Transcript
AOW10N60/AOWF10N60 600V,10A N-Channel MOSFET
General Description
Product Summary
The AOW10N60 & AOWF10N60 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs.
VDS
456787
ID (at VGS=10V)
700V@150 10A
RDS(ON) (at VGS=10V)
< 0.75Ω
100% UIS Tested 100% Rg Tested
4567879 2
Top View
Bottom View
Top View
Bottom View
1 G
D
S S
D
G S G
D
S
D
G
3
Absolute Maximum Ratings TA=25°C unless otherwise noted AOWF10N60 AOW10N60 Symbol Parameter Drain-Source Voltage 600 VDS Gate-Source Voltage Continuous Drain Current
±30
VGS TC=25°C TC=100°C
V
10
ID
Units V
10*
7.2
7.2*
A
Pulsed Drain Current C
IDM
36
Avalanche Current C
IAR
4.4
A
Repetitive avalanche energy C
EAR
290
mJ
Single plused avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D
EAS dv/dt
580 5
mJ V/ns W
PD
28
2
0.22
TJ, TSTG
-55 to 150
W/ oC °C
300
°C
TL Symbol RθJA RθCS
AOW10N60 65
AOWF10N60 65
Units °C/W
0.5 0.5
-4.5
°C/W °C/W
Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature.
Rev2: June 2010
250
www.aosmd.com
Page 1 of 6
AOW10N60/AOWF10N60
Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol
Parameter
Conditions
Min
ID=2502A, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS BVDSS
Drain-Source Breakdown Voltage
BVDSS /1TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
IGSS
ID=2502A, VGS=0V, TJ=150°C
700
V
ID=2502A, VGS=0V
0.65
V/ oC
VDS=600V, VGS=0V
1
VDS=480V, TJ=125°C
10
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V ID=250µA
±100 3
4
4.5
nΑ V
0.75
Ω
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=5A
0.6
gFS
Forward Transconductance
VDS=40V, ID=5A
15
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS ISM
S 1
V
Maximum Body-Diode Continuous Current
10
A
Maximum Body-Diode Pulsed Current
36
A
DYNAMIC PARAMETERS Ciss Input Capacitance Coss
µA
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS Qg Total Gate Charge VGS=10V, VDS=480V, ID=10A
0.73
1100
1320
1600
pF
105
130
170
pF
7.5
9.3
14
pF
3
3.8
6
Ω
31
40
nC
Qgs
Gate Source Charge
6
10
nC
Qgd
Gate Drain Charge
14.4
22
nC
tD(on)
Turn-On DelayTime
28
35
ns
tr
Turn-On Rise Time
66
80
ns
tD(off)
Turn-Off DelayTime
76
95
ns
tf trr
Turn-Off Fall Time
64
80
ns
Body Diode Reverse Recovery Time
IF=10A,dI/dt=100A/µs,VDS=100V
290
350
Qrr
Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V
3.9
4.7
ns µC
VGS=10V, VDS=300V, ID=10A, RG=25Ω
A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g. G. L=60mH, IAS=4.4A, VDD=150V, RG=25 , Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev2: June 2010
www.aosmd.com
Page 2 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 20
100 10V
VDS=40V
6.5V
16
-55°C
10 12
ID(A)
ID (A)
6V 125°C
8 1 4
25°C
VGS=5.5V
0
0.1 0
5
10
15
20
25
30
2
4
6
8
10
VGS(Volts) Figure 2: Transfer Characteristics
1.4
3
1.2
2.5
Normalized On-Resistance
RDS(ON) (Ω )
VDS (Volts) Fig 1: On-Region Characteristics
1.0
0.8 VGS=10V 0.6
0.4
VGS=10V ID=5A
2 1.5 1 0.5 0
0
4
8
12
16
20
24
-100
ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
-50
0
50
100
150
200
Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02
1.2
40 1.0E+00 IS (A)
BVDSS (Normalized)
1.0E+01 1.1
1
125°C
1.0E-01 1.0E-02
25°C
1.0E-03
0.9
1.0E-04 1.0E-05
0.8 -100
-50
0
50
100
150
200
TJ (°C) Figure 5:Break Down vs. Junction Temparature
Rev2: June 2010
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts) Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15
10000 VDS=480V ID=10A
12
Ciss
Capacitance (pF)
VGS (Volts)
1000 9
6
Coss 100
10 3
Crss
0
1 0
10
20
30
40
0.1
50
Qg (nC) Figure 7: Gate-Charge Characteristics 100
1
10 VDS (Volts) Figure 8: Capacitance Characteristics
100
100 10µs RDS(ON) limited
1ms 1 10ms
DC TJ(Max)=150°C TC=25°C
0.1
10
100µs ID (Amps)
ID (Amps)
10
RDS(ON) limited
1
1ms
TJ(Max)=150°C TC=25°C
0.1
0.01
10µs 100µs
DC
10ms 0.1s 1s
0.01 1
10
100
1000
1
10
100
1000
VDS (Volts)
VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOW10N60 (Note F)
Figure 10: Maximum Forward Biased Safe Operating Area for AOWF10N60 (Note F)
12
Current rating ID(A)
10 8 6 4 2 0 0
25
50
75
100
125
150
TCASE (°C) Figure 11: Current De-rating (Note B)
Rev2: June 2010
www.aosmd.com
Page 4 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance
10
D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=0.5°C/W
1
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD Ton
0.01
T Single Pulse
0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N60 (Note F)
Zθ JC Normalized Transient Thermal Resistance
10
1
D=TD=T on/Ton/T +PCDM +P.ZDM .Z.R .RθJC TJ,PK T=T J,PKC=T θJC θJC θJC RθJCR=4.5° C/W C/W θJC=4.5°
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD 0.01
Ton T
Single Pulse 0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N60 (Note F)
Rev2: June 2010
www.aosmd.com
Page 5 of 6
AOW10N60/AOWF10N60
Gate Charge Test Circuit & Waveform Vgs Qg 10V
+ +
VDC
-
VDC
DUT
Qgs
Vds
Qgd
-
Vgs Ig Charge
Res istive Switching Test Circuit & Waveforms RL Vds Vds
DUT
Vgs
+ VDC
90% Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI
Vds
2 AR
BVDSS
Vds
Id
+
Vgs
Vgs
VDC
-
Rg
I AR
Vdd Id
DUT Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt
Vds + DUT Vgs
Vds -
Isd Vgs
Ig
Rev2: June 2010
L
Isd
+ Vdd
trr
dI/dt IRM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6