Preview only show first 10 pages with watermark. For full document please download

техническое описание Cpc1968j

   EMBED


Share

Transcript

CPC1968 ISOPLUS™-264 Power Relay INTEGRATED CIRCUITS DIVISION Characteristics Parameter Blocking Voltage Description Rating Units 500 VP The CPC1968 single-pole normally open (1-Form-A) Solid State Power Relay is rated for up to 5A continuous load current with a 5°C/W heat sink. Load Current, TA=25°C: With 5°C/W Heat Sink 5 No Heat Sink 2 On-Resistance 0.35  RJC 0.3 °C/W Arms / ADC Features • • • • • • • • • • 5A Load Current with 5°C/W Heat Sink Low 0.35 On-Resistance 500VP Blocking Voltage 2500Vrms Input/Output Isolation Low Thermal Resistance (0.3 °C/W) Electrically Non-conductive Thermal Pad for Heat Sink Applications Low Drive Power Requirements Arc-Free With No Snubbing Circuits No EMI/RFI Generation Machine Insertable, Wave Solderable Applications • • • • Industrial Controls / Motor Control Robotics Medical Equipment—Patient/Equipment Isolation Instrumentation • Multiplexers • Data Acquisition • Electronic Switching • I/O Subsystems • Meters (Watt-Hour, Water, Gas) • Transportation Equipment • Aerospace/Defense Approvals Optically coupled MOSFET technology enables the CPC1968 to provide 2500Vrms of input to output isolation. The output, constructed with efficient MOSFET switches and photovoltaic die, uses IXYS Integrated Circuits Division’s patented OptoMOS architecture while the input, a highly efficient GaAlAs infrared LED, provides the optically coupled control. The combination of low on-resistance and high load current handling capability makes this relay suitable for a variety of high performance switching applications. The unique ISOPLUS-264 package pioneered by IXYS enables Solid State Relays to achieve the highest load current and power ratings. This package features a unique IXYS process in which the silicon chips are soft soldered onto the Direct Copper Bond (DCB) substrate instead of the traditional copper leadframe. The DCB ceramic, the same substrate used in high power modules, not only provides 2500Vrms isolation but also very low thermal resistance (0.3 °C/W). Ordering Information Part Description CPC1968J ISOPLUS-264 Package (25 per tube) Switching Characteristics • UL 508 Recognized Component: File E69938 Form-A Pin Configuration IF 90% 10% ILOAD ton toff e3 DS-CPC1968-R01 www.ixysic.com 1 CPC1968 INTEGRATED CIRCUITS DIVISION 1 Specifications 1.1 Absolute Maximum Ratings @ 25°C Symbol Ratings Units 500 VP Reverse Input Voltage 5 V Input Control Current 100 mA 1 A Input Power Dissipation 150 mW Isolation Voltage, Input to Output 2500 Vrms Operational Temperature -40 to +85 °C Storage Temperature -40 to +125 °C Blocking Voltage Peak (10ms) Absolute maximum ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied. 1.2 Electrical Characteristics @ 25°C Parameter Conditions Symbol Minimum Typical Maximum Units ±25 AP Output Characteristics Load Current 1 Peak Continuous t10ms IL Continuous No Heat Sink TC=25°C Continuous TC=99°C IL(99) IF=10mA, IL=1A RON - - 0.35  VL=500VP ILEAK - - 1 A ton - 4.6 20 toff - 0.07 5 On-Resistance 2 Off-State Leakage Current Switching Speeds Turn-On Turn-Off Output Capacitance IF=20mA, VL=10V - - 2 15 VL=25V, f=1MHz VL=1V, f=1MHz Cout IL=1A IF=5mA VR=5V - Arms / ADC 7.1 ms - 620 - - 3500 - IF - 2.45 10 mA IF 0.6 - - mA VF 0.9 1.2 1.4 V IR - - 10 A CI/O - 1 - pF pF Input Characteristics Input Control Current to Activate 3 Input Control Current to Deactivate Input Voltage Drop Reverse Input Current Input/Output Characteristics Capacitance, Input-to-Output 1 Higher load currents possible with proper heat sinking. Measurement taken within 1 second of on-time. 3 For applications requiring high temperature operation (T > 60ºC) a LED drive current of 20mA is recommended. C 2 2 www.ixysic.com R01 CPC1968 INTEGRATED CIRCUITS DIVISION 2 Thermal Characteristics Parameter Thermal Resistance (Junction to Case) Thermal Resistance (Junction to Ambient) Junction Temperature (Operating) Conditions Symbol Minimum Typical Maximum Units - RJC - - 0.3 °C/W Free Air RJA - 33 - °C/W - TJ -40 - 110 °C 2.1 Thermal Management Device high current characterization was performed using Kunze heat sink KU 1-159, phase change thermal interface material KU-ALC 5, and transistor clip KU 4-499/1. This combination provided an approximate junction-to-ambient thermal resistance of 12.5°C/W. 2.2 Heat Sink Calculation Higher load currents are possible by using lower thermal resistance heat sink combinations. Heat Sink Rating RθCA = (TJ - TA) IL(99)2 IL2 • PD(99) - RθJC TJ = Junction Temperature (°C), TJ ≤ 110°C * TA = Ambient Temperature (°C) IL(99) = Load Current with Case Temperature @ 99°C (ADC) IL = Desired Operating Load Current (ADC), IL ≤ IL(MAX) RθJC = Thermal Resistance, Junction to Case (°C/W) = 0.3°C/W RθCA = Thermal Resistance of Heat Sink & Thermal Interface Material , Case to Ambient (°C/W) PD(99) = Maximum power dissipation with case temperature held at 99ºC = 31W * Elevated junction temperature reduces semiconductor lifetime. R01 www.ixysic.com 3 CPC1968 INTEGRATED CIRCUITS DIVISION 3 Performance Data @ 25°C (Unless Otherwise Noted) Typical LED Forward Voltage Drop (N=50, IF=5mA) 40 Typical Turn-On Time (N=50, IF=20mA, IL=1A) 25 30 25 20 15 10 25 20 Device Count (N) Device Count (N) Device Count (N) 35 30 15 10 5 25 10 5 0 Typical On-Resistance Distribution (N=50, IF=10mA, IL=1A) Typical Blocking Voltage Distribution (N=50, IF=0mA, IL=10µA) 4.3 4.6 4.9 5.2 Turn-On Time (ms) 5.5 20 15 10 5 25 0 0.260 0.265 0.270 0.275 0.280 0.285 0.290 On-Resistance (Ω) Typical LED Forward Voltage Drop vs. Temperature Typical Turn-On Time vs. LED Forward Current (IL=1A) 1.4 Turn-On Time (ms) 1.5 1.3 1.2 -40 -20 0 20 40 60 Temperature (ºC) 80 15 10 5 100 12 5 545 550 555 560 565 Blocking Voltage (VP) 570 575 Typical Turn-Off Time vs. LED Forward Current (IL=1A) 75 70 65 60 0 Typical IF for Switch Operation vs. Temperature (IL=1A) 10 80 0 1.1 15 540 Turn-Off Time (µs) 20 IF=50mA IF=20mA IF=10mA IF=5mA 20 0 1.65 1.90 2.15 2.40 2.65 2.90 3.15 3.40 LED Forward Current (mA) 1.6 LED Forward Voltage (V) 0.060 0.065 0.070 0.075 0.080 0.085 0.090 Turn-Off Time (ms) 4.0 Device Count (N) Device Count (N) 15 10 5.8 3.7 1.240 Typical IF for Switch Operation (N=50, IL=1A) 20 Device Count (N) 1.220 1.225 1.230 1.235 LED Forward Voltage (V) 15 0 0 1.215 20 5 5 0 Typical Turn-Off Time (N=50, IF=20mA, IL=1A) 10 20 30 LED Current (mA) 40 0 50 Typical Turn-On Time vs. Temperature (VL=10V) 14 10 20 30 LED Current (mA) 40 50 Typical Turn-Off Time vs. Temperature (VL=10V) 80 8 6 4 12 Turn-Off Time (µs) Turn-On Time (ms) LED Current (mA) 75 10 IF=10mA 10 8 IF=20mA 6 70 IF=20mA 65 60 IF=10mA 55 50 45 4 2 -40 -20 0 20 40 60 Temperature (ºC) 80 100 40 -40 -20 0 20 40 60 Temperature (ºC) 80 100 -40 -20 0 20 40 60 Temperature (ºC) 80 100 Unless otherwise specified, all performance data was acquired without the use of a heat sink. The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department. 4 www.ixysic.com R01 CPC1968 INTEGRATED CIRCUITS DIVISION Typical On-Resistance vs. Temperature (IF=20mA, IL=1A) 6 0.40 0.35 0.30 2 0 -2 -4 0.20 -6 -1.5 20 40 60 Temperature (ºC) 80 100 Leakage Current (μA) 570 560 550 540 530 520 -0.5 0.0 0.5 Load Voltage (V) 1.0 -20 0 20 40 60 Temperature (ºC) 80 30 25 20 15 10 5 100 0 20 40 60 Temperature (ºC) 80 100 Output Capacitance vs. Load Voltage (IF=0mA, f=1MHz) 3500 35 3000 2500 2000 1500 1000 500 0 0 -40 4 1.5 Leakage Current vs. Temperature Measured Across Pins 1&2 (IF=0mA, VL=500VP) 40 580 6 0 -1.0 Output Capacitance (pF) 0 Typical Blocking Voltage vs. Temperature (IL=50μA) 590 Blocking Voltage (VP) -20 8 2 0.25 -40 Heat Sink 1ºC/W 5ºC/W 10ºC/W Free Air 10 Load Current (A) 0.45 Maximum Load Current vs. Temperature (IF=20mA) 12 4 Load Current (A) On-Resistance (Ω) 0.50 Typical Load Current vs. Load Voltage (IF=20mA) -40 -20 0 20 40 60 Temperature (ºC) 80 100 10s 100s 0 50 100 150 Load Voltage (V) 200 Energy Rating Curve 30 Load Current (A) 25 20 15 10 5 0 10μs 100μs 1ms 10ms 100ms Time 1s Unless otherwise specified, all performance data was acquired without the use of a heat sink. The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department. R01 www.ixysic.com 5 CPC1968 INTEGRATED CIRCUITS DIVISION 4 Manufacturing Information 4.1 Moisture Sensitivity All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below. Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability. This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033. Device Moisture Sensitivity Level (MSL) Rating CPC1968J MSL 1 4.2 ESD Sensitivity This product is ESD Sensitive, and should be handled according to the industry standard JESD-625. 4.3 Reflow Profile This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed. Device Maximum Temperature x Time CPC1968J 245°C for 30 seconds 4.4 Board Wash IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine-based or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used. e3 6 www.ixysic.com R01 CPC1968 INTEGRATED CIRCUITS DIVISION 4.5 Mechanical Dimensions 5.029 ± 0.127 (0.198 ± 0.005) 1.181 ± 0.076 (0.047 ± 0.003) 19.914 ± 0.254 (0.784 ± 0.010) 1.930 ± 0.381 (0.076 ± 0.015) 26.162 ± 0.254 (1.030 ± 0.010) 20.396 ± 0.508 (0.803 ± 0.020) 20.600 ± 0.254 (0.811 ± 0.010) 2.362 ± 0.381 (0.093 ± 0.015) DIMENSIONS mm (inches) 3.810 ± 0.254 (0.150 ± 0.010) 15.240 ± 0.508 (0.600 ± 0.020) 17.221 ± 0.254 (0.678 ± 0.010) 0.635 ± 0.076 (0.025 ± 0.003) 2.794 ± 0.127 (0.110 ± 0.005) 1.270 TYP (0.050 TYP) NOTE: Back-side heat sink meets 2500Vrms isolation to the pins. For additional information please visit our website at: www.ixysic.com IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division’s Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division’s product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice. Specification: DS-CPC1968-R01 ©Copyright 2012, IXYS Integrated Circuits Division All rights reserved. Printed in USA. 11/2/2012 R01 www.ixysic.com 7