Preview only show first 10 pages with watermark. For full document please download

Characterising Exoplanet Satellite

   EMBED


Share

Transcript

Exoplanet Science — Quy Nhơn, Việt Nam — 21 April 2014 Characterising Exoplanet Satellite David Ehrenreich ’s first small-class mission Mass-radius diagram 3 distinct families in the Solar System high density gas giants [g cm-3] low density Planet radius (Earth = 1)! ice giants 10! 1.3 telluric planets 1! 5.2 1.9 1.9 1.8 3.4 1.3 1.6 5.5 icy moons 3.5 0.7 planet bulk densities 3.5 5.4 rocky moons 0.1! 0.01! 0.1! 1! 10! 100! Planet mass (Earth = 1)! 1000! 10000! Mass-radius diagram Apparent continuity of masses for exoplanets high density gas giants [g cm-3] Planet radius (Earth = 1)! low density K-11f (0.7) 10! ice giants telluric planets 1! 55 Cnc e (4.3) K-78b (5.5) icy moons C-7b K-10b (6.2) (8.8) rocky moons 0.1! 0.01! 0.1! 1! 10! 100! Planet mass (Earth = 1)! 1000! 10000! What are exoplanets made of? GJ 3470b Corot-7b telluric Léger+ 2009 super-Earths? Kepler-11f Lissauer+ 2011 gas dwarfs? ? Kepler-78b Pepe+, Howard+ 2013 ? ocean 55planets? Cnc e Winn+, Demory+ 2011 Léger+ 2004 Bonfils+ 2012 massive core HD 149026b Sato+ 2005 subgiants? GJmini 1214b Charbonneau+ 2009 Neptunes? hydrogen/helium envelope thin atmosphere ice mantle/volatile envelope solid core (rocks+metals) Constraints based 
 on bulk densities How do they evolve? How do they survive under extreme irradiation? GJ 436b Kulow+ 2014 55 Cancri e KIC 12557548b Winn+ 2011 Demory+ 2011 ? Rappaport+ 2012 ? ? Kepler-78b hot Neptunes? hot super-Earths? Sanchis-Ojeda+ 2013 hot & warm Jupiters hydrogen/helium envelope HD 209458b, HD 189733b, 55 Cancri b Vidal-Madjar+ 2003; Lecavelier+2012; Ehrenreich+ 2012 thin atmosphere ice mantle/volatile envelope solid core (rocks+metals) Which planets are the golden targets for atmospheric characterisation? HST 3σ detection limit 55 Cnc e sodium detection on HD 209458b Charbonneau+ 2002 HD 209458b HD 189733b Density matters for atmospheric studies The less dense at given mass, the easier to characterize (Ehrenreich+ 2006) Which planets are the golden targets for atmospheric characterisation? 4 5 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) 6 7 8 T HS J magnitude • All transiting planets! • Hydrogen-rich atmospheres 9 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm) Which planets are the golden targets for atmospheric characterisation? 4 5 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) 6 7 8 T HS J magnitude • Transiting super-Earths (<10 ME)! • Hydrogen-rich atmospheres 9 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm) Which planets are the golden targets for atmospheric characterisation? 4 5 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) 6 7 8 T HS J magnitude • Transiting super-Earths (<10 ME)! • Water-rich atmospheres 9 GJ 1214b 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm) Which planets are the golden targets for atmospheric characterisation? 4 5 JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013) 6 Flat spectrum ➡ clouds! 12 HST transits (Kreidberg+ 2014) 7 8 T HS J magnitude • Transiting super-Earths (<10 ME)! • Water-rich atmospheres 9 GJ 1214b 10 11 12 1 10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm) Targets: bright stars Better knowledge of the stars Better knowledge of the planets TESS 1st S-class mission 
 adopted by ESA 
 (Feb 2014) PLATO CHEOPS main science goals What will do:
 ➡ Perform 1st-step characterization of super-Earths & Neptunes
 Measure accurate radii & bulk densities of super-Earths & Neptunes orbiting bright stars ➡ Provide golden targets for future atmospheric characterization How CHEOPS will do it:
 ➡ High-precision photometry ➡ Achieve a photometric precision similar to Kepler ➡ Observing brighter stars anywhere on the sky CHEOPS strategy: Follow-up TESS (2017) Me asu re a ccu rat e li ght Ground-based transit surveys NGTS (2014) cur ves for Ne ptu n es rths er-Ea p u s n w t of kno ransi he t Detect t Ground-based RV surveys HARPS, HARPS-N, HIRES, SOPHIE (on going) ESPRESSO (2017) 20% open time (3.5-yr mission) K2 (2014) CHEOPS legacy JWST 2018 E-ELT, GMT, TMT ~2020 ESA’s first small mission requirements • • Science ➡Top-rated science in any area of space sciences Cost ➡Total cost < 150 M€ ➡ESA cost < 50 M€ (fixed) • Schedule ➡Developed and launched within 4 years ESA’s first small mission requirements • • Science 1st mission dedicated to exoplanet follow-up ➡Top-rated science in any area of space sciences Cost ➡ ➡ESA cost < 50 M€ (fixed) Total cost < 150 M€ • Schedule ~100 M€ • Platform • Detector • Launch ➡Developed and launched within 4 years CHEOPSconsortium in Europe CHEOPS Small mission, large organization CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center PI: Prof. Willy Benz, U. Bern CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center Germany
 Focal Plane Assembly Belgium
 Baffle Italy
 Optics Austria
 Digital Processing Unit Hungary
 Radiators CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland Mission Lead Instrument Team Science Operations Center Sweden
 Data simulator UK
 Mission Operations Center France
 Germany
 Focal Plane Assembly Belgium
 Baffle Italy
 Optics Data Reduction Software Austria
 Portugal
 Mission Planning, Archive, & Data Reduction Software Digital Processing Unit Hungary
 Radiators CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland University of Bern (project lead)! University of Geneva! Swiss Space Center (EPFL)! ETH Zürich Austria Institut für Weltraumforschung, Graz Belgium Centre Spatial de Liège! Université de Liège France Laboratoire d’astrophysique de Marseille Germany Hungary DLR Institute for Planetary Research Konkoly Observatory Italy Osservatorio Astrofisico di Catania – INAF! Osservatorio Astronomico di Padova – INAF! Università di Padova Portugal Centro de Astrofisica da Universidade do Porto! Deimos Engenharia Sweden Onsala Space Observatory, Chalmers University! University of Stockholm UK University of Warwick CHEOPS spacecraft telescope cover radiators instrument baffle star tracker Total weight: 250 kg Total length: 1.3 m platform Two competing platform concepts CHEOPS instrument system radiator radiator isostatic mount optical bench radiator support and optics hood structure tube CCD & FPA BEO with folding mirror secondary mirror primary mirror Telescope ∅: 32 cm Total weight: 60 kg CHEOPS observations Frame-transfer CCD telescope FoV: 20’ 1k×1k ➠ subarray image 200×200 pixels (4 arcmin2) On-board data stacking Measurement cadence: 1 min-1 30 pixels (30”) CHEOPSim defocused PSF CHEOPS photometric precision Pointing stability: 8’’ (rms) jitter p-flat precision: 0.1% pixel-to-pixel CHEOPS science requirements •  Measuring highly accurate signals ➡ 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag ➡ 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag CHEOPS science requirements •  Measuring highly accurate signals ➡ 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag ➡ 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag •  Pointing at any location over more than 50% of the sky ➡ Can choose the best targets for transit search ➡ Can confirm transiting planets on longer orbits (e.g., for TESS) ➡ Can search for additional planets orbit OBSERVATIONS 600—800 km 35° Sun 120° CHEOPS sky Summary • CHEOPS is Europe’s next exoplanet mission (2017) is a follow-up machine,
 • CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient
 ➡ Provides a first-step characterization of low-mass exoplanets
 ➡ Collects the golden targets for future in-depth characterization
 ➡ Allows 20% open time for high-precision photometry science • Next milestones 
 • More information in:
 ➡ Choice of the platform
 ➡ Preliminary Design Review (May-June) ESA CHEOPS Definition Study Report
 http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/ Summary • CHEOPS is Europe’s next exoplanet mission (2017) is a follow-up machine,
 • CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient
 ➡ Provides a first-step characterization of low-mass exoplanets
 ➡ Collects the golden targets for future in-depth characterization
 ➡ Allows 20% open time for high-precision photometry science • Next milestones 
 • More information in:
 ➡ Choice of the platform
 ➡ Preliminary Design Review (May-June) ESA CHEOPS Definition Study Report
 http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/ Thank you Cảm ơn CHEOPS  prescreening for JWST What TESS can do for CHEOPS: • Provide targets for CHEOPS follow-up What CHEOPS can do for TESS: Maximize science impact of JWST transit observations • Validate TESS long-period candidates • Precise radii & densities for TESS planets: thick atmospheres? ‣ Planet parameters vs. cloud correlation? • Obtain long-baseline TTVs for TESS planets CHEOPS in Europe Science Team Board Yann Alibert Universität Bern Tamás Bárczy Admatis François Bouchy Laboratoire d'Astrophysique de Marseille Wolfgang Baumjohann Institut für Weltraumforschung Alexis Brandeker Stockholms Universitet Willy Benz Universität Bern Christopher Broeg Universität Bern Juan Cabrera DLR Institut für Planetenforschung Magali Deleuil Laboratoire d'Astrophysique de Marseille David Ehrenreich Université de Genève Michaël Gillon Université de Liège Anders Erikson DLR Institut für Planetenforschung Antonio Gutiérrez Peña Deimos Andrea Fortier Universität Bern László Kiss Konkoly Obszervatórium Michaël Gillon Université de Liège Alain Lecavelier Institut d'Astrophysique de Paris Manuel Güdel Universität Wien René Liseau Chalmers Tekniska Högskola Kevin Heng Universität Bern Göran Olofsson Stockholms Universitet Gyula Szabó Konkoly Obszervatórium Giampaolo Piotto Università degli Studi di Padova Helmut Lammer Institut für Weltraumforschung Roberto Ragazzoni INAF Osservatorio Astronomico di Padova Christophe Lovis Université de Genève Étienne Renotte Université de Liège Michael R. Meyer Eidgenössische Technische Hochschule Zürich Isabella Pagano INAF Osservatorio Astrofisico di Catania Nuno C. Santos Centro de Astrofísica da Universidade do Porto Giampaolo Piotto Università degli Studi di Padova Tilman Spohn DLR Institut für Planetenforschung Didier Queloz Université de Genève Manfred Steller Institut für Weltraumforschung Roberto Ragazzoni INAF Osservatorio Astronomico di Padova Nicolas Thomas Universität Bern Sérgio Sousa Centro de Astrofísica da Universidade do Porto Stéphane Udry Université de Genève Tilman Spohn DLR Institut für Planetenforschung Valérie Van Grootel Université de Liège