Transcript
Anybus® CompactCom B40–1
DESIGN GUIDE HMSI-27-230 2.0
ENGLISH
Important User Information Liability Every care has been taken in the preparation of this document. Please inform HMS Industrial Networks AB of any inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial Networks AB, reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be considered as a commitment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that may appear in this document. There are many applications of this product. Those responsible for the use of this device must ensure that all the necessary steps have been taken to verify that the applications meet all performance and safety requirements including any applicable laws, regulations, codes, and standards. HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features, timing, or functional side effects found outside the documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product are undefined, and may include e.g. compatibility issues and stability issues. The examples and illustrations in this document are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot assume responsibility for actual use based on these examples and illustrations.
Intellectual Property Rights HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product described in this document. These intellectual property rights may include patents and pending patent applications in the USA and other countries.
Trademark Acknowledgements Anybus® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their respective holders.
Copyright © 2016 HMS Industrial Networks AB. All rights reserved. Anybus® CompactCom B40–1 Design Guide HMSI-27-230 2.0
Table of Contents 1
2
Preface ............................................................................................................................... 3 1.1
About this Document ......................................................................................................3
1.2
Related Documents .......................................................................................................3
1.3
Document History ..........................................................................................................3
1.4
Conventions ..................................................................................................................4
1.5
Document Specific Conventions......................................................................................5
About the Anybus CompactCom B40–1 ................................................................... 6 2.1
General Information .......................................................................................................6 2.1.1
2.2
3
Page
Available Fieldbuses and Industrial Networks ............................................................... 6
Footprints......................................................................................................................7 2.2.1
Brick .................................................................................................................... 7
2.2.2
Network Connector Board ........................................................................................ 8
2.3
Height Restrictions.........................................................................................................8
2.4
Assembly ......................................................................................................................9
Connectors ..................................................................................................................... 11 3.1
General Information ..................................................................................................... 11
3.2
Host Application Connector .......................................................................................... 11
3.3
3.2.1
Application Connector Pin Overview ......................................................................... 12
3.2.2
Power Supply Pins................................................................................................ 14
3.2.3
LED Interface / D8–D15 (Data Bus) .......................................................................... 14
3.2.4
Settings / Sync ..................................................................................................... 15
3.2.5
RESET (Reset Input)............................................................................................. 16
3.2.6
Pin Usage in the Different API Modes........................................................................ 17
Network Connector ......................................................................................................18 3.3.1
Network Connector Pin Overview ............................................................................. 20
3.3.2
Power Supply Pins................................................................................................ 21
3.3.3
Ethernet Based Networks (Copper) .......................................................................... 22
3.3.4
Ethernet Fiber Optic Networks ................................................................................. 23
3.3.5
DeviceNet ........................................................................................................... 25
3.3.6
PROFIBUS ......................................................................................................... 25
3.3.7
CC-Link .............................................................................................................. 25
3.3.8
LED Indicators ..................................................................................................... 26
A Dimensions..................................................................................................................... 27 A.1
Brick ...........................................................................................................................27
A.2
Connector Board for PROFIBUS ...................................................................................28
A.3
Connector Board for Copper Based Ethernet .................................................................29
A.4
Connector Board for Fiber Optic Ethernet ......................................................................30
A.5
Connector Board for CC-Link and DeviceNet .................................................................31
A.6
Front Plate Restrictions ................................................................................................32
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Table of Contents
B Technical Specification ............................................................................................... 33 B.1
Environmental .............................................................................................................33 B.1.1 Operating............................................................................................................ 33 B.1.2 Storage .............................................................................................................. 33 B.1.3 Humidity ............................................................................................................. 33
B.2
Shock and Vibration .....................................................................................................33 B.2.1 Shock ................................................................................................................ 33 B.2.2 Sinusoidal Vibration .............................................................................................. 33
B.3
Electrical Characteristics ..............................................................................................33
B.4
Regulatory Compliance ................................................................................................34
C Design Examples .......................................................................................................... 35 C.1
Recommendations .......................................................................................................35
C.2
Example PCB Layout ...................................................................................................36
C.3
Ethernet Network Interface (Copper) .............................................................................38
C.4
Ethernet Network Interface (Fiber Optic) ........................................................................39
C.5
PROFIBUS Network Interface.......................................................................................40
C.6
DeviceNet Network Interface ........................................................................................41
C.7
CC-Link Network Interface............................................................................................42
D How to Disable Ethernet Port 2 (EtherNet/IP) ........................................................ 43
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Preface
3 (44)
1
Preface
1.1
About this Document This document is intended to provide a good understanding of how to use the Anybus CompactCom B40–1. The reader of this document is expected to be familiar with hardware design and communication systems in general. For additional information, documentation, support etc., please visit the support website at www.anybus.com/support.
1.2
Related Documents Related documents
1.3
Document Anybus CompactCom 40 Software Design Guide
Author HMS
Anybus CompactCom M40 Hardware Design Guide
HMS
Anybus CompactCom Host Application Implementation Guide
HMS
Anybus CompactCom Network Guides (separate document for each supported fieldbus or industrial network system)
HMS
Document History Summary of recent changes Change
Where (section no.)
Added information on EtherCAT IN and OUT ports
3.3.3
Updated network interface schematics
C.3
Added recommended torque for assembly screws
2.4
Revision list Version
Date
Author
Description
1.23 2.0
2015–09–03 2016–03–10
KeL KeL
Last FM version. Moved from FM to XML Misc. updates
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Preface
1.4
4 (44)
Conventions Unordered (bulleted) lists are used for: •
Itemized information
•
Instructions that can be carried out in any order
Ordered (numbered or alphabetized) lists are used for instructions that must be carried out in sequence: 1.
First do this,
2.
Then open this dialog, and a.
set this option...
b.
...and then this one.
Bold typeface indicates interactive parts such as connectors and switches on the hardware, or menus and buttons in a graphical user interface. Monospaced text is used to indicate program code and other kinds of data input/output such as configuration scripts. This is a cross-reference within this document: Conventions, p. 4 This is an external link (URL): www.hms-networks.com This is additional information which may facilitate installation and/or operation.
This instruction must be followed to avoid a risk of reduced functionality and/or damage to the equipment, or to avoid a network security risk.
Caution This instruction must be followed to avoid a risk of personal injury.
WARNING This instruction must be followed to avoid a risk of death or serious injury.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Preface
1.5
5 (44)
Document Specific Conventions •
The terms “Anybus” or “module” refers to the Anybus CompactCom module.
•
The terms “host” or “host application” refer to the device that hosts the Anybus.
•
Hexadecimal values are written in the format NNNNh or 0xNNNN, where NNNN is the hexadecimal value.
•
A byte always consists of 8 bits.
•
All measurements in this document have a tolerance of ±0.20mm unless otherwise stated.
•
Outputs are TTL compliant unless otherwise stated.
•
Signals which are “pulled to GND” are connected to GND via a resistor.
•
Signals which are “pulled to 3V3” are connected to 3V3 via a resistor.
•
Signals which are “tied to GND” are directly connect GND,
•
Signals which are “tied to 3V3” are directly connected to 3V3.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
About the Anybus CompactCom B40–1
6 (44)
2
About the Anybus CompactCom B40–1
2.1
General Information The Anybus CompactCom B40–1 concept is developed for applications where the standard Anybus CompactCom plug-in housing concept cannot be used. The brick consists of a board with network connectivity functionality, where the customer provides the physical network interface, including network connectors. There is also available an optional connector board providing network connectors and physical interface. All network communication is directed through a pin connector from the brick to the host application board. This enables full Anybus CompactCom functionality for all applications without loss of network compatibility or environmental characteristics. All dimensions expressed in this document are stated in millimeters and have a tolerance of ±0.10mm unless stated otherwise. For general information about the Anybus CompactCom 40 platform, consult the Anybus CompactCom 40 Software and M40 Hardware Design Guides
2.1.1
Available Fieldbuses and Industrial Networks •
Ethernet POWERLINK
•
PROFIBUS DPV1
•
EtherNet/IP
•
EtherCAT
•
PROFINET
•
Modbus TCP
•
DeviceNet
•
CC-Link
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
About the Anybus CompactCom B40–1
2.2
Footprints
2.2.1
Brick
7 (44)
The brick is connected to the host application board through the host application interface connector and a network interface connector. The footprint for the brick is shown in the picture below.
Outline of brick
8,5
Pin 1 Network interface
2x
Pin 1 Application interface
27
M3 Top view
33 Fig. 1
The dashed outline show the outline and the size of the brick. The headers for the interfaces may be excluded and the brick soldered directly to the host application board. Suggested components Header Stand-off (M3)
Application interface
Samtec CLP-128-02-L-D (56 pin)
Network interface
Samtec CLP-126-02-L-D (52 pin)
Pemnet SMTSO-M3-4-ET
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
About the Anybus CompactCom B40–1
2.2.2
8 (44)
Network Connector Board The network connectors are mounted on a separate connector board. The footprint for a connector board is shown in the figure below. This footprint is the same for all connector boards
Outline of connector board
M3 Pin 1 Network interface
14,5
FE
Top view
Fig. 2
The fastening screw must be connected to the functional earth (FE) of the host application. Suggested components
2.3
Header, network interface
Samtec CLP-126-02-L-D (52 pin)
Stand-off (M3)
Pemnet SMTSO-M3-4-ET
Height Restrictions All dimensions are in millimeters
1.5
2.3
4.5
8 = max module height 27
Fig. 3
The maximum height occupied by onboard components of the Anybus module is 8 mm. To ensure isolation, it is recommended to add an additional 2.5 mm on top of these dimensions.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
About the Anybus CompactCom B40–1
2.4
9 (44)
Assembly The brick and the connector board are mounted separately on to the host application board. The connector board has to be secured using a screw, joining FE (functional earth) on the connector board to FE on the host application board. The screw holes of the brick are not connected to FE, but to GND. The brick can be mounted without screws in a low vibration environment. The brick can either be connected to the application board using headers, or soldered directly to the host application PCB.
Fig. 4 Suggested components Header Stand-off (M3)
Application interface
Samtec CLP-128-02-L-D (56 pin)
Network interface
Samtec CLP-126-02-L-D (52 pin)
Pemnet SMTSO-M3-4-ET
The screw standoffs are typically 4 mm tall. If the brick and connector board are to be soldered directly to the host application board, standoffs should be 2 mm tall. Outer diameter may be 6 mm max. Recommended torque is 0.2 Nm. Locking paint kan be used to secure the screws against loosening.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
About the Anybus CompactCom B40–1
10 (44)
PCB layout Outline of connector board
FE
14,5
M3 Standoffs, typ. 4 mm
Pin 1 Network interface
Top view
Outline of brick
2x
M3
Pin 1 Application interface
27
8,5
Pin 1 Network interface
Top view
33 M3: Standoff with internal thread, size M3 Fig. 5
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
11 (44)
3
Connectors
3.1
General Information The brick has two connectors that provides communication with the host application board. The host application connector provides an interface between the host application and the brick, while the network connector provides network access. The signals from the brick network connector can be directly routed to the (optional) connector board, which carries a network connector(s) identical or similar to the ones on the corresponding brick module. Examples on how to design the network access circuitry, when not using the connector board, are shown in Design Examples, p. 35.
3.2
Host Application Connector The Anybus CompactCom B40–1 has a standard 1.27 mm 56 pin header surface mounted to the bottom side of the PCB as application interface connector.
56
55
54
53
Top view
4
3
2
1
Fig. 6
The pictures shows the pinning of the corresponding connector on the host application seen from the top.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
12 (44)
GND A0/WEH/DIP1_0 A2/DIP1_2 GND A5/DIP1_5 A7/DIP1_7 GND A10/DO/MISO GND A13/ASM_TX D6/DIP2_6 GND D3/DIP2_3 GND MD0 OM0 GND CS IRQ/PA GND LED4B/D14 GND LED2A/D11 LED1A/D9 GND TX/ASM_TX/OM3 MI0/SYNC GND
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
3V3 RESET A1/DIP1_1 A3/DIP1_3 A4/DIP1_4 A6/DIP1_6 A8/LD/SS A9/SCLK A11/DI/MOSI A12/ASM_RX D7/DIP2_7 D5/DIP2_5 D4/DIP2_4 D2/DIP2_2 D1/DIP2_1 D0/DIP2_0 OM1 OM2 WE/WEL/CT OE LED4A/D15 LED3A/D13 LED3B/D12 LED2B/D10 LED1B/D8 RX/ASM_RX MI1 3V3
Fig. 7
3.2.1
Application Connector Pin Overview Depending on operating mode, the pins have different names and different functionality. Presented below is an overview of all pins except GND and 3V3. The pin types of the application connector are defined in the table below. The pin type may be different depending on which mode is used. Pin type
Definition
I
Input
O
Output
I/O
Input/Output (bidirectional)
OD
Open Drain
Power
Pin connected directly to module power supply, GND or 3V3
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
13 (44)
Note: The pin numbers of the Anybus CompactCom B40–1 (brick) host application connector are different from those of the Anybus CompactCom M40 (module) host application connector. Pin
Signal Name
Type
16-bit Mode
8-bit Mode
4
WEH
A0
Shift Register Mode DIP1_0
5
A1
A1
DIP1_1
I
6
A2
A2
DIP1_2
I
7
A3
A3
DIP1_3
I
9
A4
A4
DIP1_4
I
10
A5
A5
DIP1_5
I
11
A6
A6
DIP1_6
I
12
A7
A7
DIP1_7
I
13 15
A8 A9
A8 A9
SS SCLK
LD SCLK
I/O O, I
16
A10
A10
MISO
DO
O, I
17 19 20
A11 A12 A13
A11 A12 A13
MOSI
DI
31
D0
D0
DIP2_0
I, I/O
29
D1
D1
DIP2_1
I, I/O
27
D2
D2
DIP2_2
I, I/O
26
D3
D3
DIP2_3
I, I/O
25
D4
D4
DIP2_4
I, I/O
23
D5
D5
DIP2_5
I, I/O
22
D6
D6
DIP2_6
I, I/O
21
D7
D7
49
D8
LED1B
LED1B
LED1B
LED1B
O, I/O
48
D9
LED1A
LED1A
LED1A
LED1A
O, I/O
47
D10
LED2B
LED2B
LED2B
LED2B
O, I/O
46
D11
LED2A
LED2A
LED2A
LED2A
O, I/O
45
D12
LED3B
LED3B
LED3B
LED3B
OD, I/O
43
D13
LED3A
LED3A
LED3A
LED3A
OD, I/O
42
D14
LED4B
LED4B
LED4B
LED4B
O, I/O
41
D15
LED4A
LED4A
LED4A
LED4A
O, I/O
37 39 36 38
WEL OE CS IRQ
WE OE CS IRQ
IRQ
PA
51 52
ASM RX ASM TX / OM3
ASM RX ASM TX / OM3
ASM RX ASM TX / OM3
ASM RX ASM TX / OM3
RX TX / OM3
I
32 33 35 54
OM0 OM1 OM2 MI0/ SYNC MI1
OM0 OM1 OM2
OM0 OM1 OM2
OM0 OM1 OM2
MI0/ SYNC MI1
MI0/ SYNC MI1
MI0/ SYNC MI1
OM0 OM1 OM2 MI0
I I I O
MI1
O
53
Anybus® CompactCom B40–1 Design Guide
SPI Mode
Notes
Serial Mode I
ASM RX ASM TX
DIP2_7
I I O, I
I, I/O
CT
I I I O I/O
Strapping input with internal weak pull-up during powerup. To configure OM3, use an external pull-up/pull-down of 1.0 to 2.2 kΩ. The pin changes to output after powerup
Low at power-up and before reset release. Connected to 3V
HMSI-27-230 2.0
Connectors
14 (44)
Pin
30 3
3.2.2
3.2.3
Signal Name 16-bit Mode
8-bit Mode
SPI Mode
MD0 RESET
MD0 RESET
MD0 RESET
Shift Register Mode MD0 RESET
Type
Notes
O I
Connected to GND
Serial Mode MD0 RESET
Power Supply Pins Signal
Type
Pin
Description
GND
Power
Ground Power and signal ground reference.
3V3
Power
2, 8, 14, 18, 24, 28, 34, 40, 44, 50, 56 1, 55
3.3 V power supply.
LED Interface / D8–D15 (Data Bus) Signal Name
Pin Type
Pin
Description, LED Interface
Description, Data Bus
LED1A / D9
O / I/O
48
LED 1 Indication A
D9 Data Bus
• Green
• "D9" in 16-bit data bus mode. D8 Data Bus
LED1B / D8
O / I/O
49
LED 1 Indication B • Red
LED2A / D11
O / I/O
46
LED 2 Indication A • Green
LED2B / D10
O / I/O
47
LED 2 Indication B • Red
LED3A / D13
LED3B / D12
LED4A / D15
LED4B / D14
OD / I/O
OD / I/O
O / I/O
O / I/O
43
LED 3 Indication A
• "D11" in 16-bit data bus mode. D10 Data Bus • "D10" in 16-bit data bus mode. D13 Data Bus
• Green • Mainly used for link/activity on network port 1 on the Ethernet modules. Pin is open-drain to maintain backward compatibility with existing applications, where this pin may be tied to GND.
• "D13" in 16-bit data bus mode.
LED 3 Indication B
D12 Data Bus
• Yellow or red, depending on network • Mainly used for link/activity on network port 1 on the Ethernet modules (yellow). Pin is open-drain to maintain backward compatibility with existing applications, where this pin may be tied to GND.
• "D12" in 16-bit data bus mode.
41
LED 4 Indication A
D15 Data Bus • "D15" in 16-bit data bus mode.
42
• Green • Mainly used for link/activity on network port 1 on the Ethernet modules. LED 4 Indication B
45
• Yellow or red, depending on network • Mainly used for link/activity on network port 1 on the EThernet modules (yellow)
Anybus® CompactCom B40–1 Design Guide
• "D8" in 16-bit data bus mode. D11 Data Bus
D14 Data Bus • "D14" in 16-bit data bus mode.
HMSI-27-230 2.0
Connectors
3.2.4
15 (44)
Settings / Sync Pin No. 32 33 35 52
Description
I O
52
MI0 / SYNC MI1
O O
54 53
Serial/Safety Communication Used for serial/safety communication, depending on Operating Mode, see the Anybus CompactCom 40 HWDG for more information. Module Identification MI0 and MI1 can be used by the host application to determine what type of Anybus CompactCom that is connected. SYNC On networks that support synchronous communication, a periodic synchronization pulse is provided on the SYNC output. The SYNC pulse is also available as a maskable interrupt using the IRQ signal.
MD0
O
30
Signal Name
Type
OM0 OM1 OM2 OM3 (ASM TX) (TX) (Used as TX or ASM TX after power up)
I I I I
ASM RX, RX ASM TX, TX (OM3)
Operating Mode Used to select interface and baud rate, see below.
Module Detection This signal can be used by the host application to determine that an Anybus CompactCom is inserted into the slot, see "Module Detection (MD0)" on page 19. The signals are connected directly to VSS on the CompactCom.
Operating Modes These inputs select the interface that should be used to exchange data (SPI, stand-alone shift register, parallel or serial) and, if the serial interface option is used, the operating baud rate. The state of these signals is sampled once during startup, i.e. any changes require a reset in order to have effect. OM3
OM2
OM1
OM0
Operating Mode
0 0 0
0 0 0
0 0 1
0 0
Reserved SPI Stand-alone shift register
0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 0 1
Reserved Reserved Reserved Reserved 16-bit parallel
1
0
0
0
8-bit parallel
1
0
0
1
Serial 19.2 kbps
1
0
1
0
Serial 57.6 kbps
1
0
1
1
Serial 115.2 kbps
1
1
0
0
Serial 625 kbps
1 1 1
1 1 1
0 1 1
1 0 1
Reserved Reserved Service Mode
These signals must be stable prior to releasing the RESET signal. Failure to observe this may result in faulty behavior.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
16 (44)
Moduel Detection (MD0) This signal is internally connected to GND, and can be used by the host application to detect whether a module is present or not. A low signal indicates that a module is present. If not used, leave this signal unconnected.
Module Identification These signals indicate which type of module that is connected. It is recommended to check the state of these signals before accessing the module. MI1
MI0
Module Type
0
0
Active Anybus CompactCom 30
0
1
Passive Anybus CompactCom
1
0
Active Anybus CompactCom 40
1
1
Customer specific
0 = VOL 1 = VOH On modules supporting "SYNC", MI0 is used as a SYNC signal during operation. MI0 should only be sampled by the application during the time period from power up to the end of SETUP state.
3.2.5
RESET (Reset Input) Signal Name
Pin Type
Pin
Description
Reset
I
3
Reset Used to reset the module.
The master reset input is active low. It must be connected to a host application controllable output pin in order to handle the power up sequence, voltage deviations and to be able to support network reset requests. The brick does not feature any internal reset regulation. To establish a reliable interface, the host application is solely responsible for resetting the module when the supply voltage is outside the specified range. There is no Schmitt trigger circuitry on this input, which means that the module requires a fast rise time of the reset signal, preferably equal to the slew rate of typical logical circuits. A simple RC circuit is for example not sufficient to guarantee stable operation, as the slew rate from logic 0 to logic 1 is too slow. If the application, containing the B40, is designed in such a way that power from the network is used to power the complete application, the reset signal must be pulled to GND on the host application side.
The rise time of the reset signal should be as fast as possible, and must not exceed 30 ns. The signal is not under any circumstances allowed to be left floating. Use a pull-down to prevent this.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
17 (44)
Power Up Power On
Power Stable
3.3V
Power t
0V tA tB VIH
/RESET VIL
t
Fig. 8
Powerup time limits are given in the table below:
3.2.6
Symbol
Min.
Max.
Definition
tA
-
-
Time until the power supply is stable after power-on; the duration depends on the power supply design of the host application and is thus beyond the scope of this document.
tB
1ms
-
Safety margin.
Pin Usage in the Different API Modes Please consult the Anybus CompactCom M40 Hardware Design Guide for more information. The pin numbers of the Anybus CompactCom M40 host connector are different from those of the brick host connector.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
3.3
18 (44)
Network Connector The brick has a standard 1.27 mm 52 pin header surface mounted to the bottom side of the board as network interface.
52
4
50 Top view
51
49
3
2
1
Fig. 9
The pinning of the network connector on the host application board, seen from the top.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
19 (44)
GND B_1CEN/SDA GND B_2CEN/SCL GND B_3CEN GND B_4CEN/BUSP GND NW_LED4A NW_LED3A NW_LED2A NW_LED1A GND A_1CEN/SDA GND A_2CEN/SCL GND A_3CEN GND A_4CEN/BUSP GND C_RX C_BUSP GATE2 GND
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
3V3 B_1P/RXP B_1N/RXN B_2P/SDP B_2N/SDN B_3P/TXEN B_3N/TXDIS B_4P/TXP B_4N/TXN NW_LED4B NW_LED3B NW_LED2B NW_LED1B 3V3 A_1P/RXP A_1N/RXN A_2P/SDP A_2N/SDN A_3P/TXEN A_3N/TXDIS A_4P/TXP A_4N/TXN C_TX C_TXEN GATE1 3V3
Fig. 10
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
3.3.1
20 (44)
Network Connector Pin Overview Depending on network, the pins have different names and different functionality. Presented below is an overview of all pins except GND and 3V3. More detailed descriptions of the signals are described for each network/fieldbus version later in this section (3.3). Pin
Signal Name Ethernet based networks, Copper
Ethernet based networks, fiber optic
DeviceNet, see section
PROFIBUS, see section
CC-Link, see section
3
B_1P
B_RXP
4
B_1CEN
B_SDA
5
B_1N
B_RXN
7
B_2P
B_SDP
8
B_2CEN
B_SCL
9
B_2N
B_SDN
11
B_3P
B_TXEN
12
B_3CEN
13
B_3N
B_XDIS
15
B_4P
B_TXP
16
B_4CEN
17
B_4N
B_TXN
19
NW_LED4B
NW_LED4B
NW_LED4B
NW_LED4B
NW_LED4B
20c 21c
NW_LED4A
NW_LED4A
NW_LED4A
NW_LED4A
NW_LED4A
NW_LED3B
NW_LED3B
NW_LED3B
NW_LED3B
NW_LED3B
22c
NW_LED3A
NW_LED3A
NW_LED3A
NW_LED3A
NW_LED3A
23c
NW_LED2B
NW_LED2B
NW_LED2B
NW_LED2B
NW_LED2B
24c
NW_LED2A
NW_LED2A
NW_LED2A
NW_LED2A
NW_LED2A
25c
NW_LED1B
NW_LED1B
NW_LED1B
NW_LED1B
NW_LED1B
26c
NW_LED1A
NW_LED1A
NW_LED1A
NW_LED1A
NW_LED1A
29
A_1P
A_RXP
30
A_1CEN
A_SDA
31
A_1N
A_RXN
33
A_2P
A_SDP
34
A_2CEN
A_SCL
35
A_2N
A_SDN
37
A_3P
A_TXEN
38
A_3CEN
39
A_3N
A_TXDIS
41
A_4P
A_TXP
42
A_4CEN
43
A_4N
45
C_TX
C_TX
C_TX
46
C_RX
C_RX
C_RX
C_TXEN
C_TXEN
GATE1 GATE2
GATE1 GATE2
A_TXN
47 48
C_BUSP_N
49 50
GATE1 GATE2
Ethernet based networks, using copper, are, at the moment, EtherNet/IP, PROFINET, Ethernet POWERLINK, EtherCAT and Modbus TCP. PROFINET IRT is an Ethernet Fiber Optic Network. The LED signals are active high and are connected to respective LED via a resistor.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
21 (44)
Pin Types
3.3.2
Pin type
Definition
I
Input
O
Output
I/O
Input/Output (bidirectional)
OD
Open Drain
Power
Pin connected directly to module power supply, 3V3 or GND
Power Supply Pins Signal Name
Type
Pin No.
Description
GND
Power
2, 6, 10, 14, 18, 28, 32, 36, 40, 44, 52
Ground Power and signal ground reference.
3V3
Power
1, 27, 51
3.3 V power supply.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
3.3.3
22 (44)
Ethernet Based Networks (Copper) The industrial networks, that use Ethernet for communication, share hardware design. The firmware downloaded to the brick is different depending on network. Physically they use the same set of pins in a similar way. Bricks are available for the following Ethernet based networks: EtherNet/IP, EtherCAT. PROFINET, Ethernet POWERLINK and Modbus TCP. The brick supports dual network ports, signal group A should be connected to the left port and signal group B to the right port on the connector board, looking at the front, see Connector Board for Copper Based Ethernet, p. 29 For EtherCAT, signal group A is used for the IN port and signal group B is used for the OUT port. Signal Group
Signal Name
Type
B_1P
I/O
Pin 3
Description
B
B_1CEN
Power
4
Center tap voltage for first pair
B_1N
I/O
5
First pair, negative signal
B_2P
I/O
7
Second pair, positive signal
B_2CEN
Power
8
Center tap voltage for second pair
B_2N
I/O
9
Second pair, negative signal
B_3P
I/O
11
B_3CEN
Power
12
B_3N
I/O
13
B_4P
I/O
15
B_4CEN
Power
16
B_4N
I/O
17
A_1P
I/O
29
Third pair, positive signal. Used for Gigabit Ethernet. Center tap voltage for third pair. Used for Gigabit Ethernet. Third pair, negative signal. Used for Gigabit Ethernet. Fourth pair, positive signal. Used for Gigabit Ethernet. Center tap voltage for fourth pair. Used for Gigabit Ethernet. Forth pair, negative signal. Used for Gigabit Ethernet. First pair, positive signal
A_1CEN
Power
30
Center tap voltage for first pair
A_1N
I/O
31
First pair, negative signal
A_2P
I/O
33
Second pair, positive signal
A_2CEN
Power
34
Center tap voltage for second pair
A_2N
I/O
35
Second pair, negative signal
A_3P
I/O
37
A_3CEN
Power
38
A_3N
I/O
39
A_4P
I/O
41
A_4CEN
Power
42
A_4N
I/O
43
Third pair, positive signal. Used for Gigabit Ethernet. Center tap voltage for third pair. Used for Gigabit Ethernet. Third pair, negative signal. Used for Gigabit Ethernet. Fourth pair, positive signal. Used for Gigabit Ethernet. Center tap voltage for fourth pair. Used for Gigabit Ethernet. Forth pair, negative signal. Used for Gigabit Ethernet.
A
Anybus® CompactCom B40–1 Design Guide
First pair, positive signal
HMSI-27-230 2.0
Connectors
3.3.4
23 (44)
Ethernet Fiber Optic Networks Ethernet fiber optic networks use more or less the same pins as copper based Ethernet networks. The brick supports PROFINET fiber optic network (PROFINET IRT). The brick supports dual network ports, signal group A is be connected to the left port and signal group B to the right port on the connector board, looking at the front, see Connector Board for Fiber Optic Ethernet, p. 30. If the Anybus CompactCom B40 connector board is not to be used, please study the design requirements for the Rx and SD channels, seeRx Channel Design Requirements, p. 23 and SD Channel Design Requirements, p. 24. Furthermore, fiber optic connectors without metal are preferred in order to minimize EMC disturbance. Signal Group
Signal Name
Type
Pin
Description
B
B_RXP
I
3
Rx, LVPECL positive signal
B_SDA
I/O
4
SDA, I2C data
B_RXN
I
5
Rx, LVPECL negative signal
A
B_SDP
I
7
Signal Detect, LVPECL positive signal
B_SCL
I/O
8
SCL, I2C clock
B_SDN
I
9
Signal Detect, LVPECL negative signal
B_TXEN
O
11
Tx enable TXEN is implemented as the inverse to TXDIS
B_TXDIS
O
13
Tx disable
B_TXP
O
15
Tx, LVPECL positive signal
B_TXN
O
17
Tx, LVPECL negative signal
A_RXP
I
29
Rx, LVPECL positive signal
A_SDA
I/O
30
SDA, I2C data
A_RXN
I
31
Rx, LVPECL negative signal
A_SDP
I
33
Signal Detect, LVPECL positive signal
A_SCL
I/O
34
SCL, I2C clock
A_SDN
I
35
Signal Detect, LVPECL negative signal
A_TXEN
O
37
Tx enable TXEN is implemented as the inverse to TXDIS
A_TXDIS
O
39
Tx disable
A_TXP
O
41
Tx, LVPECL positive signal
A_TXN
O
43
Tx, LVPECL negative signal
The differential signals Rx and Tx should be routed as differential pairs with a characteristic impedance of 100 Ω differentially.
Rx Channel Design Requirements The Rx channel is designed for an optical transceiver output that has an AC coupled 100 Ω differential signal with 100-1000 mV amplitude, e.g. LVPECL (low voltage positive emitter coupled logic). Each line is terminated with 50 Ω to a common point with a potential of 1.2 V on the brick. If a transceiver with a DC coupled output is used, series capacitors are needed to obtain desired signal levels for the brick. Below is a figure describing three different options to connect a transceiver output to an Rx channel on the brick:
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
24 (44)
Brick
Transceiver
AC coupled transceiver
Brick
Transceiver
DC coupled transceiver
Brick
Transceiver
DC coupled transceiver with bias current
Fig. 11
The AC coupling capacitors typically have a value of 100 nF. Resistors draining bias current typically have a value of 150 Ω.
SD Channel Design Requirements The SD (signal detect) channel is designed for a transceiver output that has a DC coupled differential output with 100-1000 mV amplitude. If a transceiver with LVTTL/LVCMOS output is used, the signal needs to be conditioned using a few resistors, to obtain desired signal levels for the brick. Each line is pulled to GND by a 1.27 kΩ resistor on the brick. Even if the transceiver has a single ended output and the other line is at a fixed reference potential, it is recommended to route SDN and SDP side by side all the way to the signal conditioning resistors. This will give the interference, collected by the transmission line, common mode characteristics, and it can thus be ignored by the differential input, instead of becoming a differential mode interference that would corrupt the signal. Below is a figure describing three different ways to connect a transceiver output to an SD channel of the brick:
Brick
Transceiver
a: Differential LVPECL output
Brick
Transceiver
b: Single ended LVPECL output If the output is active low: Connect the output to SDN and the 820 Ω resistor to SDP .
Brick
Transceiver
c: LVCMOS output. If the output is active low, connect the 1.8 kΩ resistor to SDN instead.
Fig. 12
In case a and case b, additional pull-down resistors will be required if the LVPECL outputs require a certain bias current (> 1 mA) to function.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
3.3.5
25 (44)
DeviceNet The Anybus CompactCom B40–1 DeviceNet communication interface uses the following pins: Signal Name
Type
Pin
Description
C_TX
O
45
Tx
C_RX
I
46
Rx
C_BUSP_N
I
48
Bus power detection. Active low
GATE1
O
49
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
GATE2
O
50
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
Connector Board for CC-Link and DeviceNet, p. 31
3.3.6
PROFIBUS The Anybus CompactCom B40–1 PROFIBUS DP-V1 communication interface uses the following pins: Signal Name
Type O
Pin 45
Description
C_TX C_RX
I
46
Rx
C_TXEN
O
47
TxEnable
GATE1
O
49
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
GATE2
O
50
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
Tx
SeeConnector Board for PROFIBUS, p. 28 for information about the optional connector board.
3.3.7
CC-Link The Anybus CompactCom B40-1 CC-Link communication interface uses the following pins: Signal Name
Type O
Pin 45
Description
C_TX C_RX
I
46
Rx
C_TXEN
O
47
TxEnable
GATE1
O
49
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
GATE2
O
50
Low voltage MOS gate driver. For fieldbus isolated DC supply circuitry.
Tx
SeeConnector Board for CC-Link and DeviceNet, p. 31 for information about the optional connector board.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Connectors
3.3.8
26 (44)
LED Indicators The Anybus CompactCom 40 series supports four bicolored LED indicators. LED name LED1A
Pin no. 26
Signal Name NW_LED1A
Default color Green
LED1B
25
NW_LED1B
Red
LED2A
24
NW_LED2A
Green
LED2B
23
NW_LED2B
Red
LED3A
22
NW_LED3A
Green
LED3B
21
NW_LED3B
Yellow
LED4A
20
NW_LED4A
Green
LED4B
19
NW_LED4B
Yellow
Default Functionality Network status Module status Link/Act for the left network port of connector board (looking at the module front) Link/Act for the right network port of connector board (looking at the module front)
All LED outputs are active high and should be connected as shown in the picture below. The resistor values should be chosen to get even light between different LEDs.
Brick network interface
NW_LED4A
220 Ω G
NW_LED4B
Y 220 Ω
Fig. 13
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A
27 (44)
Dimensions All dimensions are in millimeters, tolerance ±0.10 mm, unless otherwise stated.
A.1
Brick The dimensions for the brick are given in the picture below.
8=max module height Bottom view
3,
2
Pin 1 Application interface
Pin 1 Network interface
1,27 ± 0,05
1,27
1,5 ± 0,25 2,3 ± 0,25
36
2x 13
2x26p
4,5 ± 0,20
27 ± 0,20
2x28p
33 36
Fig. 14
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A.2
28 (44)
Connector Board for PROFIBUS The connector board for the PROFIBUS network interface carries a D-sub connector If the connector board is mounted in an environment that is subject to vibration, please make sure to secure the network cable in such a manner, that the vibrations will not harm the D-sub connector.
1,5 ± 0,25
40
2,3 ± 0,25
2,9
12,6
30,8
3,5 ± 0,20
3,2
0,5
32
38,8
18
20
Fig. 15
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A.3
29 (44)
Connector Board for Copper Based Ethernet The connector board for the copper based Ethernet network interfaces carries two RJ45 connectors.
37,8
1,5 ± 0,25
40
2,3 ± 0,25
2,9
12,7
15,6
3,5 ± 0,20
32
35
18
20
3,2
Fig. 16
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A.4
30 (44)
Connector Board for Fiber Optic Ethernet The connector board for the Fiber Optic Ethernet network interface carries two fibre optic transceivers.
40,3
1,5 ± 0,25
40
2,3 ± 0,25
2,9
13,2
16,8
3,5 ± 0,20
32
44,5
18
20
3,2
Fig. 17
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A.5
31 (44)
Connector Board for CC-Link and DeviceNet The connector board for the CC-Link and the DeviceNet network interfaces carry a pluggable screw terminal (5.08mm)
1,5 ± 0,25
40
2,3 ± 0,25
2,9
8,9
27,4
3,5 ± 0,20
32
35
18
20
3,2
Fig. 18
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix A: Dimensions
A.6
32 (44)
Front Plate Restrictions Customer applications that have a front plate with hole(s) for accessing the connector(s) of a connector board, must have the front plate placed at least 0.5 mm away from the connector board edge and must not reach further than 2.5 mm away from the connector board edge.
40
32
0,5
2,0
18
20
3,2
Front plate placement area
Fig. 19
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix B: Technical Specification
33 (44)
B
Technical Specification
B.1
Environmental
B.1.1
Operating -40 to 85° C (-40 to 185° F)
B.1.2
Storage -40 to 85°C (-40 to 185° F)
B.1.3
Humidity 5 to 95% non-condensing
B.2
Shock and Vibration
B.2.1
Shock The Anybus CompactCom B40–1 is tested according to IEC 68–2–27 •
half-sine 30 g, 11 ms, 3 positive and 3 negative shocks in each of three mutually perpendicular directions
•
half-sine 50 g, 11 ms, 3 positive and 3 negative shocks in each of three mutually perpendicular directions
All Ethernet and fieldbus versions of the brick are tested for 30 g and 50 g. Connector boards/interface cards are tested for 30 g.
B.2.2
Sinusoidal Vibration The Anybus CompactCom B40–1 is tested according to IEC 68–2–6
Frequency range:
10–500 Hz
Amplitude 10–59 Hz:
0.35 mm
Acceleration 50–500 Hz
5g
Sweep rate:
1 oct/min 10 double sweep in each of the three mutually perpendicular directions
B.3
Electrical Characteristics Operating Conditions Symbol
Parameter
Pin Type
Max. (mA)
IOH (NW_LEDx)
Output current, network LEDs
O
20
Anybus CompactCom 40
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix B: Technical Specification
B.4
34 (44)
Regulatory Compliance EMC Compliance (CE) Since the Anybus CompactCom is considered a component for embedded applications it cannot be CE-marked as an end product. However the Anybus CompactCom 40 family is pre-compliance tested in a typical installation providing that all modules are conforming to the EMC directive in this installation. Once our customers end product has successfully passed the EMC test using any of the Anybus CompactCom B40–1 modules, our pre-compliance test concept allows any other interface in the product family to be embedded in that product without further EMC tests. The EMC pre-testing has been conducted according to the following standards:
Emission: EN61000-6-4
EN55016-2-3 Radiated emission EN55022 Conducted emission
Immunity: EN61000-6-2
EN61000-4-2 Electrostatic discharge EN61000-4-3 Radiated immunity EN61000-4-4 Fast transients/burst EN61000-4-5 Surge immunity EN61000-4-6 Conducted immunity
Since all Anybus CompactCom B40–1 modules have been evaluated according to the EMC directive through above standards, this serves as a base for our customers when certifying Anybus CompactCom B40–1 based products.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix C: Design Examples
C
35 (44)
Design Examples If the optional connector board is used, the signals from the network interface connector of the brick can be routed directly to the corresponding pins of the connector on the connector board. Section C.2 shows an example PCB layout for this case. This appendix also contains typical examples, of how to design the network interface, if the optional connector board is not to be used.
C.1
•
Ethernet Network Interface (Copper), p. 38. All bricks for 100 Mb/s Ethernet based protocols, running on copper wire, use the same hardware.
•
Ethernet Network Interface (Fiber Optic), p. 39
•
PROFIBUS Network Interface, p. 40
•
DeviceNet Network Interface, p. 41
•
CC-Link Network Interface, p. 42
Recommendations •
The longer the distance between the Brick and the Connector board, the more important it is that single-ended signals as well as signal pairs are separated to maintain good signal integrity.
•
All conductors should have a tighter coupling to a continuous ground plane than to any adjacent conductor (even to the partner signal of a signal pair). All signal pairs should have a differential impedance of 100 Ω ±10%. It is not recommended to separate network circuitry, e.g. Connector board, and Brick more than 400 mm. The distance should be kept shorter if the signals are adjacent to other interfering circuitry. Radiated interference from the signals between the Connector board and Brick may need to be taken care of by e.g. a metallic housing or encapsulating PCB copper planes if the routing distance is long.
•
To avoid B40-1 connector pins penetrating the solder mask under the headers on the carrier board, thus creating short circuits, the following is recommended: –
either use headers that are higher than 2.5 mm,
–
or do not design any vias or traces on top side of the PCB, where there is any risk for short circuits.
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix C: Design Examples
C.2
36 (44)
Example PCB Layout
ABCC B401
Gr ound
Gr ound
<=400mm
Layer s Top GNDpl ane VCCpl ane Bot t om
FE
Connect or Boar d
This layout is suitable for a 4-layer board (1.6 mm) with layer stackup as indicated:
Fig. 20
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Appendix C: Design Examples
37 (44)
If the pin headers are less than or equal to 2.6 mm tall, the footprint in the picture below is suggested for the headers, with via/route keepouts in between the pads. If the pin headers are higher no keepouts are needed.
Fig. 21
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
Anybus® CompactCom B40–1 Design Guide
51 52
45 46 47 48 49 50
41 42 43 44
37 38 39 40
33 34 35 36
NW_LED4B_N NW_LED4A_N NW_LED3B_N NW_LED3A_N NW_LED2B_N NW_LED2A_N NW_LED1B_N NW_LED1A_N
B_4P/TXP/TX B_4CEN/CD/BUSP_N B_4N/TXN/TX_N
B_3P/TXEN B_3CEN/RX B_3N/TXDIS
B_2P/SDP B_2CEN/SCL B_2N/SDN
C_TX C_RX C_TXEN C_BUSP_N GATE1 GATE2
A_4P/TXP/TX A_4CEN/CD/BUSP_N A_4N/TXN/TX_N
A_3P/TXEN A_3CEN/RX A_3N/TXDIS
A_2P/SDP A_2CEN/SCL A_2N/SDN
A_1N/RXN
A_1CEN/SDA
A_1P/RXP
3V3
30 31 32
27 28 29
19 20 21 22 23 24 25 26
15 16 17 18
11 12 13 14
7 8 9 10
3V3
B_1P/RXP B_1CEN/SDA B_1N/RXN
2
C6 100nF/16V 0402 RS0753
4
R8 75R 0603 RS0002
PE
PE
R3 75R 0603 RS0002
C8 1nF/2kV 1210 RS0348
R9 75R 0603 RS0002
C4 1nF/2kV 1210 RS0348
Notes: 1,2,3,4) Place center tap capacitors close to the respective transformer. The center tap voltage is decided by the PHY driving the transformer. The only thing that all PHYs have in common is that they need a decoupling capacitor on the center tap, close to the transformer. 5) RS1481 can be mounted on this footprint since the footprint for J1 provides holes in the correct positions, that the guide pins of RS1481 fit in. Otherwise footprint 52DIL050_SMD_MALE_HOLES_GP shall be used for RS1481.
C7 100nF/16V 0402 RS0753
RDA-
3
RDA+
A_2N
TDA-
TDA+
R2 75R 0603 RS0002
A_2P
A_2CEN
A_1CEN
A_1N
A_1P
C2 100nF/16V 0402 RS0753
C3 100nF/16V 0402 RS0753
RDB-
B_2N
1
RDB+
B_2P
B_2CEN
TR1 Ethernet Trafo SO16_TG110_2 RS1483
TDB-
B_1N B_1CEN
TDB+
B_1P
TR2 Ethernet Trafo SO16_TG110_2 RS1483
PE
R6 75R 0603 RS0002
R4 75R 0603 RS0002
5 1
2 3
C5 1nF/2kV 1210 RS0348
1 2 3 4 5 6 7 8 9 10
J5
R7 1M 1206 RS1163
PE
RJ45 RJ45_SS-60300-032 RA0820
1 2 3 4 5 6 7 8 9 10
J4
PE
RJ45 RJ45_SS-60300-032 RA0820
R1 1M 1206 RS1163
1 2 3 4 5 6 RDA7 8 SHIELDA 9 10 TDA+ TDARDA+
C1 1nF/2kV 1210 RS0348
PE Hole PE_HOLE_ROUND_NO_KO
4
J3
R10 75R 0603 RS0002
R5 75R 0603 RS0002
1 2 3 4 5 6 RDB7 8 9 SHIELDB 10 TDB+ TDBRDB+
C.3
3 4 5 6
1 2
Appendix C: Design Examples 38 (44)
Ethernet Network Interface (Copper)
3V3
J2 CON52 5 RS1481 52DIL050_SMD_MALE
Fig. 22
HMSI-27-230 2.0
Anybus® CompactCom B40–1 Design Guide C9 100nF/16V 0402 RS0753
C10 4u7F/6V3 0402 RS1198
C79 100nF/16V 0402 RS0753
C78 4u7F/6V3 0402 RS1198
3V3
SCL TDTD+ TxDIS TxGND TxVCC
3V3
C76 4u7F/6V3 0402 RS1198
R9 150R 0603 RS0816
QFBR-5978Z AFBR-5978Z RA0692
U30
Port A
GND#13
3V3
C77 100nF/16V 0402 RS0753
R65 150R 0603 RS0816
SDA RxGND RxVCC SD RDRD+
C4 4u7F/6V3 0402 RS1198
3V3
1 2 3 4 5 6
GND#14
3V3
7
14
C3 100nF/16V 0402 RS0753
Brick connector
3V3
12 11 10 9 8
C18 100nF/16V 0402 RS0753
3V3
QFBR-5978Z AFBR-5978Z RA0692
13
C17 100nF/16V 0402 RS0753
R6 820R 0603 RS0465
3V3
SCL TDTD+ TxDIS TxGND TxVCC
C13 NM(100nF/16V) 0402 RS0753
R68 4k7 0603 RS0024
R4 150R 0603 RS0816
U1
SDA RxGND RxVCC SD RDRD+
A_SDN A_SDP A_RXN A_RXP A_TXP A_TXN
R67 4k7 0603 RS0024
R3 150R 0603 RS0816
3V3
GND#13
A_SDA A_SCL A_TXDIS
R66 4k7 0603 RS0024
C16 100nF/16V 0402 RS0753 1 2 3 4 5 6
GND#14
B_SDA B_SCL B_TXDIS
R10 4k7 0603 RS0024
C15 100nF/16V 0402 RS0753
14
3V3
R5 820R 0603 RS0465
Port B
C.4
C14 NM(100nF/16V) 0402 RS0753
B_SDN B_SDP B_RXN B_RXP B_TXP B_TXN
3V3
Appendix C: Design Examples 39 (44)
Ethernet Network Interface (Fiber Optic)
13
12 11 10 9 8
7
Fig. 23
HMSI-27-230 2.0
J2 CON52 RS1302 52DIL050_SMD_MALE
51 52
49 50
48
47
46
45
41 42 43 44
37 38 39 40
33 34 35 36
29 30 31 32
27 28
19 20 21 22 23 24 25 26
15 16 17 18
11 12 13 14
7 8 9 10
3 4 5 6
1 2
NW_LED4B_N NW_LED4A_N NW_LED3B_N NW_LED3A_N NW_LED2B_N NW_LED2A_N NW_LED1B_N NW_LED1A_N
B_4P/TXP/TX B_4CEN/CD/BUSP_N B_4N/TXN/TX_N
B_3P/TXEN B_3CEN/RX B_3N/TXDIS
B_2P/SDP B_2CEN/SCL B_2N/SDN
B_1P/RXP B_1CEN/SDA B_1N/RXN
GATE2
GATE1
C_BUSP_N
C_TXEN
C_RX
C_TX
A_4P/TXP/TX A_4CEN/CD/BUSP_N A_4N/TXN/TX_N
A_3P/TXEN A_3CEN/RX A_3N/TXDIS
A_2P/SDP A_2CEN/SCL A_2N/SDN
A_1P/RXP A_1CEN/SDA A_1N/RXN
1 2 3
US6K4 US6K4 RS0833
S1 G1 D2
Notes:
D1 G2 S2
3V3
3V3
1) The net name PE2 is set only in order to have a net spacing type (PE) set for J4:11.
R7 2k2 0603 RS0017
GATE1
R6 2k2 0603 RS0017
GATE2
U6
C_TX
C_RX
C_TXEN
6 5 4
4
3
2
1
5
7
6
8
2 1 4 3
GND1
NC
IN
VDD1
GND2
NU
OUT
VDD2
3V3
5
7
6
8
4
3
2
1
7 8 6 5
1
ISO_GND
ISO_5V
ISO_GND
ISO_5V
ISO_GND
C13 10uF/10V 0603 RS1199
6 RN1C 1k2 0603_8P RS0204
ISO_TX
ISO_RX
5 RN1A 1k2 0603_8P RS0204
8
ISO_GND
C3 100nF/16V 0402 RS0753
C4 100nF/16V 0402 RS0753
ACPL072L
3
4
A B VCC GND
U3
LVC1G97-14 SC70_6 RS0519
U1A
6 7 8 5
PE
C11 1uF/16V 0603 RS0614
ISO_GND
5 1 4
3
2
Enable
IN
U7
J4
OUT
C2 100nF/16V 2 0402 3 RS0753
1 5
LVC1G97-14 SC70_6 RS0519
VCC#1 VCC GND GND#3
U1B
TP3 ISO_GND TEST_SMD_35
C12 10uF/10V 0603 RS1199
ISO_GND
5
ISO_5V
DB9_WITH PE DB9F_PE_HORIZONTAL RA0170
R5 1M 1206 RS1163
ISO_GND
RN1B 1k2 0603_8P RS0204
ISO_5V
C6 100nF/16V 0402 RS0753
ISO_5V
MIC5207 SOT23_5 RS0223
3
1
1
10
1 6 2 7 3 8 4 9 5 PE2 11
ISO_GND
C1 2,2nF/500V 1206 RS0322
PE
ISO_GND
PE Hole PE_HOLE_ROUND_NO_KO
J3
C5 100nF/16V 0402 RS0753
ISO_5V RTS
HCPL0601
B A
R2 220R 0603 RS0004
ISO_5V
65HVD1176
C10 100nF/16V 0402 RS0753
65HVD1176 SO8_JED_MS-012 RS0598
DE D
R RE
6
D1 BAT54C SOT23_3 RS1323
3 4
1 2
ISO_TXEN
RN1D 1k2 0603_8P RS0204
ISO_GND
ISO_5V ACPL072L
4
3 C14 100nF/16V 0402 RS0753
5
6 2
TR1 KEE198795 RS0728 TGM_2X0NS
U5 ACPL077L SO8_OPTO RS1014
GND2
NU
OUT
VDD2
RS1014
GND1
NC
IN
VDD1
U4 ACPL077L SO8_OPTO
RS0240
U2 HCPL0601 SO8_OPTO
2 1
7 1 2
ISO_5V
Bypass
R1 220R 0603 RS0004
3
GND
Anybus® CompactCom B40–1 Design Guide 3V3
2
3V3
4
C.5
4
Appendix C: Design Examples 40 (44)
PROFIBUS Network Interface
3V3
Fig. 24
HMSI-27-230 2.0
Anybus® CompactCom B40–1 Design Guide
51 52
45 46 47 48 49 50
41 42 43 44
37 38 39 40
33 34 35 36
29 30 31 32
27 28
19 20 21 22 23 24 25 26
15 16 17 18
11 12 13 14
7 8 9 10
3 4 5 6
NW_LED4B_N NW_LED4A_N NW_LED3B_N NW_LED3A_N NW_LED2B_N NW_LED2A_N NW_LED1B_N NW_LED1A_N
B_4P/TXP/TX B_4CEN/CD/BUSP_N B_4N/TXN/TX_N
B_3P/TXEN B_3CEN/RX B_3N/TXDIS
B_2P/SDP B_2CEN/SCL B_2N/SDN
B_1P/RXP B_1CEN/SDA B_1N/RXN
C_TX C_RX C_TXEN C_BUSP_N GATE1 GATE2
A_4P/TXP/TX A_4CEN/CD/BUSP_N A_4N/TXN/TX_N
A_3P/TXEN A_3CEN/RX A_3N/TXDIS
A_2P/SDP A_2CEN/SCL A_2N/SDN
A_1P/RXP A_1CEN/SDA A_1N/RXN
3V3
R2 2k2 0603 RS0017
3V3
TP12 C_RX TEST_SMD_35
C5 100nF/16V 0402 RS0753
3V3
4
3
2
1
5
7
6
8 OUT
ACPL077L SO8_OPTO RS1014
GND2
NU
C6 100nF/16V 0402 RS0753
GND2
NU
OUT
VDD2
GND1
NC
IN
VDD1
HCPL181 SO4OPTO RS0812
VDD2
U4
U1 ACPL072L
3V3
3
4
U3
ACPL077L SO8_OPTO RS1014
GND1
NC
IN
VDD1
U1
TP13 C_BUSP_N TEST_SMD_35
U4 ACPL072L
C_RX
C_BUSP_N
C_TX
3V3
TP1 GND TEST_SMD_35
TP2 3V3 TEST_SMD_35
R1 2k2 0603 RS0017
3V3
TP11 C_TX TEST_SMD_35
2
1
4
3
2
1
5
7
6
8
C2 100nF/16V 0402 RS0753
V-_BUS
RS0012
R5 1k 0603
ISO_GND
V+_BUS
2
R6 10k 1206 RS0066
3
GND
CAN_H
65HVD251 SO8 RS0523
2
7
6
3
V+_BUS
R4 1M 1206 RS1163
ISO_GND
PE
5 1 4
C7 10uF/50V RAD5_5 RS0475
IN C8 330nF/50V 1206 RS0116
1
DPAK RS0811
OUT
U5 MC78M05
JP4
3
2
PE
RV1 V30MLA1812TX1884 1812 RS0678
MSTB 2.5/5-G-5.08 MSTBA_5_PINP RA0718
1 2 3 4 5
PE Hole PE_HOLE_ROUND_NO_KO
JP3
C1 10nF/1kV 1210 RS0352
VCAN_L SHIELD CAN_H V+
V-_BUS
TP9 CAN_H TEST_SMD_35
TP10 CAN_L TEST_SMD_35
ISO_5V
3
ISO_GND
C9 1uF/16V 0603 RS0614
ISO_5V
U5 Requires a cooling surface of 225 square mm (1,1W)
C4 100nF/16V 0402 RS0753
65HVD251
V+_Q
VCC
U2
CAN_L
TP8 V+_Q TEST_SMD_35
RS
REF
RXD
TXD
SS14 DO214AC RS0153
D1
C3 100nF/16V 0402 RS0753
U4 ACPL072L
T1 SOT23_3 BSR18A RS0662
TEST_SMD_35
TP3 ISO_GND
ISO_RX
8
5
4
1
TP7 ISO_RX TEST_SMD_35
TP5 ISO_TX TEST_SMD_35
TP4 ISO_5V TEST_SMD_35
ISO_5V
ISO_TX
U1 ACPL072L
ISO_5V
ISO_GND
ISO_5V
ISO_GND
R3 560R 0603 RS0557
ISO_GND
ISO_5V
1
3V3
GND
C.6
4
1 2
Appendix C: Design Examples 41 (44)
DeviceNet Network Interface
3V3
J2 CON52 RS1302 52DIL050_SMD_MALE
Fig. 25
HMSI-27-230 2.0
51 52
45 46 47 48 49 50
41 42 43 44
37 38 39 40
33 34 35 36
29 30 31 32
27 28
19 20 21 22 23 24 25 26
15 16 17 18
11 12 13 14
7 8 9 10
3 4 5 6
1 2
NW_LED4B_N NW_LED4A_N NW_LED3B_N NW_LED3A_N NW_LED2B_N NW_LED2A_N NW_LED1B_N NW_LED1A_N
B_4P/TXP/TX B_4CEN/CD/BUSP_N B_4N/TXN/TX_N
B_3P/TXEN B_3CEN/RX B_3N/TXDIS
B_2P/SDP B_2CEN/SCL B_2N/SDN
B_1P/RXP B_1CEN/SDA B_1N/RXN
C_TX C_RX C_TXEN C_BUSP_N GATE1 GATE2
A_4P/TXP/TX A_4CEN/CD/BUSP_N A_4N/TXN/TX_N
A_3P/TXEN A_3CEN/RX A_3N/TXDIS
A_2P/SDP A_2CEN/SCL A_2N/SDN
A_1P/RXP A_1CEN/SDA A_1N/RXN
R5 2k2 0603 RS0017
C_TXEN
C_RX
C_TX
6
4 LVC1G97-14 SC70_6 RS0519
U5A
GATE2
GATE1
R3 2k2 0603 RS0017
TP1 GND TEST_SMD_35
4
3
2
1
5
7
6
8
GND1
NC
IN
VDD1
GND2
NU
OUT
VDD2
GND1
NC
IN
ACPL077L (U1) C11 100nF/16V 0402 RS0753
Q2 Si1062X SC89_3 RS1322
Q1 Si1062X SC89_3 RS1322
3V3
3V3
TP2 3V3 TEST_SMD_35
R2 2k2 0603 RS0017
R1 2k2 0603 RS0017
3V3
3V3
4
3
2
VDD1
U1
5
7
6
8
4
3
2
1
5
7
6
8
ISO_GND
ISO_5V
ISO_GND
ISO_5V
ISO_GND
ISO_5V
ACPL077L (U4) C14 100nF/16V 0402 RS0753
D5 NM(BZT52C6V8T) SOD523
2 3
6
4
LVC1G97-14 SC70_6 RS0519
1 5
C15 100nF/16V 0402 RS0753
3
2
1
4
5
6
3 2
1
4
U2
GND
A B
VCC
5
6 7
8
ISO_5V
ISO_GND
ACPL077L (U1) C7 100nF/16V 0402 RS0753
ISO_5V
3
D1 BAT54C SOT23_3 RS1323
65HVD1176 SO8_JED_MS-012 ISO_GND RS0598
DE RE
RO
DI
TP6 ISO_TXEN TEST_SMD_35
ISO_GND
R6 10k 0603 RS0027
ISO_GND
TR1 KEE198795 RS0728
C5 100nF/16V 0402 RS0753
LVC1G97-14 SC70_6 RS0519
U6A
TP5 ISO_TX TEST_SMD_35
C6 10uF/10V 0603 RS1199
VCC#1 VCC GND GND#3
U5B
3V3
R4 10k 0603 RS0027
ISO_5V
TP7 ISO_RX TEST_SMD_35
D4 NM(BZT52C6V8T) SOD523
ACPL077L (U3) C12 100nF/16V 0402 RS0753
ACPL077L SO8_OPTO RS1014
GND2
NU
OUT
VDD2
U4
ACPL077L SO8_OPTO RS1014
GND1
NC
IN
VDD1
U3
ACPL077L SO8_OPTO RS1014
GND2
NU
OUT
VDD2
1 2
1
ACPL077L (U3) C8 100nF/16V 0402 RS0753
1 2 3
6 5 4
ACPL077L (U4) C9 100nF/16V 0402 RS0753
Enable
IN
65HVD1176 (U2) C10 100nF/16V 0402 RS0753
MIC5207 SOT23_5 RS0223
3
1
U7
6 5 4
3
2
PE
5 1 4
PE
DA DB DG SLD FG
1 2 3 4 5
OUT
2 3
U6B
1 5
LVC1G97-14 SC70_6 RS0519
VCC#1 VCC GND GND#3
J4
MSTBA MSTBA_5_PINP RS1429
1 2 3 4 5
TP4 ISO_5V TEST_SMD_35
C13 100nF/16V 0402 RS0753
TP3 ISO_GND TEST_SMD_35
C2 10uF/10V 0603 RS1199
ISO_GND
5
ISO_5V
PE Hole PE_HOLE_ROUND_NO_KO
J3
C1 3,3nF/50V 0603 RS0375
MCT7050-A4 ZCYS51R5_M3PAT RS1488
1 2 3
L1
TP8 UNREG TEST_SMD_35
ISO_GND
C4 C3 100nF/16V 1uF/16V 0402 0603 RS0753 RS0614
0603 RS0001
L3 0R
0603 RS0001
L2 0R
Bypass
Anybus® CompactCom B40–1 Design Guide 3V3
GND
3V3
2
C.7
4
3V3
Appendix C: Design Examples 42 (44)
CC-Link Network Interface
3V3
J2 CON52 RS1302 52DIL050_SMD_MALE
Fig. 26
HMSI-27-230 2.0
D
How to Disable Ethernet Port 2 (EtherNet/IP) It is possible to disable Ethernet Port 2 on the Anybus CompactCom B40–1 EtherNet/IP. •
Do not connect signal group B
•
Do not connect signals LED4A/B
For descriptions of signals see: •
Network Connector Pin Overview, p. 20
•
Ethernet Based Networks (Copper), p. 22
•
LED Indicators, p. 26
•
Ethernet Based Networks (Copper), p. 22
Anybus® CompactCom B40–1 Design Guide
HMSI-27-230 2.0
last page
HMSI-27-230 2.0.658 / 2016-03-10 12:50 UTC
© 2016 HMS Industrial Networks AB