Preview only show first 10 pages with watermark. For full document please download

Best Practices: Voice Over Ip (voip)

   EMBED


Share

Transcript

Best  Practices:  Voice  over  IP  (VoIP)           Ruckus  Wireless,  Inc.   880  West  Maude  Avenue,  Suite  #101   Sunnyvale,  CA  94085     v2011-­‐08-­‐31           Table  of  Contents     Overview  ...................................................................................................................................  3   Design  Considerations  ...............................................................................................................  4   VoIP  Challenges  on  a  Packet-­‐based  Network  ........................................................................  4   Delay  .................................................................................................................................  4   Jitter  ..................................................................................................................................  5   Quality  of  Service  (QoS)  ....................................................................................................  5   Packet  Loss  ........................................................................................................................  8   Handsets  .................................................................................................................................  10   5  GHz  Support  .....................................................................................................................  10   Roaming  ..............................................................................................................................  10   Handoffs  ..........................................................................................................................  10   IP  Roaming  ......................................................................................................................  11   Authentication  ................................................................................................................  12   Power-­‐Save  Mode  ...............................................................................................................  14   Capacity  ...............................................................................................................................  14   802.11n  ...............................................................................................................................  15   Deployment  environment  .......................................................................................................  16   RF  Interference  ....................................................................................................................  16   Site  survey  ...........................................................................................................................  16   Signal  Strength  ................................................................................................................  16   Construction  Materials  ....................................................................................................  18   Advanced  Wi-­‐Fi  Optimization   .................................................................................................  20   Power  Symmetry  .................................................................................................................  20   Mitigation  ........................................................................................................................  21   DTIM  Configuration  .............................................................................................................  21   Backhaul  ..................................................................................................................................  22   VoIP  and  Wi-­‐Fi  Mesh  ...........................................................................................................  22   VoIP  and  Wireless  Bridging  .................................................................................................  22   Summary  .................................................................................................................................  23     Best  Practices:  VoIP  |3   OVERVIEW   Voice  over  IP  (VoIP)  is  a  method  of  transmitting  voice  calls  over  packet-­‐based  networks.  As  it   grows  in  popularity,  the  demand  for  reliable  networks  capable  of  transmitting  voice  without   losing  voice  quality  has  increased.  In  particular,  VoIP  over  Wi-­‐Fi  is  a  growing  trend  as  VoIP   handsets  and  smartphones/laptops  with  VoIP  applications  grow.     The  popularity  of  mobile  phones,  interestingly  enough,  has  reduced  most  people’s  expectations   for  voice  quality.  Mobile  phones  can  have  a  much  lower  quality  than  a  traditional  landline.   Therefore  people  can  be  more  tolerant  of  occasional  blips  in  a  call.     A  good  VoIP  design  however  should  be  able  to  deliver  high  quality  voice  transmission  that  is  at   least  as  good  as  a  mobile  phone  and  ideally  much  better.   Wi-­‐Fi  in  particular  can  pose  challenges  for  voice.  Not  only  is  it  a  packet-­‐based  network  (rather   than  a  traditional  circuit-­‐based  network),  it  also  has  the  potential  for  high  latency/jitter  or   dropped  transmissions.  All  of  these  contribute  to  poor  voice  quality  and  can  impede  a  VoIP   deployment.   Fortunately,  with  the  right  Wi-­‐Fi  technology  and  careful  planning,  most  if  not  all  of  these   problems  can  be  avoided.  This  document  discusses  best  practices  for  planning  and  deploying   VoIP  over  Wi-­‐Fi.         Copyright © 2011 Ruckus Wireless, Inc.   4  |  Best  Practices:  VoIP   DESIGN  CONSIDERATIONS   Before  the  actual  design  of  a  VoIP  network  can  start,  there  are  some  issues  that  should  be   considered.  These  can  dramatically  impact  the  final  design,  deployment  and  performance.  These   include  the  following:        VoIP  handset  capabilities   Deployment  environment   Site  survey   Wi-­‐Fi  configuration  to  support  voice   Backhaul   VOIP  CHALLENGES  ON  A  PACKET-­‐BASED  NETWORK   The  first  thing  to  consider  is  what  VoIP  requires  from  a  network  to  function  correctly.  Voice  is   considered  the  most  time-­‐sensitive  application  on  a  network.  It  does  not  tolerate  any  kind  of   delay.   When  planning  a  voice  network,  the  following  guidelines  should  be  used:       Network  transmission  delay  (latency)   Inter-­‐packet  delay/jitter   Quality  of  Service  (QoS)   Packet  loss   DELAY   When  a  person  on  a  VoIP  call  begins  to  speak,  the  handset  immediately  packetizes  the  data  and   transmits  it  to  the  network.  The  network  is  then  responsible  for  getting  this  data  to  the  other   handset  as  quickly  as  possible.  Delay,  or  network  latency,  introduces  a  lag  in  the  time  one   person  speaks  and  the  other  person  hears  them.  Minor  delays  are  unavoidable  and  VoIP  can  be   tolerant  of  some  delay,  but  not  much.       Figure  1  Network  Delay   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |5   Most  Wi-­‐Fi  handset  manufacturers  recommend  network  latency  that  is  less  than  150ms  (end-­‐to-­‐ end)1.    Higher  latency  can  impact  the  quality  of  the  call  and  can  be  perceived  as  an  echo,  lag   time,  clicks,  voice  cutting  in  and  out  or  a  dropped  call.  Keep  in  mind;  the  latency  time  includes   the  entire  network  path  from  one  handset  to  the  other.  This  might  involve  transmission  over   Wi-­‐Fi,  a  wired  network,  a  public  network  or  VPN.   JITTER   Jitter  is  related  to  network  delay  and  represents  the  inter-­‐packet  delay  variation.  A  good  voice   call  should  have  a  consistent  delay  (low)  between  all  of  the  voice  packets.  This  helps  create  a   smoother  call  that  is  more  consistent  with  delivering  toll-­‐quality  voice.     Figure  2  Variable  Network  Delay  (Jitter)   QUALITY  OF  SERVICE  (QOS)   Whenever  a  device  transmits  data,  a  prioritization  should  occur.  QoS  is  a  standardized  method   to  do  this.  QoS  divides  data  into  four  types:  voice,  video,  data  and  background.  The  highest   priority  is  typically  voice.  This  means  whenever  a  device  transmits  data  it  should  always  send  the   voice  traffic  before  any  other  type  of  data.  Wi-­‐Fi  was  not  originally  designed  to  carry  voice  so   there  have  had  to  be  modifications  to  increase  reliability  and  add  QoS  to  the  wireless   networking  standard.   How  a  device  classifies  traffic  becomes  extremely  important.  There  are  several  ways  it  can  occur.   WMM  (Wi-­‐Fi  Multi-­‐Media)  is  a  Wi-­‐Fi  Alliance  interoperability  certification  based  on  the  IEEE   802.11e  standard.  This  method  is  based  on  the  transmitting  device  tagging  the  packet,   indicating  its  prioritization.  This  allows  a  single  device  to  transmit  different  types  of  data  (voice,   video,  etc.)  in  an  order  of  priority  that  protects  the  more  delay  sensitive  applications.   The  802.11e  amendment  specifies  eight  user  priorities  (UP)  that  align  with  previous  standards   such  as  802.1d  and  802.1p.  These  are  used  to  determine  Layer  2  link  layer  frame  prioritization.   The  eight  UPs  are  further  grouped  into  four  (4)  access  categories  (AC).  Each  AC  contains  two                                                                                                                            Recommended by the International Telecommunication Union Telecommunication Standardization Sector 1 (ITU-T) G.114. Copyright © 2011 Ruckus Wireless, Inc.   6  |  Best  Practices:  VoIP   user  priorities.  Note  that  User  priority  zero  (0)  as  shown  below  is  placed  into  the  Best  Effort  AC   instead  of  the  Background  AC  for  backwards  compatibility  with  non-­‐QoS  stations.   Priority   User  Priority  (UP)   802.1d  Tag   Access  Category   Designation   Lowest   1   BK   AC_BK   Background     2   -­‐   AC_BK   Background  (Spare)   0   BE   AC_BE   Best  Effort   3   EE   AC_BE   Excellent  Best  Effort   4   CL   AC_VI   Video  (Controlled   Load)   5   VI   AC_VI   6   VO   AC_VO   Highest   7   NC   AC_VO   Video     <  100ms  latency  &   jitter   Voice     <  10ms  latency  &  jitter   Voice/Network   Control   Table  1  UP  to  AC  Mappings  for  Layer  2  Quality  of  Service   WMM  requires  a  minimum  of  one  set  of  four  (4)  queues  per  WLAN.  Each  queue  maps  back  to   one  of  the  four  Access  Categories  (ACs)  mentioned  above.  Ideally,  a  Wi-­‐Fi  solution  will  support   four  queues  per  client  rather  than  per  WLAN.  This  allows  for  much  finer  granularity  and  network   access  control.   Why  Queue  Traffic?   There  are  several  ways  traffic  enters  a  network.  The  default,  if  no  QoS  mechanisms  are  used,  is   First  In,  First  Out  (FIFO).  In  this  case,  traffic  is  sent  as  soon  as  it  is  received.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |7     Figure  2  First  In,  First  Out  (FIFO)   In  the  diagram  shown  above,  FIFO  is  used,  i.e.  no  traffic  prioritization.  When  this  happens,  traffic   transmission  can  become  unpredictable.  The  above  example  shows  how  a  laptop  might  “grab”   more  airtime  because  it  transmits  first  and/or  faster  than  one  of  the  phones.  Therefore,  the   second  phone’s  traffic  is  delayed.   When  traffic  is  queued,  the  network  (AP)  can  choose  how  and  when  to  transmit  each  frame  of   traffic.     Figure  3  QoS  Classification  and  Queuing   Copyright © 2011 Ruckus Wireless, Inc.   8  |  Best  Practices:  VoIP   In  the  figure  shown  above,  the  traffic  from  all  three  devices  is  sorted  into  the  appropriate  queue.   The  phones  are  put  into  the  high  priority  (voice)  queue  and  are  transmitted  before  the  lower   priority  data  traffic  from  the  laptop.   End-­‐to-­‐End  QoS   To  fully  support  WMM,  the  entire  network  must  support  it.  The  VoIP  client  must  identify  the   traffic  correctly,  then  the  Wi-­‐Fi  AP  and  finally  whatever  device  sits  between  the  Wi-­‐Fi  network   and  the  wired  network.  Wired  networks  have  a  similar  mechanism  to  WMM  called  TOS  (Type  of   Service)  and  COS  (Class  of  Service)  are  bits  that  can  be  set  within  a  frame  to  indicate  its  priority.   Most  network  switches  and  routers  recognize  and  honor  this  setting.     A  more  recent  method  is  DSCP  (Differentiated  Services  Code  Point)  also  known  as   DiffServ.  This   is  a  more  sophisticated  replacement  for  TOS  and  COS  and  should  be  preferred.  Most  enterprise-­‐ class  switches  and  routers  support  DiffServ.   Another  way  to  implement  QoS  is  for  the  network  itself  to  recognize  and  automatically  classify   traffic  based  on  the  application.  This  is  something  Ruckus  APs  already  do.  The  AP  will  classify   traffic  into  voice,  video,  data  and  background  queues  and  transmit  the  data  accordingly.   Although  the  WMM  standard  does  not  require  it,  Ruckus  APs  also  implement  per-­‐client  traffic   queues  to  further  differentiate  and  priority  service  amongst  multiple  devices  contending  for   network  access2.   PACKET  LOSS   Like  network  delay  and  jitter,  packet  loss  is  to  be  avoided  at  all  costs.  Even  a  1%  packet  loss  can   significantly  degrade  a  call.  Packet  loss  in  a  Wi-­‐Fi  network  is  a  particular  concern  since  it  is  a   contention-­‐based,  half-­‐duplex  medium  in  which  only  one  device  may  transmit  at  a  time.   Multiple  transmissions  will  result  in  collisions,  retransmissions,  data  corruption  and  packet  loss.                                                                                                                                 2  The  WMM  certification  only  requires  a  single  set  of  queues  for  a  WLAN.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |9   Another  source  of  packet  loss  in  a  Wi-­‐Fi  network  is  RF  interference.  The  largest  source  of  RF   interference  in  any  Wi-­‐Fi  network  is  Wi-­‐Fi  itself.  This  is  usually  the  most  significant  source  of  RF   by  far.  However  there  are  cases  where  other  devices  may  transmit  on  the  same  frequency.  This   is  particularly  true  of  the  2.4  GHz  spectrum  and  is  a  major  reason  why  it  should  be  avoided  if   possible.   Copyright © 2011 Ruckus Wireless, Inc.   10  |  Best  Practices:  VoIP   HANDSETS   The  most  critical  piece  in  a  deployment  is  the  handset.  It  must  not  only  interact  with  the   backend  PBX,  it  needs  to  seamlessly  integrate  with  the  Wi-­‐Fi  network  as  well.  Not  all  handsets   are  the  same.  Some  support  more  Wi-­‐Fi  integration  options  than  others.  This  can  dramatically   affect  voice  quality  and  reliability.  Therefore  selection  of  the  handset  is  the  single  largest  factor   in  the  probable  success  of  a  deployment.  Ideal  features  for  a  handset  include:        Dual-­‐band  (5  GHz  support)   WMM     Roaming     Power  save/battery  life   802.11n   5  GHZ  SUPPORT   The  2.4  GHz  spectrum  (802.11bg)  is  the  mostly  heavily  used  in  Wi-­‐Fi.  This  means  it  is  potentially   subject  to  more  interference  than  other  spectrums.  If  a  handset  is  able  to  operate  on  the  5  GHz   spectrum  (802.11a),  the  chances  of  interference  are  much  lower.  The  5  GHz  band  offers  far   more  non-­‐overlapping  channels,  lower  propagation  (smaller  cell  size),  and  much  less  RF   interference.     ROAMING   Most  VoIP  deployments  occur  in  a  multi-­‐AP  environment.  Therefore  the  handset  must  be  able   to  roam  quickly  and  seamlessly  to  avoid  call  disruption.  This  is  where  many  handset   manufacturers  differ  in  their  implementations.     HANDOFFS   In  general,  a  Wi-­‐Fi  device  of  any  type  is  the  one  that  makes  the  decision  to  roam.  Contrary  to   popular  belief,  the  Wi-­‐Fi  infrastructure  (with  one  rare  exception)  has  no  way  to  tell  a  client   device  to  move  to  another  AP.   Standards-­‐based  Roaming   802.11r  is  an  IEEE  standard  that  was  ratified  in  2008.  It  is  designed  to  address  this  exact  issue   with  fast  handoffs  and  roaming  within  a  WLAN.  Unfortunately,  very  few  clients  support  it  and  no   VoIP  handsets  at  the  time  of  this  document.  If  an  802.11r  handset  is  available,  however,  it  is   definitely  preferable.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |11   When  a  Handset  Roams   The  main  way  a  handset  decides  to  roam  is  signal  strength.  When  the  signal  strength  drops   below  a  certain  threshold,  the  device  will  move  to  another  AP  with  a  stronger  signal  if  one  is   available.  To  assure  smooth  handoffs  and  minimal  service  interruption,  it  is  important  to  make   sure  there  is  always  at  least  one  AP  with  a  strong  signal  (  ~  -­‐65  dBm)  within  range  of  a  handset.   Some  handsets  expose  the  roaming  settings  to  an  administrator.  These  may  vary  by   manufacturer.  If  supported,  some  parameters  that  may  need  to  be  configured  include  the   following:   Scan  Start  (dBm)  –  When  the  signal  strength  reaches  this  level,  the  handset  will  look  for  a  better   AP  with  a  stronger  signal.   Handoff  Start  (dBm)  –  Threshold  at  which  the  handset  will  roam  if  a  better  AP  is  available.   Handoff  Delta  (dBm)  –  Difference  between  signal  strength  to  current  AP  vs.  another  available   AP.   Each  deployment  may  require  different  settings,  however  a  good  place  to  start  is:   Action   Signal  Strength  (dBm)   Scan  Start   -­‐60  dBm   Handoff  Start   -­‐65  dBm   Handoff  Delta   10  dBm     IP  ROAMING   One  significant  delay  that  can  occur  during  roaming  is  when  a  handset  moves  from  an  AP  on  one   subnet  to  an  AP  on  a  different  subnet.  Moreover,  as  soon  as  the  handset’s  IP  address  changes,   any  active  sessions  (RTP,  etc.)  will  be  broken.   The  simplest  way  to  avoid  this  is  a  flat  network  for  the  voice  SSID.  This  way  the  handset  can   keep  its  address  as  it  moves  between  APs  in  the  WLAN.  Sometimes  different  subnets  are   unavoidable  however.  In  that  case,  voice  traffic  should  be  tunneled  back  to  the  controller.     The  controller  acts  as  a  proxy  for  the  handset  and  forwards  its  traffic  to  the  second  subnet  while   allowing  the  client  to  keep  its  original  address.  This  is  completely  transparent  to  the  handset  and   Copyright © 2011 Ruckus Wireless, Inc.   12  |  Best  Practices:  VoIP   will  not  affect  voice  calls.  This  type  of  solution,  although  not  typically  a  good  choice  for  data,   works  very  well  for  voice  due  to  the  low  bandwidth  requirements.     Figure  4  Layer  3  Roaming   The  figure  above  shows  IP  roaming  in  action.  The  handset  originally  connects  to  AP1  and   receives  an  address  from  VLAN  100.  The  phone  then  roams  to  AP2,  which  is  on  VLAN  200.   Instead  of  forcing  the  phone  to  drop  its  IP  address  and  acquire  a  new  one,  the  AP  creates  a   tunnel  to  the  ZoneDirector  containing  the  phone’s  traffic  on  VLAN  100.  The  ZoneDirector  is   connected  to  the  router  via  a  trunked  port  and  forwards  the  phone’s  traffic  to  the  network.  In   this  way,  the  phone’s  original  IP  address  is  preserved  and  it  does  not  need  to  drop  its  connection   after  a  Layer  3  roam.   AUTHENTICATION   There  are  several  supported  authentication  mechanisms  over  Wi-­‐Fi.  The  most  popular  are:      Open  (no  authentication/encryption)   WPA2  with  a  pre-­‐shared  key  (PSK)   WPA2  with  802.1X.   When  a  Wi-­‐Fi  device  moves  from  one  AP  to  another,  it  must  authenticate  as  per  the  standards.   Authentication  can  take  time  and  introduce  delay,  so  it  is  important  to  understand  the  impact   authentication  has  on  roaming.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |13   Roaming  in  an  open  network  is  simple  as  there  is  no  delay  due  to  authentication  negotiation.   The  downside  of  an  open  network  is  data  is  not  encrypted.   WPA2  with  a  pre-­‐shared  key  provides  encryption  via  a  shared  secret  (PSK).  Since  the   authentication  happens  with  the  WLAN,  it  is  also  fairly  quick.  When  a  device  roams  to  a  new  AP,   it  presents  the  PSK,  which  the  AP  can  verify  very  quickly.  Since  data  is  encrypted  and  roam  times   are  low,  this  is  a  popular  choice  for  VoIP  implementations.   WPA2  with  802.1X  is  the  most  secure  option  that  authenticates  the  device  with  the  user’s   credentials  rather  than  a  single,  shared  key.  Because  of  this,  outside  devices  are  introduced  into   the  authentication  process  such  as  a  RADIUS  server,  routers,  etc.  The  delay  introduced  can  be   significant  and  negatively  impact  voice  quality.  Remember  the  standards  require  the  handset   authenticate  every  time  it  roams.  So  not  only  does  this  authentication  delay  happen  when  the   handset  first  connects  to  the  WLAN,  it  occurs  every  time  the  handset  moves  through  the   network.   To  get  around  this  delay,  there  are  two  techniques  in  use  today:  PMK  caching  and  Opportunistic   Key  Caching  (OKC).     The  PMK  (Pair-­‐wise  Master  Key)  is  created  after  the  first  successful  authentication  occurs.  If   both  the  handset  and  the  AP  support  PMK  caching,  the  client  device  can  save  the  master  session   key  on  an  AP.  When  the  client  roams  to  another  AP,  it  must  do  a  full  authentication  again,   however  if  it  roams  back  to  the  first  AP  it  can  use  the  PMK  to  skip  the  full  authentication  process   (RADIUS  server,  etc.).  This  allows  the  client  to  roam  much  faster.  But  it  does  have  the   disadvantage  of  only  helping  a  client  roam  back  to  a  recently  visited  AP.  It  does  not  help  when   the  handset  moves  to  a  new  AP  it  has  not  visited.   Opportunistic  Key  Caching  attempts  to  solve  this  problem.  In  this  case  the  Wi-­‐Fi  network   distributes  the  client  device’s  PMK  to  APs  near  the  client  that  are  likely  to  be  roaming  candidates.   When  the  handset  moves,  it  can  offer  its  PMK  to  the  AP,  which  already  has  it  cached  and  skip   full  authentication  and  handshaking.     If  802.1X  authentication  will  be  used,  the  handsets  and  APs  must  support  OKC.  This  should  be  a   requirement  for  any  handset  selection.  Otherwise  it  is  highly  likely  the  latency  introducing  from   full  authentication  during  roaming  will  degrade  voice  quality.   Ruckus  offers  a  compromise  that  can  be  useful  for  those  who  dislike  the  weak  security  of  a   single  shared  PSK  and  yet  want  to  avoid  the  potential  roaming  issues  inherent  with  802.1X  or   have  devices  that  do  not  support  OKC.  The  solution  is  Dynamic  PSK.  With  Dynamic  PSK,  each  Wi-­‐ Fi  device  is  given  its  own  PSK,  which  is  bound  to  that  device’s  specific  MAC  address.     Copyright © 2011 Ruckus Wireless, Inc.   14  |  Best  Practices:  VoIP   This  is  a  superior  solution  to  typical  PSK  networks;  each  device  has  a  unique  key  and  yet  there  is   no  802.1X  service,  which  side  steps  many  support  issues.   POWER-­‐SAVE  MODE   Handsets  have  a  very  limited  battery  life.  Constant  radio  use  for  Wi-­‐Fi  can  quickly  drain  the   battery.  To  get  around  this  problem,  there  are  standardized  ways  a  device  can  inform  the  Wi-­‐Fi   network  that  it  needs  to  go  into  power  save  mode.  When  a  handset  is  not  off  hook  (active  voice   call)  it  can  use  this  to  reduce  the  amount  of  time  it  uses  the  radio  and  increase  battery  life.     There  are  several  ways  to  implement  power  save  in  a  Wi-­‐Fi  network.  Any  handset  selected  for  a   VoIP  implementation  should  support  at  least  one.   CAPACITY   A  VoIP  connection  transmits  relatively  little  traffic,  ranging  in  the  hundreds  of  kilobits  per   second.  It  seems  strange  to  discuss  network  capacity.  But  capacity  is  even  more  important  for   voice  than  data.  The  reason  for  this  requirement  comes  back  to  latency  and  jitter.  If  multiple   phones  are  on  the  same  AP,  the  AP  will  rotate  receive  or  transmit  that  data  for  that  phone   before  moving  to  the  next  phone.  If  there  are  enough  phones  on  an  AP  the  time  between  each   phone  getting  access  to  the  network  can  be  long  and  add  to  network  delay  and  jitter.       Figure  5  Capacity  vs.  Delay  for  VoIP   For  this  reason  it  is  recommended  no  more  than  about  20  phones  should  be  on  a  single  AP.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |15   802.11N   As  802.11n  gains  popularity  it  is  also  starting  to  see  widespread  adoption  in  the  VoIP  handset   market.  It  might  seem  strange  for  a  phone  to  support  Wi-­‐Fi  connections  in  the  hundred(s)  of   megabits  per  second  when  a  voice  call  typically  consumes  less  than  a  hundred  or  so  kilobits  per   second.     The  advantages  of  802.11n  for  voice  lie  in  the  reduced  airtime,  i.e.  the  h andset  gets  on  and  off   the  air  much  more  quickly.  This  results  in  less  delay  and  improves  overall  performance.  802.11n   can  also  take  advantage  of  multipath  to  improve  signal  quality3.   Although  802.11n  is  not  required  for  a  good  voice  implementation,  it  is  very  desirable.                                                                                                                           3  Legacy  (non-­‐802.11n)  Wi-­‐Fi  networks  do  not  deal  well  with  signal  reflections   (multipath)  and  prefer  line  of  sight  (LoS)  connections.   Copyright © 2011 Ruckus Wireless, Inc.   16  |  Best  Practices:  VoIP   DEPLOYMENT  ENVIRONMENT   The  physical  location  of  a  Wi-­‐Fi  deployment  can  have  a  significant  impact  on  the  overall  design   and  eventual  performance.  Key  factors  that  can  affect  this  include:      RF  interference   Site  surveys   Construction  materials   RF  INTERFERENCE   As  mentioned  previously,  RF  interference  can  affect  overall  Wi-­‐Fi  network  performance  and   introduce  significant  delay/jitter.  VoIP  requires  a  reliable,  predictable  connection  to  function   well.  Therefore,  anything  the  Wi-­‐Fi  network  can  do  to  improve  its  connection  to  the  handset  or   reduce  overall  RF  noise/interference  will  greatly  improve  voice  quality.   Environmental  factors  that  can  introduce  noise:      The  Wi-­‐Fi  network  itself   Other  Wi-­‐Fi  networks   Non-­‐802.11  RF  (microwaves,  non-­‐DECT  phones,  RFID,  etc.)   Some  noise  is  unavoidable.  Every  Wi-­‐Fi  network  will  produce  some  level  of  noise  that  can   interfere  with  its  own  operations.  There  are  also  other  sources  of  noise  that  may  or  may  not  be   under  control  for  mitigation:  neighboring  companies’  Wi-­‐Fi,  non-­‐802.11  security  systems,  etc.   SITE  SURVEY   Whenever  a  Wi-­‐Fi  network  must  support  voice,  a  site  survey  is  crucial.  As  noted  above,  every   location  has  its  own  unique  combination  of  RF  noise,  construction  materials,  layout,  etc.  that   can  affect  Wi-­‐Fi  performance.   SIGNAL  STRENGTH   Most  VoIP  handset  manufacturers  recommend  minimum  signal  strength  of  -­‐65  dBm.  This  is   contrasted  with  laptops,  which  can  often  function  with  signal  strength  of  -­‐75  dBm.  A  good  site   survey  will  take  this  into  account  and  survey  to  -­‐65  dBm  rather  than  a  lower  rate.     SNR  (Signal  to  Noise  Ratio)  must  be  part  of  any  signal  strength  analysis  since  it  takes  into   consideration  the  proportion  of  interference  to  the  signal.  For  example,  a  survey  might  yield   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |17   signal  strength  of  -­‐65  dBm  in  the  surveyed  area.  This  seems  like  good  coverage,  however  if  the   noise  floor  (background  noise)  is  very  high,  it  will  reduce  the  effectiveness  of  that  signal.  If  the   noise  factor  is  large  enough,  e.g.  -­‐70  dBm,  that  yields  an  effective  SNR  of  only  5  dBm,  which  is   very  poor.  Effectively,  the  noise  is  so  loud  it  is  drowning  out  the  real  signal.  To  maintain   excellent  signal  strength  and  quality,  an  SNR  between  20-­‐25  dBm  is  usually  recommended.   It  is  also  important  to  perform  the  survey  to  ensure  the  correct  signal  strength  is  being  recorded.   This  includes:     Passive  vs.  active  survey  tools  –  in  particular,  Ruckus  APs  with  BeamFlex  should  always   be  surveyed  in  active  mode  (passing  traffic  to  the  client  device)4   Use  the  right  client  device  for  the  survey   A  common  mistake  when  surveying  for  voice  is  to  measure  signal  strength  with  a  laptop.  This   can  result  in  insufficient  signal  strength  for  phones,  which  typically  have  much  weaker  radios.   Instead,  always  make  sure  the  survey  is  performed  with  the  exact  handset  that  will  be  deployed.   If  this  is  not  feasible,  use  a  device  with  similar  radio/power  characteristics.  Using  the  right  client   device  will  help  ensure  the  survey  is  useful  and  yields  accurate  results  for  the  design.                                                                                                                           4  For  more  information  on  site  surveys,  please  see  the  Ruckus  document  Best  Practices:   Site  Surveys.   Copyright © 2011 Ruckus Wireless, Inc.   18  |  Best  Practices:  VoIP     Figure  6  Representative  Link  Budgets  for  Clients   The  diagram  shown  above  gives  some  examples  of  different  clients  and  their  power  and  range.   In  general,  devices  with  less  Tx  power  will  have  less  range  to  maintain  a  signal.  This  example   uses  a  -­‐70  dBm  floor,  which  would  not  be  appropriate  for  VoIP.   CONSTRUCTION  MATERIALS   RF  will  degrade  as  an  inverse  square  over  distance  in  free  space.  Within  a  building  it  typically   degrades  much  faster  due  to  walls,  doors,  elevators,  etc.  The  amount  a  signal  is  reduced  as  it   goes  through  a  wall  is  the  attenuation  rate.  This  is  a  primary  reason  why  physical  site  surveys   are  recommended  for  VoIP  deployments.  Only  an  on-­‐site  analysis  can  fully  compensate  for   building  construction  and  layout.   Not  all  construction  materials  are  conducive  to  good  Wi-­‐Fi  operations.  In  particular,  if  non-­‐ 802.11n  handsets  are  used,  multipath  can  cause  problems.  Multipath  occurs  when  there  is   reflection,  diffraction  or  scattering  of  the  signal.  Highly  reflective  materials  such  as  mirrors  and   glass  can  cause  this.     RF  absorption  should  also  be  mentioned  here.  When  planning  coverage,  the  materials  must  be   taken  into  consideration.  A  large  number  of  glass  walls,  metal,  etc.  can  reduce  the  Wi-­‐Fi  signal  to   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |19   the  point  that  it  is  not  useable  by  a  handset.  Given  their  weaker  radios,  handsets  typically  need   a  much  stronger  connection  than  other  devices  such  as  laptops.   Voice  typically  requires  100%  coverage  to  ensure  seamless  service  for  users.  This  means  it  is   particularly  important  to  ensure  the  minimum  signal  strength  is  available  everywhere.     Copyright © 2011 Ruckus Wireless, Inc.   20  |  Best  Practices:  VoIP   ADVANCED  WI-­‐FI  OPTIMIZATION   There  are  several  things  that  have  not  been  discussed  yet  that  a  WLAN  can  do  to  improve  voice   performance.  These  include:     Transmit  power  symmetry   DTIM  setting   POWER  SYMMETRY   A  commonly  overlooked  optimization  is  matching  AP  and  handset  transmit  (Tx)  power.   Depending  on  local  regulatory  restrictions,  APs  can  transmit  at  100  mW  or  higher.  This  is  in   contrast  to  a  typical  handset,  which  transmits  at  around  14  mW5.     When  Tx  power  is  not  balanced  (symmetric)  a  situation  can  occur  in  which  the  handset  can  hear   the  AP  quite  well  and  thinks  it  has  a  solid  connection.  The  weaker  handset  radio  means  the   signal  received  at  the  AP  is  much  lower.  If  the  delta  gets  too  great  the  handset  will  not  roam  and   yet  packets  are  dropped  between  it  and  the  AP  due  to  the  lower  strength  signal.       Figure  7  Tx  Power  Asymmetry   Symptoms  of  this  condition  include  client  stickiness  (does  not  roam),  dropped  calls  and  constant   connects/disconnects  from  the  WLAN.                                                                                                                           5  Transmit  power  can  vary  by  manufacturer.   Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |21     MITIGATION   The  simplest  way  to  reduce  this  problem  is  to  reduce  the  Tx  power  of  the  AP.  The  power  should   match  the  handset  power.    Reducing  Tx  power  on  an  AP  will  reduce  its  coverage  area,  so   implementing  this  change  will  change  coverage.  However,  the  need  to  have  consistently  high   signal  strength  everywhere  would  mandate  a  similar  configuration  anyway.  So  this  is  rarely  a   problem.   DTIM  CONFIGURATION   A  Delivery  Traffic  Indication  Message  (DTIM)  is  included  in  the  AP  beacon.   An  AP  uses  this  to   notify  a  client  that  there  is  data  waiting.  This  is  particularly  important  for  devices,  such  as   handsets,  that  use  power  save  mode  to  conserve  battery  life.   DTIM  settings  can  vary  by  handset  manufacturer  depending  on  how  they  implement  power  save   and  wake  up.  A  good  number  to  start  with  is  1  or  2.  This  variable  is  set  on  a  per-­‐WLAN  and  per   AP  basis  via  the  CLI.     Copyright © 2011 Ruckus Wireless, Inc.   22  |  Best  Practices:  VoIP   BACKHAUL   Since  most  VoIP  installations  will  traverse  some  type  of  backhaul  (wired,  wireless,  etc.)  to  reach   the  PBX  and  other  handsets,  the  backhaul  can  also  be  optimized  for  voice  deployments.  In   particular:  latency  and  preservation  of  QoS.   VOIP  AND  WI-­‐FI  MESH   A  common  question  in  Wi-­‐Fi  design  is  whether  voice  may  be  deployed  over  a  mesh  network.  In   general,  mesh  should  be  avoided  since  it  will  introduce  some  delay.  How  much  depends  on  the   connection  speed  of  the  mesh  backhaul,  reliability,  etc.     Latency  is  a  mesh  network  increases  with  the  number  of  mesh  hops,  i.e.  how  many  times  a   client’s  data  must  hop  from  one  AP  to  another  before  it  reaches  the  wired  network.  In  a  multi-­‐ hop  mesh  network  this  can  introduce  considerable  delay.  Delay  can  be  even  worst  if  there  are   two  Wi-­‐Fi  handsets  involved  –  traffic  must  traverse  the  Wi-­‐Fi  from  one  handset  and  then   downlink  to  a  handset  somewhere  else.  This  effectively  doubles  the  latency  introduced  by  the   mesh  network.   Ideally,  any  Wi-­‐Fi  network  that  supports  voice  should  avoid  mesh.  Wired  APs  will  give  the  fastest   performance  and  introduce  the  least  delay.  If  mesh  is  absolutely  required  the  network  designer   could  consider  a  single  hop  mesh  network.     To  ensure  the  reliability  and  performance  of  a  mesh  backbone,  the  following  guidelines  should   be  used:     All  mesh  nodes  must  be  connected  with  a  very  high  signal  strength/transmit  rates/SNR   The  mesh  nodes  should  be  dual-­‐radio  with  the  backbone  traffic  on  the  5  GHz  radios  only.   Following  these  simple  steps  will  greatly  increase  the  performance  of  VoIP  over  a  mesh  network.   VOIP  AND  WIRELESS  BRIDGING   If  VoIP  traffic  must  traverse  two  buildings  over  a  wireless  bridge,  much  of  the  previous  section  is   also  true.  A  bridge  with  a  poor  connection  between  the  bridge  endpoints  will  not  be  able  to   maintain  voice  calls  well.       Copyright © 2011 Ruckus Wireless, Inc.     Best  Practices:  VoIP  |23   SUMMARY   This  document  was  written  to  provide  an  overview  of  the  important  design  issues  involved  in   deploying  VoIP  over  a  Wi-­‐Fi  network.  Voice  network  requirements  are  very  stringent  requiring   minimal  latency  and  jitter.     Some  critical  design  issues  that  must  be  considered  as  part  of  any  deployment  include:            VoIP  handset  selection   Handset  radio  (spectrum)  capability   Quality  of  Service/WMM  support   Fast  roaming/authentication   100%  coverage  with  high  signal  strength   Minimal  RF  interference   Site  surveys   WLAN  optimization  for  voice   Reliable,  predictable  backhaul         Copyright © 2011 Ruckus Wireless, Inc.