Transcript
Exoplanet Science — Quy Nhơn, Việt Nam — 21 April 2014
Characterising Exoplanet Satellite
David Ehrenreich ’s first small-class mission
Mass-radius diagram 3 distinct families in the Solar System high density
gas giants
[g cm-3] low density
Planet radius (Earth = 1)!
ice giants
10! 1.3
telluric planets
1!
5.2
1.9 1.9 1.8
3.4
1.3
1.6
5.5
icy moons
3.5
0.7
planet bulk densities
3.5 5.4
rocky moons
0.1! 0.01!
0.1!
1!
10! 100! Planet mass (Earth = 1)!
1000!
10000!
Mass-radius diagram Apparent continuity of masses for exoplanets high density
gas giants
[g cm-3]
Planet radius (Earth = 1)!
low density
K-11f (0.7)
10!
ice giants
telluric planets
1!
55 Cnc e (4.3)
K-78b (5.5)
icy moons
C-7b K-10b (6.2) (8.8)
rocky moons
0.1! 0.01!
0.1!
1!
10! 100! Planet mass (Earth = 1)!
1000!
10000!
What are exoplanets made of? GJ 3470b Corot-7b telluric Léger+ 2009 super-Earths?
Kepler-11f Lissauer+ 2011 gas dwarfs?
?
Kepler-78b Pepe+, Howard+ 2013
? ocean 55planets? Cnc e Winn+, Demory+ 2011 Léger+ 2004
Bonfils+ 2012
massive core HD 149026b Sato+ 2005 subgiants?
GJmini 1214b Charbonneau+ 2009 Neptunes?
hydrogen/helium envelope thin atmosphere ice mantle/volatile envelope solid core (rocks+metals)
Constraints based
on bulk densities
How do they evolve? How do they survive under extreme irradiation? GJ 436b Kulow+ 2014
55 Cancri e
KIC 12557548b
Winn+ 2011 Demory+ 2011
?
Rappaport+ 2012
?
? Kepler-78b
hot Neptunes? hot super-Earths?
Sanchis-Ojeda+ 2013
hot & warm Jupiters hydrogen/helium envelope HD 209458b, HD 189733b, 55 Cancri b Vidal-Madjar+ 2003; Lecavelier+2012; Ehrenreich+ 2012
thin atmosphere ice mantle/volatile envelope solid core (rocks+metals)
Which planets are the golden targets for atmospheric characterisation? HST 3σ detection limit 55 Cnc e
sodium detection on HD 209458b Charbonneau+ 2002
HD 209458b
HD 189733b
Density matters for atmospheric studies The less dense at given mass, the easier to characterize
(Ehrenreich+ 2006)
Which planets are the golden targets for atmospheric characterisation? 4 5
JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013)
6 7 8
T
HS
J magnitude
• All transiting planets! • Hydrogen-rich atmospheres
9 10 11 12 1
10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)
Which planets are the golden targets for atmospheric characterisation? 4 5
JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013)
6 7 8
T
HS
J magnitude
• Transiting super-Earths (<10 ME)! • Hydrogen-rich atmospheres
9 10 11 12 1
10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)
Which planets are the golden targets for atmospheric characterisation? 4 5
JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013)
6 7 8
T
HS
J magnitude
• Transiting super-Earths (<10 ME)! • Water-rich atmospheres
9 GJ 1214b
10 11 12 1
10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)
Which planets are the golden targets for atmospheric characterisation? 4 5
JWST 3σ detection limit water detection on HD 209458b in 1 transit (Deming+ 2013)
6
Flat spectrum ➡ clouds!
12 HST transits (Kreidberg+ 2014)
7 8
T
HS
J magnitude
• Transiting super-Earths (<10 ME)! • Water-rich atmospheres
9 GJ 1214b
10 11 12 1
10 100 1000 10000 Absorption signal of one atmospheric scale height in transmission spectroscopy (ppm)
Targets: bright stars Better knowledge of the stars Better knowledge of the planets
TESS 1st S-class mission
adopted by ESA
(Feb 2014)
PLATO
CHEOPS main science goals What will do:
➡ Perform 1st-step characterization of super-Earths & Neptunes
Measure accurate radii & bulk densities of super-Earths & Neptunes orbiting bright stars
➡ Provide golden targets for future atmospheric characterization
How CHEOPS will do it:
➡ High-precision photometry
➡ Achieve a photometric precision similar to Kepler
➡ Observing brighter stars anywhere on the sky
CHEOPS strategy: Follow-up TESS (2017) Me
asu
re a
ccu rat
e li ght
Ground-based transit surveys NGTS (2014)
cur
ves
for
Ne
ptu n
es
rths
er-Ea p u s n w t of kno
ransi
he t Detect t
Ground-based RV surveys HARPS, HARPS-N, HIRES, SOPHIE (on going) ESPRESSO (2017)
20% open time (3.5-yr mission)
K2 (2014)
CHEOPS legacy
JWST 2018
E-ELT, GMT, TMT ~2020
ESA’s first small mission requirements
• •
Science
➡Top-rated science in any area of space sciences
Cost
➡Total cost < 150 M€
➡ESA cost < 50 M€ (fixed)
•
Schedule
➡Developed and launched within 4 years
ESA’s first small mission requirements
• •
Science
1st mission dedicated to exoplanet follow-up
➡Top-rated science in any area of space sciences
Cost
➡ ➡ESA cost < 50 M€ (fixed)
Total cost < 150 M€
•
Schedule
~100 M€ • Platform
• Detector
• Launch
➡Developed and launched within 4 years
CHEOPSconsortium in Europe CHEOPS Small mission, large organization
CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland
Mission Lead Instrument Team Science Operations Center
PI: Prof. Willy Benz, U. Bern
CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland
Mission Lead Instrument Team Science Operations Center
Germany
Focal Plane Assembly
Belgium
Baffle
Italy
Optics
Austria
Digital Processing Unit
Hungary
Radiators
CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland
Mission Lead Instrument Team Science Operations Center
Sweden
Data simulator
UK
Mission Operations Center
France
Germany
Focal Plane Assembly
Belgium
Baffle
Italy
Optics
Data Reduction Software
Austria
Portugal
Mission Planning, Archive, & Data Reduction Software
Digital Processing Unit
Hungary
Radiators
CHEOPSconsortium in Europe CHEOPS Small mission, large organization Switzerland
University of Bern (project lead)! University of Geneva! Swiss Space Center (EPFL)! ETH Zürich
Austria
Institut für Weltraumforschung, Graz
Belgium
Centre Spatial de Liège! Université de Liège
France
Laboratoire d’astrophysique de Marseille
Germany Hungary
DLR Institute for Planetary Research Konkoly Observatory
Italy
Osservatorio Astrofisico di Catania – INAF! Osservatorio Astronomico di Padova – INAF! Università di Padova
Portugal
Centro de Astrofisica da Universidade do Porto! Deimos Engenharia
Sweden
Onsala Space Observatory, Chalmers University! University of Stockholm
UK
University of Warwick
CHEOPS spacecraft telescope cover
radiators
instrument
baffle
star tracker
Total weight: 250 kg
Total length: 1.3 m
platform
Two competing platform concepts
CHEOPS instrument system radiator
radiator isostatic
mount
optical bench radiator support
and
optics hood
structure tube
CCD & FPA
BEO with
folding mirror secondary mirror
primary mirror
Telescope ∅: 32 cm
Total weight: 60 kg
CHEOPS observations Frame-transfer CCD
telescope
FoV: 20’
1k×1k
➠
subarray image
200×200 pixels
(4 arcmin2)
On-board data stacking
Measurement cadence: 1 min-1 30 pixels (30”)
CHEOPSim defocused PSF
CHEOPS photometric precision
Pointing stability: 8’’ (rms) jitter
p-flat precision: 0.1% pixel-to-pixel
CHEOPS science requirements • Measuring highly accurate signals
➡ 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag
➡ 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag
CHEOPS science requirements • Measuring highly accurate signals
➡ 20 ppm accuracy over 6 hours for G-type stars with V < 9 mag
➡ 85 ppm accuracy over 3 hours for K-type stars with V < 12 mag
• Pointing at any location over more than 50% of the sky
➡ Can choose the best targets for transit search
➡ Can confirm transiting planets on longer orbits (e.g., for TESS)
➡ Can search for additional planets
orbit
OBSERVATIONS
600—800 km
35°
Sun 120°
CHEOPS sky
Summary • CHEOPS is Europe’s next exoplanet mission (2017)
is a follow-up machine,
• CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient
➡ Provides a first-step characterization of low-mass exoplanets
➡ Collects the golden targets for future in-depth characterization
➡ Allows 20% open time for high-precision photometry science
•
Next milestones
•
More information in:
➡ Choice of the platform
➡ Preliminary Design Review (May-June)
ESA CHEOPS Definition Study Report
http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/
Summary • CHEOPS is Europe’s next exoplanet mission (2017)
is a follow-up machine,
• CHEOPS Knowing when to look at a star makes CHEOPS extremely efficient
➡ Provides a first-step characterization of low-mass exoplanets
➡ Collects the golden targets for future in-depth characterization
➡ Allows 20% open time for high-precision photometry science
•
Next milestones
•
More information in:
➡ Choice of the platform
➡ Preliminary Design Review (May-June)
ESA CHEOPS Definition Study Report
http://sci.esa.int/cosmic-vision/53541-cheops-definition-study-report-red-book/
Thank you Cảm ơn
CHEOPS prescreening for JWST What TESS can do for CHEOPS:
• Provide targets for CHEOPS follow-up
What CHEOPS can do for TESS:
Maximize science impact
of JWST transit observations
• Validate TESS long-period candidates
• Precise radii & densities for TESS planets: thick atmospheres?
‣ Planet parameters vs. cloud correlation?
• Obtain long-baseline TTVs for TESS planets
CHEOPS in Europe Science Team
Board
Yann Alibert
Universität Bern
Tamás Bárczy
Admatis
François Bouchy
Laboratoire d'Astrophysique de Marseille
Wolfgang Baumjohann
Institut für Weltraumforschung
Alexis Brandeker
Stockholms Universitet
Willy Benz
Universität Bern
Christopher Broeg
Universität Bern
Juan Cabrera
DLR Institut für Planetenforschung
Magali Deleuil
Laboratoire d'Astrophysique de Marseille
David Ehrenreich
Université de Genève
Michaël Gillon
Université de Liège
Anders Erikson
DLR Institut für Planetenforschung
Antonio Gutiérrez Peña
Deimos
Andrea Fortier
Universität Bern
László Kiss
Konkoly Obszervatórium
Michaël Gillon
Université de Liège
Alain Lecavelier
Institut d'Astrophysique de Paris
Manuel Güdel
Universität Wien
René Liseau
Chalmers Tekniska Högskola
Kevin Heng
Universität Bern
Göran Olofsson
Stockholms Universitet
Gyula Szabó
Konkoly Obszervatórium
Giampaolo Piotto
Università degli Studi di Padova
Helmut Lammer
Institut für Weltraumforschung
Roberto Ragazzoni
INAF Osservatorio Astronomico di Padova
Christophe Lovis
Université de Genève
Étienne Renotte
Université de Liège
Michael R. Meyer
Eidgenössische Technische Hochschule Zürich
Isabella Pagano
INAF Osservatorio Astrofisico di Catania
Nuno C. Santos
Centro de Astrofísica da Universidade do Porto
Giampaolo Piotto
Università degli Studi di Padova
Tilman Spohn
DLR Institut für Planetenforschung
Didier Queloz
Université de Genève
Manfred Steller
Institut für Weltraumforschung
Roberto Ragazzoni
INAF Osservatorio Astronomico di Padova
Nicolas Thomas
Universität Bern
Sérgio Sousa
Centro de Astrofísica da Universidade do Porto
Stéphane Udry
Université de Genève
Tilman Spohn
DLR Institut für Planetenforschung
Valérie Van Grootel
Université de Liège