Transcript
AOD2810 80V N-Channel MOSFET
General Description
Product Summary
The AOD2810 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.
VDS ID (at VGS=10V)
80V 46A
RDS(ON) (at VGS=10V)
< 8.5mΩ
RDS(ON) (at VGS=6V)
< 12mΩ
100% UIS Tested 100% Rg Tested
TO252 DPAK Top View
D Bottom View
D D
S
G
G
S S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage
VGS TC=25°C
Continuous Drain Current G Pulsed Drain Current C
Avalanche Current
C C
Avalanche energy L=0.1mH TC=25°C Power Dissipation
B
TC=100°C
Power Dissipation
A
TA=70°C
Thermal Characteristics Parameter Maximum Junction-to-Ambient A AD Maximum Junction-to-Ambient Maximum Junction-to-Case
Rev 0: Dec. 2012
IAS
35
A
EAS
61
mJ
100
Steady-State Steady-State
W
50 2.5
RθJA RθJC
W
1.6
TJ, TSTG
Symbol t ≤ 10s
A
8.5
PDSM
Junction and Storage Temperature Range
A
10.5
PD
TA=25°C
V
160
IDSM
TA=70°C
±20 36
IDM TA=25°C
Continuous Drain Current
Units V
46
ID
TC=100°C
Maximum 80
-55 to 175
Typ 16 41 1.15
www.aosmd.com
°C
Max 20 50 1.5
Units °C/W °C/W °C/W
Page 1 of 6
AOD2810
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS,ID=250µA
2.3
ID(ON)
On state drain current
VGS=10V, VDS=5V
160
TJ=55°C
±100
nA
2.8
3.4
V
6.8
8.5
14.2
18
VGS=6V, ID=20A
8.7
12
mΩ
50 1
V
46
A
Static Drain-Source On-Resistance
TJ=125°C
gFS
Forward Transconductance
VDS=5V, ID=20A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current G
Crss
Reverse Transfer Capacitance Gate resistance
VGS=0V, VDS=40V, f=1MHz
Gate Source Charge
Qgd tD(on)
VGS=10V, VDS=40V, ID=20A
0.6
mΩ
S
1871
pF
265
pF
14 VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs
A
0.73
DYNAMIC PARAMETERS Ciss Input Capacitance
Rg
µA
5
VGS=10V, ID=20A
Output Capacitance
Units V
1
Zero Gate Voltage Drain Current
Coss
Max
80
VDS=80V, VGS=0V
IDSS
RDS(ON)
Typ
pF
1.3
2.0
26.5
38
Ω nC
8.5
nC
Gate Drain Charge
4
nC
Turn-On DelayTime
11.5
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
8.5
ns
21.5
ns
tf
Turn-Off Fall Time
5.5
ns
trr
Body Diode Reverse Recovery Time
Qrr
IF=20A, dI/dt=500A/µs
32
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
162
ns nC
VGS=10V, VDS=40V, RL=2Ω, RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0:Dec. 2012
www.aosmd.com
Page 2 of 6
AOD2810
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100
100 10V
VDS=5V
6V
80
80 8V 5V
60 ID(A)
ID (A)
60
40
40
4.5V
125°C
20
20 VGS=4V
25°C 0
0 0
1
2
3
4
1
5
15
3
4
5
6
Normalized On-Resistance
2.8
12 RDS(ON) (mΩ Ω)
2
VGS(Volts) Figure 2: Transfer Characteristics (Note E)
VDS (Volts) Fig 1: On-Region Characteristics (Note E)
VGS=6V 9 6 VGS=10V 3
2.6 VGS=10V ID=20A
2.4 2.2 2
1.4
17 5 2 VGS=6V10
1.2
ID=20A
1.8 1.6
1 0.8
0 0
5
0
10
15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)
50
75
100
125
150
175
200
0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E)
25
1.0E+02 ID=20A
1.0E+01
20
40
1.0E+00
125°C 15
IS (A)
RDS(ON) (mΩ Ω)
25
10
125°C
1.0E-01 1.0E-02 1.0E-03
5
25°C
25°C
1.0E-04 1.0E-05
0 0
2
4
6
8
10
VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)
Rev 0:Dec. 2012
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOD2810
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10
2500 VDS=40V ID=20A Ciss
2000 Capacitance (pF)
VGS (Volts)
8
6
4
1500
1000 Coss
2
500
0
0
Crss 0
5
10
15
20
25
30
0
10
Qg (nC) Figure 7: Gate-Charge Characteristics
30
40
50
60
70
80
VDS (Volts) Figure 8: Capacitance Characteristics
500
1000.0 10µs 10µs
100.0
RDS(ON)
100µs
10.0 1.0
DC
1ms 10ms
TJ(Max)=175°C TC=25°C
0.1 0.0 0.01
0.1
1
TJ(Max)=175°C TC=25°C
400 Power (W)
ID (Amps)
20
17 5 2 10
300 200 100
10
100
1000
VDS (Volts)
0 0.0001
0.001
0.01
0.1
01
10
Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
Zθ JC Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=1.5°C/W
1
PD
0.1
Ton T
Single Pulse
0.01 1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0:Dec. 2012
www.aosmd.com
Page 4 of 6
AOD2810
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120
TA=100°C
TA=25°C
100
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
TA=150°C 10
TA=125°C
100 80 60 40 20
1
0 1
10
100
1000
0
25
50
75
100
125
150
175
TCASE (°C) Figure 13: Power De-rating (Note F)
50
10000
40
1000
TA=25°C Power (W)
Current rating ID(A)
Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C)
30
20
17 5 2 10
100
10 10
1 1E-05
0 0
25
50
75
100
125
150
Zθ JA Normalized Transient Thermal Resistance
1
0.1
10
1000
0 18
TCASE (°C) Figure 14: Current De-rating (Note F)
10
0.001
175
Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=50°C/W
0.1 PD
0.01
Single Pulse Ton T
0.001 1E-05
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0:Dec. 2012
www.aosmd.com
Page 5 of 6
AOD2810
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+ + Vds
VDC
-
Qgs
Qgd
VDC
-
DUT Vgs Ig
Charge
Resistive Switching Test Circuit & Waveforms RL Vds Vds 90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT Vgs
Vgs
Diode Recovery Test Circuit & Waveforms Q rr = - Idt
Vds + DUT
Vds Isd Vgs Ig
Rev 0:Dec. 2012
Vgs
L
Isd
+ Vdd
t rr
dI/dt I RM Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6