Transcript
APA2059 2.4W Stereo Fully Differential Audio Power Amplifier With Stereo Class AB Cap-free Headphone Driver and LDO
Features
General Description
• •
The APA2059 is a stereo fully differential audio power amplifier with stereo Class-AB cap-free headphone driver
• • • • • • • • • • •
Meeting VISTATM Requirement Fully Differential Power Amplifier with
and LDO available in a TQFN5X5-32 pins package. The built-in gain setting at power amplifier can minimize
Excellent RF Rectification Immunity No Output Capacitor Required for Head
the external component counts. For the flexible application, the gain can be set to 4-steps, 10, 12, 15.6, and 21.6dB by
Phone Driver Integrated LDO (Low Dropout Regulator) for Audio Codec (4.75V)
gain control pins (GAIN0 and GAIN1). The power amplifier’s fully differential architecture provides high PSRR, in-
Adjustable Gain Setting for Power Amplifier
creased immunity to noise and RF rectification.
AV=-1.5V/V Fixed Gain Setting for Headphone
The APA2059 power amplifiers are capable of driving
Driver
2.4W at VDD=5V into 4Ω speaker, the cap-free headphone drivers can provide 180mW at HV DD =3.3V into16Ω
Fast Start-up Time
headphones, and the LDO has a maximum 120mA (4.75V) driver current for audio codec. The APA2059 pro-
Integrated De-Pop Circuitry High PSRR (Power Supply Rejection Ratio)
vides thermal and over-current protections. The cap-free headphone driver eliminates the DC block-
Thermal and Over-Current Protections Less External Components Required
ing capacitors at outputs and saves the PCB space. The integration of fully differential power amplifier, cap-free
Space Saving Package – TQFN5x5-32
headphone driver, and LDO is a best solution for VISTATM requirement and it can lower the total BOM costs.
Lead Free and Green Devices Available (RoHS Compliant)
Applications
Common Mode Rejection Ratio (dB)
• • •
+0
LCD Monitor Notebook Portable DVD
Simplified Application Circuit
Audio Codec
Stereo Speakers
-10 -20 -30 -40
VDD=5.0V RL=4Ω AV=10dB Vin=0.2VPP Ci=0.47µF Input Short AMP Mode
-50 -60 -70 -80 -90 -100 20
100
1k
10k 20k
Frequency (Hz)
Stereo Headphone LDO (Low Drop -Out Regulator)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
1
www.anpec.com.tw
APA2059 Ordering and Marking Information Package Code QB : TQFN5x5-32 Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device
APA2059 Assembly Material Handling Code Temperature Range Package Code APA2059
QB :
APA2059 XXXXX
XXXXX - Date Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).
17 HVDD
18 PVDD
20 ROUTP
19 ROUTN
22 HP_EN
21 PGND
24 BIAS
23 AMP_EN
Pin Configuration
LDO_EN 25
16 HP_LO
RIN_H 26
15 HP_RO 14 HVSS
LIN_H 27 GND 28
13 CVSS
TQFN5x5-32 (Top View)
LDOUT 29
12 CPN 11 CGND
VDD 30
PVDD 8
LOUTN 7
PGND 5
RINP_A 2
LOUTP 6
9 NC
LINP_A 3
GAIN1 32
LINN_A 4
10 CPP
RINN_A 1
GAIN0 31
=Thermal-Pad (connected the Thermal-Pad to GND plane for better heat dissipation)
Absolute Maximum Ratings Symbol VDD HVDD VSS
(Note 1)
Parameter
Rating
Supply Voltage (VDD to GND, PVDD to PGND)
-0.3 to 6
Supply Voltage (HVDD to GND)
-0.3 to 6
Supply Voltage (HVSS, CVSS to GND)
-6 to +0.3
Input Voltage (RINN_A, RINP_A, LINN_A, LINP_A to GND) Input Voltage (RIN_H, LIN_H to GND)
-0.3 to VDD+0.3
V
VSS-0.3 to HVDD+0.3
Input Voltage (GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN to GND) Input Voltage (PGND, CGND to GND)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
Unit
-0.3 to VDD+0.3 -0.3 to +0.3
2
www.anpec.com.tw
APA2059 Absolute Maximum Ratings (Cont.) Symbol TJ
Parameter
Rating
Maximum Junction Temperature
Unit
150
TSTG
Storage Temperature Range
TSDR
Maximum Lead Soldering Temperature, 10 Seconds
PD
(Note 1)
ο
-65 to +150
C
260
Power Dissipation
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Thermal Characteristics Symbol θJA θJC
Parameter Thermal Resistance -Junction to Ambient
Typical Value
(Note 2)
TQFN5X5-32 Thermal Resistance -Junction to Case (Note 3) TQFN5X5-32
40 8
Unit ο
C/W
ο
C/W
Note 2: Please refer to “ Layout Recommendation”, the Thermal-Pad on the bottom of the IC should soldered directly to the PCB’s Thermal-Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 3: The case temperature is measured at the center of the Thermal-Pad on the underside of the TQFN5X5-32 package.
Recommended Operating Conditions Symbol
Parameter
Range
VDD
Supply Voltage
4.5 ~ 5.5
HVDD
Supply Voltage
3.0 ~ 5.5
VIH
High Level Input Voltage
GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN
2 ~ VDD
VIL
Low Level Input Voltage
GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN
0 ~ 0.5
VIC
Common Mode Input Voltage
ILDOUT
For Power Amplifier
0.5 ~ VDD-0.5
For Headphone Amplifier
HVSS ~ HVDD
Output Current (LDOUT)
0 ~ 200
TA
Ambient Temperature Range
-40 ~ 85
TJ
Junction Temperature Range
-40 ~ 125
COUT
LDO Output Capacitor (MLCC type)
1 ~ 100
RL
Speaker Resistance
4~
RL
Headphone Resistance
16 ~
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
3
Unit
V
mA ο
C
µF Ω
www.anpec.com.tw
APA2059 Electrical Characteristics o
Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted)
Symbol IDD(HVDD)
Parameter
Supply Current
IDD(VDD) IAMP(HVDD)
Power Amplifier Supply Current
IAMP(VDD) IHP(HVDD)
Headphone Driver Supply Current
IHP(VDD) ILDO(HVDD)
LDO Supply Current
ILDO(VDD) ISD(HVDD)
Shutdown Current
ISD(VDD) II
Input Current
APA2059
Test Conditions
VAMP_EN =VHP_EN=VLDO_EN=5V
Min.
Typ.
Max.
HVDD
-
2.5
5
VDD
-
9
18
VAMP_EN=5V, VHP_EN=VLDO_EN=0V
HVDD
-
0.1
0.2
VDD
-
4.5
11
VHP_EN=5, VAMP_EN=VLDO_EN=0V
HVDD
-
2.5
5
VDD
-
6
12
VLDO_EN=5V, VAMP_EN =VHP_EN=0V
HVDD
-
0.1
0.2
VDD
-
0.4
0.65
HVDD
-
-
2
VDD
-
-
5
GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN
-
-
1
CB=0.47µF
-
25
-
AV=10dB
-
76
-
AV=12dB
-
60
-
AV=15.6dB
-
40
-
AV=21.6dB
17
20
-
VGAIN0=VGAIN1=0V.
9.5
10
10.5
VGAIN0=0V, VGAIN1=VDD.
11.5
12
12.5
VGAIN0=VDD, VGAIN1=0V.
15.1
15.6
16.1
VGAIN0=VGAIN1=VDD.
21.1
21.6
22.1
-
5
20
1.9 1.3
-
1 -
2.4 1.5
-
-
0.07 0.05
-
-
-110 -110
-
VAMP_EN =VHP_EN=VLDO_EN=0V
Unit
mA
µA
SPEAKER MODE, AV =10dB TSTART-UP
Ri
Start-Up Time from Shutdown
Input Resistor
AV
Closed-Loop Gain
VOS
Output Offset Voltage
PO
Output Power
THD+N
Crosstalk
Total Harmonic Distortion Plus Noise Channel Separation
RL = 8Ω THD+N=1%, fin=1kHz RL=4Ω RL=8Ω THD+N=10%, fin=1 kHz RL=4Ω RL=8Ω fin=1kHz RL=4Ω, PO=1.4W RL=8Ω, PO=0.9W fin=1kHz RL=4Ω, Po=200mW RL=8Ω, Po=130mW
Power Supply Rejection Ratio
fin=217Hz, Vrr=0.2Vrms,RL=8Ω
-
-75
-
CMRR
Common Mode Rejection Ratio
fin=1kHz, Vin=0.2Vrms.,RL=8Ω fin=20~20kHz With A-weighting Filter RL=4Ω, PO=1.4W, RL=8Ω, PO=0.9W, fin=20~20kHz,With A-weighting Filter RL=8Ω
-
-65
-
-
100 100
-
-
22
-
Signal-to-Noise Ratio
Vn
Noise Output Voltage
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
4
kΩ
dB
mV
W
PSRR
S/N
ms
%
dB
µVrms
www.anpec.com.tw
APA2059 Electrical Characteristics (Cont.) o
Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted)
Symbol
Parameter
APA2059
Test Conditions Min.
Typ.
Unit Max.
HEADPHONE MODE, AV = -1.5V/V, CPF=CPO=1µF(X5R TYPE) TSTART-UP
Start-Up Time from Shutdown
Ri
Input Resistor
AV
Closed-Loop Gain
VOS
Output Offset Voltage
PO
VO
THD+N
Crosstalk
PSRR
Output Power
Output Swing Voltage
Total Harmonic Distortion Plus Noise
Channel Separation
Power Supply Rejection Ratio
S/N
Signal-to-Noise Ratio
Vn
Noise Output Voltage
CB=0.47µF
RL = 32Ω THD+N=1%, fin=1kHz RL=16Ω RL=32Ω THD+N=10%, fin=1kHz RL=16Ω RL=32Ω THD+N=1%, fin=1kHz RL=320Ω RL=10kΩ THD+N=10%, fin=1kHz RL=320Ω RL=10kΩ fin=1kHz RL=16Ω, PO=125mW RL=32Ω, PO=88mW RL=320Ω, VO=1.5V RL=10kΩ, VO=1.6V fin=1kHz RL=16Ω, PO=16mW RL=32Ω, PO=12mW RL=320Ω, VO=0.22V RL=10kΩ, VO=0.22V fin=217Hz,Vrr=0.2Vrms RL=32Ω fin=20~20kHz, With A-weighting Filter RL=16Ω, PO=125mW RL=32Ω, PO=88mW RL=320Ω, VO=1.5V RL= 10kΩ, VO=1.6V fin=20~20kHz, With A-weighting Filter RL=32Ω
-
10
-
17
20
-
kΩ
-1.45
-1.5
-1.55
V/V
-
1
5
mV
140 120
-
100
-
150
180 160
1.8
2.0 2.1
-
-
2.45 2.6
-
-
-
-
-
mW
V
0. 03 0. 02 0. 005 0. 004 -82 -82 -77 -77 -80 99 100 100 100
-
15
ms
-
%
-
-
dB
-
-
µVrms
LDO (LOW DROP-OUT REGULATOR) VDD
Supply Voltage
4.9
5.0
5.5
V
IO
Output Current
-
-
120
mA
VO
Output Voltage
IO=1mA
4.65
4.75
4.85
V
Line Regulation
IO=1mA, VDD=5.0V to 5.5V
-
3
10
mV
Load Regulation
IO=1mA to 120mA
-
0.06
0.2
mV/mA
VDROP
Dropout Voltage
IO=120mA
80
100
mV
PSRR
Power Supply Rejection Ratio
IO=1mA,fin=120Hz,Vrr=0.2Vrms
-
-50
-
dB
-
50
-
kΩ
RDIS
Discharge Resistor
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
5
www.anpec.com.tw
APA2059 Electrical Characteristics (Cont.) o
Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted)
Symbol
Parameter
APA2059
Test Conditions Min.
Typ.
Unit Max.
CHARGE PUMP, CPF=CPO=1µF(X5R type) FOSC
Oscillator Frequency
-
450
-
kHz
REQ
Equivalent Resistance
-
10
-
Ω
CVss
Negative Output Voltage
-5.1
-5
-4.9
V
RDIS
Discharge Resistor
-
5
-
kΩ
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
No load
6
www.anpec.com.tw
APA2059 Typical Operating Characteristics (TA = +25°C, unless otherwise noted.)
THD+N vs. Frequency
THD+N vs. Output Power 1
PO=0.14W PO=0.7W
0.1
THD+N (%)
THD+N (%)
10 R =4Ω L fin=1kHz Ci=0.47µF AV=10dB BW<22kHz 1 AMP Mode
VDD=4.5V 0.1
0.01 VDD=5.0V RL=4Ω Ci=0.47µF AV=10dB BW<22kHz AMP Mode 0.001 20 100
VDD=5.0V VDD=5.5V
0.01 10m
100m
1
PO=1.4W
5
Output Power (W)
Common Mode Rejection Ratio (dB)
Crosstalk (dB)
+0
-60 -80 Right to Left
-100 Left to Right -120
20
100
1k
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100
10k 20k
VDD=5.0V RL=4Ω AV=10dB Vin=0.2VPP Ci=0.47µF Input Short AMP Mode
20
100
Frequency (Hz)
THD+N vs. Frequency
0.1
VDD=4.5V
0.1
100m
1
5
Output Power (W)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
PO=0.09W PO=0.45W
0.01 VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF BW<22kHz AMP Mode 0.001 20 100
VDD=5.0V
VDD=5.5V
0.01 10m
10k 20k
1
RL=8Ω fin=1kHz Ci=0.1µF AV=10dB BW<22kHz AMP Mode
THD+N (%)
THD+N (%)
1
1k
Frequency (Hz)
THD+N vs. Output Power 10
10k 20k
CMRR vs. Frequency
Crosstalk vs. Frequency +0 TT TTTTT VDD=5.0V RL=4Ω -20 A =10dB V Ci=0.47µF -40 PO=200mW AMP Mode
-140
1k
Frequency (Hz)
PO=0.9W
1k
10k 20k
Frequency (Hz)
7
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
CMRR vs. Frequency +0
Common Mode Rejection Ratio (dB)
-60 -80 Right to Left
-100 Left to Right
-120 -140
VDD=5.0V RL=8Ω AV=10dB -20 Vin=0.2VPP -30 Ci=0.47µF Input Short -40 AMP Mode -10
-50 -60 -70 -80 -90
-100
20
100
1k
10k 20k
20
100
+22
+200
+21
+180 Phase VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF AMP Mode
+7
10
100
1k
10k
200k
Gain (dB)
Gain (dB)
+9
+220
Phase (deg)
Gain
+8
+220
+20
+180 Phase
+160
+19
+140
+18
VDD=5.0V RL=8Ω AV=21.6dB Ci=0.47µF AMP Mode 10
100
Output Noise Voltage vs. Frequency
Output Noise Voltage (Vrms)
10k
200k
+140
Crosstalk vs. Frequency
Crosstalk (dB)
10µ
VDD=5.0V RL=8Ω AV=10dB Cin=0.47µF A-Wighting AMP Mode 100
1k
+0
Left channel
20
+160
Frequency (Hz)
Right channel
1µ
+200
Gain
Frequency (Hz)
50µ
10k 20k
Frequency Response
Frequency Response +11
+10
1k
Frequency (Hz)
Frequency (Hz)
Phase (deg)
Crosstalk (dB)
Crosstalk vs. Frequency +0 TTTTTTT VDD=5.0V R =8Ω -20 A L=10dB V Ci=0.47µF -40 PO=130mW AMP Mode
VDD=5.0V HVDD=3.3V -20 R =4Ω(AMP) L RL=10kΩ(HP) -40 PO=200mW(AMP) AMP(active) mode -60 HP mode -80
Left(AMP) to Right(HP)
-100 Right(AMP) to Right(HP)
-120 -140 1k
10k 20k
20
100
Right(AMP) to Left(HP)
1k
10k 20k
Frequency (Hz)
Frequency (Hz)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
Left(AMP) to Left(HP)
8
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
THD+N vs. Output Voltage 10
10
0.1
THD+N (%)
VDD=5.0V HVDD=3.3V fin=1kHz Ci=1µF BW<22kHz In Phase HP Mode
1
THD+N (%)
THD+N vs. Output Power
RL=16Ω RL=32Ω
0.01
VDD=5.0V HVDD=3.3V RL=16Ω fin=1kHz Ci=1µF 1 BW<22kHz HP Mode
In Phase
0.1
Mono
RL=320Ω RL=10kΩ
0.001
0
500m
1
1.5
2
2.5
0.01
3
10m
100m
THD+N vs. Frequency
Crosstalk vs. Frequency
1
-20
PO=13mW
-40
Crosstalk (dB)
THD+N (%)
0.1
+0
VDD=5.0V HVDD=3.3V RL=16Ω Ci=1µF BW<22kHz HP Mode
PO=63mW PO=125mW
0.01
500m
Output Power (W)
Output Voltage (Vrms)
VDD=5.0V HVDD=3.3V RL=16Ω PO=16mW Ci=1µF HP Mode
-60 Right to Left -80 Left to Right
-100 -120
0.001
-140
20
100
1k
20
10k 20k
100
1
VDD=5.0V HVDD=3.3V RL=32Ω fin=1kHz Ci=1µF 1 BW<22kHz HP Mode
In Phase
THD+N (%)
THD+N (%)
10k 20k
THD+N vs. Frequency
THD+N vs. Output Power 10
0.1
1k
Frequency (Hz)
Frequency (Hz)
Mono
0.1
VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF BW<22kHz HP Mode
PO=9mW
PO=88mW
0.01
PO=44mW
0.01 10m
100m
0.001
300m
Output Power (mW)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
20
100
1k
10k 20k
Frequency (Hz)
9
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
Output Noise Voltage vs. Frequency
Crosstalk vs. Frequency 50µ
VDD=5.0V HVDD=3.3V -20 R =32Ω L PO=12mW -40 Ci=1µF HP Mode
Output Noise Voltage (Vrms)
Crosstalk (dB)
+0
Right channel
10µ
-60 Right to Left -80 Left to Right
-100 -120 -140
Left channel
20
100
1k
VDD=5.0V HDD=3.3V RL=32Ω Ci=1µF A-Weighting HP Mode 1µ
10k 20k
20
100
Frequency (Hz)
+220
Gain
+0 T
+200
+2
+180 Phase VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF HP Mode
+0
10
100
-40
Crosstalk (dB)
+3
Phase (deg)
Gain (dB)
-20
+1
-60
Left(HP) to Right(AMP)
-80
Right(HP) to Left(AMP) Right(HP) to Right(AMP) Left(HP) to Left(AMP)
-120
10k
200k
T =5.0V VDD HVDD=3.3V RL=8Ω(AMP) RL=16Ω(HP) PO=16mW(HP) AMP Mode HP(active) Mode
-100
+160
1k
-140
+140
20
100
Frequency (Hz)
THD+N vs. Frequency
10k 20k
Crosstalk vs. Frequency +0
VDD=5.0V HVDD=3.3V RL=320Ω Ci=1µF BW<22kHz HP Mode
Crosstalk (dB)
THD+N (%)
1k
Frequency (Hz)
1
0.1
10k 20k
Crosstalk vs. Frequency
Frequency Response +4
1k
Frequency (Hz)
VO=0.15V
0.01
VDD=5.0V HVDD=3.3V -20 R =320Ω L VO=0.22Vrms -40 Ci=1µF HP Mode -60 Right to Left
-80 Left to Right
-100
VO=0.75V
-120 VO=1.5V
0.001
20
100
1k
-140
10k 20k
Frequency (Hz)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
20
100
1k
10k 20k
Frequency (Hz)
10
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
THD+N vs. Frequency 1
Crosstalk vs. Frequency +0
VDD=5.0V HVDD=3.3V RL=10kΩ Ci=1µF BW<22kHz HP Mode
-20 -40
Crosstalk (dB)
THD+N (%)
0.1
VO=0.16V
0.01
VDD=5.0V HVDD=3.3V RL=10kΩ VO=0.22Vrms Ci=1µF HP Mode
-60 Right to Left -80 Left to Right
-100
VO=1.6V
-120
VO=0.8V
0.001
20
100
1k
-140 10k 20k
20
100
1k
10k 20k
Frequency (Hz)
Frequency (Hz)
Output Noise Voltage vs. Frequency
Frequency Response
50µ
+4
+220
Left channel
1µ
Gain (dB)
Right channel
10µ
VDD=5.0V HDD=3.3V RL=10kΩ Ci=1µF A-Weighting HP Mode 20
+200
+2
+180 Phase
VDD=5.0V HVDD=3.3V RL=10kΩ Ci=0.47µF HP Mode
+1
100
1k
+0
10k 20k
10
100
Phase (deg)
Output Noise Voltage (Vrms)
Gain +3
+160
1k
10k
200k
+140
Frequency (Hz)
Frequency (Hz)
AMP Attenuation vs. Frequency
HP Attenuation vs. Frequency +0
-20
AMP Attenuation (dB)
-30 -40 -50
VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF VO=2Vrms (AMP enable) AMP Mode (disable)
-10 -20
HP Attenuation (dB)
-10
-60 -70 -80
Left channel
-90 Right channel
-30 -40 -50
VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF VO=1Vrms (HP enable) HP Mode (disable)
-60 -70 -80 -90
-100
Right channel
-110
-110
Left channel
-120
-120
-100
20
100
1k
10k 20k
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
20
100
1k
10k 20k
Frequency (Hz)
Frequency (Hz)
11
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
HP Attenuation vs. Frequency
PSRR vs. Frequency -20 TT
+0 -10
AMP Attenuation (dB)
-20 -30 -40 -50
Power Supply Rejection Ratio (dB)
VDD=5.0V HVDD=3.3V RL=10kΩ Ci=1µF VO=1Vrms (HP enable) HP Mode (disable)
-60 Right channel
-70 -80
Left channel
-90
-100 -110 -120
20
100
1k
-30 -40 -50
VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF Vrr=0.2Vrms AMP Mode
-60 -70 -80 -90 -100 -110
-120
10k 20k
T
Vrr:Ripple Voltage on VDD 20
100
PSRR vs. Frequency
PSRR vs. Frequency
VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF Vrr=0.2Vrms HP Mode
-30 -40 -50 -60 -70 -80 -90 -100 -110
Vrr:Ripple Voltage on HVDD -120
20
100
1k
-40 -50 -60 -70 -80 -90 -100 -110 -120
10k 20k
VDD=5.0V HVDD=3.3V RL=10kΩ Ci=1µF Vrr=0.2Vrms HP Mode
-30
Vrr:Ripple Voltage on HVDD 20
100
PSRR vs. Frequency VDD=5.0V IO=10mA Vrr=0.2Vrms LDO Mode
LDO Mode 4.79
Output Voltage (Volt)
Power Supply Rejection Ratio (dB)
4.80
-30 -40 -50 -60 -70 -80
10k 20k
LDO Output Voltage vs. Supply Voltage
+0
-20
1k
Frequency (Hz)
Frequency (Hz)
-10
10k 20k
-20
Power Supply Rejection Ratio (dB)
Power Supply Rejection Ratio (dB)
-20
1k
Frequency (Hz)
Frequency (Hz)
4.78 4.76 IO=10mA
4.75 4.74
IO=60mA
IO=120mA
4.73 4.71
Vrr:Ripple Voltage on VDD 20
100
1k
4.70 5
10k 20k
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
5.1
5.2
5.3
5.4
5.5
Supply Voltage (Volt)
Frequency (Hz)
12
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
Power Dissipation vs. Output Power 1.0
1.8
0.9
1.6
0.8
1.4
Power Dissipation (W)
Power Dissipation (W)
Power Dissipation vs. Output Power 2.0
VDD=5.5V
1.2 VDD=5.0V
1.0 VDD=4.5V
0.8 0.6
RL=4Ω fin=1kHz Mono AMP Mode
0.4 0.2 0.0 0.0
0.5
1.0
1.5
2.0
2.5
0.7 0.6
VDD=5.5V
0.5
VDD=5.0V
0.4
VDD=4.5V
0.3
0.1 0.0 0.0
3.0
0.5
Output Power vs. Supply Voltage
Power Dissipation vs. Output Power 3.0
300
RL=4Ω AV=10dB fin=1kHz Mono AMP Mode
2.8 2.6
RL=16Ω
Output Power (W)
Power Dissipation (mW)
250 200 150 RL=32Ω 100
0
0
VDD=5.0V HVDD=3.3V fin=1kHz Mono HP Mode 25
50
75
100 125
150
175
2.4 THD+N=10%
2.2 2.0 1.8
THD+N=1%
1.6
1.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
200
Output Power (mW)
Supply Voltage (V)
Output Power vs. Supply Voltage
Output Power (W)
1.8
Supply Current vs. Output Power 0.8
RL=8Ω AV=10dB fin=1kHz Mono AMP Mode
VDD=5.5V
0.7
Supply Current (A)
2.0
1.0
Output Power (W)
Output Power (W)
50
RL=8Ω fin=1kHz Mono AMP Mode 1.5 2.0
0.2
1.6 THD+N=10% 1.4 1.2 THD+N=1%
VDD=5.0V VDD=4.5V
0.6 0.5 0.4 0.3
RL=4Ω AV=10dB fin=1kHz Mono AMP Mode
0.2
1.0
0.1 0.8 4.5 4.6 4.7
4.8 4.9 5.0 5.1 5.2
0.0 0.0
5.3 5.4 5.5
Supply Voltage (V)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
0.5
1.0
1.5
2.0
2.5
3.0
Output Power (W)
13
www.anpec.com.tw
APA2059 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.)
Output Power vs. Load Resistance
Supply Current vs. Output Power 2.6
0.50 VDD=5.5V
2.2
VDD=5.0V
0.35
Output Power (W)
Supply Current (A)
0.40
VDD=4.5V
0.30 0.25 0.20 0.15
RL=8Ω AV=10dB fin=1kHz Mono AMP Mode
0.10 0.05 0.00 0.0
0.5
1.0
Output Power (W)
1.5
2.0 1.8 1.6
250
1.2 1.0 0.8
THD+N=1%
0.6 0.4 2.0
4
8
12
16
20
24
28
32
Load Resistance (Ω)
11
VDD=5.0V HVDD=3.3V fin=1kHz Mono HP Mode
10
Supply Current (mA)
200
THD+N=10%
1.4
Output Power vs. Load Resistance
Output Power (W)
VDD=5.0V AV=10dB fin=1kHz Mono AMP Mode
2.4
0.45
150 THD+N=10% 100 THD+N=1% 50
Supply Current (IVDD) vs. Supply Voltage (VDD) HVDD=3.3V No Load
9 8
AMP,HP enable (IHVDD=2.2mA)
7 6
AMP enable (IHVDD=0.1mA)
HP enable (IHVDD=2.2mA)
5
0 10
100
4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
1000
Load Resistance (Ω)
3.0
Supply Current (mA)
2.5
Supply Voltage(V)
Supply Current (IHVDD) vs. Supply Voltage (HVDD) VDD=5.0V No Load
2.0 1.5
AMP,HP enable (IVDD=9.3mA)
HP enable (IVDD=5.0mA)
1.0
0.5 0.0 3.3
AMP enable (IVDD=4.9mA) 3.4
3.5
3.6
Supply Voltage(V)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
14
www.anpec.com.tw
APA2059 Operating Waveforms
Power On
Power Off VDD
VDD
1
1
2
2 VROUT VROUT
3
3 VHP_RO VHP_RO
CH1: VDD, 2V/Div, DC CH2: VROUT, 20mV/Div, DC CH3: VHP_RO, 20mV/Div, DC
CH1: VDD, 2V/Div, DC
TIME: 5ms/Div
TIME: 20ms/Div
CH2: VROUT, 20mV/Div, DC CH3: VHP_RO, 20mV/Div, DC
Speaker Disable
Speaker Enable
VAMP_EN
VAMP_EN
1
1
VOUTP VOUTP
2
2
CH1: VAMP_EN, 2V/Div, DC
CH1: VAMP_EN, 2V/Div, DC
CH2: VOUTP, 1V/Div, AC
CH2: VOUTP, 1V/Div, AC
TIME: 1ms/Div
TIME: 5ms/Div
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
15
www.anpec.com.tw
APA2059 Operating Waveforms (Cont.)
Headphone Disable
Headphone Enable
VHP_EN
VHP_EN 1
1
VHP_RO
VHP_RO 2
2
CH1: VHP_EN, 2V/Div, DC
CH1: VHP_EN, 2V/Div, DC
CH2: VHP_LO, 1V/Div, AC
CH2: VHP_LO, 1V/Div, AC
TIME: 5ms/Div
TIME: 1ms/Div
LDO Power On
LDO Power Off
VDD V DD
1
1
VLDOUT
VLDOUT
2
2
IO=120mA
IO=120mA
CH1: VDD, 2V/Div, DC
CH1: VDD, 2V/Div, DC
CH2: VLDOUT, 2V/Div, DC
CH2: VLDOUT, 2V/Div, DC
TIME: 10ms/Div
TIME: 20ms/Div
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
16
www.anpec.com.tw
APA2059 Operating Waveforms (Cont.)
LDO Enable
LDO Disable
VLDO_EN VLDO_EN
1
1
VLDOUT
VLDOUT
2
2
IO=120mA CH1: VLDO_EN, 2V/Div, DC
CH1: VLDO_EN, 2V/Div, DC
CH2: VLDOUT, 2V/Div, DC
CH2: VLDOUT, 2V/Div, DC
TIME: 200µs/Div
TIME: 1ms/Div
IO=120mA
LDO Line Transient
LDO Load Transient
ILDOUT
V DD 1
1 2
2
V LDOUT
VLDOUT
CH1: ILDOUT, 50mA/Div, DC CH2: VLDOUT, 5mV/Div, DC VLDOUT Offset = 4.75V TIME: 200µs/Div
CH1: VDD, 200mV/Div, DC VDD Offset = 5.0V CH2: VLDOUT, 5mV/Div, DC VLDOUT Offset = 4.75V TIME: 200µs/Div
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
17
www.anpec.com.tw
APA2059 Operating Waveforms (Cont.)
GSM Power Supply Rejection vs. Frequency
GSM Power Supply Rejection vs. Time
1
AMP Output Voltage (dBV)
-50
V ROUT 2
V HP_RO
3
CH1: VDD, 500mV/Div, DC VDD Offset = 5.0V CH2: VROUT , 20mV / Div, DC
-100
-150
+0
Supply Voltage (dBV)
+0
VDD
-50 -100 -150
0
400
800
1.2k
1.6k
2k
Frequency (Hz)
CH3: VHP_RO , 20mV / Div, DC TIME: 2ms/Div
+0
-50
HP Output Voltage (dBV)
-100 -150
+0
Supply Voltage (dBV)
GSM Power Supply Rejection vs. Frequency
-50 -100 -150
0
400
800
1.2k
1.6k
2k
Frequency (Hz)
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
18
www.anpec.com.tw
APA2059 Pin Description PIN I/O/P
FUNCTION
NO.
NAME
1
RINN_A
I
The inverting input pin of right channel power amplifier.
2
RINP_A
I
The non-inverting input pin of right channel power amplifier.
3
LINP_A
I
The non-inverting input pin of left channel power amplifier.
4
LINN_A
I
The inverting input pin of left channel power amplifier.
5,21
PGND
P
Power amplifier’s ground.
6
LOUTP
O
The positive output pin of left channel power amplifier.
7
LOUTN
O
The negative output pin of left channel power amplifier.
8,18
PVDD
P
Power amplifier’s supply voltage pin, connect this pin to VDD.
9
NC
-
No Connection.
10
CPP
I/O
11
CGND
P
12
CPN
I/O
Charge pump flying capacitor negative connection.
13
CVSS
O
Charge pump output pin, connect this pin to the HVSS.
14
HVSS
P
Headphone driver’s negative supply voltage pin, connect this pin to CVSS.
15
HP_RO
O
The output pin of right channel headphone driver.
16
HP_LO
O
The output pin of left channel headphone driver.
17
HVDD
P
Headphone driver’s positive supply voltage pin.
19
ROUTN
O
The negative output pin of right channel power amplifier.
20
ROUTP
O
The positive output pin of right channel power amplifier.
22
HP_EN
I
Headphone drivers enable input pin; High=Enable.
23
AMP_EN
I
Power amplifiers enable input pin; High=Enable.
24
BIAS
P
Bias voltage for power amplifiers.
25
LDO_EN
I
LDO (Low Drop-Out Regulator) enables input pin; High=Enable.
26
RIN_H
I
The input pin of right channel headphone driver.
27
LIN_H
I
The input pin of left channel headphone driver.
28
GND
P
Control block’s ground, connect this pin to CGND and PGND.
29
LDOUT
O
LDO (Low Drop-Out Regulator)’s output pin.
30
VDD
P
Control block and LDO supply voltage pin, connect this pin to PVDD.
31
GAIN0
I
Control pin for internal gain setting, MSB, Bit 1.
32
GAIN1
I
Control pin for internal gain setting, LSB, Bit 0.
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
Charge pump flying capacitor positive connection. Charge pump’s ground.
19
www.anpec.com.tw
APA2059 Block Diagram
240kΩ LOUTP LINN_A
LINP_A LOUTN GAIN1
PVDD
Gain Control
GAIN0
PGND ROUTN
RINP_A
RINN_A ROUTP 30kΩ 20kΩ -
LIN_H
HP_LO +
HVDD
GND HVSS + HP_RO
20kΩ RIN_H
VDD
PVDD
LDO
Charge Pump
30kΩ AMP_EN
CPP
HP_EN
Control
LDO_EN
CPN
BIAS
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
VDD
LDOUT
20
CVSS
CGND
www.anpec.com.tw
APA2059 Typical Application Circuit Differential input mode VDD Regulator Output
CO2 CO1
CS3
Ci5* 1µF
Gnd
1µF
Gain Control (Amplifier)
Ci1 RINN_A 0.47µF Ci2 RINP_A 0.47µF Ci3 LINP_A 0.47µF Ci4 LINN_A 0.47µF
Right Channel Input Signal (Amplifier) Left Channel Input Signal (Amplifier)
25 LDO_EN
26 RIN_H
27 LIN_H
28 GND
29 LDOUT
1
CB
24 BIAS
2
23 AMP_EN
3
22 HP_EN
4
21 PGND
APA2059
Gnd
20 ROUTP
LOUTP 6
19 ROUTN
LOUTN 7
18 PVDD
PVDD 8
17 HVDD
VDD
Gnd Power Amplifier Enable Headphone Driver Enable
0.47µF
PGND 5
Gnd
30 VDD
31 GAIN0
32 GAIN1
0.1µF 2.2µF
Headphone Driver Input Signals Regulator Enable
Ci6* 1µF
VDD HVDD
CPO 1µF
HP_LO 16
HP_RO 15
CS5 0.1µF Gnd
Headphone Jack
1µF
HVSS 14
0.1µF 10µF
CVSS 13
CPF
CPN 12
CPP 10
CS1
CS2
CGND 11
NC 9
CS4 2.2µF
VSS
Gnd Tip Sleeve
Ring
Single-ended input mode VDD Regulator Output
CO2 CO1
Ci5* 1µF
Gnd
1µF
Gain Control (Amplifier)
Ci1 Right Channel GndC Input Signal i2 (Amplifier) C Left i3 Channel Ci4 Input Signal (Amplifier) Gnd Gnd
26 RIN_H
27 LIN_H
28 GND
29 LDOUT
30 VDD
31 GAIN0
32 GAIN1
0.1µF 2.2µF
25 LDO_EN
CS3
RINN_A 1
Headphone Driver Input Signals Regulator Enable
Ci6* 1µF
24 BIAS
0.47µF
CB Gnd Power Amplifier Enable Headphone Driver Enable
0.47µF 23 AMP_EN
RINP_A 2
0.47µF LINP_A 3
22 HP_EN
0.47µF LINN_A 4
21 PGND
APA2059
0.47µF PGND 5 LOUTP 6
19 ROUTN
LOUTN 7
18 PVDD
PVDD 8
17 HVDD
VDD
Gnd
20 ROUTP
VDD HVDD
CPO 1µF
HP_LO 16
HP_RO 15
HVSS 14
VSS
Gnd
Note *:If using MLCC type capacitor for low frequency performance, 3.3µF is recommended. Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
Tip Sleeve
21
CS5 0.1µF Gnd
Headphone Jack
1µF
CPN 12
CPF
CVSS 13
0.1µF 10µF
CGND 11
CS1
CPP 10
CS2
NC 9
CS4 2.2µF
Ring
www.anpec.com.tw
APA2059 Function Description Fully Differential Amplifier
The Cap-free headphone drivers use a charge pump to
The APA2059’s power amplifier is a fully differential amplifier with differential inputs and outputs. The fully
invert the positive power supply (VDD) to the negative power supply (VSS) (see Figure 1). The headphone amplifiers
differential amplifier has some advantages versus traditional amplifier. Firstly, don’t need the input coupling ca-
operate at this bipolar power supply, and the outputs reference refers to the ground. This feature eliminates the
pacitors because the common-mode feedback will compensate the input bias. The inputs can be biased from
output capacitor that using in conventional single-ended headphone amplifiers. In addition, the power supply rail
0.5V to VDD-0.5V, and the outputs are still biased at midsupply voltage of the power amplifier. If the inputs are
for Cap-free headphone drivers has almost 1.5X compare to the single power supply rail headphone drivers.
biased out of the input range, the coupling capacitors are required. Secondly, the fully differential amplifier has out-
Thermal Protection The thermal protection circuit limits the junction temperature of the APA2059. When the junction tempera-
standing immunity against supply voltage ripple (217Hz) caused by GSM RF transmitters’ signal, which is better
ture exceeds TJ = +150oC, a thermal sensor turns off the amplifier, allowing the devices to cool. The thermal sen-
than the typical audio amplifier. Gain Setting Function For the convenient uses, the APA2059’s power amplifiers provide four gain setting options by GAIN0 and GAIN1
sor allows the amplifier to start-up after the junction temperature down about 125 oC. The thermal protection is designed with a 25 o C hysteresis to lower the average TJ during continuous thermal overload conditions, increas-
pins.
ing lifetime of the ICs.
GAIN0
GAIN1
AV(dB)
Ri(kΩ)
Rf(kΩ)
0
0
10
76
240
Over-Current Protection (OCP)
0
1
12
60
240
• The power amplifier monitors the output buffers’current.
1
0
15.6
40
240
1
1
21.6
20
240
When the over-current occurs, the output buffers’current will be reduced and limited to a fold-back current level. The power amplifier will go back to normal operation until the over-current current situation has been removed. In
Headphone Mode Operation
VOUT
Conventional Headphone Driver
HVDD
addition, if the over-current period is long enough and the IC’s junction temperature reaches the thermal protection
HVDD/2
threshold, the IC enters thermal protection mode.
• The LDO regulator provides a current-limit circuitry, which monitors and controls P-channel MOS’s gate
Gnd
voltage, limiting the output current to 0.4A. For reliable operation, the device should not be operated in current-
HVDD
VOUT
limit for extended period time. When the output voltage drops below 0.6V, which is caused by the over load or short circuit, the internal short circuit current-limit circuitry limits the output current down to 250mA. The short circuit
Gnd
current-limit is used to reduce the power dissipation during short circuit condition. The short circuit current-limit Cap-free Headphone Driver
VSS
has a blanking time feature after the under-voltage lockout threshold is reached, therefore, it will avoid the output
Figure 1: The Cap-Free Headphone Driver’s Operation
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
causing short circuit current-limit protection during startup; the blanking time is about 600µs. 22
www.anpec.com.tw
APA2059 Function Description (Cont.) Over-Current Protection (OCP) (Cont.)
• The charge pump monitors the output voltage (V
SS
). In
addition, it has an over-voltage protection to avoid overcurrent occuring on headphone driver’s output. When the output voltage (VSS) is greater than –2V, the charge pump will turn off the charge pump’s output. The charge pump’s output will turn on again if the situation has been removed. Typical under voltage protection threshold is -2V with 0.5V hysteresis. Low Drop-Out (LDO) Regulator The LDO regulator’s output provides maximum 120mA drive capacity for external audio codec. A 2.2µF decoupling capacitor with 0.1µf capacitor (filtering the high frequency noise) is recommended at LDO regulator‘s output. The LDO regulator has built-in under-voltage lockout circuits to keep the output shutting off until internal circuitry is operating properly. The under-voltage lockout function initiates a soft-start process after input voltage exceeds its rising under-voltage lockout threshold during power on. The internal soft-start circuit controls the rise rate of the output voltage and limits the current surge during startup. Approximate 20µs delay time after the VDD is over the under-voltage lockout threshold; the LDO regulator’s output voltage starts the soft-start. The typical soft-start interval is about 130µs and the under-voltage lockout threshold is 2.5V with 0.15V hysteresis. Enable Mode The APA2059 provides the independent enable control functions and allows user disable any main circuit blocks when not in using, and these can save the power consumption. In addition, if either the power amplifier or the headphone driver is disabled, the released time will happen immediately when enable the power amplifier or the headphone driver. However, if both the power amplifier and the headphone driver are disabled at the same time, the released time will be the TSTART-UP Time when enable one of them. Disable all blocks ( V AMP_EN=VHP_EN= VLDO_EN=0V), The APA2059 enters the shutdown mode, and only consumption 5µA(Max.) at VDD supply current and 2µA(Max.) at HVDD supply current.
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
23
www.anpec.com.tw
APA2059 Application Information Windows VistaTM Premium Mobile Requirement Device Type
Requirement
Value
Full Scale Output voltage THD+N Analog Line Output Jack (RL=10kΩ)
Line output cross-talk Noise level during system activity Full Scale Output voltage
Analog Headphone Output Jack (RL=320Ω)
THD+N
Analog Headphone Output Jack (RL=32Ω)
THD+N
Headphone output cross-talk Noise level during system activity Full Scale Output voltage
Headphone output cross-talk Noise level during system activity
≥0.707Vrms ≤-65dBFS 20Hz~20kHz ≤-50dB, 20Hz~15kHz ≤-80dBFS A-weighting ≥0.707Vrms ≤-65dBFS 100Hz~20kHz ≤-50 dB 100Hz~15kHz ≤-80dBFS A-weighting ≥0.3Vrms ≤-45dBFS 100Hz~20kHz ≤-50dB 100Hz~15kHz ≤-80dBFS A-weighting
APA2059 typical performance 2.3Vrms -70dB 20Hz~20kHz -70dB 20Hz~20kHz -100dBFS A-weighting 2.3Vrms -78dB 100Hz~20kHz -75 dB 100Hz~15kHz -100dBFS A-weighting 2.0Vrms -68dB 100Hz~20kHz -70 dB 100Hz~15kHz -100dBFS A-weighting
Input Capacitor (Ci)
leakage tantalum or ceramic capacitor is the best choice.
In the typical application, an input capacitor, Ci, is required
When polarized capacitors are used, the positive side of the capacitors should face the amplifiers’ inputs in most
to allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, Ci and the
applications because the DC level of the amplifiers’ inputs are held at VDD/2. Please note that it is important to
minimum input impedance Ri form a high-pass filter with the corner frequency is determined in the following equation: fC(highpass ) =
1 2 πR iC i
confirm the capacitor polarity in the application. Power Supply Decoupling Capacitor, Cs
(1)
The APA2059 is a high-performance CMOS audio ampli-
The value of Ci must be considered carefully because it directly affects the low frequency performance of the circuit.
fier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) to be
Consider the example where Ri is 20kΩ and the specification calls for a flat bass response down to 40Hz. The
as low as possible. Power supply decoupling also prevents the oscillations caused by long lead length between
equation is reconfigured below : 1 Ci = 2 π R i fc
the amplifier and the speaker. The optimum decoupling is achieved by using two different types of capacitors that target on different types of
(2)
When input resistance varation is considered, the value of Ci is 0.2µF. Therefore, a value in the range from 0.22µF
noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low
to 1.0µF would be chosen. A further consideration for this capacitor is the leakage path from the input source through
equivalent-series-resistance (ESR) ceramic capacitor, (0.1µF typically) placed as close as possible to the device
the input network (Ri + Rf, Ci) to the load.
VDD lead works best.
This leakage current creates a DC offset voltage at the
For filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near
input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a lowCopyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
the audio power amplifier is recommended. 24
www.anpec.com.tw
APA2059 Application Information (Cont.) Charge Pump Flying Capacitor (CPF)
2. The output traces should be short, wide ( >50mil), and
The flying capacitor affects the load transient of the charge pump. If the capacitor’s value is too small, it will degrade
symmetric. 3. The input trace should be short and symmetric.
the charge pump’s current driver capability and the performance of headphone amplifier. Increasing the flying
4. The power trace width should greater than 50 mil. 5. The TQFN5x5-32 thermal pad should be soldered on PCB, and the ground plane needs solded mask (to
capacitor’s value will improve the load transient of charge pump. Recommend using the low ESR ceramic capaci-
avoid short circuit) except the thermal pad area.
tors (X5R type is recommended) above 1µf. Charge Pump Output Capacitor (CPO) The output capacitor’s value affects the power ripple directly at VSS. Increasing the value of output capacitor will reduce the power ripple. The ESR of output capacitor affects the load transient of VSS. Low ESR and greater than 1µf ceramic capacitor (X5R type is recommended) is recommendation. Layout Recommendation ThermalVia diameter 0.3mm X 9 1.15mm 0.25mm
3.6mm
4.1mm
0.5mm
3.6mm
Solder Mask to Prevent Short Circuit
TQFN5X5-32 Land Pattern Recommendation
Ground plane for ThermalP AD
Figure 5. TQFN5X5-32 Land Pattern Recommendation 1. All components should be placed close to the APA2059. For example, the input capacitor (Ci) should be close to APA2059’s input pins to avoid causing noise coupling to APA2059’s high impedance inputs; the decoupling capacitor (CS ) should be placed by the APA2059’s power pin to decouple the power rail noise.
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
25
www.anpec.com.tw
APA2059 Package Information TQFN5x5-32 D
b
E
A
D2
A1 A3
L K
E2
Pin 1 Corner
e S Y M B O L
TQFN5x5-32 MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.70
0.80
0.028
0.031
A1
0.00
0.05
0.000
0.002
A3
0.20 REF
0.008 REF
b
0.18
0.30
0.007
0.012
D
4.90
5.10
0.193
0.201
D2
3.10
3.50
0.122
0.138
E
4.90
5.10
0.193
0.201
E2
3.10
3.50
0.122
0.138
e
0.50 BSC
L
0.35
K
0.20
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
0.020 BSC 0.014
0.45
0.018
0.008
26
www.anpec.com.tw
APA2059 Carrier Tape & Reel Dimensions P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H A
d
T1
Application
TQFN5x5-32
A
H
330.0±2.00
50 MIN.
P0
P1
4.0±0.10
T1
C
12.4+2.00 13.0+0.50 -0.00 -0.20
8.0±0.10
P2
D0
2.0±0.10
1.5+0.10 -0.00
d
D
1.5 MIN.
20.2 MIN.
W
E1
12.0±0.30 1.75±0.10
F 5.5±0.10
D1
T
A0
B0
K0
1.5 MIN.
0.6+0.00 -0.40
5.30±0.20
5.30±0.20
1.30±0.20 (mm)
Devices Per Unit Package Type
Unit
Quantity
TQFN5x5-32
Tape & Reel
2500
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
27
www.anpec.com.tw
APA2059 Taping Direction Information TQFN5x5-32
USER DIRECTION OF FEED
Classification Profile
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
28
www.anpec.com.tw
APA2059 Classification Reflow Profiles Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C 150 °C 60-120 seconds
150 °C 200 °C 60-120 seconds
3 °C/second max.
3°C/second max.
183 °C 60-150 seconds
217 °C 60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3
Package Thickness <2.5 mm
Volume mm <350 235 °C
Volume mm ≥350 220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm
Volume mm <350 260 °C 260 °C 250 °C
3
Volume mm 350-2000 260 °C 250 °C 245 °C
3
Volume mm >2000 260 °C 245 °C 245 °C
3
Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78
29
Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA
www.anpec.com.tw
APA2059 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838
Copyright ANPEC Electronics Corp. Rev. A.5 - Feb., 2010
30
www.anpec.com.tw