Transcript
AOD2606 60V N-Channel MOSFET
General Description
Product Summary
The AOD2606 uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.
VDS ID (at VGS=10V)
60V 46A
RDS(ON) (at VGS=10V)
< 6.8mΩ
100% UIS Tested 100% Rg Tested
12343 5678 19ABCDEF
D 99BCDEF
42222 422222
32222
G
12222
S
32222
12222
Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage
VGS TC=25°C
Continuous Drain Current G Pulsed Drain Current Continuous Drain Current
C
V
36
A
14
IDSM
TA=70°C
±20
184
IDM TA=25°C
Units V
46
ID
TC=100°C
Maximum 60
A
11
Avalanche Current C
IAS
60
A
Avalanche energy L=0.1mH C TC=25°C
EAS
180
mJ
Power Dissipation B
TC=100°C
Power Dissipation A
TA=70°C
TA=25°C
Rev 0: July 2012
2.5
Steady-State Steady-State
RθJA RθJC
W
1.6 -55 to 175
TJ, TSTG
Symbol t 1 10s
W
75
PDSM
Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case
150
PD
Typ 16 41 0.8
www.aosmd.com
°C
Max 20 50 1
Units °C/W °C/W °C/W
Page 1 of 6
AOD2606
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
Min
Conditions
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage
ID=250µA, VGS=0V
Typ
V
VDS=60V, VGS=0V
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS, ID=250µA
2.5
ID(ON)
On state drain current
VGS=10V, VDS=5V
184
TJ=55°C
5
VGS=10V, ID=20A
nA
3
3.5
V
5.6
6.8
8.8
10.6
A
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VDS=5V, ID=20A
75
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
TJ=125°C
G
DYNAMIC PARAMETERS Input Capacitance Ciss Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
mΩ S
1
V
46
A
4050 VGS=0V, VDS=30V, f=1MHz
µA
±100
RDS(ON)
Maximum Body-Diode Continuous Current
Units
60
IDSS
IS
Max
pF
345
pF
16.8
pF
0.65
1.0
Ω
SWITCHING PARAMETERS Qg(10V) Total Gate Charge
53
75
nC
Qg(4.5V) Total Gate Charge
22
31
nC
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=30V, ID=20A
0.3
Qgs
Gate Source Charge
17
nC
Qgd
Gate Drain Charge
5
nC
tD(on)
Turn-On DelayTime
18
ns
20
ns
33
ns
4
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
26
ns
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
125
nC
VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: July 2012
www.aosmd.com
Page 2 of 6
AOD2606
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120
100 10V
VDS=5V
6V
100
80
5V 80 ID(A)
ID (A)
60 60
40
125°C
40 4.5V 20
20
25°C
VGS=4V 0
0 0
1
2
3
4
2
5
VDS (Volts) Fig 1: On-Region Characteristics (Note E)
4 5 VGS(Volts) Figure 2: Transfer Characteristics (Note E)
6
2 Normalized On-Resistance
10 8 RDS(ON) (mΩ Ω)
3
6 4
VGS=10V
2
1.8 VGS=10V ID=20A
1.6
17 5 2 10
1.4 1.2 1 0.8
0 0
5
0
10
15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)
25
50
75
100
125
150
175
200
0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E)
1.0E+02
14 ID=20A
1.0E+01
12
IS (A)
RDS(ON) (mΩ Ω)
40
1.0E+00
125°C
10 8 6
125°C
1.0E-01 1.0E-02
25°C
1.0E-03
4
25°C
1.0E-04 1.0E-05
2 2
6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)
Rev 0: July 2012
4
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOD2606
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 5000
10 VDS=30V ID=20A
Ciss 4000 Capacitance (pF)
VGS (Volts)
8
6
4
3000
2000 Coss
2
1000
0
0
Crss 0
10
20
30
40
50
0
60
1000.0
20
30
40
50
60
1000 10µs 10µs 100µs
RDS(ON) limited
10.0
1ms 10ms
1.0
DC
TJ(Max)=175°C TC=25°C
TJ(Max)=175°C TC=25°C
800 Power (W)
ID (Amps)
100.0
10
VDS (Volts) Figure 8: Capacitance Characteristics
Qg (nC) Figure 7: Gate-Charge Characteristics
0.1
17 5 2 10
600 400 200
0.0
0 0.01
0.1
1 10 VDS (Volts)
100
1000
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)
0.0001 0.001 0.01
0.1
1
10
0100
1000
Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Zθ JC Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC
1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=1°C/W
0.1 PD
0.01
Single Pulse
Ton T
0.001 1E-06
Rev 0: July 2012
1E-05
0.0001
0.001
0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
www.aosmd.com
100
1000
Page 4 of 6
AOD2606
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 200
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
TA=25°C TA=100°C 100
TA=150°C
150
100
50
TA=125°C 10
0 1
10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C)
0
25
50
75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F)
175
100
60
40
Power (W)
Current rating ID(A)
TA=25°C
20
17 5 2 10
10
1
0 0
25
50
75
100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F)
0.01
175
0.1
1
10
0 100
1000
Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
Zθ JA Normalized Transient Thermal Resistance
10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=50°C/W
0.1 PD 0.01
Single Pulse Ton T
0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: July 2012
www.aosmd.com
Page 5 of 6
AOD2606
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT Vgs Ig
Charge
Resistive Switching Test Circuit & Waveforms RL Vds Vds
Vgs
90%
+ Vdd
DUT
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L
2
E AR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT Vgs
Vgs
Diode Recovery Test Circuit & Waveforms Q rr = - Idt
Vds + DUT Vgs
Vds Isd Vgs Ig
Rev 0: July 2012
Isd
L
+ Vdd
t rr
dI/dt I RM Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6