Preview only show first 10 pages with watermark. For full document please download

Aic1660

   EMBED


Share

Transcript

AIC1660 Switched-Capacitor Voltage Converter n FEATURES l n DESCRIPTION Lowest Output Impedance (Typical 35Ω at VIN=5V). capacitor voltage converter. Designed to be an l Improved Direct Replacement for 7660. l 1.5V to 6V Operation. l No External Diode Required. l Simple Conversion of +5V to -5V. l Low Quiescent Current (Typical 36µA at VIN=5V). l High Power Efficiency (Typical 98%) l Boost Pin for Higher Switching Frequency. l Improved SCR Latchup Protection. to convert a positive input voltage in the range of 1.5V to 6V to the corresponding negative output l Handheld Instruments. l Data Acquisition Systems. l Supply Splitter, VOUT= ±VIN /2. l Operational Amplifier Supplies. l Panel Meter. output power MOS switches. The frequency of oscillator can be lowered by the addition of an external capacitor to the OSC pin, or the oscillator may be over-driven by an external clock. The boost function is available to raise the V IN (1.5V to 6V) 3 4 divided (VOUT = VIN /2 ), or multiplied (V OUT = ±nV IN ), as shown in application examples. n TYPICAL APPLICATION CIRCUIT + voltage can also be doubled (V OUT = 2V IN ), regulator, oscillator, control circuitry and four RS-232 Power Supplies. 2 voltage in the range of -1.5V to -6V. The input The chip contains a series DC power supply l 1 improved direct replacement for the popular 7660 and LTC1044, the main function of the AIC1660 is n APPLICATIONS 10µF C1 The AIC1660 is a monolithic CMOS switched BOOST VIN CAP+ OSC 7 Required for V IN ≤3V 6 LV CAP- 5 VOUT specific applications. The “LV” terminal may be tied to GND to improve low input voltage (VIN ≤3V) operation, or be left floating for input voltage larger than 3V to improve power dissipation. 8 GND oscillator frequency to optimize performance in The AIC1660 provides performance superior to previous designs by combining low output impedance, low quiescent current with high V OUT =-VI N AIC1660 + 10µ F C2 efficiency, and by eliminating diode drop voltage losses. The only required external components are two low cost electrolytic capacitors. Negative Voltage Converter Analog Integrations Corporation 4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw DS-1660T-P5 012102 1 AIC1660 n ORDERING INFORMATION AIC1660C XXX PIN CONFIGURATION PACKING TYPE TR: TAPE & REEL TB: TUBE DIP-8 SO-8 TOP VIEW PACKAGE TYPE N: PLASTIC DIP S: SMALL OUTLINE BOOST Example: AIC1660CSTR à in SO-8 Package & Tape & Reel Packing Type (CN is not available in TR packing type.) 1 8 VIN CAP+ 2 7 OSC 3 6 LV CAP- 4 5 VOUT GND n ABSOLUTE MAXIMUM RATINGS Supply Voltage (VIN to GND, or GND to VOUT) ......… … … … … … … … ............................................. 6.0V Input Voltage on Pin 1, 6 and 7 ...… … … … … ..........................… … … … … … … ............. -0.3V ~VIN + 0.3V Operating Temperature Range ........… … … … ................… … … … … … .… … .......… … ........... -40°C~+85°C Storage Temperature Range..........… … … … ...................… … … … … … … … ........................ -65°C~150°C n TEST CIRCUIT 1 BOOST 2 10µF + C1 VIN IS 8 VIN 7 CAP+ IL OSC 6 3 GND LV 4 CAP- VOUT 5 COSC External Oscillator RL VOUT C2 10µF + 2 AIC1660 n ELECTRICAL CHARACTERISTICS (VIN=5.0V, TA=25°C, OSC=OPEN, unless otherwise specified.) PARAMETER TEST CONDITIONS SYMBOL Supply Current RL = ∞ IS Minimum Supply Voltage RL = ∞ VINL Maximum Supply Voltage RL = ∞ VINH Output Resistance IL =20mA, ROUT MIN TYP MAX UNIT 36 70 µA 1.5 V 35 6 V 70 Ω FOSC =10KHz Oscillator Frequency FOSC Pin 1 Floating or GND 10 Pin 1=VIN 50 Power Efficiency RL= 5K, FOSC =10KHz Voltage Conversion Efficiency RL = ∞ KHz η 96 98 % VOUTEFF 98 99.9 % TYPICAL PERFORMANCE CHARACTERISTICS (TA=25°C) 100 Power Efficiency (%) 50 Supply Current (µA) n COSC =0 40 30 20 10 90 80 70 60 0 1 2 3 4 5 6 Supply Voltage (V) Fig. 1 Supply Current vs. Supply Voltage 50 0 10 20 30 40 50 60 70 80 Load Current (mA) Fig. 2 Power Efficiency vs. Load Current 3 AIC1660 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 2 Output Voltage (V) Output Voltage (V) -5 -4 -3 1 0 -1 -2 -2 -10 0 10 20 30 40 50 60 70 0 80 Oscillator Frequency, FOSC (KHz) Oscillator Frequency, FOSC (KHz) 60 BOOST=VIN 50 40 30 20 BOOST=OPEN 10 5 1 2 3 4 5 6 4 6 8 10 12 14 16 35 30 PIN 1=VIN 25 20 15 10 PIN 1=OPEN 5 0 10 Supply Voltage, VIN (V) 2 Load Current (mA) Fig. 4 Output Voltage vs. Load Current (VIN=2V) Load Current (mA) Fig. 3 Output Voltage vs. Load Current 100 1000 10000 External Capacitor (Pin 7 to GND), COSC (pF) Fig. 6 Oscillator Frequency vs. Value of C OSC Fig. 5 Oscillator Frequency vs. Supply Voltage 450 400 Output Resistance ROUT (Ω) n C1=C2=100µF C1=C2=10µF C1=C2=1µF 300 200 100 0 0.1 1 10 100 Oscillation Frequency, FOSC (KHz) Fig. 7 Output Resistance vs. Oscillation Frequency 4 AIC1660 n BLOCK DIAGRAM 6 VIN 1 BOOST 7 Oscillator ÷2 OSC Voltage Level Converter 2 CAP+ 6 5 LV 4 VOUT CAP- Substrate Logic Network Voltage Regulator 3 GND n PIN DESCRIPTIONS PIN 1: BOOST- The frequency of oscillator will be 5 times if boost pin is connected to VIN. PIN 6: LV - If VIN is below 3V, LV should be tied to GND. For VIN larger than 3V, LV can be floating. PIN 2: CAP+ - To be connected to the positive side of the flying capacitor. PIN 7: OSC - The frequency of oscillator can be lowered by the addition of an external capacitor to the OSC pin. Or the oscillator may be over-driven by an external clock. PIN 8: VIN - Input supply. PIN 3: GND - Ground PIN 4: CAP- - To be connected to the negative side of flying capacitor. PIN 5: VOUT - Negative output voltage, typically connected to a 10µF capacitor. 5 AIC1660 n APPLICATION EXAMPLES 1 BOOST 2 1 0µF C1 + VIN Fig. 8 shows a typical connection, which will provide a negative supply from an available positive supply without the need of any external diodes. The LV pin should be connect to ground for VIN ≤3V, or may be “floated“ for VIN >3V. 7 CAP+ OSC 3 GND LV 6 4 CAP- VOUT 5 AIC1660 Fig. 8 VIN (1.5V to 6V) 8 Required for V IN ≤ 3V VOUT = -VIN 10µF C2 + Negative Voltage Converter 8 2 VIN 3 3 Fig. 9 shows the idealized negative voltage C1 converter. C2 5 4 VOUT =-VIN 7 Fig. 9 1 2 3 4 Idealized Negative Voltage Converter BOOS VIN 8 CAP+ OSC 7 GND LV 6 CAP- VOUT 5 U1 AIC1660 Fig. 10 VIN D1 1N4148 Fig. 10 shows a method of voltage doubling. VOUT=2V IN -2V D . To reduce the voltage drops D2 + 1N4148 + C1 10µ F VOUT across diodes, use Schottky diodes. C2 10µF Voltage Doubling 6 AIC1660 n APPLICATION EXAMPLES (Continued) (3 to 12V) 1 0µF + C1 1 BOOST VIN 8 2 CAP+ OSC 7 3 GND LV 6 4 CAP- VOUT 5 VIN An ultra precision voltage divider is shown in Fig. Required for V IN≤3V the load current should be kept below 100nA. However, with a slight loss in accuracy, the load current can be increased. AIC1660 VOUT + 11. To achieve the 0.002% accuracy as indicated, C2 1 0µF V OUT =VIN/2 ± 0.002% T MIN≤T A≤TMAX IL<100nA Fig. 11 V BAT (6V) Ultra Precision Voltage Divider + + C1 10 µF 1 BOOST VIN 8 2 CAP+ OSC 7 3 GND LV 6 4 CAP- VOUT 5 V OUT = V BAT/2 (3.0V) A common need in many systems is to obtain (+) and ( - ) supplies from a single Required for VBAT≤3V V OUT = -V BAT/2(-3V) battery or power supply system. Where current requirements are low, the circuit shown in Fig. 12 is a simple solution. AIC1660 C2 1 0µF + Output Common Fig. 12 Battery Splitter 7 AIC1660 n PHYSICAL DIMENSIONS l 8 LEAD PLASTIC SO (unit: mm) D SYMBOL MIN MAX A 1.35 1.75 A1 0.10 0.25 B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 H E e e A A1 C B l 1.27(TYP) H 5.80 6.20 L 0.40 1.27 L 8 LEAD PLASTIC DIP (unit: mm) D E1 E A2 A1 C L eB b SYMBOL MIN MAX A1 0.381 — A2 2.92 4.96 b 0.35 0.56 C 0.20 0.36 D 9.01 10.16 E 7.62 8.26 E1 6.09 7.12 e 2.54 (TYP) eB — 10.92 L 2.92 3.81 e 8