Transcript
AOTF260L 60V N-Channel MOSFET
General Description
Product Summary
The AOTF260L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.
VDS ID (at VGS=10V) RDS(ON) (at VGS=10V)
60V 92A < 2.6mΩ
RDS(ON) (at VGS=6V)
< 3.0mΩ
100% UIS Tested 100% Rg Tested
TO220F Top View
Bottom View
G
D
D
G
S S
D
G
S
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage
VGS TC=25°C
Continuous Drain Current G Pulsed Drain Current C
Avalanche Current
C
Avalanche energy L=0.1mH C TC=25°C Power Dissipation B
TA=25°C Power Dissipation
A
Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case
Rev 0: Aug. 2012
19 128
A
EAS
819
mJ
46.5
Steady-State Steady-State
W
23.5 1.9
RθJA RθJC
W
1.2
TJ, TSTG
Symbol t ≤ 10s
A
IAS
PDSM
TA=70°C
A
15
PD
TC=100°C
V
368
IDSM
TA=70°C
±20 66.5
IDM TA=25°C
Continuous Drain Current
Units V
92
ID
TC=100°C
Maximum 60
-55 to 175
Typ 12 54 2.6
www.aosmd.com
°C
Max 15 65 3.2
Units °C/W °C/W °C/W
Page 1 of 6
AOTF260L
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
Min
Conditions
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage
ID=250µA, VGS=0V
1
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
2.2
ID(ON)
On state drain current
VGS=10V, VDS=5V
368
TJ=55°C
5
VGS=10V, ID=20A TJ=125°C
nA
2.7
3.2
V
2.1
2.6
A 3.5
4.3
2.3
3.0
Forward Transconductance
VDS=5V, ID=20A
68
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
0.65
DYNAMIC PARAMETERS Ciss Input Capacitance Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=30V, f=1MHz VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS Qg(10V) Total Gate Charge VGS=10V, VDS=30V, ID=20A
0.5
µA
±100
VGS=6V, ID=20A gFS
Units V
VDS=60V, VGS=0V
Zero Gate Voltage Drain Current
Static Drain-Source On-Resistance
Max
60
IDSS
RDS(ON)
Typ
mΩ S
1
V
55
A
11800
pF
1360
pF
40
pF
1
1.5
Ω
150
210
nC
Qgs
Gate Source Charge
40
nC
Qgd
Gate Drain Charge
15
nC
tD(on)
Turn-On DelayTime
30
ns
27
ns
74
ns
12
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
32
ns
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
200
nC
VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: Aug. 2012
www.aosmd.com
Page 2 of 6
AOTF260L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100
100 6V
VDS=5V
10V
80
80
60 ID(A)
ID (A)
60 4V
125°C
40
40
25°C
20
20 VGS=3.5V
0
0 0
1
2
3
4
2
5
VDS (Volts) Fig 1: On-Region Characteristics (Note E)
3
3.5 4 4.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E)
5
2.2 Normalized On-Resistance
RDS(ON) (mΩ Ω)
6
2.5
4 VGS=6V 2 VGS=10V
2 1.8
VGS=10V ID=20A
1.6
17 5 2 10
1.4 1.2 1 0.8
0 0
5
0
10
15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)
25
50
75
100
125
150
175
200
0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E)
5
1.0E+02 ID=20A 1.0E+01
40 125°C
3
125°C
1.0E+00 IS (A)
RDS(ON) (mΩ Ω)
4
1.0E-01
2 1.0E-02
25°C 1
1.0E-03
0
1.0E-04 2
6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)
Rev 0: Aug. 2012
4
www.aosmd.com
25°C
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOTF260L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15000
10 VDS=30V ID=20A
Capacitance (pF)
VGS (Volts)
Ciss
12000
8
6
4
9000
Coss
6000
2
3000
0
0
Crss
0
40
80
120
0
160
10
1000.0 100.0
20
30
40
50
60
VDS (Volts) Figure 8: Capacitance Characteristics
Qg (nC) Figure 7: Gate-Charge Characteristics
1000 10µs 100µs 10µs
RDS(ON) limited
TJ(Max)=175°C TC=25°C
800
10.0
Power (W)
ID (Amps)
1ms 10ms
1.0
DC
TJ(Max)=175°C TC=25°C
0.1
17 5 2 10
600 400 200
0.0
0 0.01
0.1
1 10 VDS (Volts)
100
1000
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
0.001
0.01
0.1
1
10
0100
1000
Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Zθ JC Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC
1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=3.2°C/W
0.1 PD
0.01 Single Pulse
Ton T
0.001 1E-06
Rev 0: Aug. 2012
1E-05
0.0001
0.001
0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
www.aosmd.com
100
1000
Page 4 of 6
AOTF260L
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 50
TA=25°C 100
40
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
TA=100°C
TA=150°C TA=125°C
30
20
10
10
0 1
10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C)
0
25
50
75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F)
175
1000
100
TA=25°C
100 Power (W)
Current rating ID(A)
80
60
40
17 5 2 10
10
20
1
0 0
25
100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F)
Zθ JA Normalized Transient Thermal Resistance
10
50
75
175
1
100
0
10000
Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJA=65°C/W
1
0.01
40
0.1 PD 0.01
Single Pulse Ton T
0.001 0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: Aug. 2012
www.aosmd.com
Page 5 of 6
AOTF260L
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT Vgs Ig
Charge
Resistive Switching Test Circuit & Waveforms RL Vds Vds
Vgs
90%
+ Vdd
DUT
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L
2
E AR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT Vgs
Vgs
Diode Recovery Test Circuit & Waveforms Q rr = - Idt
Vds + DUT Vgs
Vds Isd Vgs Ig
Rev 0: Aug. 2012
L
Isd
+ Vdd
t rr
dI/dt I RM Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6