Preview only show first 10 pages with watermark. For full document please download

Aot462l/aob462l 60v N-channel Mosfet General Description

   EMBED


Share

Transcript

AOT462L/AOB462L 60V N-Channel MOSFET General Description Product Summary The AOT462L/AOB462L combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON).This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) 60V 35A RDS(ON) (at VGS=10V) < 18mΩ 100% UIS Tested 100% Rg Tested TO220 Top View TO-263 D2PAK Bottom View Top View D Bottom View D D D D AOT462L G D SD S G G G Gate-Source Voltage VGS TC=25°C Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.3mH C TC=25°C Power Dissipation B TC=100°C Power Dissipation A TA=70°C 26 A EAS, EAR 101 mJ TJ, TSTG Thermal Characteristics Parameter Maximum Junction-to-Ambient A D Maximum Junction-to-Case Symbol RθJA RθJC Rev.2.0: August 2013 A IAS, IAR Junction and Storage Temperature Range Steady-State A 7 100 www.aosmd.com W 50 2.1 PDSM Steady-State V 6 PD TA=25°C ±20 120 IDSM TA=70°C Units V 27 IDM TA=25°C Maximum 60 35 ID TC=100°C Continuous Drain Current S S AOB462L Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Continuous Drain Current G G S W 1.3 -55 to 175 Typ 45 1.25 °C Max 60 1.5 Units °C/W °C/W Page 1 of 6 AOT462L/AOB462L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current Conditions Min ID=250µA, VGS=0V TJ=55°C Gate-Body leakage current VDS=0V, VGS=±20V VDS=VGS ID=250µA 2 ID(ON) On state drain current VGS=10V, VDS=5V 120 ±100 nA 3.1 4 V 14.5 18 TJ=125°C 25 30 14.2 17.7 TJ=125°C 24.5 30 VGS=10V, ID=30A TO220 VGS=10V, ID=30A TO263 gFS Forward Transconductance VDS=5V, ID=30A VSD Diode Forward Voltage IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime A 50 0.73 1840 VGS=0V, VDS=30V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=30V, ID=30A VGS=10V, VDS=30V, RL=1Ω, RGEN=3Ω mΩ mΩ S 1 V 35 A 2400 pF 185 pF 80 SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs µA 5 Gate Threshold Voltage Units V 1 VGS(th) Static Drain-Source On-Resistance Max 60 VDS=60V, VGS=0V IGSS RDS(ON) Typ pF 2.8 4.2 27.8 36 Ω nC 9.9 nC 6.6 nC 12 ns 5.2 ns 38 ns tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=30A, dI/dt=100A/µs 35 Qrr Body Diode Reverse Recovery Charge IF=30A, dI/dt=100A/µs 47 27 ns 64 62 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.2.0: August 2013 www.aosmd.com Page 2 of 6 AOT462L/AOB462L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 140 VDS=5V 7V 120 10V 80 6V 60 80 ID(A) ID (A) 100 60 40 5V 125°C 40 20 20 25°C -40°C VGS=4.5V 0 0 0 1 2 3 4 2 5 4 5 6 7 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 25 Normalized On-Resistance 2.2 22 RDS(ON) (mΩ Ω) 3 19 VGS=10V 16 13 2 VGS=10V ID=30A 1.8 17 5 2 10 1.6 1.4 1.2 1 0.8 10 0 0 20 40 60 80 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 40 1.0E+02 35 1.0E+01 30 1.0E+00 40 125°C 25 IS (A) RDS(ON) (mΩ Ω) ID=30A 20 125°C 1.0E-01 25°C 1.0E-02 25°C 1.0E-03 15 -40°C 10 -40°C 1.0E-04 1.0E-05 5 2 12 17 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.2.0: August 2013 7 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT462L/AOB462L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 2500 VDS=30V ID=30A 2000 Capacitance (pF) VGS (Volts) 8 6 4 Ciss 1500 1000 Coss 2 500 0 Crss 0 0 5 10 15 20 25 30 0 10 30 40 50 60 10000 1000.0 RDS(ON) limited TJ(Max)=175°C TC=25°C 10µs 100.0 10µs 100µs DC 10.0 1000 17 5 2 10 100 1ms TJ(Max)=175°C TC=25°C 1.0 Power (W) ID (Amps) 20 VDS (Volts) Figure 8: Capacitance Characteristics Qg (nC) Figure 7: Gate-Charge Characteristics 10ms 10 1 10 VDS (Volts) 100 0.00001 0.0001 0.001 0.01 0.1 0 1 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=1.5°C/W 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.2.0: August 2013 www.aosmd.com Page 4 of 6 AOT462L/AOB462L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120 TA=25°C TA=100°C Power Dissipation (W) IAR (A) Peak Avalanche Current 100 TA=150°C TA=125°C 10 90 60V 60 30 0 1 0 1 10 100 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability C) 25 75 100 125 150 TCASE (° °C) Figure 13: Power De-rating (Note F) 1000 (Note 50 10000 60 TA=25°C 50 1000 40 Power (W) Current rating ID(A) 175 30 17 5 2 10 100 20 10 10 1 0 0 25 50 75 100 125 150 TCASE (° °C) Figure 14: Current De-rating (Note F) 0.1 10 0 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 0.00001 175 0.001 Zθ JA Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJA=60°C/W 40 0.1 PD 0.01 Single Pulse Ton T 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.2.0: August 2013 www.aosmd.com Page 5 of 6 AOT462L/AOB462L AOT462L/AOB462L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev.2.0: August 2013 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6