Preview only show first 10 pages with watermark. For full document please download

Building Antenna Systems

   EMBED


Share

Transcript

In-­‐Building   Antenna  Systems   -­‐  Tools  &  Tips  -­‐   Marc Landry Sr. Sales Engineer 780.628.4886 [email protected] Session  Overview…   •  Stroll  through  memory  lane…   –  Evolu4on  of  Wireless  Networks  &  where  are  today.   •  In-­‐building  Antennas  Systems.   –  Why  are  they  cri4cal  to  wireless  networks   –  Design  4ps  and  considera4ons   •  Types  of  Antenna  Systems  –  Passive  –  Ac4ve   •  Tools   –  Design,  measurement,  commissioning…   •  Founded  in  2007   •  Privately  held  Canadian   company   •  Main  focus:   –  Wireless  Telecom  Industry     –  Test  &  Measurement   •  Well  funded  >  $100  M   •  Offices   Ownership  held  by  employees   –  Montreal         and  key  partners.   –  Toronto   •  Opera4ng  compliant  with   –  Edmonton   ISO9000  Quality  Standards   •  Customer  Services   –  Products  &  Solu4ons     –  Systems  Engineering  &   Design.   –  Technical  Sales  &  Value   add  solu4ons.     Core  business…   Carrier  SoluAons   RF  &  Microwave   Test  &  Measurement   -­‐  Basesta4on  Antennas   -­‐  Cavity  Filters   -­‐  PIM  Analysers   -­‐  Stealth  Antenna  Mounts   -­‐  Mul4-­‐band  Combiners   -­‐  Spectrum  Analysers   -­‐  Tower  Structures   -­‐  Connectors   -­‐  Mul4-­‐meters   -­‐  In-­‐Building  DAS  Systems   -­‐  Adapters   -­‐  Fiber  Inspec4on  Probes   -­‐  Repeaters  /  Amplifiers   -­‐  Low  PIM  Jumpers   -­‐  Op4cal  OTDRs   -­‐  Equipment  Racks   -­‐  Cable  Assemblies   -­‐  Power  Meters   -­‐  Power  Systems   -­‐  Bulk  Coax  Cable   -­‐  Signal  Generators   -­‐  Fiber  Systems   -­‐  A`enuators   -­‐  Power  Supplies   -­‐  Termina4ons   -­‐  Spli`ers  /  Couplers   Stroll  Through  Memory  Lane…   The  wireless  industry  is  on  the  verge  of  coming   around  full  circle.   •  1840  -­‐  Samuel  Morse  the  inventor  of  the  worlds   first  digital  communica4on  system…  The  “Morse   Code”  a  medium  through  which  the  world  was   now  connected  via  telegraph.   •  1895  –  Guglielmo  Marconi  sent  the  first  radio   transmission  using  Morse  Code…  Essen4ally  a   digital  transmission.   •  1926  -­‐  Karl  Arnold  a  German  ar4st  created  a   visionary  cartoon  showing  the  use  of  mobile   phones,  published  in  the  German  sa4rical   magazine  Simplicissimus.   •  1973  –  Mar4n  Cooper  of  Motorola  placed  the   first  Cellphone  call  to  his  main  compe4tor  Dr.   Joel  S.  Engel  of  Bell  Labs.   •  “…  Joel,  this  is  Marty.  I’m  calling  you  from  a  cell   phone,  a  real  handheld  portable  cell  phone…”     Stroll  Through  Memory  Lane…   The  wireless  industry  is  on  the  verge  of  coming   around  full  circle.   •  1980-­‐90’s  –  First  cellular  networks  began  to   immerge.    Analogue  based  communica4on   networks,  AMPS…   •  1995  –  By  now  mobile  networks  had  evolved  into   the  Digital  age  with  the  adop4on  of  GSM,  TDMA,   CDMA  standards…   •  2000  –  Pre-­‐3G  Wideband  systems  have   immerged.  CDMA2000  1xEV-­‐DO.   •  2007  –  3G  Networks  based  on  WCDMA/UMTS   have  been  adopted  by  over  40  countries   including  Canada  &  USA.   •   Today  –  the  global  average  for  mobile   penetra4on  is  93%.    Almost  exclusively  on  Digital   mobile  networks  suppor4ng,  voice,  SMS  &  data.     Stroll  Through  Memory  Lane…   The  wireless  industry  is  on  the  verge  of  coming   around  full  circle.   •  When  Marconi  sent  the  first  radio  transmission   he  struggled  to  reach  a  kilometer…   •  As  mobile  networks  evolved,  Radio  Planners   struggled  to  reach  the  longest  possible  distances   and  cover  the  greatest  area.   •  These  days  we  find  ourselves  back  in  Marconi’s   shoes…  Radio  Planners  are  now  struggling  to   meet  service  levels  from  in-­‐building  antennas  to   reach  30-­‐40  meters.   •  The  air-­‐interface  in  todays  high  performance   mobile  networks  apply  such  complex  modula4on   schemes  that  maintaining  a  good  quality  radio   link  is  difficult.   •  Commonality  between  all  radio  systems:   •  Signal  to  Noise  ra4o   •  Quality  of  the  radio  link     Around  Full  Circle…   …  From  Marconi’s  first  Morse   Code  transmission.   …  To  Analogue  Radio     Systems.   …  To  today’s  4G  LTE   …  and  tomorrows  VoLTE   Voice  over  LTE   We  have  come  Full  Circle   complete  IP  based,     Digital  Networks…   Why  is  DAS  Cri4cal?  Business  Case   •  Seamless  Mobility   –  Modern  day  concept  of  “One  person,  One  Number”  also   referred  to  as  the  “Mobile  Office”.   –  Many  employers  are  encouraging  open  concept  office   “hotel”  architectures.       •  Employees  are  free  to  come  and  go  as  they  wish.   •  Work  from  their  main  office,  satellite  office  or  from  home.     –  Service  levels  should  be   consistent  regardless  of   whether  you  are  at  Home,   on  the  Road  or  in  the  Office.   –  Seamless  Voice  &  Data   service  is  paramount.   Why  is  DAS  Cri4cal?  Business  Case   •  Mobile  Traffic  Pa`erns   –  Global  traffic  pa`erns  for  mobile  use  has  shiped   indoors.    Recent  studies  show  as  much  as  70-­‐80%   of  total  traffic.   •  Traffic  “Hot-­‐Spots”   –  Most  developed  ci4es  boast  50%  of  mobile  traffic   can  be  traced  to  10%  of  the  buildings.   –  These  buildings  are  typically:   •  •  •  Large  Corporate  Offices     Shopping  Malls   Airports   –  Office  buildings  with  a  heavy  concentra4on     of  Voice  &  Data  power  users  can  pose     specific  challenges  for  high  performance   In-­‐Building  DAS  designs.    Care  must  be  taken     when  designing  for  these  types  of  loca4ons.   Why  is  DAS  Cri4cal?  Technical  PerspecBve   •  Main  Technical  Considera4ons   –  Service  Levels  for  Voice  &  Data   •  Voice  quality  &  Data  Rates.     –  Network  Resources  &  Limita4ons   •  Adap4ve  Modula4on  based  on  Radio  Link   •  High  penetra4on  loss  into  buildings  from   the  Macro  Layer  (poor  coverage)   •  High  Rise  Buildings  –  Pilot  Pollu4on   •  Sop  Handover  creates  extra  load   Network  Resources?  ModulaBon  Schemes   BPSK   •  More  DL  Power  Per  User   •  Lower  UL  Noise  load   16QAM   64QAM   Range   –  Radio  Link  Quality   QPSK   Service   •  Demand  for  high  data  rates   requires  RF  Planners  to  bring  the   mobile  user  closer  to  the  signal   source.     ANT   •  Adap4ve  modula4on   –  3G  /  4G  network  architectures  employ   complex  modula4on  schemes.     –  Due  to  the  sensi4vity  of  the  modula4on   constella4ons  the  system  will   Downgrade  /  Upgrade  the  modula4on   based  on  Radio  Link  Quality.       •  Important  RF  Planning  is  to  place  antennas  in  “hot-­‐spot”  loca4ons  where   data  traffic  load  will  be  greatest.  This  will  ensure  op4mal  64QAM     Modula4on  for  the  high  load  area.   Network  Limita4ons?   •  Macro  Coverage  –  Building  Penetra4on   –  Indoor  service  in  Urban  Jungle  environments  rely  heavily  on   reflec4ons  from  the  Macro  Layer,  very  li`le  Line-­‐of-­‐Sight.   –  Modern  day  energy-­‐efficient  LEED  buildings  include   sophis4cated  outer  insula4ng  materials;  metal  coated   windows.   –  Macro  Sites  may  provide   coverage  close  to  windows   while  leaving  the  building  core   under  served  or  not  served  at   all  due  to  high  path  loss.   –  Even  office  towers  with  a   Macro  Site  on  the  roof  can   suffer  coverage  issues  at  the   lower  floors  and  building  core.   Network  Limita4ons?   •  Macro  Coverage  –  Pilot  Pollu4on   –  The  upper  floors  of  tall  High-­‐Rise  Buildings  can  suffer  from   Interference  from  distant  Macro  Sites.   •  This  interference  is  referred  to  as  Pilot  Pollu4on.   –  Upper  floors  will  have  direct     Line-­‐of-­‐Sight  to  many   Macro  sites  across  the   city.    The  power  levels     of  these  sites  arrive  at   mobile  users  at  similar   levels.   –  Because  of  this,  mobile   devices  are  unable  to     select  a  dominant  serving   cell.   Network  Resources?   •  Macro  Coverage  Indoor  –  Sop  Handover   Yellow  dash  area  shows   constant  sop  handoff     –  Serving  Cells  in  UMTS  based  networks  operate  on  the  same   frequency,  only  separated  by  codes.   –  Sop  Handoff  process   is  used  to  ship  calls   from  one  serving  cell   to  another.   –  Even  perfect  indoor     coverage  from  the   Macro  Layer  can     be  a  problem.   –  During  sop  handoff  the  mobile  unit  takes  up   resources  in  all  3  serving  cells.   –  This  means  a  Single  mobile  user  can  consume   Networks  Resources  with  a  factor  of  2  or  3  4mes.   SHO  =   Extra  Load     Why  is  DAS  Cri4cal?   •  Service  Levels  for  Voice  &  Data   –  Ensures  top  network  performance  for  mobile  users.     •  Network  Resources  &  Limita4ons   –  Adap4ve  Modula4on  based  on  Radio  Link   •  Provides  best  possible  Radio  Link   –  High  penetra4on  loss  into  buildings  from  the  Macro   Layer  (poor  coverage)   •  Ensures  coverage  throughout  en4re  structure   –  High  Rise  Buildings  –  Pilot  Pollu4on   –  Sop  Handover  creates  extra  load   •  Creates  a  dominant  Serving  Cell  for  mobiles   •  Reduces  traffic  load  on  the  network   •  Greatly  improves  network  efficiency   Why  is  DAS  Cri4cal?–  Canadian  Industry…   •  CoopeBBon…   –  Canada’s  largest  Wireless  Operators  agree  on  the  importance  of  DAS  systems   as  a  compliment  to  Macro  Level  Networks.   –  Tri-­‐Lateral  DAS  systems  -­‐  3  largest  Operators  share  &  par4cipate  jointly  in   deployments…      Key:  Shared  costs   •  Carrier  Deployments…   –  For  corporate  clients  and  large  venues,  Wireless  operators   will  proac4vely  deploy  their  own  DAS  systems.   –  Cri4cal  for  wireless  operators:   •  To  control  equipment  installed  in  their  Networks.   •  The  user  experience  of  their  clients.   •  Drawback  to  DAS  Deployments…   -  High  cost  per  site.   •  Challenging  installa4ons   •  Real  Estate  /  lease  costs   -  Long  deployment  life  cycle   •  Complex  agreements,  work  condi4ons.   DAS  Design  -­‐  ConsideraBons •  Distributed  Antenna  System   Architectures.   –  Passive  distribu4on   –  Ac4ve  distribu4on   –  Hybrid  system     •  RF  Signal  Source  Op4ons   –  BTS  /  NodeB  /  eNodeB     •  Microcell  /  Pico  cell   –  Off-­‐Air  Repeater   •  Every  DAS  Design  will  be  unique  just  like   every  building  is  unique.    Special  care  must   be  given  when  choosing  a  DAS  Architecture.     –  What  works  for  one  building  may  not  work   for  another…     DAS  Design  –  Off-­‐Air  Repeaters…   •  Regulatory  Changes…   –  Effec4ve  March  1st  2014  the  FCC  mandates  the  deployment  of  any   3rd  Part  off-­‐air  repeaters  must  be  registered,  include  proof  of   Wireless  Operator  approval  and  work  completed  by  Cer4fied   Installers  or  face  fines  star4ng  at  $100,000  per  viola4on.   –  FCC  Consumer  Advisory  outlines  the   specific  differences  between   CONSUMER  vs.  COMMERCIAL  /   INDUSTRIAL  products.   –  Equipment  manufacturers  are   required  to  display  the  appropriate   label  for  the  repeater  classifica4on.   •  Reasoning…   -  Preven4on  of  network  degrada4on.   •  Maintain  network  visibility.   •  Tractability  /  Ownership.   •  Increase  3rd  party  competency.   -  Preserva4on  of  life  E911.   DAS  Design  –  Off-­‐Air  Repeaters…   “…   Malfunc4oning,   improperly-­‐installed,   or   technically-­‐ deficient   signal   boosters   /   repeaters,   may   cause   harmful   interference   to   commercial   and   public   safety   wireless   networks.     Such   interference   might   disrupt   cellular   service,   including  911  emergency  assistance  calls.  The  record  before  us   reflects   that   wireless   service   providers   and   public   safety   communica4ons  officials  expend  significant  4me  and  resources   to  locate  and  eliminate  signal  booster  related  interference.   The   new   regulatory   framework   we   adopt   today   will   allow   consumers   to   realize   the   benefits   of   using   signal   boosters   while   preven4ng,  controlling,  and,  if  necessary,  resolving  interference   to  wireless  networks…”    FCC  13-­‐21  WT  Docket  No.  10-­‐4   h`p://hraunfoss.fcc.gov/edocs_public/a`achmatch/ FCC-­‐13-­‐21A1.pdf   DAS  Design  –  Off-­‐Air  Repeaters…   •  Canadian  Perspec4ve   –  Industry  Canada,  no  legisla4on  similar  to  that   implemented  by  FCC.     –  Registra4on  of  Repeaters  /  Boosters  is   recommended.     •  Wireless  Operators   –  HSPA  Services  850  /  1900MHz   –  LTE  Services  2100MHz   •  Repeaters  are  not  a  considera4on.   –  These  networks  are  Uplink  Noise  Limited   and  the  improper  deployment  of  a  repeater   can  cause  a  complete  donor  cell  collapse.     –  Wireless  Operators  will  always  deploy  full   Base  StaBons  to  drive  a  DAS.   DAS  Design  –  Noise  Rise  to  Cell  Load   Impact  of  Noise  Increase  on   UMTS  &  HSPA  Networks.   -­‐  -­‐  Any  UL  noise  increase  will  cause   the  NodeB  to  assume  Noise   Power  to  be  Traffic  in  the  Cell.       This  offsets  the  traffic  poten4al   for  the  site.   We  can  calculate  the  effects  of   noise  increase  on  cell  load   capacity.   Noise  increase  =  10log[1/(1-­‐load  factor)]   50%  Load  rate  =  3dB   60%  Load  rate  =  4dB   25   Noise  Rise  dB   -­‐  30   20   15   10   5   0   0   10   20   30   40   50   60   70   80   90   100   Cell  Load  %   **  If  a  cell  is  designed  to  operate  at  50%  load  rate  (3dB  Noise)   +  Equipment  UL  Noise  power  of  3dB  pushes  the  cell  to  75%  load,  beyond  80%  cell  can  collapse.   DAS  Design  -­‐  ConsideraBons   •  System  Design  Fundamental  QuesAons:   –  Number  of  Services?   •  Technology  Pla~orms   –  HSPA,  LTE,  Public  Safety,  Paging  etc.   –  Number  of  Bands   •  Specific  frequency  blocks     –  Number  of  carriers  in  each  Band   –  Number  of  Sectors  for  each  wireless  operator   –  Coverage  Area   •  Iden4fy  “Hot-­‐Spots”   –  Number  of  antennas  &  antenna  loca4ons   •  Architectural  guidelines   –  Cable  distances   •  Fiber,  Coax   –  Split  Losses  for  antenna  branches.   DAS  Design  –  Indoor  RF  Planning   The  most  important  element  to  remember  when  designing  DAS  Systems:   “…  Isola)on  is  KEY…”   Isola4on  as  defined  for  In-­‐Building  DAS  (IB  DAS)  is  the  difference  between  the  IB   DAS  Signal  and  the  outdoor  network.   Isola4on  can  be  summed  up  in  2  words:   Dominance    &    Containment   DAS  Design  –  Indoor  RF  Planning   Dominance:   –  The  IB  DAS  signal  should  always  be  the  dominant  serving  cell  throughout  the  building.   •  •  •  •  As  a  general  guideline  the  IB  DAS  signal  needs  to  be  10-­‐15dB  higher  than  the  outdoor  Macro  Layer.     Reduces  /  eliminates  Sop  handover  issues.   Improves  capacity  and  data  throughput.   Preserves  network  resources  in  the  Macro  Layer   Containment:   –  Care  needs  to  be  taken  when   selec4ng  antenna  type  and   loca4ons.    Containment  is  a  cri4cal   planning  step  to  ensure  the  IB  DAS   will  not  “leak”  outside  and   interfere  with  the  Macro  Layer.     •  Leakage  near  a  ground  floor  could  have   pedestrians  on  the  street  constantly  in   Sop  Handover.   DAS  Design  –  Indoor  RF  Planning   Plan  Zones  /  SectorizaBon     –  When  designing  High  Rise  type  systems  you  should  consider  different  coverage   goals  based  on  the  Dominance  &  Containment  strategy. Consider  the  following:   •  Zone  A  –  Coverage  Limited   –  –  –  –  Isola4on  for  this  zone  is  typically  very  good.     Lower  zone  some4mes  includes  underground  parking  and  ground  level.   Noise  floor  is  low  and  traffic  load  will  be  lower.   Design  Goal  -­‐85dBm  CPICH   •  Zone  B  –  Coverage  and  Interference  Limited     –  –  –  –  Midsec4on  of  the  building  typically  is  served  by  nearby  Macro  cells.   Somewhat  Isolated  from  distant  Macro  cells  so  Pollu4on  isn’t  an  issue.   Cau4ous  on  leakage  however  (Containment)   Design  Goal  -­‐80dBm  CPICH   •  Zone  C  –  Interference  Limited     –  –  –  –  Upper  most  sec4on  of  the  building  has    line  of  site  to  many  near  and  distant     Macro  Sites.  Therefore  Dominance  is  Cri4cal.   In  order  to  overcome  the  Pilot  Pollu4on     a  higher  signal  level  plan  should  be  adopted.   Common  for  users  at  this  level  to  see     full  bars  on  their  mobile  devise  but  they     are  unable  to  place  calls.   Design  Goal  -­‐75dBm  CPICH   Zone     C   Zone     B   Zone     A   DAS  Design  –  Indoor  RF  Planning   Planning  for  So]  Handover  Zones     • Zone  A       SHO   – Carefully  planned  antenna  loca4ons  will  ensure   minimal  Sop  Handover  (SHO)  when  entering  and   exi4ng  the  building.   – Elevator  shap  is  one  area  where  SHO  is  ok.   – Users  spend  short  intervals  of  4me  in  the  Elevator  car.   – SHO  will  improve  the  likelihood  of  successful  call   comple4on  &  seamless  data  sessions.   SHO   Zone     B   SHO   •   Elevator  ShaC   Zone     C   SHO   – In  a  sectorized  IB  DAS  a  well  engineered   design  will  accommodate  for  Sop  Handover   zones.    This  will  ensure  capacity  and   coverage  without  compromising  network   resources. SHO   Zone     A   SHO   DAS  Design  –  Indoor  RF  Planning   Downlink  CalculaBon   Example:  DL  Link  budget  calcula4on  to  realise  coverage  goal  of  -­‐70dBm              Begin  with  calcula4ng  EIRP.   Remote  Unit  Output  Power:   33  dBm   Number  of  Carriers:   4   Power  per  carrier:   33  –  10log(4)  =  33-­‐6  =  27dBm/c   Cable  Loss:   10  dB   Split  Loss:   9  dB   Antenna  Gain:   3  dBi   EIRP:   27  –  10  –  9  +  3  =  11dBi  (Isotropic)   Assuming:     2100MHz   DAS  Design  –  Indoor  RF  Planning   Downlink  CalculaBon   EIRP:   11  dBi   Coverage  Goal:   -­‐70dBm   Power  budget:   11  –  (-­‐70)  =  81dB   Free  Space  Loss  for  10M:   FSPL  =  20log(MHz)  +  20log(m)  -­‐  27,55   20log(2100)  +  20log(10)  –  27,55   66,4  +  20  -­‐27,55  =  59  dB   FSPL  for  10M  then  assume  1dB  /  M  a]er.   Power  budget  81dB   81  –  59  =  22dB  (le]  in  power  budget)     10M  +  22M  (1dB/M)  =  32M  @  -­‐70dBm   Coverage  es4ma4on  formal  developed  by  Ericsson  in  80’s  s4ll  used  today   DAS  Design  –  Indoor  RF  Planning   Downlink  Coverage  Radius  Example  (1900MHz)    DL  EiRP   7  dBm   12  dBm   Coverage  Goal:   17  dBm   22  dBm   -­‐80dBm   Open  Floor  Space   44  M   65  M   94  M   138  M   Moderately  Open   35  M   50  M   72  M   103  M   Slightly  Dense   31  M   44  M   63  M   89  M   Moderately  Dense   26  M   37  M   51  M   71  M   Dense   20  M   27  M   36  M   50  M   –   Path  Loss  Slopes  (PLS)  for  in-­‐building  environments  should  be  used  when  accurately   calcula4ng  IB  DAS  Link  Budgets.   –   PLS  are  tables  derived  from  measurement  samples  in  different  clu`er   environments.    The  PLS  factor  is  used  when  calcula4ng  DL  Path  Loss.     Path  loss  (dB)  =  PL  at  1M(dB)  +  PLS  x  log(distance,  m)   DAS  Design  –  Indoor  RF  Planning   Uplink  CalculaBon   Mobile  Tx  Power:   21  dBm   Antenna  Gain  –  Body  Loss:   0dB   Free  Space  Loss  for  10M:   FSPL  =  20log(MHz)  +  20log(m)  -­‐  27,55   20log(1700)  +  20log(10)  –  27,55  =  57dB   Loss  over  32  meters:   57dB  +  22  =  79dB   +21dBm  –  79dB  +  3dB  =  -­‐55dB  at  Antenna   Cable  Loss:   10dB   Split  Loss:   9dB   Uplink  Level  at  Remote:   -­‐74dB   DAS  Design  –  Types  of  Systems   –  Distributed  Antenna  System  Architectures.   –  Passive  distribuBon   –  Consists  of  a  main  signal  source  (BTS,  NodeB,  eNodeB,  Repeater)   –  Signal  is  distributed  passively  through  a  network  of  Coax  Cable,  Spli`ers  and  antennas   –  AcBve  distribuBon   –  Consists  of  a  main  signal  source  (BTS,  NodeB,  eNodeB,  Repeater)   –  Signal  is  fed  into  a  headend    -­‐>  Op4cal  -­‐>  Base  band  over  coax  -­‐>  Antenna  Radio  Unit.   –  Every  Antenna  has  its  own  Radio  Unit.  (Like  Wifi)   –  Hybrid  system   –  Consists  of  a  main  signal  source  (BTS,  NodeB,  eNodeB,  Repeater)   –  Signal  is  fed  into  a  headend    -­‐>  Op4cal  -­‐>  Medium  /  High  Power  Radio  Unit.   –  Radio  Unit’s  signal  distributed  passively  through  a  network  of  Coax  Cable,  Spli`ers  and   antennas.   Every  DAS  Design  will  be  unique  just  like  every   building  is  unique.    Special  care  must  be  given   when  choosing  a  DAS  Architecture.     **  What  works  for  one  building  may  not   work  for  another…   DAS  Design  –  Passive  DAS   NodeB   HSPA  850MHz   50ohm   Coax   NodeB   HSPA  1900MHz   DAS  Design  –  Passive  DAS   –  –  Passive  DAS  is  ideal  for  small  building  coverage  where  antenna  count  and  passive   loss  to  the  antennas  are  low.   Biggest  challenge  for  Passive  DAS  is  troubleshoo4ng  branches  of  coax  due  to   absence  of  alarming  &  Monitoring.   –  “  Passive  systems  never  fail…”    Not  true,  chances  are  you  just  don’t  know…   Passive  DAS  Advantages   Passive  DAS  Disadvantages   Straigh~orward  RF  Design   No  system  monitoring  /  Alarming   Components  from  various  vendors   are  compa4ble   Not  flexible  for  future  upgrades   Can  be  installed  in  Harsh   Environments   High  passive  loss  will  degrade  Data   Performance   Challenging  to  balance  EiRP  at  each   antenna  loca4on   Required  High  Power  NodeB   Vulnerable  to  PIM   DAS  Design  –  AcBve  DAS   Expansion   Unit   Radio  Unit   NodeB   HSPA  850MHz   Radio  Unit   Headend   Unit   Radio  Unit   Fiber   SM  /  MM   50ohm   Coax   Cat5e  /   75ohm  Coax   NodeB   HSPA  1900MHz   Expansion   Unit   Radio  Unit   Radio  Unit   Radio  Unit   DAS  Design  –  AcBve  DAS –  –    Ac4ve  DAS  is  ideal  for  Large  Buildings,  Office  Towers,  Airports.   Philosophy  is  to  have  the  last  DL  Amplifier  and  first  UL  Amplifier  as  close  to  the   Antenna  as  possible  to  avoid  any  signal  degrada4on.   –  Reliability  is  a  concern  because  of  the  high  number  of  ac4ve  components.     Good  MTBF  Stats  on  hardware  is  important.   AcAve  DAS  Advantages   AcAve  DAS  Disadvantages   Very  easy  RF  Plan   Equipment  costs  are  considerably  higher   Can  use  simple  to  install  cable  types  such  as   Fiber,  Cat5,  CATV  75ohm.   Distance  &  Power  considera4ons  for   Antenna  Units  from  Expansion  Equipment.   Full  End-­‐to-­‐End  monitoring.   Remote  access,  alarming.   Difficult  /  Expensive  to  add  future  bands,   technologies.     Be`er  data  performance  on  UL   Difficult  to  deploy  in  moist,  damp,  dusty   environments.  Enclosures  may  be  needed.   Scalable  and  dynamic  for  large  venues   Higher  UL  noise  due  to  ac4ve  components   More  immune  to  PIM  (IM3)   Limited  DL  Power     Fiber   SM  /  MM   Remote   Radio  Unit   Headend   Unit   NodeB   HSPA  850MHz   NodeB   HSPA  1900MHz     Remote   Radio  Unit   DAS  Design  –  Hybrid  DAS 50ohm   Coax   DAS  Design  –  Hybrid  DAS –  –    Hybrid  DAS  is  ideal  for  Medium  -­‐  Large  Buildings,  Office  Towers,  Airports,  Sports  Venues,   Tunnels  –  Harsh  Environments,  Mul4-­‐Carrier  /  Operator  systems.   Combines  the  best  features  of  Passive  &  Ac4ve  Systems.   –  Reliability  ac4ve  components.    Good  MTBF  for  the  hardware  is  important.   Hybrid  DAS  Advantages   Hybrid  DAS  Disadvantages   Easy  planning  for  Mul4-­‐Carrier  Design   Challenging  for  PIM  Performance   Uses  easy  to  install  Fiber  to  the  Remote  &   typically  ½”  50ohm  Coax  to  the  antenna.     Single  remote  can  cover  large  area.  In  a   failure  situa4on  all  coverage  lost  to  area.   Full  End-­‐to-­‐End  monitoring.   Remote  access,  alarming.   High  Power  means  cau4ous  planning  for   Safety  Code  6  (EMR  Levels)   Highest  PLPU  &  Best  UL  Data  Performance   Centralised  equipment  rooms  simplify   maintenance  &  troubleshoo4ng   Easy  upgrade  path  for  future  technologies.   DAS  Design  –  Equipment  Vendors   Passive  DAS   AcAve  Hybrid  DAS     TOOLS  –  Design   iBWAVE  DESIGN:  THE  SOFTWARE   STANDARD  FOR  IN-­‐BUILDING  NETWORK  DESIGN   iBwave  Design  is  the  industry's  leading  sopware,  used  by  over  500   clients  from  80  countries  to  automate  in-­‐building  network  design   planning  ac4vi4es.  Eliminate  the  extra  work  by  genera4ng   complete  documenta4on  of  required  files  and  tasks,  increasing  the   accuracy  and  produc4vity  in  your  indoor  wireless  projects.         STREAMLINE  INDOOR  WIRELESS  NETWORK  PLANNING   iBwave  Design  is  the  most  comprehensive  sopware  available  for   automated  network  design  planning.  Streamline  the  process  of   data  collec4on,  component  selec4on,  cost  evalua4on,  design,   valida4on,  documenta4on,  repor4ng  and  more.  Significantly   reduce  the  4me  spent  on  manual  field  work  and  increase  cost   savings.       h`p://www.ibwave.com/   TOOLS  –  Design   TOOLS  –  Measurement   TOOLS  –  Measurement   TOOLS  –  Measurement   TOOLS  –  Commissioning   •  •  •  •  •  •  •  •  Light  &  Rugged  portable  unit     Up  to  2  x  40W  (100mW  to  40W)   PIM  and  Return  Loss     PIM  Vs.  Time  analysis,  (dynamic  PIM  test)   Rx  Interference     PIMPoint  (distance  to  PIM)   High  sensi4vity  Receiver   DAS  Commissioning  Tx  feature.   Summary…   In-­‐Building  Antenna  Systems    -­‐  Tools  &  Tips  -­‐   –  IB  DAS  is  cri4cal  to  wireless  networks   •  Preserva4on  of  Network  Resources   •  Ensure  High  Performance  Data  Throughput     –  Design  4ps  &  considera4ons   •  UMTS  /  HSPA  Networks  are  always:   –  Power  Limited  in  DL  –  Maintain  high  Power  Load  Per  User  PLPU   –  Noise  Limited  in  UL  –  Maintain  lowest  possible  Noise  Load     •  Dominance  &  Containment   •  Choose  your  Architecture  wisely   –  Passive,  AcBve  or  Hybrid  DAS   Marc Landry Sr. Sales Engineer 780.628.4886 [email protected]