Transcript
DATA SHEET Optoelectronic Devices Order code 58-0600
Manufacturer code 6N138
Description 6N138 DARLINGTON OPTOISOLATOR
Optoelectronic Devices The enclosed information is believed to be correct, Information may change ‘without notice’ due to product improvement. Users should ensure that the product is suitable for their use. E. & O. E. Sales: 01206 751166
[email protected]
Technical: 01206 835555
[email protected]
Page 1 of 6 Revision A 04/07/2003
Fax: 01206 7551188 www.rapidelectronics.co.uk
6N138
6N138
High Sensitivity, High Speed OPIC Photocoupler
■ Features
■ Outline Dimensions
Output
0.5TYP
8
7
6
5
1
2
3
4
7.62 ± 0.3
3.7 ± 0.5
3.5 ± 0.5
1 2 3 4 0.8 ± 0.2 1.2 ± 0.3 Primary side mark (Sunken place ) 9.22 ± 0.5
θ
2.54 ± 0.25
0.5 ± 0.1
θ = 0 to 13 ˚ 0.26 ± 0.1
1 NC
5 GND
2 Anode
6 VO
3 Cathode 4 NC
7 VB 8 V CC
θ
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
7 6N138
■ Applications 1. Interfaces for computer peripherals 2. Electronic calculators, measuring instruments, control equipment 3. Telephone sets 4. Signal transmission between circuits of different potentials and impedances
Parameter Forward current *1 Peak forward current *2 Peak transient forward current Reverse voltage Power dissipation Supply voltage Output voltage Emitter-base reverse withstand voltage ( pin 5 to 7 ) *3 Average output current Power dissipation *4 Isolation voltage Operating temperature Storage temperature *5 Soldering temperature
Internal connection diagram
1.2 ± 0.3 6 5
0.85 ± 0.3 8
( Unit : mm )
6.5 ± 0.5
1. High current transfer ratio ( CTR : MIN. 300% at I F = 1.6mA ) 2. High speed response ( t PHL : TYP. 2 µ s at R L = 2.2kΩ ) 3. Instantaneous common mode rejection voltage ( CM H : TYP. 500V/ µ s ) 4. TTL compatible output 5. Overseas standard model 6. Recognized by UL, file No. E64380.
( Ta = 25˚C ) Symbol IF IF I FM VR P V CC VO
Rating 20 40 1 5 35 - 0.5 to + 7 - 0.5 to + 7
Unit mA mA A V mW V V
V EBO
0.5
V
IO PO V iso T opr T stg T sol
60 100 2 500 0 to + 70 - 55 to + 125 260
mA mW V rms ˚C ˚C ˚C
*1 50% duty cycle, Pulse width: 1ms *2 pulse width <=1µ s, 300pps *3 Decreases at the rate of 0.7mA /˚C if the external temperature is 25˚C or more. *4 40 to 60% RH, AC for 1 minute *5 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
6N138 ■ Electro-optical Characteristics
( Ta = 0 to 70˚C unless otherwise specified )
Parameter Current transfer ratio Logic ( 0 ) output voltage
Symbol CTR V OL I OH I CCL I CCH VF
*1
Logic (1) output current Logic ( 0 ) supply current Logic (1) supply current Input forward voltage Input forward voltage temperature coefficient Input reverse voltage Input capacitance *3 Leak current ( input-output ) *3 ( input-output ) Isolation resistance *3 Capacitance ( input-output )
*2 BV R C IN I I-O R I-O CI-O
Conditions I F = 1.6mA, V O = 0.4V, V CC = 4.5V I O= 4.8mA, V CC= 4.5V, I F= 1.6mA I F = 0, V CC = V O = 7V I F = 1.6mA, V CC= 5V, V O = open I F = 0, V CC = 5V, V O = open I F = 1.6mA, Ta = 25˚C
MIN. 300 -
TYP. 1 600 0.1 0.1 0.5 10 1.5
I F = 1.6mA I R = 10 µA, Ta = 25˚C V F = 0, f = 1MHz Ta = 25˚C, 45% RH, t = 5s V I-O = 3kV DC V I-O = 500V DC f = 1MHz
MAX. 0.4 250 1.7
Unit % V µA mA nA V
-
- 1.9
-
mV/˚C
5.0 -
60
-
V pF
-
-
1.0
µA
-
Ω pF
-
12
10 0.6
Note ) Typical value : at Ta = 25˚C, VCC = 5V
*1 Current transfer ratio is a ratio of input current and output current expressed in % . *2 ∆ V F / ∆ Ta *3 Measured as 2-pin element ( Short 1, 2, 3, 4 and 5, 6, 7, 8. )
■ Switching Characteristics
( Ta = 25˚C, VCC = 5V)
Parameter *4 Propagation delay time Output (1) → ( 0 ) *4 Propagation delay time Output ( 0 ) → (1) *5 *6Instantaneous common mode rejection voltage “ Output (1)” *5 *6Instantaneous common mode rejection voltage “ Output ( 0 ) ”
Symbol t PHL t PLH CM H CM L
Conditions I F = 1.6mA R L = 2.2kΩ I F = 1.6mA R L = 2.2kΩ I F = 0, VCM = 10V P-P R L = 2.2kΩ I F = 1.6mA, VCM = 10V R L = 2.2kΩ
MIN.
TYP.
MAX.
Unit
-
2
10
µs
-
7
35
µs
-
500
-
V/ µ s
-
- 500
-
V/ µ s
P-P
*5 Instantaneous common mode rejection voltage “ output (1)” represents a common mode voltage variation that can hold the output above (1) level ( VO > 2.0V) . Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold the output above ( 0 ) level ( VO < 0.8V) .
*4 Test circuit for Propagation Delay Time Pulse oscillator Pulse input duty ratio = 1/10
IF 0
IF
IF monitor 100 Ω
1
5
2
6
3
7
4
8
VCC 5V
VO
RL VO
1.5V VOL
1.5V
CL = 15pF t PHL
t PLH
6N138 *6 Test Circuit for Instantaneous Common Mode Rejection Voltage IF
A
B
1
8
2
7
3
6
4
VCC = 5V
10V VCM 0V
RL
5 VCM
5V
2V
IF = 0
CML VO
0.8V
VOL
IF = 16mA
Fig. 2 Power Dissipation vs. Ambient Temperature 120
30
PO
Power dissipation P, P o ( mW )
100 Forward current I F ( mA )
tf
CMH
Fig. 1 Forward Current vs. Ambient Temperature
20
10
0
25
50
70 75
Ambient temperature T
a
80
60
40 35
P
20 0 0
0 100
25
50
70 75
Ambient temperature T
( ˚C )
Fig. 3 Forward Current vs. Forward Voltage
100
( ˚C )
a
Fig. 4 Output Current vs. Output Voltage 60
100
Output current I O ( mA )
70˚C
4.5mA 4.0mA
40
3.5mA 3.0mA 2.5mA
30
2.0mA 20
1.5mA
0.1 1.0mA 0.5mA
10 0.01 1.0
0 1.2
1.4 1.6 1.8 2.0 Forward voltage V F ( V )
2.2
0
1 Output voltage V O ( V )
2
.)
25˚C 50˚C
X
T a = 0˚C
1
A
10
I F = 5mA
(M PO
V CC = 5V T a = 25˚C
50 Forward current I F ( mA )
tr
Vo VO
VFF
t r = tf = 16ns 10% 90%
90% 10%
6N138 Fig. 5 Current Transfer Ratio vs. Forward Current
Fig. 6 Output Current vs. Forward Current 50
Current transfer ratio CTR ( % )
1 000
V CC = 4.5V V O = 0.4V
T a = 70˚C
10 Output current I O ( mA )
25˚C 0˚C 800
600
T a = 70˚C 1
0.1
25˚C 0˚C
400
1
10
Forward current I
F
100
( mA )
I F = 0.5mA RL = 4.7kΩ 1/f = 1ms
t PLH
PLH
,t PHL
PLH
(µs )
F
10
,t
Propagation delay time t
t PLH
t PHL
t PHL
5
0
0 0
10
20
30
40
50
60
70
0
10
Ambient temperature T a ( ˚C )
100
tf 10 tr
1
Logic ( 1 ) supply current I CCH ( A )
Adjust I F to V OL = 2V T a = 25˚C
10
-6
10
-7
10
-8
10
-9
10 1 Load resistance RL ( k Ω )
30
40
50
60
70
20 30 40 50 60 Ambient temperature T a ( ˚C )
70
Fig. 9 Logic ( 1 ) Supply Current vs. Ambient Temperature
1 000
0.1
20
Ambient temperature T a ( ˚C )
Fig. 8 Rise Time, Fall Time vs. Load Resistance
Rise time, fall time t r , t f ( µ s )
1
Fig. 7-b Propagation Delay Time vs. Ambient Temperature
I F = 12mA RL = 270 Ω 1/f = 100 µ s
1
V CC = 5.0V V O = 0.4V 10 100
Forward current I
PHL
Propagation delay time t
0.1
( mA )
Fig. 7-a Propagation Delay Time vs. Ambient Temperature 2
0.01 0.004 0.01
( µs )
200 0.1
10
I F = 0mA V CC = 15V V O = OPEN
- 10
0
10
6N138 *7 Test Circuit for Rise Time, Fall Time vs. Load Resistance Input IF O Pulse input Duty ratio = 1 / 10
Pulse oscillator IF
IF monitor
VO
1
8
2
7
3
6
VO
4
5
CL = 15 PF
100 Ω
VCC
Output (saturated) 1.5V
5V
1.5V VOL
RL
tPHL
tPLH
10% 90%
90% 10%
tr
Output (non-saturated)
■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F be added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .
5V 2V
tf