 10 30
Unit MHz ns min ns min ns min ns min ns min ns min
Test Conditions/Comments Data clock frequency Clock high time Clock low time Data to clock setup time Clock to data hold time Clock low to LE setup time LE pulse width
t1
t3 t4 CLK
DON'T CARE
DATA
DON'T CARE
t5
t2
DON'T CARE
MSB B5
B4
B3
B2
LSB B0
B1
DON'T CARE 09430-034
t6 LE
Figure 35. SPI Timing Diagram (Data Is Loaded MSB First), Serial Mode
D0/CLK
DON'T CARE
D1/DATA
DON'T CARE
DON'T CARE
MSB B5
B4
B3
B2
B1
LSB B0
DON'T CARE
D2/LE 09430-035
Parameter f CLK t1 t2 t3 t4 t5 t6
D6
Figure 36. SPI Timing Sequence, Serial Mode
Rev. A | Page 18 of 28
Data Sheet
ADL5240
Table 6. DSA Attenuation Truth Table—Serial Mode Attenuation State (dB) 0 (Reference) 0.5 1.0 2.0 4.0 8.0 16.0 31.5
B5 (MSB) 1 1 1 1 1 1 0 0
B4 1 1 1 1 1 0 1 0
B3 1 1 1 1 0 1 1 0
B2 1 1 1 0 1 1 1 0
B1 1 1 0 1 1 1 1 0
B0 (LSB) 1 0 1 1 1 1 1 0
D3 1 1 1 1 0 1 1 0
D4 1 1 1 0 1 1 1 0
D5 1 1 0 1 1 1 1 0
D6 (LSB) 1 0 1 1 1 1 1 0
Table 7. DSA Attenuation Truth Table—Parallel Mode Attenuation State (dB) 0 (Reference) 0.5 1.0 2.0 4.0 8.0 16.0 31.5
D1 (MSB) 1 1 1 1 1 1 0 0
D2 1 1 1 1 1 0 1 0
Rev. A | Page 19 of 28
ADL5240
Data Sheet
LOOP PERFORMANCE The ADL5240 can be configured so that either the DSA precedes the amplifier (see Figure 37) or the amplifier precedes the DSA (see Figure 38). The performance of the loop configurations is presented in Figure 20 to Figure 27. To improve the overall return loss, a shunt capacitor can be placed between the amplifier and DSA. This helps to align the phases of the two blocks. SERIAL PARALLEL INTERFACE
VDD
VDD
0.1µF
C7
2 3
100pF
RFIN
4 5
C6
6 7 8
VDD
VDD
NC
NC
NC
NC
DSAIN
ADL5240
NC
DSAOUT NC NC
NC
NC AMPOUT/VCC NC NC NC NC AMPIN NC
1
SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6
32 31 30 29 28 27 26 25
NC NC
NC NC
24 23 22 21 20 19 18 17
9 10 11 12 13 14 15 16
100pF
0.1µF
C2
C1 L1
470nH
C3 68pF C4
VCC
1.2nF C5
1µF
Figure 37. DSA-AMP Loop Configuration
Rev. A | Page 20 of 28
09430-036
RFOUT
Data Sheet
ADL5240 SERIAL PARALLEL INTERFACE
VDD
VDD
C7
1 2 3 4
VDD
NC
NC
NC
DSAIN NC
6
NC
7
VDD
NC
5
8
C2 100pF
SEL D0/CLK D1/DATA D2/LE D3 D4 D5 D6
32 31 30 29 28 27 26 25
ADL5240
DSAOUT NC NC
NC AMPOUT/VCC NC NC NC NC AMPIN NC
NC NC
NC NC
24 23 22
100pF
RFOUT
21 20
C6
19 18 17
9 10 11 12 13 14 15 16
0.1µF
RFIN
C1 L1
470nH
C3 68pF C4
VCC
1.2nF C5
1µF
Figure 38. AMP-DSA Loop Configuration
Rev. A | Page 21 of 28
09430-037
0.1µF
ADL5240
Data Sheet
AMPLIFIER DRIVE LEVEL FOR OPTIMUM ACLR
THERMAL CONSIDERATIONS
It is usually required to drive the amplifier as high as possible in order to maximize output power. However, properly driving Amplifier at the ADL5240 is required to achieve optimum ACLR performance. Once output power approaches P1dB and OIP3, there is ACLR degradation. The driving level of amplifier with a modulated signal should be backed off properly from P1dB by at least the amount of a signal crest factor for optimum ACLR. So assuming a gain and output P1dB of Amplifier at 2140 MHz are 19 dB and 19 dBm respectively, the output power, which is backed off by 11 dB crest factor at the modulated signal case, is 8 dBm. Therefore, the proper input driving level should be under −11 dBm.
The ADL5240 is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP. The thermal resistance from junction to air (θJA) is 36.8o C/W. The thermal resistance for the product was extracted assuming a standard 4-layer JEDEC board with 25 conductive, epoxy filled thermal vias. The thermal resistance from junction to case (θJC) is 6.9o C/W, where case is the exposed pad of the lead frame package.
–30
–40
AMP_ADJ
The ADL5240 consumes approximately 93 mA with a 5 V supply voltage. Even though the part dissipates less than 0.5 W, for the best thermal performance, it is recommended to add as many thermal vias as possible under the exposed pad of the LFCSP. The thermal resistance values given in this section assume a minimum of 25 thermal vias arranged in a 5 × 5 array with a diameter of 13 mils and a pitch of 25 mils. Figure 40 shows a close-up of the thermal via distribution under the exposed pad.
ACPR (dBc)
–50
–60
–70
–80
–30
–25
–20
PIN (dBm)
–15
–10
–5
Figure 39. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input Power at Amplifier, 2140 MHz
09430-038
–35
09430-101
AMP_ALT –90 –40
Figure 40. Exposed Pad with Thermal Via Distribution
Rev. A | Page 22 of 28
Data Sheet
ADL5240
EVALUATION BOARD
The schematic of the ADL5240 evaluation board is shown in Figure 41, the evaluation board configuration options are detailed in Table 8, and the layout of the ADL5240 evaluation board is shown in Figure 43 and Figure 44. Each RF trace on the evaluation board has a characteristic impedance of 50 Ω and is fabricated on Rogers3003 material. In addition, each trace is a coplanar waveguide (CPWG) with a width of 25 mils, a spacing of 20 mils, and a dielectric thickness of 10 mils. The input to and output from the DSA and amplifier should be ac-coupled with capacitors of appropriate values to ensure the broadband performance. The bias to the amplifier is provided by connecting a choke to the AMPOUT pin. Bypassing capacitors are recommended on all supply lines to minimize the RF coupling. The DSA and the amplifier can be individually biased or connected to the VDD plane using Resistors R2 and R1. The ADL5240 can be operated in two ways: the amplifier can precede the DSA (AMP-DSA loop configuration) or the DSA can precede the amplifier (DSA-AMP loop configuration). The evaluation board can be configured to handle either option. In normal operation, R12 and R13 are open, and R10 and R11 are 0 Ω and are used to terminate any RF coupling onto the bypass trace. To configure the ADL5240 in AMP-DSA loop configuration, R12 should be replaced with a capacitor, R13 should be replaced with a 0 Ω resistor, and R10 and R11 should be left open. Similarly, to configure the ADL5240 in the DSA-AMP loop configuration, R16 should be replaced with a capacitor, R17 should be replaced with a 0 Ω resistor, and R14 and R15 should be left open.
The digital signal traces incorporate a footprint for an RC filter to prevent potential noise from coupling onto the signal. In normal operation, series resistors are 0 Ω and shunt resistors and capacitors are open. The evaluation board is designed to control DSA in either parallel or serial mode by connecting the SEL pin to the supply or ground by a switch. For adjusting attenuation at DSA, the ADL5240 can be programmed in two ways: through the on-board USB interface from a PC USB port, or through an SDP board, which will become the Analog Devices common control board in the future. The on-board USB interface circuitry of the evaluation board is powered directly by the PC. USB based programming software is available to download from the ADL5240 product page at www.analog.com. Figure 45 shows the window of the programming software where the user selects serial or parallel mode for the attenuation adjustment at DSA. The selection of the mode in the window should match the mode of the evaluation board switch. It is highly recommended to refer the evaluation board layout for the optimal and stable performance of each block as well as for the improvement of thermal efficiency.
Rev. A | Page 23 of 28
ADL5240
Data Sheet CLK_D0
S1
DATA_D1
3
1
2
LE_D2 D3
AGND
VDD
D4
RED
D5 D6
R2
0
DNI
26
27
28
29
25 D6
D5
D4
D3
NC
24 23 22
C5
19
1 100pF
R16
18
0
0 R11 0 AGND AMPOUT
3
2
NC
R17 0
4
3
2
AGND
0 R15 0
DNI C8
AMPIN 1
R10 AGND
4
R14
DNI
16
AMPIN
NC
15
NC
5
DNI
17
AGND
AGND
DSAOUT
21 20
DNI
14
9
R12
5
30
NC
NC
10
4
D2/LE
NC
NC
C1
100pF 3
ADL5240ACPZ
NC
NC
1
2
DSAOUT
NC
NC
DSAIN
NC
DSAIN
NC
8
NC
NC
7
NC
13
6
VDD
NC
12
4 5
U1
VDD
11
1 2 3
D1/DATA
32
EPAD
AGND
D0/CLK
PAD
C17 0.1µF
31
DNI
SEL
0
AMPOUT/VCC
VDD
DNI
0.1µF AGND
5
DNI R13 0
C4
DNI
AGND
1 0.1µF 2
3
4
5
AGND VCC RED
L1
R1 0
2 DNI C13
C14
470nH C15
1µF
1200pF
68pF
1
09430-039
VDD
AGND
Figure 41. ADL5240 Evaluation Board
Table 8. Evaluation Board Configuration Options Component C1, C2 C3, C4 C5, C6, C7 C8 L1 R1, R2 R10, R11, R14, R15 R12, R13, R16, R17 S1
Function/Notes Input/output dc blocking capacitors for DSA. Input/output dc blocking capacitors for AMP. Power supply decoupling for amplifier. The bias associated with the AMPOUT pin is the most sensitive to noise because the bias is connected directly to the output. The smallest capacitor (C7) should be the closest to the AMPOUT pin. Power supply decoupling for the DSA. The bias for the amplifier comes through L1 when VCC is connected to a 5 V supply. L1 should be high impedance for the frequency of operation while providing low resistance for the dc current. Resistors to connect the supply for the amplifier and the DSA to the same VDD plane. These resistors are used to terminate RF coupling onto the traces and to close the loop. R12 and R16 are replaced with capacitors, and R13 and R17 are replaced with 0 Ω to close the loop. Switch to change between the serial mode and parallel mode of operation. Connect to supply for parallel mode and to ground for serial mode operation.
Rev. A | Page 24 of 28
Default Value C1, C2 = 100 pF C3, C4 = 0.1 µF C5 = 1 µF C6 = 1.2 nF C7 = 68 pF C8 = 0.1 µF L1 = 470 nH R1, R2 = open R10, R11, R14, R15 = 0Ω R12, R13, R16, R17 = open S1 connected to ground
D1
C37 1µF
A C SML-210MTT86
R4 2kΩ
U3
DGND
7 1 IN1 OUT1 8 2 OUT2 IN2 6 3 FB SD_N PAD GND PAD 5
ADP3334ACPZ
DGND
C35 0.1µF
DGND
3V3_USB
R3 78.7kΩ
FB
C44 1000pF
C36 0.1µF
R9 140kΩ
IN
IN
IN IN
R45 2kΩ
C38 0.1µF
WAKEUP
RESETN
SCL SDA
C47 1µF
Rev. A | Page 25 of 28
Figure 42. USB/SDP Interface Circuitry on the Customer Evaluation Board R18 100kΩ
LE_D2
R44 100kΩ
R43 TBD0603 DNI
CLK_D0
DATA_D1
DGND1 BLK
DGND
1
AGND
DGND
0Ω
R46
0Ω
R17
0Ω
R42
0Ω
R6
DNI
DNI
DNI
C45 0.1µF
DECOUPLING FOR U1
C39 0.1µF
C33 0.1µF
1 2 3 6 7
8
DGND
U5
0Ω
R22
0Ω
R21
C46 0.1µF
DGND
DNI
C49 0.1µF
R47 100kΩ
R5 2kΩ
C48 0.1µF
DGND
DGND
A0 VCC A1 5 A2 SDA SCL WP 24LC32A-I/MS VSS E014160 4 JEDEC_TYPE=MSOP8
U2 8 VCC A0 A1 A2 5 SCL SDA WC_N GND 4 24LC64-I-SN
DGND
1 2 3 6 7
C9 10pF
D6 D5 D4 D3
C34 0.1µF
R7 100kΩ DNI
AGND
RDY0_SLRD RDY1_SLWR
WAKEUP RESERVED
XTALIN RESET_N
SCL SDA
P2
DGND
120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 FX8-120S-SV(21)
DGND
1 2
44 14
5 42
15 16
AVCC
C50
0.1µF
C31
10pF
GND
1
18 19 20 21 22 23 24 25 45 46 47 48 49 50 51 52 OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT
OUT OUT OUT OUT OUT
PB1 PB2 PB3 PB4 PB5 PB6 PB7 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7
DGND
P2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 FX8-120S-SV(21)
5V_SDP RED (FROM MAIN BOARD; 200mA MINIMUM) 5V_SDP
PA7
1
2kΩ
R8
OUT
IFCLK CLKOUT CTL0_FLAGA CTL1_FLAGB CTL2_FLAGC
C51 22pF
XTALOUT
XTALIN
CR2
3
A C SML-210MTT86
DM DP
CASE 2 4
Y1 24.000000MHZ
CY7C68013A-56LTXC E013815 JEDEC_TYPE=QFN56_8X8_PAD5_2X4_5
PB0_FD0 PB1_FD1 PB2_FD2 PB3_FD3 PB4_FD4 PB5_FD5 PB6_FD6 PB7_FD7 PD0_FD8 PD1_FD9 PD2_FD10 PD3_FD11 PD4_FD12 PD5_FD13 PD6_FD14 PD7_FD15 PAD
33 34 35 36 37 38 39 40
4 8 9 13 54 29 30 31
U4
XTALOUT DPLUS DMINUS IFCLK CLKOUT CTL0_FLAGA CTL1_FLAGB CTL2_FLAGC
VCC
DGND
PA0_INT0_N PA1_INT1_N PA2_SLOE PA3_WU2 PA4_FIFOADR0 PA5_FIFOADR1 PA6_PKTEND PA7_FLAGD_SLCS_N
17 28
3 6
27 41
11 26
32 53
7
10
43 56
IO
12
55 PAD
5V_USB
DGND
OUT
PB0
DGND
DGND
C52 22pF
CLK_D0
D3 D4 D5 D6
LE_D2
DATA_D1
DGND
OUT OUT OUT OUT OUT OUT OUT
0Ω
R25
0Ω
R23
0Ω
R20
0Ω
R19
0Ω
R24
0Ω
0Ω R54
GND PINS
P1
DGND
R29 1.00kΩ DNI
DGND
R28 1.00kΩ DNI
DGND
R27 1.00kΩ DNI
DGND
R26 1.00kΩ DNI
R55 1.00kΩ DNI
C19 330pF DNI
C18 330pF DNI
C16 330pF DNI
C12 330pF DNI
C53 330pF DNI
897-43-005-00-100001
G1 G2 G3 G4
1 2 3 4 5
TSW-105-08-G-D DNI PLACEHOLDER
DGND
P3
R53
PA0 PA1 PA2 PA3 PA4 PA5 PA6
5V_USB
1 2 3 4 5 6 7 8 9 10
R13 1.00kΩ DNI
C55 330pF DNI
DGND
R14 1.00kΩ DNI
D6
D5
D4
D3
C56 330pF DNI
CLK_D0
DATA_D1
LE_D2
09430-102
3V3_USB
Data Sheet ADL5240
09430-040
Data Sheet
09430-040
ADL5240
Figure 43. Evaluation Board Layout—Top
Figure 44. Evaluation Board Layout—Bottom
Rev. A | Page 26 of 28
ADL5240
09430-103
Data Sheet
Figure 45. Evaluation Board Control Software
Rev. A | Page 27 of 28
ADL5240
Data Sheet
OUTLINE DIMENSIONS 5.00 BSC SQ
0.60 MAX 0.60 MAX 25
32 1
24
0.50 BSC
3.45 3.30 SQ 3.15
EXPOSED PAD
17 TOP VIEW
1.00 0.85 0.80 SEATING PLANE
0.80 MAX 0.65 TYP
12° MAX
0.50 0.40 0.30 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF
0.30 0.25 0.18
8 16
9 BOTTOM VIEW
0.25 MIN
3.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
05-23-2012-A
4.75 BSC SQ
PIN 1 INDICATOR
PIN 1 INDICATOR
Figure 46. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 5 mm × 5 mm Body, Very Thin Quad (CP-32-3) Dimensions shown in millimeters
ORDERING GUIDE Model 1 ADL5240ACPZ-R7 ADL5240-EVALZ 1
Temperature Range −40°C to +85°C
Package Description 32 Lead LFCSP_VQ, 7" Tape and Reel Evaluation Board
Z = RoHS Compliant Part.
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09430-0-6/13(A)
Rev. A | Page 28 of 28
Package Option CP-32-3