Preview only show first 10 pages with watermark. For full document please download

Aod2908 100v N-channel Mosfet General Description Product Summary

   EMBED


Share

Transcript

AOD2908 100V N-Channel MOSFET General Description Product Summary VDS The AOD2908 uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. ID (at VGS=10V) 100V 52A RDS(ON) (at VGS=10V) < 13.5mΩ 100% UIS Tested 100% Rg Tested TO252 DPAK TopView D Bottom View D D S D G G S S G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current Pulsed Drain Current J Continuous Drain Current TA=25°C ±20 V 36 IDM 120 IDM 150 A 9 IDSM TA=70°C Units V 52 ID TC=100°C I Maximum 100 A 7 Avalanche Current C IAS 20 A Avalanche energy L=0.1mH C EAS 20 mJ TC=25°C Power Dissipation B TC=100°C Power Dissipation A TA=70°C TA=25°C Rev 1 : Mar. 2012 2.5 Steady-State Steady-State RθJA RθJC W 1.6 TJ, TSTG Symbol t ≤ 10s W 37 PDSM Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 75 PD -55 to 175 Typ 15 41 1.5 www.aosmd.com °C Max 20 50 2 Units °C/W °C/W °C/W Page 1 of 6 AOD2908 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 100 Typ Max Units V VDS=100V, VGS=0V 1 µA IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) VDS=VGS,ID=250µA 2.7 ID(ON) Gate Threshold Voltage On state drain current VGS=10V, VDS=5V,PW=260µs 120 A ID(ON) On state drain current VGS=10V, VDS=5V,PW=1µs 150 A TJ=55°C VGS=10V, ID=20A 5 3.3 13.5 23 gFS Forward Transconductance VDS=5V, ID=20A 30 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous Current Coss Output Capacitance G Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=50V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs Gate Source Charge VGS=10V, VDS=50V, ID=20A V 11 Static Drain-Source On-Resistance DYNAMIC PARAMETERS Ciss Input Capacitance nA 4.1 18 RDS(ON) TJ=125°C ±100 mΩ S 1 V 70 A 1250 1670 pF 727 970 pF 25 43 pF 2 3 Ω 19 27 nC 5.5 nC Qgd Gate Drain Charge 6 nC tD(on) Turn-On DelayTime 7.5 ns tr Turn-On Rise Time 14 ns tD(off) Turn-Off DelayTime 15 ns tf Turn-Off Fall Time 14 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 39 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 140 ns nC VGS=10V, VDS=50V, RL=2.5Ω, RGEN=3Ω A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. I: The IDM is obtained using 260µs pulses. J: The IDM is obtained using 1µs pulses. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 1 : Mar. 2012 www.aosmd.com Page 2 of 6 AOD2908 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V VDS=5V 7V 60 60 ID(A) 80 ID (A) 80 6V 40 40 125°C 20 20 25°C Vgs=5V 0 0 0 1 2 3 4 2 5 VDS (Volts) Fig 1: On-Region Characteristics (Note E) 2.2 18 2 Normalized On-Resistance 20 RDS(ON) (mΩ Ω) 16 14 VGS=10V 12 10 3 4 5 6 7 VGS(Volts) Figure 2: Transfer Characteristics (Note E) 8 VGS=10V ID=20A 1.8 17 5 2 10 1.6 1.4 1.2 1 0.8 8 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 40 1.0E+02 ID=20A 1.0E+01 40 32 1.0E+00 125°C 24 IS (A) RDS(ON) (mΩ Ω) 125°C 1.0E-01 1.0E-02 25°C 1.0E-03 16 1.0E-04 25°C 1.0E-05 8 5 8 9 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 1 : Mar. 2012 6 7 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOD2908 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 2000 VDS=50V ID=20A 8 1600 Capacitance (pF) VGS (Volts) Ciss 6 4 2 1200 800 Coss 400 0 0 0 4 8 12 16 Qg (nC) Figure 7: Gate-Charge Characteristics 20 0 20 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 100 800 1000.0 TJ(Max)=175°C TC=25°C 10µs 10µs 100.0 600 RDS(ON) 10.0 100µs 1.0 1ms 10ms DC TJ(Max)=175°C TC=25°C 0.1 Power (W) ID (Amps) Crss 17 5 2 10 400 200 0.0 0 0.01 0.1 1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 0.0001 0.001 0.01 0.1 1 10 0 100 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case for (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=2°C/W 0.1 PD 0.01 Ton T Single Pulse 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 1 : Mar. 2012 www.aosmd.com Page 4 of 6 AOD2908 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120 Power Dissipation (W) Current rating ID(A) 80 60 40 20 90 60 30 0 0 0 25 50 75 100 125 150 TCASE (° °C) Figure 17: Current De-rating (Note F) 0 175 100 25 50 75 100 125 150 TCASE (° °C) Figure 18: Power De-rating (Note F) 175 IAR (A) Peak Avalanche Current 10000 TA=25°C 1000 TA=100°C TA=125°C Power (W) TA=25°C 17 5 2 10 100 10 TA=150°C 1 10 0.001 0.1 10 0 1000 18 Pulse Width (s) Figure 20: Single Pulse Power Rating Junction-toAmbient (Note H) 1 10 100 Time in avalanche, tA (µ µs) Figure 19: Single Pulse Avalanche capability (Note C) 1E-05 Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=60°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 21: Normalized Maximum Transient Thermal Impedance (Note H) Rev 1 : Mar. 2012 www.aosmd.com Page 5 of 6 AOD2908 AOW298 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 1 : Mar. 2012 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6