Transcript
AOTF4T60P 600V,4A N-Channel MOSFET
General Description
Product Summary
• Trench Power AlphaMOS-II technology • Low RDS(ON) • Low Ciss and Crss • High Current Capability • RoHS and Halogen Free Compliant
VDS @ Tj,max
700V
IDM
16A
RDS(ON),max
< 2.1Ω
Qg,typ
8.3nC
Eoss @ 400V
1.6µJ
Applications
100% UIS Tested 100% Rg Tested
• General Lighting for LED and CCFL • AC/DC Power supplies for Industrial, Consumer, and Telecom
TO-220F
D
G
D
S
G S
AOTF4T60P
Orderable Part Number
Package Type
Form
Minimum Order Quantity
AOTF4T60P
TO-220F Pb Free
Tube
1000
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Drain-Source Voltage
Symbol VDS
Gate-Source Voltage
VGS TC=25°C
Continuous Drain Current Pulsed Drain Current
TC=100°C C
ID
Maximum 600
Units V
±30
V
4* 2.5*
A
IDM
16
IAR
4
A
Repetitive avalanche energy C
EAR
8
mJ
Single pulsed avalanche energy G MOSFET dv/dt ruggedness Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25°C Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds
EAS
203 50 5 35 0.3 -55 to 150
mJ
W W/°C °C
300
°C
Maximum
Units
65 3.6
°C/W °C/W
Avalanche Current C
L=1mH
dv/dt PD TJ, TSTG TL
Thermal Characteristics Parameter Symbol RθJA Maximum Junction-to-Ambient A,D Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature.
Rev.1.0: May 2014
www.aosmd.com
V/ns
Page 1 of 6
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS BVDSS
Drain-Source Breakdown Voltage
BVDSS /∆TJ
Breakdown Voltage Temperature Coefficient
IDSS
Zero Gate Voltage Drain Current
ID=250µA, VGS=0V, TJ=150°C
700
ID=250µA, VGS=0V
0.55
VDS=600V, VGS=0V
1 10
Gate-Body leakage current
VDS=0V, VGS=±30V VDS=5V, ID=250µA
RDS(ON)
VGS=10V, ID=2A
gFS
Forward Transconductance
VDS=40V, ID=2A
3.2
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.78
IS ISM
±100
nA
5
V
1.75
2.1
Ω
1
V
Maximum Body-Diode Continuous Current
4
A
Maximum Body-Diode Pulsed Current C
16
A
Coss
Output Capacitance
Co(er)
Effective output capacitance, energy related H
Crss
Effective output capacitance, time related I Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=100V, f=1MHz
Gate Source Charge
Qgd
S
522
pF
22
pF
20
pF
32
pF
2
pF
2.9
Ω
VGS=0V, VDS=0 to 480V, f=1MHz
VGS=0V, VDS=100V, f=1MHz f=1MHz
SWITCHING PARAMETERS Qg Total Gate Charge Qgs
3
µA
4.2
DYNAMIC PARAMETERS Input Capacitance Ciss
Co(tr)
V/ oC
VDS=480V, TJ=125°C
Gate Threshold Voltage Static Drain-Source On-Resistance
IGSS VGS(th)
V
8.3 VGS=10V, VDS=480V, ID=4A
15
nC
3.4
nC
Gate Drain Charge
1.9
nC
tD(on)
Turn-On DelayTime
21
ns
tr
Turn-On Rise Time
19
ns
tD(off)
Turn-Off DelayTime
VGS=10V, VDS=300V, ID=4A, RG=25Ω
25
ns
tf trr
Turn-Off Fall Time
11
ns
IF=4A,dI/dt=100A/µs,VDS=100V
309
Qrr
Body Diode Reverse Recovery Charge IF=4A,dI/dt=100A/µs,VDS=100V
2.7
ns µC
Body Diode Reverse Recovery Time
A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=2.6A, VDD=150V, RG=25Ω, Starting TJ=25°C. H. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS. I. Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.1.0: May 2014
www.aosmd.com
Page 2 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100
9 7.5
VDS=40V
10V
-55°C 10
7V 6.5V
4.5 3
ID(A)
ID (A)
6
125°C 1
6V
25°C 1.5
VGS=5.5V
0
0.1 0
5
10
15
20
25
30
2
4
VDS (Volts) Figure 1: On-Region Characteristics
Normalized On-Resistance
4 RDS(ON) (Ω)
8
10
3
5
3
VGS=10V
2
1
2.5
0
1.5
3
4.5
6
7.5
1.5 1 0.5 0 -100
9
ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
1.2
1E+01
1.1
1E+00 IS (A)
1E+02
0
50
100
150
200
125°C 1E-01
0.9
1E-02
0.8
1E-03
0.7 -100
-50
Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature
1.3
1
VGS=10V ID=2A
2
0
BVDSS (Normalized)
6
VGS(Volts) Figure 2: Transfer Characteristics
25°C
1E-04 -50
0
50
100
150
200
TJ (°C) Figure 5: Break Down vs. Junction Temperature
Rev.1.0: May 2014
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts) Figure 6: Body-Diode Characteristics
Page 3 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15
10000 VDS=480V ID=4A
1000 Capacitance (pF)
VGS (Volts)
12
9
6
Ciss
100 Coss 10
3
Crss 0
1 0
3
6
9
12
15
0.1
10
100
1000
VDS (Volts) Figure 8: Capacitance Characteristics
5
5
4
4 Current rating ID(A)
Eoss(uJ)
Qg (nC) Figure 7: Gate-Charge Characteristics
1
3 Eoss 2
1
3
2
1
0
0 0
100
200
300
400
500
600
VDS (Volts) Figure 9: Coss stored Energy
0
25
50
75
100
125
150
TCASE (°C) Figure 10: Current De-rating (Note F)
100
10µs
ID (Amps)
10
RDS(ON) limited 100µs
1 1ms DC
10ms
0.1
0.1s 1s
TJ(Max)=150°C TC=25°C 0.01 1
10
100
1000
VDS(Volts) Figure 11: Maximum Forward Biased Safe Operating Area for TO-220F Pb Free (Note F)
Rev.1.0: May 2014
www.aosmd.com
Page 4 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient Thermal Resistance
10
1
D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=3.6°C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD 0.01
Single Pulse
Ton T
0.001 1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for TO-220F Pb Free (Note F)
Rev.1.0: May 2014
www.aosmd.com
Page 5 of 6
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT Vgs Ig
Charge
Resistive Switching Test Circuit & Waveforms RL Vds Vds
Vgs
90%
+ Vdd
DUT
VDC
-
Rg
10%
Vgs
Vgs
td(on)
tr
td(off)
ton
tf toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L
2
EAR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT Vgs
Vgs
Diode Recovery Test Circuit & Waveforms Q rr = - Idt
Vds + DUT
Vds -
Isd Vgs
Ig
Rev.1.0: May 2014
Vgs
L
Isd
+ Vdd
t rr
dI/dt I RM Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6