Transcript
Ch3. Introduction to Antenna Chien-Wen Chiu(邱建文), Professor Department of Electronic Engineering National I-lan University 1, Sec. 1, Shern-Nong Rd., I-lan, Taiwan, R.O.C. e’mail address :
[email protected] March 16, 2010
1
Content 1. Antenna introduction and parameters 2. Field for the Short Dipole Antenna 3. Near field and Far field 4. Radiation Patterns and Beamwidth 5. Antenna Gain, Directivity, and Efficiency 6. Antenna Bandwidth 7. Polarization 8. Input impedance 9. Max. Power Transfer and Effective Aperture
2
1. Antenna Introduction Example : Figure 13.1 (p. 634) by Pazar’s microwave enginnering Photograph of various millimeter wave antennas. Clockwise from top: a highgain 38 GHz reflector antenna with radome, a prime-focus parabolic antenna, a corrugated conical horn antenna, a 38 GHz planar microstrip array, a pyramidal horn antenna with a Gunn diode module, and a multibeam reflector antenna.
3
1. Antenna Introduction Basic operation of transmit and receive antennas.
Figure 13.2 (p. 635) Basic operation of transmit and receive antennas.
4
5
c f
Frequency Band
c f
: wavelength f : frequency c: speed of light 6
Antenna - How it Works The antenna converts radio frequency electrical energy fed to it (via the transmission line) to an electromagnetic wave propagated into space. The physical size of the radiating element is proportional to the wavelength. The higher the frequency, the smaller the antenna size. Assuming that the operating frequency in both cases is the same, the antenna will perform identically in Transmit or Receive mode
[email protected]
7
Antenna reciprocity theorem 發射至空中
來自空中
發射機天線 RF能量
RF能量
發射機
接收機 (a)
(b)
天線的互易性定理(Antenna reciprocity theory): 任何天線, 若工作於相同之頻率,作用於發射端或接收端,當作發射天線或 接收天線都有相同之效率及特性,此種特性稱為天線之互易性。 8
Current distribution of transmission line and linear dipole
9
Sin(kl/2) ≒kl/2 as kl is very small
Significant interference and cancelling will be noted
10
(900)
(1800)
11
Current variation of as a function of time for half-wavelength dipole
E j H
Radiation Mechanism
H j E D 0 E B 0 H
Why ? How ? What ?
12
(900)
(1800)
13
Radiation Mechanism for Dipole Antenna
(2) (1)
(1)
(1)
(2)
(1) (1)
(1)
傳播到空 中的電場 (a)
(b)
(c)
(d)
14
(900)
15
Maxwell Equations
E jH M H jE J D B 0 16
Types of antenna 1.Wire antennas (and loop antenna) 2. Aperture antennas 3. Microstrip antennas 4. Array antennas 5. Reflector antennas 6. Lens antennas
17
Antenna Parameters Frequency band Bandwidth S11(dB) or VSWR@50 Ohm Patterns Gain Efficiency Polarization Size
18
2. Field for the Short Dipole Antenna I o L 1 j j r cos [ 2 ] e 2 r r 3 I o L j 1 j j r E sin [ 2 ] e 2 r r r 3 Io L j 1 j r H sin [ 2 ]e 4 r r 0 w , c 0 0 Er
H r H 0, E 0
How to obtain these equations? 19
The elemental electric dipole (詳細推導請參閱Cheng的電磁學第十章)
R=r
20
Derive Formula Magnetic vector potential: [ I ] A dlaˆ z 4 r [ I ] I o cos(t) r ),
R=r 2
I o dl j r Az aˆ z e , (phasor form) 4 r A A( Ax , Ay , Az ) ( Ar , A , A ) For spherical coordinates:
Ar Az cos , A Az sin , A 0 H
1
A
I o dl j 1 sin [ 2 ]e j r 4 r r H r H 0
H
21
E
1 j
Derive Formula H
I o dl 1 j j r cos [ 2 ] e 2 r r3 I o dl j 1 j j r E sin [ 2 ] e 4 r r r3
Er
E 0
w (Conduction field, similar to that of dipole, as β =0) , c I o dl 1 j r Er cos [1 ] e 2 r 2 j r I dl 1 1 j r E j o sin [1 ] e 4 r j r ( r )2
0
I o dl 1 H j sin [1 ]e j r 4 r j r 22 (Conduction field, similar to that obtained by Biot-Sarvart theorm, as β0=0)
3. Near field and Far field for small dipole ( / 50 L / 10)
1. Reactive near field region 2. Radiating near field region (Fresnel region) 3. Radiating far field region (Fraunhofer region)
(have Er)
23
Near field and far field for infinitesimal dipole j 1 j 2 ) 3 r r r 1 1 2 r r r3
E (
r 1 r
2
I . r (Near-field-region) 2 I o dl j j r Er cosθ e 3 2 r (Conduction field, similar to that of dipole, as β =0) I o dl j j r E sinθ e 3 2 r 0
H
I o dl 1 sinθ 2 e j r 4 r (Conduction field, similar to that obtained by Biot-Sarvart theorm, as β0=0)
24
Near field and far field for infinitesimal dipole Io L 1 j j r cos [ 2 ] e 2 r r3 Io L j 1 j j r E sin [ 2 ] e 2 r r r3 Io L j 1 j r H sin [ 2 ]e 4 r r Er
II . r (Far-field-region) 2 I o dl j j r E sinθ e 4 r (same phase, orthogonal direction) I o dl j j r H sinθ e 4 r Er 0, E / H 25
4. Antenna Radiation Pattern I. Radiation Pattern(2D or 3D) A graphical representation of the intensity of the
radiation vs. the angle from the perpendicular. The graph is usually circular, the intensity
indicated by the distance from the center based in the corresponding angle.
[email protected]
26
I o dl j j r E sinθ e E sin 4 r
H-plane : the plane containing the magnetic-field vector and the direction of maximum radiation E-plane : the plane containing the electric-field vector and the direction of maximum radiation
The pattern of the H-field is same as that of E-field
27
28
The type of system you are installing will help determine the type of antenna used. Generally speaking, there are two „types‟ of antenna: 1.
Directional
- this type of antenna has a narrow beamwidth; with the power being more directional, greater distances are usually achieved but area coverage is sacrificed - Yagi, Panel, Sector and Parabolic antenna
- Some time we will use this type of antenna in both Point to Point and Point to Multipoint communications 2. Omni-Directional - this type of antenna has a wide beamwidth and radiates 3600; with the power being more spread out, shorter distances are achieved but greater coverage attained 3. - Omni antenna
[email protected]
29
Radiation Pattern (elevation) main lobe
boresight side lobe
Radiation Pattern
[email protected]
30
Side lobes
Upper Side Lobe Suppression (dB)
[email protected]
31
Directive Radiation Pattern (Broadband)
Log periodic dipole array (LPDA)
Directional Radiation Pattern
Dipoles
Transmission line
- very wide BW, with constant SWR - typical gain 10 dBi main lobe
• Reflector
Yagi antenna
Driven element (dipole) Directors
back lobe side lobe
- BW is smaller than LPDA - typical gain 12 – 14 dB
[email protected]
main lobe
32
Antenna Radiation pattern Directional Antenna Radiation Pattern
Horizontal plane
Vertical plane
Horizontal-plane and Vertical plane : based on the earth
[email protected]
33
Antenna Radiation pattern Omni-directional Antenna Radiation Pattern
H-plane
E-plane
H-plane : the plane containing the magnetic-field vector and the direction of maximum radiation E-plane : the plane containing the electric-field vector and the direction of maximum radiation 34
(Horizontal Plane) (Horizontal Plane) Typical Radiation Pattern for a Yagi
[email protected]
35
270 0
-3
-6
0
0
-15 -20
-15 -20
-30
-30
-10
dB
90 270 0
-3
-6
-10
dB
90
180
180
Typical Radiation Pattern for a Sector antenna
[email protected]
36
Three-dimensional Pattern
[email protected]
37
II. Power Patterns and Beamwidth Power Density: * 1 Wav Re[ E H ] W/m 2 2
Power Pattern Normalized Power Pattern Beamwidth: -3dB : half-power beamwidth -- Half Power Beamwidth (HPF) -- Beam Efficiency (BE) 2
1
0 2
0
0
0
U ( , ) sindd BE U ( , ) sindd
Beamwidth of half-wavelength dipole antenna is 78o
38
Beamwidth 10dB Beamwidth
3dB Beamwidth
Peak - 10dB
Peak - 3dB
60° (eg)
Peak
Peak - 3dB
[email protected]
120° (eg)
Peak
Peak - 10dB
39
III. Power Density and Radiation Intensity A. Radiation Power Density Poynting vector: W E H * Watt / m 2 (Instantaneous Poynting vector) P
S
W dS
S
ˆ (Instantaneous total power) W nda
Average Power Density: Wav ( x, y, z ) Wav ( x, y, z, t ) av
Average Power: Prad Pav
S
Wav dS
1 2
S
1 Re[ E H * ] 2
Re[ E H * ] dS
dS r 2 sin d d
S
m2
(Time average)
1 Radiation Power density: Re[ E H * ] 2 B. Radian & Solid angle
solid angle: d
W
dS sin d d r2
d 4 40
Power Density and Radiation Intensity C. Radiation Intensity U r 2Wav
W
unit solid angle
: far zone parameter
2 r2 r2 2 2 U ( , ) E (r , , ) E ( r , , ) E ( r , , ) 2 2 2 1 2 U ( , ) U ( , ) , E (r ) r
Prad
Ud
2
0
0
U sin d d
Example: Calculate the total radiated power sin If an antenna has : Wav aˆrWav aˆr Ao 2 U=Aosin r 2 sin Prad Wav dS aˆr Ao 2 aˆr r 2 sin d d 2 A0 (W ) S 0 0 r Prad
Ud
2
0
0
Ao sin sin d d 2 Ao (W )
D. Isotropic Source: Prad
U o d 4 U o U o
Prad 4 41
Power Density and Radiation Intensity Example: A hypothetical isotropic antenna is radiating in free space. At a distance of 100 mm from the antenna , the total electric field E ( ) is measured to be 5 V/m. Find (a) the power density (Wrad) (b) the power radiated (Prad)
42
5. Antenna Directivity, Gain, and Efficiency Directivity : Maximum radiation intensity/Average radiation intensity U Umax : MAX radiation intensity D rad U0 , U0 : radiation intensity of isotropic source U max 4 U max , P : radiation power from antenna rad = Prad / 4 Prad , (U0 = Prad /4 ) (lossless isotropic source) Gain : 4 Maximum radiation intensity/Input Power G
U max 4 U max Pin / 4 Pin
,Prad : input power from the input port
Efficiency : Gain/ Directivity ecd =Prad / Pin = G/D * A short dipole antenna : D = 1.5 = 1.76 dBi (10logD) A half-wavelength dipole antenna : D = 1.64= 2.15 dBi Relative Gain or Directivity : Gr(dBd) =G(dBi)-2.15 43
Directivity and gain definition D =
U rad U0 U max 4 U max Prad / 4 Prad
4
44
Gain Unless otherwise specified, the gain usually refers to the direction of maximum radiation.
Gain of this direction
[email protected]
45
Gain Unit Antenna gain is usually expressed in dBi or dBd
dBi Gain relative to an isotropic antenna when the reference antenna is an isotropic antenna.
dBd Gain relative to a half-wave dipole when the reference antenna is a half-wave dipole.
[email protected]
46
dBd and dBi
isotropic radiator 2.15dB
eg: 0dBd = 2.15dBi
half-wave dipole
[email protected]
47
Dipoles Wavelength 1/4 Wavelength 1/2 Wavelength 1/4 Wavelength 1/2 Wavelength Dipole
1900MHz :78.95mm 800MHz :187.5mm
[email protected]
48
Dipoles
One dipole
multiple dipoles
Received Power:1mW
Received Power :4 mW
GAIN= 10log(4mW/1mW) = 6dBd
[email protected]
49
Sector antenna compared with the Dipoles Antenna (down look)
Omnidirectional array
Sector antenna
Received Power :1mW
Received Power :8mW
10log(8mW/1mW) = 9dBd
[email protected]
50
Measurement at anechoic chamber GAUT = Gstandard + PAUT - Pstandard GAUT : Gain of AUT (dB) Gstandard : Gain of standard gain antenna (dB) PAUT : Measured power of AUT (dBm) Pstandard : Measured power of standard gain antenna (dBm) Standard gain antenna : 1. BBHA 9120 LFA 700MHz-6GHz 2. TDK 9120D Horn antenna (900MHz-18GHz) 3. EMCO 3115 Double-Ridged Horn(1-18GHz) 4. Spectrum Technology : DRH-0118(1-18GHz) (3D chamber)
51
Yagi - better suited for shorter links - lower dBi gain; usually between 7 and 15 dBi
[email protected]
52
Parabolic - used in medium to long links - gains of 18 to 28 dBi - most common
[email protected]
53
Sector antenna(扇型天線) -A sector antenna is a kind of directional antenna with a sectorshaped radiation pattern. In mobile communications, these antennas are typically installed in base station sites for point-to-multipoint connections - directional in nature, but can be adjusted anywhere from 450 to 1800 - typical gains vary from 10 to 19 dBi 0
-15 -20 -30 270 0
-3
-6
-10
dB
90
180
[email protected]
54
Omni - used at the some communications for wide coverage - typical gains of 3 to 10 dBi
55
Directivity A. Directivity : the radiation intensity in a given direction the radiation intensity averaged over all directions U Wav 4 U D U o Wave Prad If the directivity is not specified, it implies the direction of maximum radiation intensity.
Dmax D
U
max
Uo
U max 4 U max Uo Prad
4 U 4 U , D ( Prad ) ( Prad ) ( Prad ) ( Prad )
Example: (linear dipole l<<) (Homework 3.1)
if : Wav aˆr Ao sin 2 / r 2 (W / m 2 ) 3 Please proof : Dmax , D( , ) 1.5sin 2 2 56
Gain & Antenna Efficiency Radiation intensity U ( , ) U ( , ) G 4 4 Total input power Pin ( Pin / 4 )
Prad ecd Pin G ( , ) ecd D ( , ), (ecd obtained by measurement G G ( , ) max ecd D( , ) max ecd D G (dB) G (dB) G (dB) G (dB) 10 log10 (ecd D) 57
Gain & Antenna Efficiency Antenna Efficiency er (1 ) : Reflection (Mismatch) efficiency 2
ec : Conductivity efficiency ed : Dielectric efficiency ecd ec ed Antenna radiation efficiency eo er ec ed ecd (1 ) : 2
Total efficiency
58
Gain Example Example: A lossless dipole antenna, with input impedance 73 Ohms, is to be connected to a transmission line whose characteristic impedance is 50 Ohms. Assume that the pattern of the antenna is given approximately by : U ( , ) Bo sin 3
Find the overall maximum gain of this antenna. 2
U max Bo Prad
U ( , ) sin d d 0 0
Prad D 4
3 2 2 Bo sin d Bo ( ), 4 0 4
U max 16 1.697 Prad 3
ecd 1 G ecd D 1.697 2.297( dB ) 73 50 2 ) 0.965 73 50 er 0.965 0.155 dB
er (1 ) 1 ( 2
eo ecd
G e eo cd D 0.965 1.697 2.142 (dB) 59
Gain (Homework 3.4) A lossless resonant half-wavelength dipole antenna, with input impedance of 100 ohms, is to be connected to a transmission line whose characteristic impedance is 25 ohm. Assuming that the pattern of the antenna is given approximately by U Bo sin3 find the overall maximum gain of this antenna.
Answer : 2.997 (dB)
[email protected] (Refer to p.61of Balanis‟s “antenna theory”)
60
Average Gain & Antenna Efficiency for portable device PeakGain : Radiation intensity U ( , ) U ( , ) G 4 4 Total input power Pin ( Pin / 4 )
Mean gain : (Average Gain) calculted by averaging the measred gain at sufficient points on a (typical spherical) surface around the handset. If the antenna was lossless, the mean gain woud be 0dBi. 3D Average gain 10 log10 (3-dimensional average gain) 3D Average gain=0 dB =100% Two-dimensional average gain (Gavg ) for notebook computer: N
Gavg 10 log10
G ( ) G ( ) i 1
h
i
N
v
i
[from 0 to 3600 , Npoints] 61
6. Antenna Bandwidth
B f H f L
0 -5
1. GSM: 880-960 MHz
-10
2. DCS : 1710-1880 MHz
-15 -20
3. PCS : 1850-1990 MHz 4. WLAN/BlueTooth : 2400-2484 MHz
fH
fL
-25 -30
5. GPS : 1575.42 ±1.023 MHz
0.7
0.8
0.9
1.0
6. W-CDMA : 1.920 -2.170 GHz
Return Loss :
7. CDMA : 869-894 MHz(Qualcomm)
( RL ) 20 log
1.1
一般天線頻寬與反射係數的關係是取小S11=-10dB以下的頻率範圍當作頻 寬,當小於-10dB以下的頻寬時,其反射係數=1/3、駐波比VSWR=2:1, 表示此天線在此頻率範圍至少有90%以上的能量輻射出去。
Broadband antenna : eq. 10:1 Narrowband antenna : eq.10%
fraction bandwdith=
B *100% fc 62
VSWR=
VSWR
Zin Z 0 100 50 1/ 3 Zin Z 0 100 50
Vmax Vmin
1 1
(1 )
forward: 10W 100 ohms
50 ohms reverse: 1W
9W
Return Loss:-20log(1/3) ≒ 10 dB VSWR (Voltage Standing Wave Ratio) Vr2 / Z 0 Vr 2 Vin Vin / Z 0 1 VSWR= =2 1
Pr 1 1/ 3 Pin 10
Usual Request:VSWR2.0 Reflection Coefficient:=(VSWR-1)/(VSWR+1) Return Loss:RL=-20lg 63
7. Polarization An antenna polarization is relative to the E-field of antenna. – If the E-field is horizontal, than the antenna is Horizontally Polarized. – If the E-field is vertical, than the antenna is Vertically Polarized.
No matter what polarity you choose, all antennas in the same RF network must be polarized identically regardless of the antenna type.
[email protected]
64
7. Polarization Polarization: -- Polarization of an antenna: the polarization of the wave transmitted by an antenna. -- Polarization of radiated wave: -- Electric-field : Time varied. A fixed point in space. -- Linear: a function of time along a line. Vertical polarization Horizontal polarization -- Circular: CW(clockwise), CCW(counterclockwise). -- elliptical: -- Co-polarization: -- Cross polarization:
E = E e(jwt+1) E = E e(jwt+2)
E-field direction : Vertical Polarization Horizontal Polarization
Circular Polarization 65
Polarization
Vertical
Horizontal
Vertical Polarization: The electric field is vertical to the ground (In the maximum gain direction)
Horizontal Polarization: The electric field is parallel to the ground (In the maximum gain direction)
[email protected]
66
Polarization
+ 45degree slant
- 45degree slant
[email protected]
67
Polarization
V/H (Vertical/Horizontal)
Slant (+/- 45° )
[email protected]
68
Polarization may deliberately be used to: – Increase isolation from unwanted signal sources (Cross Polarization Discrimination (x-pol) typically 25 dB) – Reduce interference – Help define a specific coverage area
Horizontal
Vertical
[email protected]
69
Polarization of plane wave
1. Linearly polarization : E ( z ) aˆ x E x ( z )
2. Consider the superposition of linearly polarized wave: E ( z ) aˆ x E x ( z ) aˆ y E y ( z ) aˆ x E xo e jkz aˆ y E yo e jkz e j / 2
E ( z , t ) Re [ aˆ x E x ( z ) aˆ y E y ( z )]e jwt aˆ x E xo cos(t kz ) aˆ y E yo cos(t kz
Set z 0 E (0, t ) aˆ x E x (0, t ) aˆ y E y (0, t ) aˆ x E xo cos(t ) aˆ y E yo sin(t ) As wt increases from 0 through /2, the tip of the vector will have an locus. E (0, t ) cos(t ) x E xo sin(t )
E y (0, t ) E yo
E (0, t ) 1 cos 2 (t ) 1 x E xo
2
2
E y (0, t ) E x (0, t ) 1 E E xo yo 2.1 Circular polarization:Exo E yo 2
2.2 Elliptical polarization:E xo E yo 70
2
)
71
Electrical Field Representation E ( z , t ) aˆ x E x ( z , t ) aˆ y E y ( z , t ) E x ( z , t ) Re[ E x e j (t kz ) ] Re[ E xo e j (t kz x ) ] E xo cos(t kz x ) E y ( z , t ) Re[ E y e j (t kz ) ] Re[ E yo e
j (t kz y )
] E yo cos(t kz y )
For linear polarizati on : y x n For circular polarizati on : E xo E yo When
y x ( 2n 12 ) ,
n 0,1,2, for CW
y x ( 2n 12 ) ,
n 0,1,2, for CCW
For elliptical polarizati on : E xo E yo When
or
y x ( 2n 12 ) ,
n 0,1,2, for CW
y x ( 2n 12 ) ,
n 0,1,2, for CCW
y x
n , n 0,1,2 , 0, for CW 2 0, for CCW 72
Derive Formula E x E xo cos(t kz x ) E xo cos(t xo ) E y E yo cos(t kz y ) E yo cos(t yo ) Ex cos t cos xo sin t sin xo , (1) E xo Ey E yo
cos t cos yo sin t sin yo , (2)
(1) sin yo (2) sin xo sin yo
Ey Ex sin xo cos t (cos xo sin yo cos yo sin xo ) E xo E yo cos t sin ,
(1) cos yo (2) cos xo cos yo
Ey Ex cos xo sin t (cos xo sin yo cos yo sin xo ) E xo E yo sin t sin ,
1 sin 2 1 sin 2
[(sin yo [(
yo xo
yo xo
Ey 2 Ey 2 Ex E sin xo ) (cos yo x cos xo ) ] 1 E xo E yo E xo E yo
Ex E y Ey 2 Ex 2 ) 2 cos ( ) ] 1 E xo E xo E yo E yo 73
Derive Formula
Y Y‟
x x' cos y ' sin ; y x' sin y ' cos ( A cos 2 B cos sin C sin 2 ) x'2 (2 A cos sin 2C sin cos B (cos sin ) x' y ' 2
2
X‟
x
( A sin 2 B cos sin C cos 2 ) y '2 k 1 B C A sin 2 B cos 2 0 tan 1 ( ) 2 AC 1 1 1 A 2 , B 2 cos , C 2 E xo E xo E yo E yo
2 E xo E yo 1 tan 1 ( 2 cos ) 2 2 E xo E yo
Major axis : 2 4 2 OA { 12 [ E xo2 E yo ( E xo4 E yo 2 E xo2 E yo cos 2 ) 2 ]}2 1
1
2 4 2 OB { 12 [ E xo2 E yo ( E xo4 E yo 2 E xo2 E yo cos 2 ) 2 ]}2 1
Axial Ratio :
OA major axis OB min or axis
1
,1 AR 74
Polarization Loss Factor Incoming wave (electric field) Ei ˆ t Ei The receving antenna : Er ˆ r Er
Ei aˆ x Eo ( x, y )e jkz , Er (aˆ x aˆ y ) E ( x, y )e jkz
ˆt ?, ˆ r ?, PLF ?
Polarization Loss Factor : PLF ˆ t ˆ r cos 2
Example : Linear polarization:
2
solve:
ˆ t aˆ x , ˆ r
1 (aˆ x aˆ y ) 2
2 Polarization efficiency : PLF (dB ) 10 log10 ( ˆ t ˆ r ) 3dB 2 le Einc Pe 2 2 Receiving mode le Einc Transmitting mode le : Vector effective length of the antenna. Einc : Incident electric field.
75
8. Input impedance of an Antenna
Z A RA jX A , RA Rr RL
R = 2Pt/I2
: Input resistance
2 Prad Rr 2 I0
: Radiation resistance
RL Loss
(equivalent)
Resistance due to skin effect or dielectric loss (heat) 76
Radiation Resistance for Infinitesimal Dipole 1 2
1 2
For Hertzian dipole: W [ E H *] [aˆr E H * aˆ Er H * ] (Poynting vector) I ol sin 2 1 Wr [1 j ] 2 8 r ( r )3 2
I ol cos sin 1 W j [1 ] 16 2 r 3 ( r )2 2
P
S
W dS
2
0
0
(aˆrWr aˆ W ) aˆr r 2 sin d d
I ol 1 [1 j ] 3 ( r )3 2
Prad j 2 (Wm We ) ~ 2We 1 Q Prad ( kr) 3 2 2 Prad 2 l Rr 2 80 , Io 2 Example : (Infinitesimal dipole)
l 0.01 , l
2
Rr 73
(l
) 50 ( 120 )
1 2 Rr 80 2 ( ) 0.079 Ohm 100 77
Radiation Resistance for a Small Dipole Rrad : Radiation resistance RL : Loss due to material and metal G ecd D,
ecd
Rrad Rrad RL
-- From the circuit point of view:1. Power loss --- R 2. Stored energy --- L,C For Small Dipole:( /50