Preview only show first 10 pages with watermark. For full document please download

Aot290l/aob290l 100v N-channel Mosfet General Description Product Summary

   EMBED


Share

Transcript

AOT290L/AOB290L 100V N-Channel MOSFET General Description Product Summary The AOT290L/AOB290L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition, switching behavior is well controlled with a soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) 100V 140A RDS(ON) (at VGS=10V) < 3.5mΩ 100% UIS Tested 100% Rg Tested TO220 Top View Bottom View ∗ (< 3.2mΩ ) Top View TO-263 D2PAK D Bottom View D D D D G D S S D G G S G AOT290L VGS Gate-Source Voltage TC=25°C Pulsed Drain Current Continuous Drain Current C ±20 V A 500 18 IDSM TA=70°C Units V 110 IDM TA=25°C Maximum 100 140 ID TC=100°C S S AOB290L Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Continuous Drain Current G G A 15 Avalanche Current C IAS, IAR 100 A Avalanche energy L=0.1mH C TC=25°C EAS, EAR 500 mJ Power Dissipation B TC=100°C Power Dissipation A TA=70°C TA=25°C Rev3 : Sep 2011 2.1 Steady-State Steady-State RθJA RθJC W 1.3 TJ, TSTG Symbol t ≤ 10s W 250 PDSM Junction and Storage Temperature Range Thermal Characteristics Parameter A Maximum Junction-to-Ambient AD Maximum Junction-to-Ambient Maximum Junction-to-Case * Surface mount package TO263 500 PD -55 to 175 Typ 12 50 0.25 www.aosmd.com °C Max 15 60 0.3 Units °C/W °C/W °C/W Page 1 of 6 AOT290L/AOB290L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS Drain-Source Breakdown Voltage BVDSS IDSS Conditions Min ID=250µA, VGS=0V 100 Typ 1 TJ=55°C Gate-Body leakage current VDS=0V, VGS= ±20V VGS(th) Gate Threshold Voltage VDS=VGS ID=250µA 2.9 ID(ON) On state drain current VGS=10V, VDS=5V 500 VGS=10V, ID=20A TJ=125°C 100 nA 3.5 4.1 V 2.7 3.5 4.4 5.7 3.2 A RDS(ON) Static Drain-Source On-Resistance Forward Transconductance TO263 VDS=5V, ID=20A 2.5 gFS VSD Diode Forward Voltage IS=1A,VGS=0V 0.67 IS Maximum Body-Diode Continuous CurrentG VGS=10V, ID=20A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=50V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime µA 5 IGSS TO220 Units V VDS=100V, VGS=0V Zero Gate Voltage Drain Current Max 50 VGS=10V, VDS=50V, RL=2.5Ω, RGEN=3Ω S 1 V 140 A 7180 9550 pF 2780 3700 pF 42 72 pF Ω 1.7 90 VGS=10V, VDS=50V, ID=20A mΩ 126 nC 33 nC 21 nC 31 69 ns 24 53 ns 45 99 ns tf Turn-Off Fall Time 27 60 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 65 91 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 460 644 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3 : Sep 2011 www.aosmd.com Page 2 of 6 AOT290L/AOB290L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V 8V 6.5V VDS=5V 80 80 6V 60 ID(A) ID (A) 60 5.5V 40 125°C 40 25°C 20 20 VGS=5V 0 0 0 1 2 3 4 3 5 8 Normalized On-Resistance 4 2 VGS=10V 0 6 7 1.8 VGS=10V ID=20A 1.6 1.4 1.2 1 0.8 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) 10 1.0E+02 ID=20A 1.0E+01 8 40 6 125°C IS (A) 1.0E+00 RDS(ON) (mΩ Ω) 5 2 6 RDS(ON) (mΩ Ω) 4 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 125°C 1.0E-01 25°C 1.0E-02 4 1.0E-03 2 25°C 0 1.0E-04 1.0E-05 5 7 8 9 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev3 : Sep 2011 6 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT290L/AOB290L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 10000 VDS=50V ID=20A Ciss 8000 Capacitance (pF) VGS (Volts) 8 6 4 2 6000 4000 Coss 2000 0 Crss 0 0 20 40 60 80 Qg (nC) Figure 7: Gate-Charge Characteristics 100 0 20 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 5000 1000.0 TJ(Max)=175°C TC=25°C 10µs RDS(ON) 10µs 100µs 10.0 4000 1ms DC Power (W) ID (Amps) 100.0 100 10ms 1.0 TJ(Max)=175°C TC=25°C 0.1 17 5 2 10 3000 2000 1000 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Junction-toFigure 10: Single Pulse Power Rating Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=0.3°C/W PD 0.1 Single Pulse Ton T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev3 : Sep 2011 www.aosmd.com Page 4 of 6 AOT290L/AOB290L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 600 TA=25°C 100 Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C TA=150°C TA=125°C 500 400 300 200 100 10 0 1 10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 150 0 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 10000 TA=25°C 120 1000 Power (W) Current rating ID(A) 175 90 60 100 10 30 0 1 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 175 0.001 0.1 10 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) Zθ JA Normalized Transient Thermal Resistance 10 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 40 RθJA=60°C/W 0.1 0.01 PD 0.001 Ton Single Pulse T 0.0001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev3 : Sep 2011 www.aosmd.com Page 5 of 6 AOT290L/AOB290L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev3 : Sep 2011 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6