Transcript
AOD2908 100V N-Channel MOSFET
General Description
Product Summary VDS
The AOD2908 uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.
ID (at VGS=10V)
100V 52A
RDS(ON) (at VGS=10V)
< 13.5mΩ
100% UIS Tested 100% Rg Tested
TO252 DPAK TopView
D Bottom View
D
D
S
D
G
G
S
S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage
VGS TC=25°C
Continuous Drain Current Pulsed Drain Current Pulsed Drain Current
J
Continuous Drain Current
TA=25°C
±20
V
36
IDM
120
IDM
150
A
9
IDSM
TA=70°C
Units V
52
ID
TC=100°C I
Maximum 100
A
7
Avalanche Current C
IAS
20
A
Avalanche energy L=0.1mH C
EAS
20
mJ
TC=25°C Power Dissipation B
TC=100°C
Power Dissipation A
TA=70°C
TA=25°C
Rev 1 : Mar. 2012
2.5
Steady-State Steady-State
RθJA RθJC
W
1.6
TJ, TSTG
Symbol t ≤ 10s
W
37
PDSM
Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case
75
PD
-55 to 175
Typ 15 41 1.5
www.aosmd.com
°C
Max 20 50 2
Units °C/W °C/W °C/W
Page 1 of 6
AOD2908
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
100
Typ
Max
Units V
VDS=100V, VGS=0V
1
µA
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
VDS=VGS,ID=250µA
2.7
ID(ON)
Gate Threshold Voltage On state drain current
VGS=10V, VDS=5V,PW=260µs
120
A
ID(ON)
On state drain current
VGS=10V, VDS=5V,PW=1µs
150
A
TJ=55°C
VGS=10V, ID=20A
5 3.3
13.5 23
gFS
Forward Transconductance
VDS=5V, ID=20A
30
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
Maximum Body-Diode Continuous Current
Coss
Output Capacitance
G
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=50V, f=1MHz VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs
Gate Source Charge
VGS=10V, VDS=50V, ID=20A
V
11
Static Drain-Source On-Resistance
DYNAMIC PARAMETERS Ciss Input Capacitance
nA
4.1
18
RDS(ON)
TJ=125°C
±100
mΩ S
1
V
70
A
1250
1670
pF
727
970
pF
25
43
pF
2
3
Ω
19
27
nC
5.5
nC
Qgd
Gate Drain Charge
6
nC
tD(on)
Turn-On DelayTime
7.5
ns
tr
Turn-On Rise Time
14
ns
tD(off)
Turn-Off DelayTime
15
ns
tf
Turn-Off Fall Time
14
ns
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
39
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
140
ns nC
VGS=10V, VDS=50V, RL=2.5Ω, RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. I: The IDM is obtained using 260µs pulses. J: The IDM is obtained using 1µs pulses.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 1 : Mar. 2012
www.aosmd.com
Page 2 of 6
AOD2908
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100
100
10V
VDS=5V 7V
60
60 ID(A)
80
ID (A)
80
6V
40
40
125°C
20
20
25°C
Vgs=5V 0
0 0
1
2
3
4
2
5
VDS (Volts) Fig 1: On-Region Characteristics (Note E) 2.2
18
2
Normalized On-Resistance
20
RDS(ON) (mΩ Ω)
16 14
VGS=10V
12 10
3
4 5 6 7 VGS(Volts) Figure 2: Transfer Characteristics (Note E)
8
VGS=10V ID=20A
1.8
17 5 2 10
1.6 1.4 1.2 1 0.8
8 0
5
0
10
15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)
25
50
75
100
125
150
175
200
0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E)
40
1.0E+02 ID=20A 1.0E+01
40
32
1.0E+00
125°C
24
IS (A)
RDS(ON) (mΩ Ω)
125°C 1.0E-01 1.0E-02 25°C 1.0E-03 16 1.0E-04 25°C 1.0E-05
8 5
8 9 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)
Rev 1 : Mar. 2012
6
7
www.aosmd.com
0.0
0.2
0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOD2908
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10
2000 VDS=50V ID=20A
8
1600 Capacitance (pF)
VGS (Volts)
Ciss 6
4
2
1200
800 Coss 400
0
0 0
4
8 12 16 Qg (nC) Figure 7: Gate-Charge Characteristics
20
0
20 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics
100
800
1000.0
TJ(Max)=175°C TC=25°C
10µs 10µs
100.0
600
RDS(ON) 10.0
100µs
1.0
1ms 10ms DC TJ(Max)=175°C TC=25°C
0.1
Power (W)
ID (Amps)
Crss
17 5 2 10
400
200
0.0
0 0.01
0.1
1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
0.0001
0.001
0.01
0.1
1
10
0
100
Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case for (Note F)
Zθ JC Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=2°C/W
0.1 PD 0.01 Ton T
Single Pulse 0.001 1E-05
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 1 : Mar. 2012
www.aosmd.com
Page 4 of 6
AOD2908
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120
Power Dissipation (W)
Current rating ID(A)
80
60
40
20
90
60
30
0
0 0
25
50
75 100 125 150 TCASE (° °C) Figure 17: Current De-rating (Note F)
0
175
100
25
50
75 100 125 150 TCASE (° °C) Figure 18: Power De-rating (Note F)
175
IAR (A) Peak Avalanche Current
10000 TA=25°C
1000 TA=100°C TA=125°C
Power (W)
TA=25°C
17 5 2 10
100
10 TA=150°C
1
10
0.001 0.1 10 0 1000 18 Pulse Width (s) Figure 20: Single Pulse Power Rating Junction-toAmbient (Note H)
1
10 100 Time in avalanche, tA (µ µs) Figure 19: Single Pulse Avalanche capability (Note C)
1E-05
Zθ JA Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=60°C/W
0.1 PD
0.01 Single Pulse
Ton
T
0.001 0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 21: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 1 : Mar. 2012
www.aosmd.com
Page 5 of 6
AOD2908 AOW298
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+ + Vds
VDC
-
Qgs
Qgd
VDC
-
DUT Vgs Ig
Charge
Resistive Switching Test Circuit & Waveforms RL Vds Vds 90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT Vgs
Vgs
Diode Recovery Test Circuit & Waveforms Q rr = - Idt
Vds + DUT
Vds Isd Vgs Ig
Rev 1 : Mar. 2012
Vgs
L
Isd
+ Vdd
t rr
dI/dt I RM Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6