Transcript
AOT9N50/AOTF9N50 500V, 9A N-Channel MOSFET
General Description
Product Summary
The AOT9N50 & AOTF9N50 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs.
VDS ID (at VGS=10V)
600V@150℃ 9A
RDS(ON) (at VGS=10V)
< 0.85Ω
100% UIS Tested 100% Rg Tested
For Halogen Free add "L" suffix to part number: AOT9N50L & AOTF9N50L
TO-220
G
D
Top View
D
G S
TO-220F
G D
S
S
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol AOT9N50 Drain-Source Voltage VDS
500
Gate-Source Voltage
±30
Continuous Drain Current
VGS TC=25°C TC=100°C
AOTF9N50
V
9
ID
Units V
9*
6.0
6*
A
Pulsed Drain Current C
IDM
30
Avalanche Current C
IAR
3.2
A
Repetitive avalanche energy C
EAR
154
mJ
Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D
EAS dv/dt
307 5
mJ V/ns W
PD
38.5 0.3
TJ, TSTG
-55 to 150
W/ oC °C
300
°C
TL Symbol RθJA RθCS
AOT9N50 65
AOTF9N50 65
Units °C/W
0.5 0.65
-3.25
°C/W °C/W
Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature.
Rev3: July 2010
192 1.5
www.aosmd.com
Page 1 of 6
AOT9N50/AOTF9N50
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
500
Typ
Max
Units
STATIC PARAMETERS BVDSS
Drain-Source Breakdown Voltage
BVDSS /∆TJ
Breakdown Voltage Temperature Coefficient
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
Gate Threshold Voltage
VDS=5V ID=250µA
VGS(th)
ID=250µA, VGS=0V, TJ=150°C
600
V
ID=250µA, VGS=0V
0.56
V/ oC
VDS=500V, VGS=0V
1
VDS=400V, TJ=125°C
10 ±100 3.4
µA
4
4.5
nΑ V
0.85
Ω
1
V
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=4.5A
0.66
gFS
Forward Transconductance
VDS=40V, ID=4.5A
10
VSD
Diode Forward Voltage
IS=1A,VGS=0V
S
0.74
IS
Maximum Body-Diode Continuous Current
9
A
ISM
Maximum Body-Diode Pulsed Current
30
A
DYNAMIC PARAMETERS Ciss Input Capacitance Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS Qg Total Gate Charge Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf trr
Turn-Off Fall Time
Qrr
VGS=10V, VDS=400V, ID=9A
694
868
1042
pF
74
93
112
pF
6.2
7.8
9.4
pF
2
4
6
Ω
15
23.6
28
nC
4
5.2
6.2
nC
8.5
10.6
12.7
nC
VGS=10V, VDS=250V, ID=9A, RG=25Ω
19.5
ns
47
ns
51.5
ns
38.5 IF=9A,dI/dt=100A/µs,VDS=100V
Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=9A,dI/dt=100A/µs,VDS=100V
ns
195
248
300
2.5
3.5
4.5
ns µC
A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=3.2A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev3: July 2010
www.aosmd.com
Page 2 of 6
AOT9N50/AOTF9N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 18
100 10V
-55°C
VDS=40V
15 6.5V 10 6V ID(A)
ID (A)
12 9
125°C
6
1
VGS=5.5V
25°C
3 0
0.1 0
5
10
15
20
25
30
2
VDS (Volts) Fig 1: On-Region Characteristics
6
8
10
VGS(Volts) Figure 2: Transfer Characteristics
2.0 Normalized On-Resistance
3
1.5 RDS(ON) (Ω )
4
1.0
VGS=10V
0.5
2.5
VGS=10V ID=4.5A
2 1.5 1 0.5
0.0 0
4
8
12
16
0
20
-100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
-50
0
50
100
150
200
Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02
1.2
1.0E+00 40 IS (A)
BVDSS (Normalized)
1.0E+01 1.1
1
125°C
1.0E-01 25°C
1.0E-02 1.0E-03
0.9 1.0E-04 1.0E-05
0.8 -100
-50
0
50
100
150
200
TJ (°C) Figure 5:Break Down vs. Junction Temperature
Rev3: July 2010
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOT9N50/AOTF9N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15
10000 VDS=400V ID=9A
12
Ciss
Capacitance (pF)
VGS (Volts)
1000 9
6
Coss 100
10 3
Crss
0
1 0
5
10
15 20 25 30 Qg (nC) Figure 7: Gate-Charge Characteristics
35
100
0.1
1
10 VDS (Volts) Figure 8: Capacitance Characteristics
100
100 10µs RDS(ON) limited
RDS(ON) limited
10 100µs 1ms
1
10ms
ID (Amps)
ID (Amps)
10
10µs 100µs 1ms
1
10ms DC
DC
0.1
0.1
TJ(Max)=150°C TC=25°C
TJ(Max)=150°C TC=25°C 0.01
0.1s 1s
0.01 1
10
100
1000
1
10
100
1000
VDS (Volts)
VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOT9N50 (Note F)
Figure 10: Maximum Forward Biased Safe Operating Area for AOTF9N50 (Note F)
10
Current rating ID(A)
8
6
4
2
0 0
25
50
75
100
125
150
TCASE (°C) Figure 11: Current De-rating (Note B)
Rev3: July 2010
www.aosmd.com
Page 4 of 6
AOT9N50/AOTF9N50
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance
10
1
D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.65°C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD Ton
0.01
T Single Pulse
0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT9N50 (Note F)
Zθ JC Normalized Transient Thermal Resistance
10
1
D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3.25°C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD 0.01
Ton T
Single Pulse 0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF9N50 (Note F)
Rev3: July 2010
www.aosmd.com
Page 5 of 6
AOT9N50/AOTF9N50
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+ +
VDC
-
VDC
DUT
Qgs
Vds
Qgd
-
Vgs Ig Charge
Res istive Switching Test Circuit & Waveforms RL Vds Vds
DUT
Vgs
+ VDC
90% Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI
Vds
2 AR
BVDSS
Vds
Id
+
Vgs
Vgs
VDC
-
Rg
Vdd
I AR Id
DUT Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt
Vds + DUT Vgs Vds -
Isd Vgs
Ig
Rev3: July 2010
L
Isd
+ Vdd
trr
dI/dt IRM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6