Transcript
C3M0065090D
VDS
900 V
ID @ 25˚C
Silicon Carbide Power MOSFET TM C3M MOSFET Technology
RDS(on)
36 A 65 mΩ
N-Channel Enhancement Mode Features
• • • • •
Package
New C3M SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant
Benefits
• • • •
Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency
Applications
• • • •
Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number
Package
C3M0065090D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol
Parameter
Unit
Test Conditions
Note
VDSmax
Drain - Source Voltage
900
V
VGS = 0 V, ID = 100 μA
VGSmax
Gate - Source Voltage
-8/+18
V
Absolute maximum values, AC (f >1 Hz)
VGSop
Gate - Source Voltage
-4/+15
V
Recommended operational values
Note: 1
VGS = 15 V, TC = 25˚C
Fig. 19
ID
Continuous Drain Current
ID(pulse)
36 23
A
VGS = 15 V, TC = 100˚C
Pulsed Drain Current
90
A
EAS
Avalanche energy, Single pulse
110
mJ
ID = 22A, VDD = 50V
PD
Power Dissipation
125
W
TC=25˚C, TJ = 150 ˚C
-55 to +150
˚C
260
˚C
TJ , Tstg TL
Operating Junction and Storage Temperature Solder Temperature
Note (1): MOSFET can also safely operate at 0/+15 V
1
Value
C3M0065090D Rev. A, 03-2016
Pulse width tP limited by Tjmax
1.6mm (0.063”) from case for 10s
Fig. 22
Fig. 20
Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol
Parameter
V(BR)DSS
Drain-Source Breakdown Voltage
VGS(th)
Gate Threshold Voltage
Min.
Typ.
Max.
900 1.8
Unit
Test Conditions
V
VGS = 0 V, ID = 100 μA
2.1
V
VDS = 10V, ID = 5 mA
1.6
V
VDS = 10V, ID = 5 mA, TJ = 150ºC
IDSS
Zero Gate Voltage Drain Current
1
100
μA
VDS = 900 V, VGS = 0 V
IGSS
Gate-Source Leakage Current
10
250
nA
VGS = 15 V, VDS = 0 V
65
78
RDS(on)
Drain-Source On-State Resistance
90 13.6
gfs
Transconductance
Ciss
Input Capacitance
660
Coss
Output Capacitance
60
Crss
Reverse Transfer Capacitance
4.0
Eoss
Coss Stored Energy
16
EON
Turn-On Switching Energy (Body Diode FWD)
226
EOFF
Turn Off Switching Energy (Body Diode FWD)
36
td(on)
Turn-On Delay Time
35
Rise Time
11
Turn-Off Delay Time
23
Fall Time
9
tr td(off) tf RG(int)
Note
4.7
Qgs
Gate to Source Charge
7.5
Qgd
Gate to Drain Charge
12
Qg
Total Gate Charge
Fig. 4, 5, 6
VGS = 15 V, ID = 20A, TJ = 150ºC VDS= 15 V, IDS= 20 A
S
11.6
Internal Gate Resistance
VGS = 15 V, ID = 20 A
mΩ
VDS= 15 V, IDS= 20 A, TJ = 150ºC
f = 1 MHz VAC = 25 mV
μJ
Fig. 7
Fig. 17, 18
VGS = 0 V, VDS = 600 V
pF
Fig. 11
Fig. 16
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 20A, RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC
Fig. 26
ns
VDD = 400 V, VGS = -4 V/15 V ID = 20 A, RG(ext) = 2.5 Ω, Timing relative to VDS Inductive load
Fig. 27
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 400 V, VGS = -4 V/15 V ID = 20 A Per IEC60747-8-4 pg 21
30.4
Fig. 12
Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse
Parameter
Typ.
Diode Forward Voltage
Max.
Unit
Test Conditions
Note
4.8
V
VGS = -4 V, ISD = 10 A
4.4
V
VGS = -4 V, ISD = 10 A, TJ = 150 °C
23.5
A
VGS = -4 V
Note 2
90
A
VGS = -4 V, pulse width tP limited by Tjmax
Note 2
VGS = -4 V, ISD = 20 A, VR = 400 V dif/dt = 950 A/µs, TJ = 150 °C
Note 2
Continuous Diode Forward Current Diode pulse Current
trr
Reverse Recover time
35
ns
Qrr
Reverse Recovery Charge
150
nC
Irrm
Peak Reverse Recovery Current
5.6
A
Fig. 8, 9, 10
Note (2): When using SiC Body Diode the maximum recommended VGS = -4V
Thermal Characteristics Symbol
2
Parameter
Max.
RθJC
Thermal Resistance from Junction to Case
1.0
RθJA
Thermal Resistance From Junction to Ambient
40
C3M0065090D Rev. A, 03-2016
Unit °C/W
Test Conditions
Note Fig. 21
Typical Performance
70
Drain-Source Current, IDS (A)
80
Conditions: TJ = -55 °C tp < 200 µs
Conditions: TJ = 25 °C tp < 200 µs
VGS = 15 V
70
VGS = 13 V
60
Drain-Source Current, IDS (A)
80
VGS = 11 V
50 40 VGS = 9 V
30 20 10
VGS = 15 V VGS = 13 V VGS = 11 V
60 50
VGS = 9 V
40 30 20
VGS = 7 V
10
VGS = 7 V
0
0 0.0
2.5
5.0
7.5
10.0
12.5
15.0
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -55 ºC 80
Conditions: TJ = 150 °C tp < 200 µs
2.0
VGS = 15 V VGS = 11 V
1.6
60 VGS = 9 V
50 40 30
VGS = 7 V
20 10
1.4 1.2 1.0 0.8 0.6 0.4
0.0
0.0
2.5
5.0
7.5
10.0
12.5
-50
15.0
-25
0
Figure 3. Output Characteristics TJ = 150 ºC Conditions: VGS = 20 V tp < 200 µs
TJ = 150 °C
80
TJ = -55 °C
60
75
100
125
150
Conditions: IDS = 20 A tp < 200 µs
120
On Resistance, RDS On (mOhms)
100
50
Figure 4. Normalized On-Resistance vs. Temperature 140
120
25
Junction Temperature, TJ (°C)
Drain-Source Voltage, VDS (V)
On Resistance, RDS On (Ohms)
15.0
0.2
0
TJ = 25 °C
40 20
100
VGS = 11 V
80
VGS = 13 V
60
VGS = 15 V
40 20 0
0 0
10
20
30
40
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3
12.5
Conditions: IDS = 20 A VGS = 20 V tp < 200 µs
1.8
VGS = 13 V
10.0
Figure 2. Output Characteristics TJ = 25 ºC
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
70
7.5
Drain-Source Voltage, VDS (V)
C3M0065090D Rev. A, 03-2016
50
60
-50
-25
0
25
50
75
100
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature For Various Gate Voltage
125
150
Typical Performance -10
Conditions: VDS = 20 V tp < 200 µs
-8
-6
-4
-2
0 0
40
TJ = 150 °C
VGS = -4 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
50
30 TJ = 25 °C
20 TJ = -55 °C
10
VGS = 0 V
-20
VGS = -2 V
-40
-60 Conditions: TJ = -55°C tp < 200 µs
0 0
2
4
6
8
10
Gate-Source Voltage, VGS (V)
Figure 7. Transfer Characteristic for Various Junction Temperatures -10
-8
-6
-4
-80
Drain-Source Voltage VDS (V)
Figure 8. Body Diode Characteristic at -55 ºC
-2
0
-10
-8
-6
-4
-2
0
Drain-Source Current, IDS (A)
VGS = -4 V
-20
VGS = 0 V
VGS = -2 V
-40
0
Drain-Source Current, IDS (A)
0
VGS = -4 V
-20
VGS = 0 V
VGS = -2 V
-40
-60 Conditions: TJ = 25°C tp < 200 µs
Drain-Source Voltage VDS (V)
-60 Conditions: TJ = 150°C tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 9. Body Diode Characteristic at 25 ºC
Figure 10. Body Diode Characteristic at 150 ºC
3.0
2.0 1.5 1.0 0.5 0.0 -50
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
4
Conditions: IDS = 20 A IGS = 100 mA VDS = 400 V TJ = 25 °C
12
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
16
Conditons VGS = VDS IDS = 5 mA
2.5
C3M0065090D Rev. A, 03-2016
-80
150
8
4
0
-4 0
5
10
15
20
25
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
30
35
Typical Performance -8
-7
-6
-5
-4
-3
-2
-1
0
-8
-7
-6
-5
-4
-3
-2
-1
0
0
0 VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40
VGS = 15 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40 VGS = 15 V
-60
-60
Conditions: TJ = -55 °C tp < 200 µs
Conditions: TJ = 25 °C tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 13. 3rd Quadrant Characteristic at -55 ºC -7
-8
-6
-5
-4
-3
-2
Figure 14. 3rd Quadrant Characteristic at 25 ºC 30
0
-1
-80
Drain-Source Voltage VDS (V)
0 25 -20 VGS = 5 V
-40
VGS = 10 V VGS = 15 V
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
VGS = 0 V
20 15 10 5
-60 Conditions: TJ = 150 °C tp < 200 µs
Drain-Source Voltage VDS (V)
0 0
-80
100
600
700
800
900
1000
Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz
1000
Capacitance (pF)
Capacitance (pF)
500
10000
Ciss
Coss
100
Crss
10
400
Figure 16. Output Capacitor Stored Energy
Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz
1000
300
Drain to Source Voltage, VDS (V)
Figure 15. 3rd Quadrant Characteristic at 150 ºC 10000
200
Ciss
100
Coss
10 Crss
1
1 0
50
100 Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)
5
C3M0065090D Rev. A, 03-2016
200
0
100
200
300 400 500 600 Drain-Source Voltage, VDS (V)
700
Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V)
800
900
Typical Performance 140
Conditions: TJ ≤ 150 °C
35
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
40
30 25 20 15 10 5
100
0 -55
-30
-5
20
45
70
95
120
Conditions: TJ ≤ 150 °C
120
80 60 40 20 0
145
-55
Case Temperature, TC (°C)
-30
-5
20
45
70
95
120
145
Case Temperature, TC (°C)
Figure 19. Continuous Drain Current Derating vs. Case Temperature
Figure 20. Maximum Power Dissipation Derating vs. Case Temperature
1
10 µs
Limited by RDS On 0.5
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
100.00
0.3
100E-3
0.1 0.05 0.02
10E-3
0.01
SinglePulse
10.00
1E-6
100 ms
1.00
0.10
10E-6
100E-6
1E-3
10E-3
Time, tp (s)
100E-3
1000 800
Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0065090D L = 77 μH
700 600 ETotal
600
EOn
400 EOff
200
10
100
1000
Figure 22. Safe Operating Area 800
Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0065090D L = 77 μH
1
Drain-Source Voltage, VDS (V)
Switching Loss (uJ)
1200
Switching Loss (uJ)
Conditions: TC = 25 °C D = 0, Parameter: tp 0.1
1
Figure 21. Transient Thermal Impedance (Junction - Case)
500
ETotal
400
EOn
300 200 EOff
100
0
0 0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6
1 ms
0.01
1E-3
100 µs
C3M0065090D Rev. A, 03-2016
50
0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V)
50
Typical Performance
400
Switching Loss (uJ)
400
Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0065090D L = 77 μH
Conditions: IDS = 20 A DS VDD = 400 V DD RG(ext) = 2.5 Ω G(ext) VGS = -4V/+15 V GS FWD = C3M0065090D L = 77 μH
350 300 ETotal
Switching Switching Loss Loss (uJ) (uJ)
500
300 EOn
200
100
250
ETotal Total
200
EOn On
150 100
EOff
50 0
0 0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
Conditions: TJ = 25 °C VDD = 400 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0065090D L = 77 μH
Switching Loss (uJ)
50 40
0
25
50
75
100
125
Junction Temperature, TJJ (°C)
td(on)
30
td(off)
20
tr tf
10 0 0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
Figure 28. Switching Times Definition
Figure 27. Switching Times vs. RG(ext) 35 Conditons: VDD = 50 V
Avalanche Current (A)
30 25 20 15 10 5 0 0
20
40
60
80
Time in Avalanche TAV (us)
Figure 29. Single Avalanche SOA curve
7
C3M0065090D Rev. A, 03-2016
150
Figure 26. Clamped Inductive Switching Energy vs. Temperature
Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 60
EOff Off
100
175
Test Circuit Schematic Q1 RG
VDC
C3M0065090D
VGS= - 4V
Q2 RG C3M0065090D D.U.T
Figure 30. Clamped Inductive Switching Waveform Test Circuit
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.
8
C3M0065090D Rev. A, 03-2016
Package Dimensions POS
Package TO-247-3
A
T
V
U
W
Pinout Information:
• • •
Pin 1 = Gate Pin 2, 4 = Drain Pin 3 = Source
Recommended Solder Pad Layout
TO-247-3
9
C3M0065090D Rev. A, 03-2016
Inches
Millimeters
Min
Max
Min
Max
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
E2
.145
.201
3.68
5.10
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
N
3
5.44 BSC 3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
T
9˚
11˚
9˚
11˚
U
9˚
11˚
9˚
11˚
V
2˚
8˚
2˚
8˚
W
2˚
8˚
2˚
8˚
Notes •
RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.
•
REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
• • •
SPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
Copyright © 2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10
C3M0065090D Rev A, 03-2016
Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.wolfspeed.com/power
Mouser Electronics Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Cree, Inc.: C3M0065090D