Preview only show first 10 pages with watermark. For full document please download

Data Sheet Optoelectronic Devices

   EMBED


Share

Transcript

DATA SHEET Optoelectronic Devices Order code 58-0600 Manufacturer code 6N138 Description 6N138 DARLINGTON OPTOISOLATOR Optoelectronic Devices The enclosed information is believed to be correct, Information may change ‘without notice’ due to product improvement. Users should ensure that the product is suitable for their use. E. & O. E. Sales: 01206 751166 [email protected] Technical: 01206 835555 [email protected] Page 1 of 6 Revision A 04/07/2003 Fax: 01206 7551188 www.rapidelectronics.co.uk 6N138 6N138 High Sensitivity, High Speed OPIC Photocoupler ■ Features ■ Outline Dimensions Output 0.5TYP 8 7 6 5 1 2 3 4 7.62 ± 0.3 3.7 ± 0.5 3.5 ± 0.5 1 2 3 4 0.8 ± 0.2 1.2 ± 0.3 Primary side mark (Sunken place ) 9.22 ± 0.5 θ 2.54 ± 0.25 0.5 ± 0.1 θ = 0 to 13 ˚ 0.26 ± 0.1 1 NC 5 GND 2 Anode 6 VO 3 Cathode 4 NC 7 VB 8 V CC θ * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input 7 6N138 ■ Applications 1. Interfaces for computer peripherals 2. Electronic calculators, measuring instruments, control equipment 3. Telephone sets 4. Signal transmission between circuits of different potentials and impedances Parameter Forward current *1 Peak forward current *2 Peak transient forward current Reverse voltage Power dissipation Supply voltage Output voltage Emitter-base reverse withstand voltage ( pin 5 to 7 ) *3 Average output current Power dissipation *4 Isolation voltage Operating temperature Storage temperature *5 Soldering temperature Internal connection diagram 1.2 ± 0.3 6 5 0.85 ± 0.3 8 ( Unit : mm ) 6.5 ± 0.5 1. High current transfer ratio ( CTR : MIN. 300% at I F = 1.6mA ) 2. High speed response ( t PHL : TYP. 2 µ s at R L = 2.2kΩ ) 3. Instantaneous common mode rejection voltage ( CM H : TYP. 500V/ µ s ) 4. TTL compatible output 5. Overseas standard model 6. Recognized by UL, file No. E64380. ( Ta = 25˚C ) Symbol IF IF I FM VR P V CC VO Rating 20 40 1 5 35 - 0.5 to + 7 - 0.5 to + 7 Unit mA mA A V mW V V V EBO 0.5 V IO PO V iso T opr T stg T sol 60 100 2 500 0 to + 70 - 55 to + 125 260 mA mW V rms ˚C ˚C ˚C *1 50% duty cycle, Pulse width: 1ms *2 pulse width <=1µ s, 300pps *3 Decreases at the rate of 0.7mA /˚C if the external temperature is 25˚C or more. *4 40 to 60% RH, AC for 1 minute *5 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” 6N138 ■ Electro-optical Characteristics ( Ta = 0 to 70˚C unless otherwise specified ) Parameter Current transfer ratio Logic ( 0 ) output voltage Symbol CTR V OL I OH I CCL I CCH VF *1 Logic (1) output current Logic ( 0 ) supply current Logic (1) supply current Input forward voltage Input forward voltage temperature coefficient Input reverse voltage Input capacitance *3 Leak current ( input-output ) *3 ( input-output ) Isolation resistance *3 Capacitance ( input-output ) *2 BV R C IN I I-O R I-O CI-O Conditions I F = 1.6mA, V O = 0.4V, V CC = 4.5V I O= 4.8mA, V CC= 4.5V, I F= 1.6mA I F = 0, V CC = V O = 7V I F = 1.6mA, V CC= 5V, V O = open I F = 0, V CC = 5V, V O = open I F = 1.6mA, Ta = 25˚C MIN. 300 - TYP. 1 600 0.1 0.1 0.5 10 1.5 I F = 1.6mA I R = 10 µA, Ta = 25˚C V F = 0, f = 1MHz Ta = 25˚C, 45% RH, t = 5s V I-O = 3kV DC V I-O = 500V DC f = 1MHz MAX. 0.4 250 1.7 Unit % V µA mA nA V - - 1.9 - mV/˚C 5.0 - 60 - V pF - - 1.0 µA - Ω pF - 12 10 0.6 Note ) Typical value : at Ta = 25˚C, VCC = 5V *1 Current transfer ratio is a ratio of input current and output current expressed in % . *2 ∆ V F / ∆ Ta *3 Measured as 2-pin element ( Short 1, 2, 3, 4 and 5, 6, 7, 8. ) ■ Switching Characteristics ( Ta = 25˚C, VCC = 5V) Parameter *4 Propagation delay time Output (1) → ( 0 ) *4 Propagation delay time Output ( 0 ) → (1) *5 *6Instantaneous common mode rejection voltage “ Output (1)” *5 *6Instantaneous common mode rejection voltage “ Output ( 0 ) ” Symbol t PHL t PLH CM H CM L Conditions I F = 1.6mA R L = 2.2kΩ I F = 1.6mA R L = 2.2kΩ I F = 0, VCM = 10V P-P R L = 2.2kΩ I F = 1.6mA, VCM = 10V R L = 2.2kΩ MIN. TYP. MAX. Unit - 2 10 µs - 7 35 µs - 500 - V/ µ s - - 500 - V/ µ s P-P *5 Instantaneous common mode rejection voltage “ output (1)” represents a common mode voltage variation that can hold the output above (1) level ( VO > 2.0V) . Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold the output above ( 0 ) level ( VO < 0.8V) . *4 Test circuit for Propagation Delay Time Pulse oscillator Pulse input duty ratio = 1/10 IF 0 IF IF monitor 100 Ω 1 5 2 6 3 7 4 8 VCC 5V VO RL VO 1.5V VOL 1.5V CL = 15pF t PHL t PLH 6N138 *6 Test Circuit for Instantaneous Common Mode Rejection Voltage IF A B 1 8 2 7 3 6 4 VCC = 5V 10V VCM 0V RL 5 VCM 5V 2V IF = 0 CML VO 0.8V VOL IF = 16mA Fig. 2 Power Dissipation vs. Ambient Temperature 120 30 PO Power dissipation P, P o ( mW ) 100 Forward current I F ( mA ) tf CMH Fig. 1 Forward Current vs. Ambient Temperature 20 10 0 25 50 70 75 Ambient temperature T a 80 60 40 35 P 20 0 0 0 100 25 50 70 75 Ambient temperature T ( ˚C ) Fig. 3 Forward Current vs. Forward Voltage 100 ( ˚C ) a Fig. 4 Output Current vs. Output Voltage 60 100 Output current I O ( mA ) 70˚C 4.5mA 4.0mA 40 3.5mA 3.0mA 2.5mA 30 2.0mA 20 1.5mA 0.1 1.0mA 0.5mA 10 0.01 1.0 0 1.2 1.4 1.6 1.8 2.0 Forward voltage V F ( V ) 2.2 0 1 Output voltage V O ( V ) 2 .) 25˚C 50˚C X T a = 0˚C 1 A 10 I F = 5mA (M PO V CC = 5V T a = 25˚C 50 Forward current I F ( mA ) tr Vo VO VFF t r = tf = 16ns 10% 90% 90% 10% 6N138 Fig. 5 Current Transfer Ratio vs. Forward Current Fig. 6 Output Current vs. Forward Current 50 Current transfer ratio CTR ( % ) 1 000 V CC = 4.5V V O = 0.4V T a = 70˚C 10 Output current I O ( mA ) 25˚C 0˚C 800 600 T a = 70˚C 1 0.1 25˚C 0˚C 400 1 10 Forward current I F 100 ( mA ) I F = 0.5mA RL = 4.7kΩ 1/f = 1ms t PLH PLH ,t PHL PLH (µs ) F 10 ,t Propagation delay time t t PLH t PHL t PHL 5 0 0 0 10 20 30 40 50 60 70 0 10 Ambient temperature T a ( ˚C ) 100 tf 10 tr 1 Logic ( 1 ) supply current I CCH ( A ) Adjust I F to V OL = 2V T a = 25˚C 10 -6 10 -7 10 -8 10 -9 10 1 Load resistance RL ( k Ω ) 30 40 50 60 70 20 30 40 50 60 Ambient temperature T a ( ˚C ) 70 Fig. 9 Logic ( 1 ) Supply Current vs. Ambient Temperature 1 000 0.1 20 Ambient temperature T a ( ˚C ) Fig. 8 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r , t f ( µ s ) 1 Fig. 7-b Propagation Delay Time vs. Ambient Temperature I F = 12mA RL = 270 Ω 1/f = 100 µ s 1 V CC = 5.0V V O = 0.4V 10 100 Forward current I PHL Propagation delay time t 0.1 ( mA ) Fig. 7-a Propagation Delay Time vs. Ambient Temperature 2 0.01 0.004 0.01 ( µs ) 200 0.1 10 I F = 0mA V CC = 15V V O = OPEN - 10 0 10 6N138 *7 Test Circuit for Rise Time, Fall Time vs. Load Resistance Input IF O Pulse input Duty ratio = 1 / 10 Pulse oscillator IF IF monitor VO 1 8 2 7 3 6 VO 4 5 CL = 15 PF 100 Ω VCC Output (saturated) 1.5V 5V 1.5V VOL RL tPHL tPLH 10% 90% 90% 10% tr Output (non-saturated) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F be added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ” . 5V 2V tf