Transcript
MITSUBISHI IGBT MODULES
CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE
A Q
M
H
N
V–DIA.(4 TYP.)
S
E
C
E
D
G C
CM
F
G
X–M4 THD. (2 TYP.)
W–M6 THD. (2 TYP.)
P B K
U
K
R
E J
L
T
E
C
E G
Outline Drawing and Circuit Diagram Dimensions
Inches
Millimeters
A
4.21
B
3.661±0.01
C
2.44
D
1.89±0.01
E
1.42 Max.
F
1.34
34.0
G
1.18
H
1.14
J
0.98 Max.
K
0.94
L
0.93
Dimensions
Inches
Millimeters
107.0
M
0.83
21.0
93.0±0.25
N
0.69
17.5
P
0.63
16.0
48.0±0.25
Q
0.51
13.0
36.0 Max.
R
0.43
11.0
S
0.35
9.0
30.0
T
0.28
7.0
29.0
U
0.12
3.0
V
0.26 Dia.
Dia. 6.5
24.0
W
M6 Metric
M6
23.5
X
M4 Metric
M4
62.0
25.0 Max.
Description: Mitsubishi IGBT Modules are designed for use in switching applications. Each module consists of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. Features: u Low Drive Power u Low VCE(sat) u Discrete Super-Fast Recovery Free-Wheel Diode u High Frequency Operation u Isolated Baseplate for Easy Heat Sinking Applications: u AC Motor Control u Motion/Servo Control u UPS u Welding Power Supplies Ordering Information: Example: Select the complete part module number you desire from the table below -i.e. CM300HA-12H is a 600V (VCES), 300 Ampere Single IGBT Module. Type
Current Rating Amperes
VCES Volts (x 50)
CM
300
12
Sep.2000
MITSUBISHI IGBT MODULES
CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified Symbol
Ratings
Units
Junction Temperature
Tj
-40 to 150
°C
Storage Temperature
Tstg
-40 to 125
°C
Collector-Emitter Voltage (G-E SHORT)
VCES
600
Volts
Gate-Emitter Voltage (C-E SHORT)
VGES
±20
Volts
IC
300
Amperes
ICM
600*
Amperes
Collector Current (Tc = 25°C) Peak Collector Current (Tj ≤ 150°C) Emitter Current** (Tc = 25°C)
IE
300
Amperes
Peak Emitter Current**
IEM
600*
Amperes
Maximum Collector Dissipation (Tc = 25°C)
Pc
1100
Watts
Mounting Torque, M6 Main Terminal
–
1.96~2.94
N·m
Mounting Torque, M6 Mounting
–
1.96~2.94
N·m
Mounting Torque, M4 Terminal
–
0.98~1.47
N·m
–
400
Grams
Viso
2500
Vrms
Weight Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tj(max) rating. **Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).
Static Electrical Characteristics, Tj = 25 °C unless otherwise specified Characteristics
Symbol
Test Conditions
Min.
Typ.
Max.
Units
Collector-Cutoff Current
ICES
VCE = VCES, VGE = 0V
–
–
1.0
mA
Gate Leakage Current
IGES
VGE = VGES, VCE = 0V
–
–
0.5
µA
Gate-Emitter Threshold Voltage
VGE(th)
IC = 30mA, VCE = 10V
4.5
6.0
7.5
Volts
Collector-Emitter Saturation Voltage
VCE(sat)
IC = 300A, VGE = 15V
–
2.1
2.8**
Volts
IC = 300A, VGE = 15V, Tj = 150°C
–
–
Volts
Total Gate Charge
QG
VCC = 300V, IC = 300A, VGE = 15V
–
900
–
nC
Emitter-Collector voltage
VEC
IE = 300A, VGE = 0V
–
–
2.8
Min.
Typ.
Max.
–
–
30
nF
–
–
10.5
nF
2.15
Volts
** Pulse width and repetition rate should be such that device junction temperature rise is negligible.
Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified Characteristics
Symbol
Input Capacitance
Cies
Output Capacitance
Coes
Test Conditions
VGE = 0V, VCE = 10V
Units
Reverse Transfer Capacitance
Cres
–
–
6
nF
Resistive
Turn-on Delay Time
td(on)
–
–
350
ns
Load
Rise Time
Switching
Turn-off Delay Time
Times
tr
VCC = 300V, IC = 300A,
–
–
600
ns
td(off)
VGE1 = VGE2 = 15V, RG = 2.1Ω
–
–
350
ns
Fall Time
tf
–
–
300
ns
Diode Reverse Recovery Time
trr
IE = 300A, diE/dt = –600A/µs
–
–
110
ns
Diode Reverse Recovery Charge
Qrr
IE = 300A, diE/dt = –600A/µs
–
0.81
–
µC
Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified Characteristics
Symbol
Test Conditions
Min.
Typ.
Thermal Resistance, Junction to Case Thermal Resistance, Junction to Case Contact Thermal Resistance
Max.
Units
Rth(j-c)
Per IGBT
–
–
0.11
°C/W
Rth(j-c)
Per FWDi
–
–
0.24
°C/W
Rth(c-f)
Per Module, Thermal Grease Applied
–
–
0.040
°C/W Sep.2000
MITSUBISHI IGBT MODULES
CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE
OUTPUT CHARACTERISTICS (TYPICAL)
600
500
VGE = 20V 15
400
11
300 10
200 9
100
5
12
7
VCE = 10V Tj = 25°C Tj = 125°C
500
COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS)
Tj = 25oC
COLLECTOR CURRENT, IC, (AMPERES)
400 300 200 100
8
0
0 0
2
4
6
8
10
4
8
12
16
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)
FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL)
2
1
0
6
IC = 300A
4
2
400
500
600
102
Cies
101 Coes
100
10-1 10-1
101 12
16
0
20
0.8
1.6
2.4
3.2
4.0
EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS)
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)
REVERSE RECOVERY CHARACTERISTICS (TYPICAL)
103
103 REVERSE RECOVERY TIME, t rr, (ns)
tf
102
VCC = 300V VGE = ±15V RG = 2.1Ω Tj = 125°C
tr
102 COLLECTOR CURRENT, IC, (AMPERES)
103
Irr
102
101 t rr
di/dt = -600A/µsec Tj = 25°C
101 101
102 EMITTER CURRENT, IE, (AMPERES)
101
102
GATE CHARGE, VGE
102
td(off) td(on)
100
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
100 103
20 GATE-EMITTER VOLTAGE, VGE, (VOLTS)
8
Cres
VGE = 0V
IC = 120A
101 101
300
CAPACITANCE VS. VCE (TYPICAL)
CAPACITANCE, Cies, Coes, Cres, (nF)
EMITTER CURRENT, IE, (AMPERES)
IC = 600A
4
200
COLLECTOR-CURRENT, IC, (AMPERES)
Tj = 25°C
8
0
100
102
Tj = 25°C
0
SWITCHING TIME, (ns)
3
20
103
10
VGE = 15V Tj = 25°C Tj = 125°C
4
0 0
REVERSE RECOVERY CURRENT, Irr, (AMPERES)
COLLECTOR CURRENT, IC, (AMPERES)
600
COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS)
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)
TRANSFER CHARACTERISTICS (TYPICAL)
IC = 300A
16
VCC = 200V
12
VCC = 300V
8
4
0 0
200
400
600
800 1000 1200
GATE CHARGE, QG, (nC)
Sep.2000
MITSUBISHI IGBT MODULES
CM300HA-12H
10-3 101
100
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT) 10-2 10-1 100
101
Single Pulse TC = 25°C Per Unit Base = R th(j-c) = 0.11°C/W
10-1
10-1
10-2
10-2
10-3 10-5 TIME, (s)
10-4
10-3 10-3
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c) Zth = Rth • (NORMALIZED VALUE)
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c) Zth = Rth • (NORMALIZED VALUE)
HIGH POWER SWITCHING USE INSULATED TYPE
10-3 101
100
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi) 10-2 10-1 100
101
Single Pulse TC = 25°C Per Unit Base = R th(j-c) = 0.24°C/W
10-1
10-1
10-2
10-2
10-3 10-5
10-4
10-3 10-3
TIME, (s)
Sep.2000