Preview only show first 10 pages with watermark. For full document please download

Azimuth Correction For Radar Antenna Roll And

   EMBED


Share

Transcript

Europaisches Patentamt (19) European Patent Office Office europeen brevets peen des brevets E P 0 6 1 4 5 3 4 B 1 E U R O P E A N PATENT S P E C I F I C A T I O N (12) (45) Date of publication and mention of the grant of the patent: 04.03.1998 Bulletin 1998/10 (21) Application number: 92925236.9 (22) Date of filing: 19.11.1992 (51) intci.6: G01S 13/66, H01Q 1 / 1 8 (86) International application number: PCT/US92/09843 (87) International publication number: WO 93/11446 (10.06.1993 Gazette 1993/14) (54) AZIMUTH CORRECTION FOR RADAR ANTENNA ROLL AND PITCH Verfahren und Vorrichtung zur Azimuthkorrektur des Neigungs-und Rollwinkels von Radarantennen CORRECTION AZIMUTALE DU ROULIS ET DU TANGAGE D'UNE ANTENNE DE RADAR (84) Designated Contracting States: FR GB (30) Priority: 25.11.1991 US 797653 (43) Date of publication of application: 14.09.1994 Bulletin 1994/37 (73) Proprietor: UNITED TECHNOLOGIES CORPORATION Hartford, CT 06101 (US) (72) Inventors: • PANKOW, Richard, J. Easton, CT 0661 2 (US) • LAPINTA, Leonard, T. Shelton, CT 06484 (US) (74) Representative: Klunker . Schmitt-Nilson . Hirsch Winzererstrasse 106 80797 Miinchen (DE) (56) References cited: EP-A- 0 100 141 US-A- 4 837 577 US-A-4 179 696 DO ^CO CO o a. LU Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed byJouve, 75001 PARIS(FR) EP 0 614 534 B1 Description 5 10 is 20 25 so 35 40 45 so 55 The present invention relates to radar systems and more particularly to improved accuracy in target azimuth information during roll and/or pitch of a radar system antenna with respect to a reference. Radar systems are typically provided with a mechanical stabilization system for controlling the angular position of the radar system antenna to thereby maintain a constant reference frame for the antenna with respect to a reference axis or plane, e.g., ground. Such mechanical stabilization is usually accomplished using servomechanisms, e.g., gimbal and drive systems. Position or rate gyros are typically used to sense vehicle pitch and roll, and issue position signals directly to the stabilization system to maintain the desired antenna reference. A problem with using gimbal and drive systems for mechanical antenna stabilization is that they add significant weight to the radar system, which is of particular concern in radars intended for use on aircraft. Additionally, because of complexities associated with stabilization systems, they are prone to frequent repair and maintenance. Another problem is that servomechanisms required for roll and pitch stabilization increase the overall size of an antenna assembly with the result that within a given installation space, the area for the radiating portion of the antenna, and consequently the antenna gain and resolution, must be reduced. A radar antenna that is rotational only about a vertical or yaw axis and not provided with roll and pitch stabilization, i.e., having a fixed platform, is referred to as being "strapped down". A strapped down antenna eliminates weight penalties and complexities associated with mechanical stabilization systems, and also reduces the space requirement for a given antenna. However, any roll and/or pitch experienced by a vehicle carrying the antenna is translated directly to the antenna. Movement of the antenna in roll and pitch may look to the radar system like movement of the target, and therefore, fixed platform antennas are incapable of providing accurate target position information during roll and/or pitch of the antenna, thereby preventing the radar tracking system from maintaining target acquisition and correlation accuracy during antenna roll and/or pitch. The azimuth error suffered by radars which are not roll and pitch stabilized manifests itself as a "blurred" or "smeared" representation of the target on a radar display. Additionally, when roll or pitch movement of the radar antenna is rapid or of a large magnitude, the target may "jump" on the display. The azimuth error will also result in errors in the indicated target rack position and velocity as provided by a radar tracking system. Document US-A-4,837,577 discloses a method for stabilizing an electronically steered monopulse antenna mounted on a moveable body without mechanically moving the antenna relative to the moveable body. The purpose of the document US-A-4,837,577 is to maintain the transmission of radar pulses towards a particular point on the ground by electronically steering the beam of an array antenna so that the antenna itself is not physically moved. Therefore, thr electronically steerable antenna of the type described in the document US-A-4,837,577 patent is different from the radar system described hereinabove in that roll and/or pitch experienced by the vehicle carrying the electronically steerable antenna is compensated for by adjusting the pointing direction of the beam to thereby compensate for motion of the aircraft. Document EP-A-01 1141 discloses a method for generating real time high resolution synthetic aperture radar (SAR) imagery from an airborne platform of a ship under the influence of motion on the sea. Document EP-A-01 001 41 therefore deals with improved target resolution in a situation where the target is pitching and rolling due to sea state rather than movement of a radar with respect to the target. The improved resolution is provided by forming a range/doppler image of the target. The system disclosed in the document EP-A-01 001 41 is designed for use with a synthetic aperture radar system. Document US-A-4, 179,696 discloses a radar tracking system having a KALMAN estimator for predicting target position referenced to a stable coordinate system. The system measures and processes target position relative to a line of site coordinate system which is referenced to the position of a radar antenna for applying the KALMAN estimator gains, and thereafter the prediction or estimation of target position is processed relative to a stable coordinate system, such as a geographic coordinate system. The information is thereafter transformed and provided to a radar gimbal mechanical axis coordinate system for controlling the pointing direction of the antenna to track a target. The antenna disclosed in the document US-A-4, 179,696 is gimbaled for three axis motion to thereby adjust the position of the antenna relative to the target and aircraft. The US-A-4, 179,696 patent does not discuss the situation disclosed hereinabove wherein the antenna is not gimbaled or the movement of the aircrah exceeds the mechanical stabilization limits of a gimbaled system, thereby prohibiting the accurate reception of target position information during extreme roll and or pitch of the antenna. Objects of the invention include provision of a radar system which provides accurate target azimuth information during roll and/or pitch of the radar system antenna with respect to a reference. According to the present invention, a radar indicated target azimuth is modified during angular movement of an antenna with respect to a reference axis to provide a corrected target azimuth which is substantially indicative of the actual or true target azimuth. 2 EP 0 614 534 B1 5 10 is 20 25 30 35 40 45 so 55 In one embodiment of the present invention, an azimuth error signal indicative of the difference between radar indicated target azimuth and corrected target azimuth is utilized by a radar tracking system to provide corrected target track information, indicative of the actual target track, to the radar system control and display, wherein changes in target position indicated by the radar system control and display are indicative of true target motion. In another embodiment of the present invention, the azimuth error signal is utilized by the radar tracking system to provide a predicted radar indicated target azimuth to maintain target tracking during angular movement of the antenna with respect to the reference axis. In a radar system having an antenna which is not roll or pitch stabilized, the present invention corrects for errors in the radar indicated target azimuth which occur during roll and/or pitch of the antenna with respect to a reference. The present invention may also be utilized in a radar system having roll and pitch stabilization to correct for errors in the radar indicated target azimuth which may occur due to insufficient response of the stabilization system to roll and pitch of the radar antenna. Additionally, the azimuth correction may be utilized by a radar tracking system to maintain target track during angular movement of the antenna with respect to the reference axis. Therefore, changes in the indicated target position, e.g., the target position as indicated on a display unit, are indicative of true target motion and not changes in the angular position of the radar antenna with respect to the reference axis. The invention may be implemented in a variety of ways including microprocessor software operating upon digital signals, or other alternative methods obvious to one skilled in the art, including, but not limited to, combinations of digital hardware, analog circuitry, etc. The invention is easily implemented using apparatus and techniques which are well known within the skill of the art in light of the specific teachings with respect thereto which follow hereinafter. Other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of exemplary embodiments thereof as illustrated in the accompanying drawings. Fig. 1 is a perspective view, partially broken away, of a radar antenna, which is not roll or pitch stabilized, mounted to the bottom of an aircraft; Fig. 2 is a simplified schematic block diagram of a radar system employing target azimuth correction in accordance with the present invention; Fig. 3 is a graphical representation of radar indicated target azimuth error (e) with respect to true target azimuth for various radar antenna roll angles; Fig. 4 is a simplified schematic block diagram of a general embodiment of target azimuth correction for use in the system of Fig. 2; Fig. 5 is a simplified schematic block diagram of a radar tracking system utilizing target azimuth correction of the present invention; and Fig. 6 is a simplified logic flow diagram of a routine for providing target tracking utilizing target azimuth correction in accordance with the present invention in a digital tracking system. The present invention is particularly well suited for use in a radar system to correct for errors in radar indicated target azimuth caused by angular movement of a radar system antenna with respect to a reference axis. Referring to Fig. 1, a radar antenna 12 is mounted on the underside of a vehicle 14, e.g., an aircraft, and is covered by a protective shield or dome 16 to protect the antenna from damage. The antenna 12 is mounted for rotation on an axis or shaft 17 about an axis 19. The antenna of Fig. 1 is of the type which is particularly useful for surface searching and tracking of surface targets. For purposes of describing the present invention, the antenna of Fig. 1 is illustrated as being "strapped down" to the aircraft frame 14 with the result that any roll or pitch of the aircraft is transmitted to the antenna. However, the invention will work equally well with an antenna having servomechanisms which attempts to maintain the angular position of the antenna with respect to the reference axis 19. Referring to Fig. 2, a simplified radar system 25 comprises a transmitter 27, e.g., an RF oscillator, that is pulsed, i.e. turned on and off, by a pulse modulator 28. The waveform generated by the transmitter 27 is provided via a duplexer 30 to the antenna 12, where it is radiated into space. The antenna is used for both transmitting and receiving. A receiver section 31 of the system must be protected from damage caused by the high power of the transmitter, and therefore, the duplexer 30 is provided to both protect the receiver from the high power transmitter signal and to channel the return echo signal to the receiver section 31 . The received signal is provided from the duplexer 30 to a mixer 32 which uses a local oscillator 33 to convert the received RF signal to an intermediate frequency (IF) signal. The IF signal is provided via an IF amplifier 35 to a detector 36 which extracts the pulse modulation from the IF signal. The output of the detector 36 is amplified by a video amplifier 38 to a level where it can be properly displayed on a control and display unit (CDU) 39, e.g., a cathode-ray tube (CRT) display. A timer 40 may be provided to supply timing signals to the display to provide a zero reference range. All of the apparatus described thus far is simply exemplary of that which is well known in the art. In accordance with the present invention, angle information is obtained from the pointing direction of the antenna 12 as indicated by means 41 for providing radar indicated azimuth signals 43 of the system 25. The angle information 3 EP 0 614 534 B1 may be provided in any suitable way known in the art for converting mechanical radar antenna position information into a corresponding digital or analog signal, e.g., position sensors. Thereafter, the indicated angle is corrected in an azimuth correction logic 42 of the system as described in greater detail hereinafter with respect to Fig. 4. Typically, the display is intensity-modulated wherein the amplitude of the receiver output determines the corresponding intensity of a target indicated on the display. The angular position of the target is determined as described hereinabove with respect to the corrected antenna position provided by the azimuth correction logic 42 of the system. During level flight of the aircraft, the radar indicated target azimuth will be equal to the corrected target azimuth, and no azimuth correction is required. However, as described hereinbefore, during angular movement of the antenna 12 with respect to the reference axis 19, the radar indicated target azimuth may be different from the corrected (true) | ) as given by the target azimuth. The radar indicated target azimuth (c|>' ) is related to the corrected target azimuth (c> following relationships: -C0S(t)SinPsinl^+sin(t)C0SP-(/l/fl)sinPC0Sl^ 0((bN tancb' = yw v = coscticosu.-f/V/^sinu. rEa 1 H' iiJ f =W=arctan[cM)] [Eq. 2] where h is the aircraft altitude, R is the plan range to the target, u. is the aircraft pitch angle, and p is the aircraft roll angle. Therefore, during roll and/or pitch of the radar antenna with respect to the reference axis 19, an azimuth error (e) is generated which is the difference between the radar indicated target azimuth and the corrected target azimuth as given by the following relationship: e= -$ [Eq. 3] The relationships of equations 1, 2 and 3 are graphically illustrated in Fig. 3. In the example shown in Fig. 3, the radar is mounted on an aircraft operating at an altitude of 1000 feet and tracking a target 10 nautical miles away. The aircraft is at a 10 pitch angle, and the azimuth error with respect to corrected (true) target azimuth (relative to the aircraft heading) is shown for various aircraft roll angles at increments of 5° between 0° and 30° roll angle. Solving equations 1 and 2 in terms of corrected target azimuth (§) results in a complex and high order equation. However, two observations may be utilized to simplify the relationships of equations 1 and 2. First, the corrected target azimuth and the radar indicated target azimuth are only a few degrees apart for normal values of roll and pitch, i.e.,: V * c» [Eq. 4] Second, because the error (e) is small and well behaved: d§'ld = df((S))ld(S) = 1 [Eq. 5] Substituting the radar indicated target azimuth for the corrected target azimuth in equation 2 results in the following relationship: fW) = W+e) [Eq. 6] As is well known, equation 6 may be approximated by a first order Taylor series which is simplified by the assumption of equation 5: W) * fW + e[dW)/d" - W ) [Eq. 8] EP 0 614 534 B1 5 10 is 20 25 30 35 40 45 so 55 The relationship of equation 8 can be implemented in the azimuth correction logic 42 of the radar system of Fig. 2 using the control system of Fig. 4. Referring to Fig. 4, the radar indicated azimuth signals are provided on a line 43 to a multiplier 44 which multiples the radar indicated target azimuth by 2. The output of the multiplier 44 is provided to a summing junction 45. The radar indicated target azimuth is also provided on the line 43 to a function generator 46. The other inputs to the function generator 46 include an altitude signal on a line 53 provided by an altitude sensor 54, e.g., a radar or laser altimeter, a range signal (Rr) on a line 55 provided by the radar system, a pitch angle signal on a line provided by the radar system, a pitch angle signal on a line 56 as determined from the output of a pitch rate gyro 57 applied to an integrator 58, and a roll angle signal on a line 59 as determined from the output of a roll rate gyro 60 applied to an integrator 61. The function generator 46 performs the calculation corresponding to the relationship of equation 2, the result of which is also provided to the summing junction 45. The output of the summing junction is the corrected target azimuth on a line 47, i.e., the difference between the output of the multiplier 44 and the function generator 46, and is indicative of the true target azimuth. The radar system of Fig. 2 may also be provided with a tracker logic portion 48 which provides target track information to the CDU 39, and provides a predicted target position to antenna tracking control logic 49 so that multiple targets may be independently identified and tracked based on predicted target track. Referring to Fig. 5 , a simplified alpha-beta target tracking system is shown having azimuth correction of the present invention. When a target is initially designated for tracking, initial target conditions are established in an initial conditions portion 67 of the tracking system wherein an initial predicted target bearing signal (Pbi) is set equal to §, and an initial predicted target range signal (Pri) is set equal to the radar indicated target range (Rr). The initial predicted target bearing and range are only provided by the initial conditions portion 67 of the tracking system via normally open contacts 68,69 when a target is initially designated for tracking to thereby provide initial values for a predicted target bearing signal (Pb) and a predicted target range signal (Pr). Pb and Pr are thereafter provided via normally closed contacts 70,71 as described in greater detail hereinafter. Pb and Pr are provided on lines 62 and 63 respectively to a conversion portion 64 of the tracker system and converted from polar coordinates to cartesian coordinates using apparatus and techniques which are well known within the skill of the art, to thereby provide a pair of predicted target position signals, Pn(x) and Pn(y), which are shown as one signal Pn(x,y) on a line 65 to a summing junction 66. For simplicity, all of the apparatus within the dashed line 72 is shown as singular, as for x or for y; however, each function is performed separately for x and for y. Hereinafter, it will be understood that signals shown as (x,y) actually represent two separate signals, one for x and another for y. Pb is also provided on the line 62 to a summing junction 73. The other input to the summing junction 73 is an azimuth error signal (e) on a line 74. The azimuth error signal is provided on the line 74 from a summing junction 75 as the difference between §' on the line 43 and § on the line 47 as provided from the azimuth correction logic 42 of the radar system 25. The output of the summing junction 73 is a predicted radar indicated target bearing signal (Pb1) on a line 80 which is provided to a conversion portion 82 of the tracker system. The other input to the conversion portion 82 is Pr on the line 63. The output of the conversion portion 82 is a predicted radar indicated target position signal P'n (x,y) on a line 85. P'n(x,y) on the line 85 is the predicted target position as would be indicated by the radar antenna with no azimuth correction for roll and pitch of the antenna, while Pn(x,y) on the line 65 is the predicted target position based on the true or corrected target azimuth. If the target azimuth indicated by the radar antenna is equal to the true target azimuth, e is equal to zero and P'n(x,y) is equal to Pn(x,y). P'n(x,y) is provided on the line 85 to a summing junction 86. The other input to the summing junction 86 is a radar indicated target position signal R(x,y) on a line 88 which is provided by converting and Rr from polar to cartesian coordinates in a conversion portion 89 of the tracking system. The output of the summing junction 86 is a predicted position error signal Pe(x,y) on a line 91 which is indicative of the difference between R(x,y) and P'n(x,y). Pe(x,y) is applied to a pair of multipliers 93,94 which multiply the error signal by a first constant (a). The output of one of the multipliers 93 is applied to the summing junction 66 where it is summed with Pn(x,y) to provide a smoothed target position signal STP(x,y) on a line 96. STP(x,y) is a target position signal that is corrected for any errors identified by the tracker system, and represents the most accurate position signal for the tracked target. STP(x,y) is provided to the CDU 39 to provide the indicated position of the target being tracked on the CDU. The output of the other multiplier 94 is provided to a summing junction 100 where it is summed with P'n (x,y). The output of the summing junction 100 is a radar indicated smoothed target position signal STP'(x,y) on the line 102, and represents the predicted target azimuth as indicated by the radar antenna. Pe(x,y) is also applied to a multiplier 105 which multiplies the error signal by a second constant p/8t, the output of which is a change in velocity signal 8V(x,y) on a line 106. p is a constant, and 8t is indicative of the radar antenna scan rate, i.e., the time it takes the antenna to make a complete revolution. Therefore, 8V(x,y) is indicative of the incremental change in target velocity during the time period 8t associated with the error in predicted target position Pe(x,y). 8V(x, y) is applied to a summing junction 108 where it is summed with a predicted velocity signal Vp(x,y) on a line 111. Initially, the predicted velocity signal is supplied by an initial velocity portion 115 of the tracking system which supplies an initial velocity signal Vi(x,y) on a line 116 via normally open contacts 117. Vi(x,y) may be a fixed velocity based on the type of target being tracked or may be an instantaneous velocity calculation based on the the change in position of the 5 EP 0 614 534 B1 5 10 is 20 25 30 35 40 ms so 55 target during a single scan period. Vi(x,y) is only provided when a target is initially designated for tracking, and thereafter, Vp(x,y) is provided in a feedback loop to the summing junction 108 via normally closed contacts 118. The output of the summing junction 108 is Vp(x,y) on the line 111, which thereafter is provided to the CDU as an indication of the target velocity. As is known in the art, the target velocity may be displayed on the same display as the target or on a separate display. Vp(x,y) is also applied to a multiplier 120 which multiplies Vp(x,y) by the scan period St. The output of the multiplier is a change in predicted position signal 8P(x,y) which is indicative of the change in target position during the scan period 8t for a target moving at a velocity equal to Vp(x,y). 8P(x,y) is provided on a line 122 to a summing junction 124 where it is summed with STP(x,y) on the line 96. The output of the summing junction 124 is a predicted target position signal Pn+1(x,y) indicative of the predicted target azimuth and range, corrected for roll and pitch in accordance with the present invention, where the tracker expects to display the target during the next time that the target is scanned by the radar antenna, i.e., the predicted true target azimuth after the time period St. Pn+1 (x, y) is provided to a conversion portion 128 where it is converted from cartesian coordinates to polar coordinates to thereby provide Pb and Pr on lines 62 and 63 respectively. Thereafter, Pb and Pr are provided via the normally closed contacts 70,71 . 8P(x,y) is also provided on a line 129 to a summing junction 130 where it is summed with STP'(x,y) on the line 102. The output of the summing junction 130 is the predicted radar indicated target position signal P'n+1 (x,y) indicative of the predicted radar indicated target azimuth where the tracker expects to locate the target during the next time that the target is scanned by the radar antenna, i.e., the predicted radar indicated target azimuth after the time period St. P'n+1 (x,y) is provided to the antenna tracking control logic 49 where it is used to create a "window" of azimuth and range where the target is expected to be located during the next antenna sweep of the target. The window may be of fixed parameters based on predicted target position and velocity, or it may become smaller as target positioning information becomes more accurate with further sweeps of the radar antenna. The information is particularly useful for target correlation purposes when the tracker is tracking multiple targets. The tracking system of Fig. 5 including target azimuth correction of Fig. 4, may be embodied in digital integrated circuitry which implements the system described hereinbefore. However, the tracking system may also be of the type employing a known microprocessor (UPROC) for executing an algorithmic subroutine of Fig. 6, as described hereinafter, which implements the azimuth correction system and tracking system of Figs. 4, and 5. Referring to Fig. 6, the subroutine is entered in a step 200, and the tracking system initial conditions are established in steps 201 -203 wherein Pr is set equal to Rr, Pb is set equal to § and Vp(x,y) is set equal to Vi(x,y). Next Pb and Pr are converted from polar coodinates to cartesian coordinates in a step 204 to provide Pn(x,y). While step 204 is being performed, steps 205-210 are consecutively performed wherein § is determined using equation 8, e and Pb' are calculated, Pb' and Pr are converted from polar coordinates to cartesian coordinates to provide P'n(x,y), §' and Rr are coverted from polar coordinates to cartesian coordinates to provide R(x,y), and Pe(x,y) is calculated. Next, three parallel series of steps are performed. In steps 215-218, 8V(x,y) and Vp(x,y) are calculated, Vp is provided to the CDU, and 8P(x,y) is calculated. In step 220, STP'(x,y) is calculated. In steps 223 and 224, STP(x,y) is calculated and thereafter provided to the CDU. P'n+1 (x,y) is calculated in the step 225 using STP'(x,y) and 8P(x,y). Thereafter, P'n+i (x,y) is provided to the Antenna Tracking Control Logic in a step 226. Pn+i(x,y) is calculated in the step 227 using STP(x,y) and 8P(x,y). Thereafter, Pn+i(x,y) is converted from cartesian coordinated to polar coordinates in a step 228 to provide Pr and Pb. Next, the the UPROC checks if the target is still designated for tracking in a test 229. If the results of the test 229 are positive, the subroutine returns to the steps 204 and 205. However, if the results of the test 229 are negative, the subroutine returns in a step 230. The azimuth correction of the present invention can be used to correct all azimuth information from the means 41 for providing radar indicated azimuth signals as described herein, or it my be used only for correcting azimuth information associated with targets designated for tracking. In the latter case, angle information associated with radar returns from land masses or targets not designated for tracking is supplied directly from the radar indicated azimuth logic to the CDU, and angle information associated with targets being tracked is first supplied to the azimuth correction logic prior to being supplied to the tracker logic. Although the invention is shown as being an integral part of a radar system, it may be provided as an add-on to an existing radar system to provide corrected target azimuth information. The azimuth correction of the invention may be implemented with a computer program change to the program of a radar system or tracker system which is implemented digitally by means of a computer, or the invention could be implemented with dedicated digital or analog hardware. The invention is described as it may be utilized with a radar system having an antenna with a single degree of freedom; however, it may also be utilized with a system having an antenna which is stabilized in three degrees of freedom to correct for azimuth error caused by antenna roll or pitch beyond the limits of the stabilization system. In such a case, signals indicative of the angular movement of the antenna with respect to the reference axis would be provided to the azimuth correction logic of the present invention to correct the radar indicated azimuth. For example, 6 EP 0 614 534 B1 when the roll angle of the vehicle exceeds the maximum roll angle that the stabilization system is mechanically able to compensate (maximum roll angle), a signal equal to vehicle roll angle less the maximum roll angle is indicative of antenna roll with respect to the reference axis. Although the invention is illustrated as being used with a radar antenna mounted on the underside of an aircraft, the invention will work equally as well for correcting azimuth error caused by roll and pitch of a radar antenna mounted on any type of vehicle or platform which is subject to movement which can be translated directly to the antenna. 10 Claims 1. A vehicle mounted radar system comprising: a) an antenna (1 2) mounted on said vehicle (14) for rotation about an axis or shaft (17), said axis or shaft (1 7) having orientations with respect to a reference axis (19) being fixed with respect to ground; b) receiver means (31 ) connected to said antenna (12) for receiving radar echoes from at least one target and for providing, in response to said radar echoes, range signals (55) indicative of the range to the respective targets; c) means (41) for providing radar indicated azimuth signals (43) indicative of the pointing direction of said antenna (12) with respect to the vehicle (14); d) altitude indicating means (54) for providing altitude signals (53) indicative of the difference in altitude between the vehicle (14) and the targets; is 20 characterized by: 25 e) antenna position indicating means (57, 58, 60, 61 ) for providing antenna position signals (56, 59) indicative of the angular position of said antenna (12) with respect to said reference axis (19); and f) target azimuth correcting signal processing means (44, 45, 46) for providing, in response to said range signals (55), said radar indicated azimuth signals (43), said antenna position signal (56, 59) and said altitude signals (53), corrected target azimuth signals (47) indicative of the actual target azimuth with respect to the vehicle (14) of the respective targets corresponding to said range signals (55). 30 2. 35 a) pitch angle means (57) for providing a pitch angle signal (56) indicative of the pitch angle of said antenna (12) with respect to said reference axis (19); and b) roll angle means (60) for providing a roll angle signal (59) indicative of the roll angle of said antenna (12) with respect to said reference axis (19), c) said target azimuth correcting signal processing means (44, 45, 46) being responsive to said pitch angle signal (56) and said roll angle signal (59) for providing said corrected target azimuth signals (47). 40 45 50 55 A vehicle mounted radar system according to claim 1 wherein said antenna position indicating means (57, 58, 60, 61) comprises: 3. A vehicle mounted radar system according to claim 1 further comprising display means (39) responsive to said range signals (55) and said corrected target azimuth signals (47) for providing a visual display indicative of the position of the targets. 4. A vehicle mounted radar system according to claim 3 further comprising: a) tracking means (72), responsive to said radar indicated azimuth signals (43), said range signals (55) and said corrected target azimuth signals (47), for providing: aa) predicted radar indicated target position signals (P'n) indicative of predicted positions that targets being tracked will be located by said antenna (1 2) after a scan period corresponding to the next time each target is scanned by said antenna (12), ab) smoothed target position signals (STP) indicative of the actual position of the targets being tracked, and ac) velocity signals (Vp) indicative of the velocity of the targets being tracked; and b) antenna tracking logic means (49) responsive to said predicted radar indicated target position signals (P'n) for correlating targets being tracked; 7 EP 0 614 534 B1 c) said smoothed target position signals (STP) and said velocity signals (Vp) being provided to said display means (39) for providing a visual display of the position and velocity of targets being tracked. 5. A method of correcting an azimuth signal provided by a vehicle mounted radar system during angular movement of a radar system antenna (12) with respect to a fixed reference axis (19) which is fixed with respect to ground, the method comprising the steps of: a) receiving radar echoes from at least one target; b) converting said radar echoes into range signals (55) indicative of the ranges to the respective targets; c) providing radar indicated azimuth signals (43) indicative of the pointing direction of the antenna (12) with respect to the vehicle (14), each one of said range signals (55) having a corresponding radar indicated azimuth signal (43); characterized by: d) providing antenna position signals (56, 59) indicative of the angular position of the antenna (1 2) with respect to the reference axis (1 9); e) providing altitude signals (53) indicative of the difference in altitude between the vehicle (14) and the target; and f) correcting said radar indicated azimuth signals (43) in response to said range signals (55), said antenna position signals (56, 59) and said altitude signals (53) to provide corrected target azimuth signals (47) indicative of the actual azimuth with respect to the vehicle (14) of the respective targets corresponding to said range signals (55). 6. The method of claim 5 wherein said antenna position signals (56, 59) comprise a pitch angle component indicative of the pitch angle of the antenna (12) with respect to the reference axis (1 9) and a roll angle component indicative of the roll angle of the antenna (12) with respect to the reference axis (19). 7. The method of claim 5 further comprising the step of providing a visual display (39) of target position in response to corresponding range signals (55) and corrected target azimuth signals (47). 8. The method of claim 5 further comprising the steps of: a) providing, in response to said radar indicated azimuth signals (43) and said range signals (55), predicted radar indicated target position signals (P'n) indicative of predicted positions that targets will be located by the antenna (12) after a scan period corresponding to the next time that each target is scanned by the antenna (12); and b) correlating targets being tracked using said predicted radar indicated target position signals (P'n). 9. The method of claim 8 further comprising the steps of: a) providing, in response to said range signals (55), said radar indicated azimuth signals (43) and said corrected target azimuth signal (47), smoothed target position signals (STP) indicative of the actual position of targets being tracked; b) providing velocity signals (Vp) indicative of the velocity of targets being tracked; and c) providing a visual display (39) of the position and velocity of targets being tracked in response to said smoothed target position signals (STP) and said velocity signals (Vp). Patentanspriiche 1. An einem Fahrzeug angebrachtes Radarsystem, umfassend: a) eine Antenne (12), die an dem Fahrzeug (14) zur Drehung urn eine Achse oder Welle (17) gelagert ist, wobei die Achse oder Welle (1 7) Orientierungen in Bezug auf eine Referenzachse (1 9) aufweist, die in Bezug auf den Boden fixiert ist; b) eine Empfangseinrichtung (31), die an die Antenne (12) gekoppelt ist, urn Radarechos von mindestens einem Ziel zu empfangen, und ansprechend auf die Radarechos Entfernungssignale (55) bereitstellt, die kenn- 8 EP 0 614 534 B1 zeichnend sind fur die Entfernung der jeweiligen Ziele; c) eine Einrichtung (41 ) zum Bereitstellen von durch Radar angezeigten Azimut-Signalen (43), die kennzeichnend sind fur die Zielrichtung der Antenne (1 2) in Bezug auf das Fahrzeug (1 4); d) eine Hohenanzeigeeinrichtung (54) zum Bereitstellen von Hohensignalen (53), die kennzeichnend sind fur die Hohendifferenz zwischen dem Fahrzeug (14) und den Zielen; gekennzeichnet durch: e) eine Antennenstellungs-Anzeigeeinrichtung (57, 58, 60, 61) zur Bereitstellung von Antennenstellungssignalen (56, 59), die kennzeichnend sind fur die Winkelstellung der Antenne (12) bezuglich der Referenzachse (19); und f) eine Ziel-Azimut-Korrekturverarbeitungseinrichtung (44, 45, 46), urn abhangig von den Entfernungssignalen (55), den durch Radar angezeigten Azimut-Signalen (43), den Antennenstellungssignalen (56, 59) und den Hohensignalen (53) korrigierte Ziel-Azimut-Signale (47) bereitzustellen, die kennzeichnend sind fur den IstZiel-Azimut in Bezug auf das Fahrzeug (14) fur die jeweiligen Ziele entsprechend den Entfernungssignalen (55) . Radarsystem nach Anspruch 1, bei dem die Antennenstellungs-Anzeigeeinrichtung (57, 58, 60, 61) aufweist: a) eine Neigungswinkeleinrichtung (57) zur Bildung eines Neigungswinkelsignals (56), kennzeichnend fur den Neigungswinkel der Antenne (12) in Bezug auf die Referenzachse (19); und b) eine Rollwinkeleinrichtung (60) zur Schaffung eines Rollwinkelsignals (59), welches kennzeichnend ist fur den Rollwinkel der Antenne (12) in Bezug auf die Referenzachse (19), c) wobei die Ziel-Azimut-Korrektursignalverarbeitungseinrichtung (44, 45, 46) auf das Neigungswinkelsignal (56) und das Rollwinkelsignal (59) anspricht, urn die korrigierten Ziel-Azimut-Signale (47) zu bilden. Radarsystem nach Anspruch 1, gekennzeichnet durch eine Sichtanzeigeeinrichtung (39), die auf die Entfernungssignale (55) und die korrigierten Ziel-Azimut-Signale (47) anspricht, urn eine Sichtanzeige zu schaffen, die kennzeichnend ist fur die Position der Ziele. Radarsystem nach Anspruch 3, weiterhin umfassend: a) eine Nachfuhreinrichtung (72), die ansprechend auf die durch Radar angezeigten Azimut-Signale (43), die Entfernungssignale (55) und die korrigierten Ziel-Azimut-Signale (47) bereitstellt: aa) vorhergesagte, durch Radar angezeigte Zielpositionssignale (P'n), kennzeichnend fur vorhergesagte Positionen, an denen verfolgte Ziele von der Antenne (12) lokalisiert werden, nachdem eine Abtastzeitspanne verstrichen ist, die dem nachsten Zeitpunkt entspricht, zu dem jedes Ziel von der Antenne (12) abgetastet wird, ab) geglattete Zielpositionssignale (STP), kennzeichnend fur die Ist-Position der verfolgten Ziele, und ac) Geschwindigkeitssignale (Vp), kennzeichnend fur die Geschwindigkeit der verfolgten Ziele; und b) eine Antennennachfuhr-Logikeinrichtung (49), die auf die vorhergesagten, durch Radar angezeigten Zielpositionssignale (P'n) anspricht, urn verfolgte Ziele zu korrelieren; c) wobei die geglatteten Zielpositionssignale (STP) und die Geschwindigkeitssignale (Vp) an die Sichtanzeigeeinrichtung (39) geliefert werden, urn eine Sichtanzeige der Position und der Geschwindigkeit der verfolgten Ziele zu schaffen. Verfahren zum Korrigieren eines Azimut-Signals, welches von einem an einem Fahrzeug gelagerten Radarsystem wahrend der Winkelbewegung einer Radarsystemantenne (1 2) in Bezug auf eine bezuglich des Erdbodens fixierte Referenzachse (19) geliefert wird, wobei das Verfahren folgende Schritte beinhaltet: a) Empfangen von Radarechos von mindestens einem Ziel; b) Umwandeln der Radarechos in Entfernungssignale (55), die kennzeichnend sind fur die Entfernung der jeweiligen Ziele; c) Bereitstellen von durch Radar angezeigten Azimut-Signalen (43), die kennzeichnend sind fur die Zielrichtung der Antenne (12) bezuglich des Fahrzeugs (14), wobei jedes der Entfernungssignale (55) ein entsprechendes durch Radar angezeigtes Azimut-Signal (43) aufweist; 9 EP 0 614 534 B1 gekennzeichnet durch: d) Bereitstellen von Antennenstellungssignalen (56, 59), die kennzeichnend sind fur die Winkelstellung der Antenne (12) in Bezug auf die Referenzachse (19); e) Bereitstellen von Hohensignalen (53), die kennzeichnend sind fur die Hohendifferenz zwischen dem Fahrzeug (14) und dem Ziel; und f) Korrigieren der durch Radar angezeigten Azimut-Signale (43) in Abhangigkeit der Entfernungssignale (55), der Antennenstellungssignale (56, 59) und der Hohensignale (53), urn korrigierte Ziel-Azimut-Signale (47) zu bilden, die kennzeichnend sind fur den Ist-Azimut in Bezug auf das Fahrzeug (1 4) der jeweilien Ziele entsprechend den Entfernungssignalen (55). 5 10 6. Verfahren nach Anspruch 5, bei dem die Antennenstellungssignale (56, 59) eine Neigungswinkelkomponente aufweisen, die kennzeichnend ist fur den Neigungswinkel der Antenne (1 2) gegenuber der Referenzachse (1 9), und eine Rollwinkelkomponente aufweisen, die kennzeichnend ist fur den Rollwinkel der Antenne (12) gegenuber der Referenzachse (19). 7. Verfahren nach Anspruch 5, gekennzeichnet durch den Schritt der Bereitstellung einer Sichtanzeige (39) der Zielposition in Abhangigkeit der entsprechenden Entfernungssignale (55) und korrigierten Ziel-Azimut-Signale (47). 8. Verfahren nach Anspruch 5, weiterhin umfassend die Schritte: is 20 a) in Abhangigkeit der durch Radar angezeigten Azimut-Signale (43) und der Entfernungssignale (55) werden vorhergesagte, durch Radar angezeigte Zielpositionssignale (P'n) gebildet, die kennzeichnend sind fur die vorhergesagten Positionen, an denen sich Ziele von der Antenne (1 2) befinden, nach denen eine Abtastzeitspanne entsprechend dem nachsten Zeitpunkt, zu dem jedes Ziel von der Antenne (1 2) abgetastet wird, vorbei ist, und b) Korrelieren der verfolgten Ziele unter Verwendung der vorhergesagten, durch Radar angezeigten Zielpositionssignale (P'n). 25 30 9. a) in Abhangigkeit der Entfernungssignale (55), der durch Radar angezeigten Azimut-Signale (43) und der korrigierten Ziel-Azimut-Signale (47) werden geglattete Zielpositionssignale (STP) bereitgestellt, die kennzeichnend sind fur die Ist-Position der verfolgten Ziele; b) es werden Geschwindigkeitssignale (Vp) bereitgestellt, die kennzeichnend sind fur die Geschwindigkeit der verfolgten Ziele; und c) es wird eine Sichtanzeige (39) der Position und der Geschwindigkeit der verfolgten Ziele in Abhangigkeit der geglatteten Zielpositionssignale (STP) und der Geschwindigkeitssignale (Vp) bereitgestellt. 35 40 Revendications 1. 45 so Verfahren nach Anspruch 8, weiterhin umfassend die Schritte: Un systeme radar monte sur vehicule, comprenant : a) une antenne (12) montee sur ledit vehicule (14) pour permettre une rotation autour d'un axe ou d'un arbre (17), ledit axe ou arbre (17) ayant des orientations par rapport a I'axe de reference (1 9) fixes par rapport au sol; b) des moyens recepteurs (31 ) connectes a ladite antenne (1 2) pour recevoir des echos radar depuis au moins une cible et pourfournir, en reponse auxdits echos radar, des signauxde distance (35) indicatifs de la distance vis-a-vis des cibles respectives; c) des moyens (41 ) pour fournir des signaux d'azimut indiques par radar (43) qui sont indicatifs de la direction de pointage de ladite antenne (12) par rapport au vehicule (14); 55 d) des moyens dedication d'altitude (54) concus pour fournir des signaux d'altitude (53) indicatifs de la difference d'altitude entre le vehicule (14) et les cibles; caracterise par : 10 EP 0 614 534 B1 e) des moyens dedication de position d'antenne (57, 58, 60, 61 ) pour fournir des signaux de position antenne (56, 59) indicatifs de la position angulaire de ladite antenne (12) par rapport audit axe de reference (19); f) des moyens de traitement de signal de correction d'azimut (44, 45, 46) pour fournir en reponse auxdits signaux de distance (55), lesdits signaux d'azimut indiques par radar (43), lesdits signaux de position d'antenne (56, 59) et lesdits signaux d'altitude (53), des signaux d'azimut de cible corriges (47) indicatifs de I'azimut de cible reel, par rapport au vehicule (1 4), des cibles respectives correspondant auxdits signaux de distance (55). 5 10 2. Un systeme radar monte sur vehicule selon la revendication 1, dans lequel lesdits moyens dedication de position d'antenne (57, 58, 60, 61) comprennent : a) des moyens d'angle d'inclinaison longitudinal (57) concus pour fournir un signal d'angle d'inclinaison longitudinal (56) indicatif de Tangle d'inclinaison longitudinal de ladite antenne (12) par rapport audit axe de reference (19); et 15 b) des moyens d'angle de roulis (60) concus pour fournir un signal d'angle de roulis (59) indicatif de Tangle de roulis de ladite antenne (12) par rapport audit axe de reference (19); c) lesdits moyens de traitement de signal de correction d'azimut cible (44, 45, 46) reagissant audit signal d'angle d'inclinaison longitudinal (56) et audit signal d'angle de roulis (59) pour fournir lesdits signaux d'azimut de cible corriges. 20 3. Un systeme radar monte sur vehicule selon la revendication 1, comprenant des moyens d'affichage (39) reagissant auxdits signaux de distance (55) et auxdits signaux d'azimut de cible corriges (47) pour fournir un affichage visuel indicatif de la position des cibles. 4. Un systeme radar monte sur vehicule selon la revendication 3, comprenant en outre : 25 a) des moyens de trajectographie (72) reagissant auxdits signaux d'azimut indiques par radar (43), auxdits signaux de distance (55) et auxdits signaux d'azimut de cible corriges (47) pour fournir : 30 aa) des signaux de position de cible indiques par radar predits (p'n), indicatifs des positions predites auxquelles des cibles poursuivies vont etre localisees par ladite antenne (12) apres une periode de balayage correspondant a la prochaine fois que chaque cible subit un balayage par ladite antenne (12), 35 ab) des signaux de position de cible lisses (STP) indicatifs de la position reelle des cibles poursuivies, et ac) des signaux de vitesse (Vp) indicatifs de la vitesse des cibles poursuivies; et 40 45 so b) des moyens logiques de trajectographie par antenne (49) reagissant auxdits signaux de position cible indiques par radar predits (b'n) pour effectuer la correlation entre les cibles poursuivies. c) lesdits signaux de position de cible lisses (STP) et lesdits signaux de vitesse (Vp) etant fournis auxdits moyens d'affichage (39) pour fournir un affichage visuel de la position et de la vitesse des cibles poursuivies. 5. Un procede de correction d'un signal d'azimut fournit par un systeme radar monte sur vehicule durant le deplacement angulaire d'une antenne de systeme radar (12) par rapport a un axe de reference (19) fixe, fixe par rapport au sol, le procede comprenant les etapes consistant a : a) recevoir des echos radar depuis au moins une cible; b) convertir lesdits echos radar en des signaux de distance (55) indicatifs des distances vis-a-vis des cibles respectives; 55 c) fournir des signaux d'azimut indiques par radar (43) indicatifs de la position de pointage de Tantenne (12) par rapport au vehicule (14), chacun desdits signaux de distance (55) ayant un signal d'azimut indique par radar (43) correspondant; 11 EP 0 614 534 B1 caracterise par le fait de : d) fournir des signaux de position d'antenne (56, 59) indicatifs de la position angulaire de I'antenne (12) par rapport a I'axe de reference (19); e) fournir des signaux d'altitude (53) indicatifs de la difference d'altitude entre le vehicule (14) et la cible; f) corriger lesdits signaux d'azimut indiques par radar (43) en reponse auxdits signaux de distance (55), auxdits signaux de position d'antenne (56, 59) et auxdits signaux d'altitude (53) pour fournir des signaux d'azimut de cible corriges (47) indicatifs de I'azimut reel par rapport au vehicule (14) des cibles respectives correspondant auxdits signaux de distance (55). Le procede selon la revendication 5, dans lequel lesdits signaux de position d'antenne (56, 59) comprennent une composante d'angle d'inclinaison longitudinale de Tangle d'inclinaison longitudinale de I'antenne (12) par rapport a Taxe de reference (19) et une composante d'angle de roulis indicative de Tangle de roulis de I'antenne (12) par rapport a Taxe de reference (19). Le procede selon la revendication 5, comprenant en outre Tetape consistant a fournir un affichage visuel (39) de la position de cible en reponse a des signaux de distance (55) correspondants et a des signaux d'azimut de cible corriges (47) correspondants. Le procede selon la revendication 5, comprenant en outre les etapes consistant a : a) fournir, en reponse auxdits signaux d'azimut indiques par radar (43) et auxdits signaux de distance (55), des signaux de position de cible indiques par radar predits (p'm), indicatifs des positions predites auxquelles les cibles vont etre localisees par I'antenne (1 2) apres une periode de balayage correspondant a la prochaine fois que chaque cible est exploree par I'antenne (12); et b) mettre en correlation les cibles poursuivies par utilisation desdits signaux de position de cible indiques par radar predits (p'n). Le procede selon la revendication 8, comprenant en outre les etapes consistant a : a) fournir, en reponse auxdits signaux de distance (55), auxdits signaux d'azimut indiques par radar (43) et audit signal d'azimut de cible corrige (55), des signaux de position de cible lisses (STP), indicatifs de la position reelle des cibles poursuivies; b) fournir des signaux de vitesse (Vp) indicatifs de la vitesse des cibles poursuivies; et c) fournir un affichage visuel (39) de la position et de la vitesse des cibles poursuivies en reponse auxdits signaux de position de cible lisses (STP) et auxdits signaux de vitesse (Vp). 12 o 1 i 1 r_i . i i * UJ ■ I I I 3 x-> * I 5 ^ 5 I r \ 1 EP 0 614 534 B1 - 3 f i g _7T 30 j 1 -?T\ €(P,0) \ J /// ^-V; t—f -7T 30 \ 7 / + H \x-—y I V try IT 0 -7T - 4 f i g ^ 42- 54 ALTITUDE 57" PITCH 60' ROLL £58 JZ-5 3 ■56 r59 61 RANGE (Rr) *— c— ^-55 0 h- 43 46 f(S) ^44 45| 14 I 1o s 1 - l " * 1 >-J I CD 3 o. — CO I I 4in Q. 1 e g r% ) >- "J *—-* to x EP 0 614 534 B1 Center^ f w 200 " B SET P r = R r . 201 202 SET P b = 0 | - 6 203 Vp=Vl 0=20'-f(0') 205 Pb'=Pb+e 207 CONVERT Pb.'Pr TO CARTESIAN" (P'n) 208 206 CONVERT P b . P r TO CARTESIAN (Pn) CONVERT 0, Rr TO CARTESIAN (R) 209 Pe^-Pf, 210 220 5TP'= P' dV=(PeXB/dt) 215 216 217 vp=vp+dv HROVIDt Vp TO CDU dP=(Vp)(dt) 204 223 224' STP=Pn + a Pe PROVIDE STP TO CDU 218 Pn+1=STP'+dP 225 PROVIDE Pp+1 FO ANTENNA TRACKING CONTROL LOGIC 226 Pn+rSTP+dP 227 CONVtRT Pn+1 TO POLAR CORD. (Pr.Pb) 228 Y : o n t NUE \ N rRACKING '?/ 6 129 230 RETURN)