Preview only show first 10 pages with watermark. For full document please download

Datasheet For Lt1218 By Linear Technology

   EMBED


Share

Transcript

LT1218/LT1219 Precision Rail-to-Rail Input and Output Op Amps U DESCRIPTION FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Rail-to-Rail Input and Output 90µV VOS(MAX) for VCM = V – to V + High Common Mode Rejection Ratio: 97dB Min C-LoadTM Stable Version (LT1219) High AVOL: 500V/mV Minimum Driving 10kΩ Load Wide Supply Range: 2V to ±15V (LT1218/LT1219) 2V to ±5V (LT1218L/LT1219L) Shutdown Mode: IS < 30µA Low Supply Current: 420µA Max Low Input Bias Current: 18nA Typical 300kHz Gain-Bandwidth Product (LT1218) Slew Rate: 0.10V/µs (LT1218) U APPLICATIONS ■ ■ ■ Driving A/D Converters Test Equipment Amplifiers MUX Amplifiers , LTC and LT are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation. The LT ®1218/LT1219 are bipolar op amps which combine rail-to-rail input and output operation with precision specifications. Unlike other rail-to-rail amplifiers, the LT1218/ LT1219’s input offset voltage is a low 90µV across the entire rail-to-rail input range, not just a portion of it. Using a patented technique, both input stages of the LT1218/ LT1219 are trimmed: one at the negative supply and the other at the positive supply. The resulting common mode rejection of 97dB minimum is much better than other railto-rail input op amps. A minimum open-loop gain of 500V/mV into a 10k load virtually eliminates all gain error. The LT1218 has conventional compensation which assures stability for capacitive loads of 1000pF or less. The LT1219 has compensation that requires the use of a 0.1µF output capacitor, which improves the amplifier’s supply rejection and reduces output impedance at high frequencies. The output capacitor’s filtering action also reduces high frequency noise, which is beneficial when driving A/D converters. High and low voltage versions of the devices are offered. Operation is specified for 3V, 5V and ±5V supplies for the LT1218L/LT1219L and 3V, 5V and ±15V for the LT1218/ LT1219. U TYPICAL APPLICATION MUX Amplifier Voltage Follower Input to Output Error 10 5V VS = 5V AV = 1 NO LOAD + VOUT LT1218L – ERROR (mV) VIN1 SHDN 5V 1.0 MAX ERROR = 110µV 0.05V ≤ VIN ≤ 4.8V 0.1 + VIN2 LT1218L – INPUT SELECT 74HCO4 SHDN MAXIMUM IN TO OUT ERROR = 110µV FOR 0.05V ≤ VIN ≤ 4.8V RL = 10k 0.01 0 0.05 1 2 3 4 4.95 5 INPUT VOLTAGE (V) LT1218/19 • TA02 1218/19 • TA01 1 LT1218/LT1219 W U U W W W Supply Voltage LT1218/LT1219 ................................................. ±18V LT1218L/LT1219L ............................................... ±8V Input Current ...................................................... ±15mA Output Short-Circuit Duration (Note 1) ......... Continuous Operating Temperature Range ................ – 40°C to 85°C Specified Temperature Range (Note 3) ... – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Junction Temperature........................................... 150°C Lead Temperature (Soldering, 10 sec).................. 300°C U ABSOLUTE MAXIMUM RATINGS PACKAGE/ORDER INFORMATION ORDER PART NUMBER TOP VIEW VOS TRIM 1 8 VOS TRIM –IN 2 7 V+ +IN 3 6 OUT – 5 SHDN V 4 N8 PACKAGE 8-LEAD PDIP LT1218CN8 LT1218CS8 LT1218LCN8 LT1218LCS8 LT1219CN8 LT1219CS8 LT1219LCN8 LT1219LCS8 S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150°C, θJA = 130°C/ W (N8) TJMAX = 150°C, θJA = 190°C/ W (S8) S8 PART MARKING 1218 1219 1218L 1219L Consult factory for Industrial and Military grades. ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Shift Input Offset Current ∆IOS en in AVOL Input Offset Current Shift Input Noise Voltage Density Input Noise Current Density Large-Signal Voltage Gain CMRR Common Mode Rejection Ratio PSRR VOL Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC Short-Circuit Current IS Supply Current Positive Supply Current, SHDN 2 CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + f = 1kHz f = 1kHz VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V – to V + VS = 3V, VCM = V – to V + VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V VS = 5V VS = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V MIN – 70 250 200 97 92 90 V+ – 0.012 V+ – 0.130 V+ – 0.400 5 4 TYP 25 25 15 30 – 18 50 5 2 5 33 0.09 1000 750 110 106 100 4 45 120 + V – 0.003 V+ – 0.065 V+ – 0.210 10 7 370 370 9 6 MAX 90 90 70 70 140 18 18 18 12 90 240 420 410 30 20 UNITS µV µV µV nA nA nA nA nA nA nV/√Hz pA/√Hz V/mV V/mV dB dB dB mV mV mV V V V mA mA µA µA µA µA LT1218/LT1219 ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. SYMBOL SR GBW PARAMETER Slew Rate (LT1218/LT1218L) (LT1219/LT1219L) Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) CONDITIONS AV = – 1 AV = – 1 MIN AV = 1000 AV = 1000 TYP 0.10 0.05 MAX 0.30 0.15 UNITS V/µs V/µs MHz MHz 0°C ≤ TA ≤ 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage VOS TC ∆VOS IB Input Offset Drift Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Shift Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR Common Mode Rejection Ratio PSRR VOL Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC Short-Circuit Current IS Supply Current Positive Supply Current, SHDN CONDITIONS VCM = V+ VCM = V– (Note 2) VCM = V– to V+ VCM = V+ VCM = V– VCM = V– to V+ VCM = V+ VCM = V– VCM = V– to V+ VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V – to V+ VS = 3V, VCM = V – to V+ VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V VS = 5V VS = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V MIN ● ● ● ● ● ● – 75 ● ● ● ● ● ● ● ● ● 250 150 96 91 88 ● ● ● ● ● ● ● ● V+ – 0.014 V+ – 0.150 V+ – 0.480 4 3 ● ● ● ● TYP 75 75 1 25 30 – 18 50 5 3 5 1000 750 104 106 100 4 45 130 V+ – 0.004 V+ – 0.075 V+ – 0.240 7 6 370 370 9 6 MAX 200 200 3 80 75 150 25 25 25 14 100 290 485 475 36 26 UNITS µV µV µV/°C µV nA nA nA nA nA nA V/mV V/mV dB dB dB mV mV mV V V V mA mA µA µA µA µA – 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3) SYMBOL VOS PARAMETER Input Offset Voltage VOS TC ∆VOS IB Input Offset Drift Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Shift Input Offset Current ∆IOS Input Offset Current Shift CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 (Note 2) VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 MIN TYP ● ● 1 30 ● ● ● ● ● ● ● ● MAX 400 400 4 105 80 – 80 160 40 40 40 UNITS µV µV µV/°C µV nA nA nA nA nA nA 3 LT1218/LT1219 ELECTRICAL CHARACTERISTICS – 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3) SYMBOL AVOL PARAMETER Large-Signal Voltage Gain CMRR Common Mode Rejection Ratio PSRR VOL Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC Short-Circuit Current IS Supply Current Positive Supply Current, SHDN CONDITIONS VS = 5V, VO = 50mV to 4.8V, RL = 10k VS = 3V, VO = 50mV to 2.8V, RL = 10k VS = 5V, VCM = V + – 0.15 to V – + 0.15 VS = 3V, VCM = V + – 0.15 to V – + 0.15 VS = 2.3V to 12V, VCM = 0V, VO = 0.5V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA VS = 5V VS = 3V VS = 5V VS = 3V VS = 5V, VSHDN = 0V VS = 3V, VSHDN = 0V ● ● ● ● ● MIN 150 100 93 88 86 ● ● ● ● ● ● ● ● V+ – 0.015 V+ – 0.160 V+ – 0.500 4 3 ● ● ● ● TYP 500 500 102 100 100 5 50 130 V+ – 0.004 V+ – 0.070 V+ – 0.250 7 7 410 400 15 13 MAX MAX 140 140 70 70 15 105 300 505 495 50 40 UNITS V/mV V/mV dB dB dB mV mV mV mV mV mV mA mA µA µA µA µA LT1218L/LT1219L only; TA = 25°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Shift Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR VOL Common Mode Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN Slew Rate (LT1218/LT1218L) (LT1219/LT1219L) Gain-Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) SR GBW 4 CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V – to V + No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN VSHDN = 0V AV = – 1, RL = Open, VO = ±3.5V AV = – 1, RL = Open, VO = ±3.5V 0.06 0.03 TYP 35 35 20 30 – 18 50 5 2 5 2800 1300 114 – V + 0.004 V– + 0.045 V– + 0.180 V+ – 0.003 V+ – 0.065 V+ – 0.350 12 400 10 0.10 0.05 AV = 1000 AV = 1000 0.2 0.1 0.30 0.15 – 70 500 300 103 V+ – 0.012 V+ – 0.130 V+ – 0.800 6 140 18 18 18 V– + 0.012 V– + 0.090 V– + 0.525 430 40 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA V/µs V/µs MHz MHz LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218L/LT1219L only; 0°C ≤ TA ≤ 70°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR VOL Common Mode Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V – to V + No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN ● ● ● ● ● – 75 ● ● ● ● ● ● ● 375 275 100 ● ● ● ● ● ● ● V+ – 0.014 V+ – 0.150 V+ – 0.920 5 ● VSHDN = 0V ● TYP 100 100 30 30 – 18 50 5 3 5 2800 1300 110 V – + 0.004 V – + 0.045 V – + 0.200 V+ – 0.004 V+ – 0.075 V+ – 0.450 10 400 11 MAX 250 250 90 75 150 25 25 20 V – + 0.014 V – + 0.100 V – + 0.580 495 54 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA LT1218L, LT1219L only; – 40°C ≤ TA ≤ 85°C, VS = ±5V; VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. (Note 3) SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Input Offset Current Shift ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR VOL Common Mode Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VO = – 4.7V to 4.7V, RL = 10k VO = – 4.5V to 4.5V, RL = 2k VCM = V + – 0.15 to V – + 0.15 No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA MIN ● ● ● ● ● 160 40 40 40 ● ● ● ● ● 300 200 98 ● ● ● ● ● ● ● ● MAX 500 500 120 80 – 80 ● ● ● VSHDN = 0V TYP 125 125 35 V+ – 0.015 V+ – 0.160 V+ – 1.000 5 2000 600 109 V – + 0.005 V – + 0.050 V – + 0.200 V+ – 0.004 V+ – 0.070 V+ – 0.400 10 420 18 V – + 0.015 V – + 0.105 V – + 0.620 525 60 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB V V V V V V mA µA µA 5 LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218/LT1219 only; TA = 25°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR PSRR VOL Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN Slew Rate (LT1218/LT1218L) (LT1219/LT1219L Gain Bandwidth Product (LT1218/LT1218L) (LT1219/LT1219L) SR GBW CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V – to V + VS = ±5V to ±15V No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN VSHDN = 0V AV = – 1 AV = – 1 TYP 85 85 30 30 – 18 50 5 2 5 4000 2000 120 110 V – + 0.004 V – + 0.045 V – + 0.270 V+ – 0.003 V+ – 0.065 V+ – 0.580 20 425 15 0.10 0.05 AV = 1000 AV = 1000 0.28 0.15 – 70 1000 500 113 100 V+ – 0.012 V+ – 0.130 V+ – 0.800 10 MAX 200 200 70 70 140 18 18 18 V – + 0.012 V – + 0.090 V – + 0.525 550 40 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V mA µA µA V/µs V/µs MHz MHz LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR PSRR VOL Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH 6 CONDITIONS VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VCM = V + VCM = V – VCM = V – to V + VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V – to V + VS = ±5V to ±15V No Load ISINK = 0.5mA ISINK = 5mA No Load ISOURCE = 0.5mA ISOURCE = 5mA MIN ● ● ● ● ● – 75 ● ● ● ● ● ● ● ● 750 500 109 97 ● ● ● ● ● ● V+ – 0.014 V+ – 0.150 V+ – 0.920 TYP 120 120 50 30 – 18 50 5 3 5 3000 1500 114 110 V – + 0.004 V – + 0.045 V – + 0.310 V+ – 0.003 V+ – 0.075 V+ – 0.700 MAX 300 300 105 75 150 25 25 20 V – + 0.014 V – + 0.100 V – + 0.580 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V LT1218/LT1219 ELECTRICAL CHARACTERISTICS LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted. SYMBOL ISC IS PARAMETER Short-Circuit Current Supply Current Positive Supply Current, SHDN CONDITIONS ● MIN 8 ● VSHDN = 0V ● TYP 17 450 20 MAX 600 54 UNITS mA µA µA LT1218, LT1219 only; – 40°C ≤ TA ≤ 85°C, VS = ±15V; VCM = 0V = VO = 0V, VSHDN = 15V, unless otherwise noted. (Note 3) SYMBOL VOS PARAMETER Input Offset Voltage ∆VOS IB Input Offset Voltage Shift Input Bias Current ∆IB IOS Input Bias Current Input Offset Current ∆IOS AVOL Input Offset Current Shift Large-Signal Voltage Gain CMRR PSRR VOL Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LOW VOH Output Voltage Swing HIGH ISC IS Short-Circuit Current Supply Current Positive Supply Current, SHDN CONDITIONS VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VCM = V + – 0.15 VCM = V – + 0.15 VCM = V + – 0.15 to V – + 0.15 VO = – 14.7V to 14.7V, RL = 10k VO = – 10V to 10V, RL = 2k VCM = V + – 0.15 to V – + 0.15 VS = ±5V to ±15V No Load ISINK = 0.5mA ISINK = 2.5mA No Load ISOURCE = 0.5mA ISOURCE = 2.5mA MIN ● ● ● ● ● ● ● ● 500 400 105 96 ● ● ● ● ● ● ● The ● denotes specifications which apply over the full operating temperature range. Note 1: A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the output is shorted indefinitely. 160 40 40 40 ● ● ● ● ● MAX 600 600 165 80 – 80 ● ● VSHDN = 0V TYP 150 150 50 V+ – 0.015 V+ – 0.160 V+ – 1.000 5 3000 1000 114 110 V – + 0.005 V – + 0.050 V – + 0.200 V+ – 0.004 V+ – 0.070 V+ – 0.400 14 V – + 0.015 V – + 0.105 V – + 0.620 650 60 UNITS µV µV µV nA nA nA nA nA nA V/mV V/mV dB dB V V V V V V mA µA µA Note 2: This parameter is not 100% tested. Note 3: The LT1218/LT1219 are designed, characterized and expected to meet these extended temperature limits, but are not tested at –40°C and 85°C. Guaranteed I grade part are available: consult factory. 7 LT1218/LT1219 U W TYPICAL PERFORMANCE CHARACTERISTICS VOS Distribution, VCM = 0V VOS Shift, VCM = 0V to 5V 30 35 20 15 10 5 30 VS = 5V, 0V VCM = 0V TO 5V 25 30 PERCENT OF UNITS (%) VS = 5V, 0V VCM = 0V PERCENT OF UNITS (%) 25 20 15 10 0 –100 100 –60 –20 20 60 INPUT OFFSET VOLTAGE (µV) –60 20 60 –20 INPUT OFFSET VOLTAGE (µV) VS = ±2.5V 300 200 100 0 –40 –20 40 20 0 60 TEMPERATURE (°C) 80 50 150 TA = 25°C 100 TA = 85°C 50 0 25 TA = 25°C TA = 85°C TA = – 40°C 0 –25 TA = 25°C –50 1.0 1.5 100 VS = 5V, 0V TA = –40°C INPUT BIAS CURRENT (nA) CHANGE IN OFFSET VOLTAGE (µV) 400 2.0 2.5 3.0 3.5 4.0 4.5 TOTAL SUPPLY VOLTAGE (V) 5.0 –50 –1 0 3 4 1 5 2 6 COMMON MODE VOLTAGE (V) 7 LT1218/19 • TPC06 LT1218/19 • TPC05 LT1218/19 • TPC04 Output Saturation Voltage vs Load Current (Output Low) 100 Input Bias Current vs Common Mode Voltage 200 VS = ±15V –60 –20 20 60 INPUT OFFSET VOLTAGE (µV) LT1218/19 • TPC03 Minimum Supply Voltage 500 SUPPLY CURRENT (µA) 0 –100 100 LT1218/19 • TPC02 Supply Current vs Temperature Output Saturation Voltage vs Load Current (Output High) 0.1Hz to 10Hz Output Voltage Noise 10 10 VS = 5V, 0V SATURATION VOLTAGE (V) VS = 5V, 0V SATURATION VOLTAGE (V) 10 5 LT1218/19 • TPC01 1 0.1 0.01 0.001 0.001 TA = 25°C TA = 85°C TA = –40°C 1 0.01 0.1 LOAD CURRENT (mA) 10 LT1218/19 • TPC07 8 15 5 0 –100 VS = 5V, 0V VCM = 5V 20 1 0.1 TA = 25°C TA = 85°C TA = –40°C 0.01 0.001 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 LT1218/19 • TPC08 OUTPUT VOLTAGE (400nV/DIV) PERCENT OF UNITS (%) 25 VOS Distribution, VCM = 5V 40 VS = ±2.5V VCM = 0V TIME (1s/DIV) LT1218/19 • TPC09 LT1218/LT1219 U W TYPICAL PERFORMANCE CHARACTERISTICS Noise Voltage Spectrum 100 2.5 VS = 5V, 0V 90 VS = 5V, 0V 80 70 60 50 40 VCM = 4V 30 VCM = 2.5V 2.0 CURRENT NOISE (pA/√Hz) NOISE VOLTAGE (nV/√Hz) Noise Current Spectrum 20 1.5 1.0 VCM = 2.5V 0.5 VCM = 4V 10 0 0 10 100 FREQUENCY (Hz) 1 10 100 FREQUENCY (Hz) 1 1000 LT1218/19 • TPC11 LT1218/19 • TPC10 LT1218 Gain and Phase Shift vs Frequency LT1219 Gain and Phase Shift vs Frequency VS = ±2.5V 60 PHASE 60 100 50 100 80 40 80 30 60 30 60 20 40 GAIN 10 20 0 0 –20 –40 –20 –60 10000 –30 100 1000 FREQUENCY (kHz) 0 –20 GAIN 1 10 LT1218 Common Mode Rejection Ratio vs Frequency PHASE MARGIN FREQUENCY (kHz) 60 GBW 250 50 200 40 150 30 100 20 50 10 0 0 0 5 10 20 15 SUPPLY VOLTAGE (V) 25 30 LT1218/19 • TPC PHASE MARGIN (DEG) 300 VS = ±2.5V 90 80 70 60 50 40 30 20 10 0 LT1219 Power Supply Rejection Ratio vs Frequency 100 POWER SUPPLY REJECTION RATIO (dB) 70 100 COMMON MODE REJECTION RATIO (dB) 350 –60 10000 LT1218/19 • TPC13 LT1218 Gain Bandwidth and Phase Margin vs Supply Voltage 80 –40 100 1000 FREQUENCY (kHz) LT1218/19 • TPC12 400 20 0 –10 10 40 PHASE 10 –20 1 120 20 –10 –30 140 VS = ±2.5V CL = 0.1µF PHASE SHIFT (DEG) 40 70 120 PHASE SHIFT (DEG) VOLTAGE GAIN (dB) 50 140 VOLTAGE GAIN (dB) 70 1000 VS = ±2.5V 90 80 70 POSITIVE SUPPLY 60 50 40 30 NEGATIVE SUPPLY 20 10 0 1 10 100 FREQUENCY (kHz) 1000 LT1218/19 • TPC15 1 10 100 FREQUENCY (kHz) 1000 LT1218/19 • TPC16 9 LT1218/LT1219 U W TYPICAL PERFORMANCE CHARACTERISTICS LT1218 Power Supply Rejection Ratio vs Frequency 1000 90 80 70 60 POSITIVE SUPPLY 50 40 30 20 1000 VS = ±2.5V 100 AV = 10 10 AV = 1 1.0 10 10 100 FREQUENCY (kHz) 1 0.1 0.1 1000 1 10 100 FREQUENCY (kHz) LT1218/19 • TPC17 100 AV = 10 10 AV = 1 1.0 80 0.1 0.1 1000 1 10 100 FREQUENCY (kHz) LT1218/19 • TPC18 LT1219 Overshoot vs Load Current, VS = ±15V 70 70 VS = ±2.5V 70 VS = ±2.5V AV = 1 60 1000 LT1218/19 • TPC19 LT1219 Overshoot vs Load Current, VS = ± 2.5V LT1218 Capacitive Load Handling VS = ±15V AV = 1 60 OVERSHOOT (%) 50 AV = 1 40 30 AV = 5 50 CL = 0.22µF 40 CL = 0.047µF 30 OVERSHOOT (%) CL = 0.22µF 60 10 10 AV = 10 0 10 100 1000 10000 CAPACITIVE LOAD (pF) –5 0 Open-Loop Gain, VS = ±15V CL = 0.1µF 0 –10 10 –5 CHANGE IN OFFSET VOLTAGE (µV) VS = ±15V RL = 10k 0 RL = 2k –10 –20 –30 20 LT1218/19 • TPC23 10 5 LT1218/19 • TPC22 THD + Noise vs Frequency 1 30 VS = ±1.5V VIN = 2VP-P RL = 10k 20 10 VS = ±15V 0 VS = ±2.5V –10 0.1 AV = 1 0.01 –20 AV = –1 –30 –40 15 0 LOAD CURRENT (mA) Input Offset Drift vs Time 20 10 5 40 –40 5 –20 –15 –10 –5 0 10 OUTPUT VOLTAGE (V) 30 LT1218/19 • TPC21 40 10 CL = 0.047µF LOAD CURRENT (mA) LT1218/19 • TPC20 30 40 10 CL = 0.1µF 0 –10 100000 50 20 20 20 THD + NOISE (%) OVERSHOOT (%) VS = ±2.5V CL = 0.1µF NEGATIVE SUPPLY 0 OFFSET VOLTAGE CHANGE (µV) LT1219 Closed Loop Output Impedance vs Frequency OUTPUT IMPEDANCE (Ω) VS = ±2.5V OUTPUT IMPEDANCE (Ω) POWER SUPPLY REJECTION RATIO (dB) 100 LT1218 Closed Loop Output Impedance vs Frequency 0 20 40 60 80 100 120 140 160 180 200 TIME AFTER POWER-UP (SEC) LT1218/19 • TPC24 0.001 0.01 0.1 1 FREQUENCY (kHz) 10 LT1218/19 • TPC25 LT1218/LT1219 U W TYPICAL PERFORMANCE CHARACTERISTICS THD + Noise vs Peak-to-Peak Voltage 10 Small-Signal Response VS = ±15V Large-Signal Response VS = ±15V AV = 1 VS = ±15V AV = 1 VS = ±15V f = 1kHz RL = 10k (ALL CURVES) THD + NOISE (%) 1 VS = ±1.5V AV = –1 0.1 VS = ±1.5V AV = 1 VS = ±2.5V AV = 1 0.01 VS = ±2.5V AV = –1 0.001 1 2 3 4 INPUT VOLTAGE (PEAK-TO-PEAK) 0 LT1218/18 • TPC27 LT1218/18 • TPC28 5 LT1218/19 • TPC26 U U W U APPLICATIONS INFORMATION Q1/Q2 and an NPN stage Q3/Q4, which are active over different portions of the input common mode range. Lateral devices are used in both input stages, eliminating the need for clamps across the input pins. Each input stage is trimmed for offset voltage. A complementary output configuration (Q23 through Q26) is employed to create an Rail-to-Rail Operation The LT1218/LT1219 differ from conventional op amps in the design of both the input and output stages. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage TRIM V+ D4 BIAS CONTROL I1 D7 D6 D5 Q21 Q17 Q10 Q11 SHDN Q5 Q16 V– V– V– V V+ Q1 Q2 D1 V+ OUT C2 V+ D2 Q3 Q4 Q6 Q9 Q25 Q26 Q22 Q13 D3 Q20 Q14 Q15 Q7 Q12 V V+ CC Q8 V+ – 300mV C1 – IN+ IN – Q24 Q23 Q18 Q19 D8 D7 – LT1218/19 • F01 Figure 1. LT1218 Simplified Schematic Diagram 11 LT1218/LT1219 U W U U APPLICATIONS INFORMATION output stage with rail-to-rail swing. The amplifier is fabricated on Linear Technology’s proprietary complementary bipolar process, which ensures very similar DC and AC characteristics for the output devices Q24 and Q26. ure 1) turns on, pulling the output of the second stage low, which forces the output high. For input below the negative supply, diodes D1 and D2 turn on, overcoming the saturation of the input pair Q1/Q2. A simple comparator Q5 steers current from current source I1 between the two input stages. When the input common mode voltage VCM is near the negative supply, Q5 is reverse biased, and I1 becomes the tail current for the PNP differential pair Q1/Q2. At the other extreme, when VCM is within about 1.3V from the positive supply, Q5 diverts I1 to the current mirror D3/Q6, which furnishes the tail current for the NPN differential pair Q3/Q4. When overdriven, the amplifier draws input current that exceeds the normal input bias current. Figures 2 and 3 show typical input current as a function of input voltage. The input current must be less than 10mA for the phase reversal protection to work properly. When the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current. 110 Input Offset Voltage Since the amplifier has two input stages, the input offset voltage changes depending upon which stage is active. The input offsets are random, but bounded voltages. When the amplifier switches between stages, offset voltages may go up, down or remain flat; but will not exceed the guaranteed limits. This behavior is illustrated in three distribution plots of input offset voltage in the Typical Performance Characteristics section. Overdrive Protection Two circuits prevent the output from reversing polarity when the input voltage exceeds the common mode range. When the noninverting input exceeds the positive supply by approximately 300mV, the clamp transistor Q12 (Fig- 12 MEASURED AS A FOLLOWER 100 INPUT BIAS CURRENT (nA) 90 + 80 – 70 T = 25°C 60 50 T = 85°C 40 T = –55°C T = 70°C 30 20 10 0 –500 –300 –100 VS 100 300 500 COMMON MODE VOLTAGE RELATIVE TO POSITIVE SUPPLY (mV) LT1218/19 • F02 Figure 2. Input Bias Current vs Common Mode Voltage 0 –10 INPUT BIAS CURRENT (nA) The collector currents of the two input pairs are combined in the second stage, consisting of Q7 through Q11. Most of the voltage gain in the amplifier is contained in this stage. Differential amplifier Q14/Q15 buffers the output of the second stage, converting the output voltage to differential currents. The differential currents pass through current mirrors D4/Q17 and D5/Q16, and are converted to differential voltages by Q18 and Q19. These voltages are also buffered and applied to the output Darlington pairs Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local feedback loops around the output devices, lowering the output impedance at high frequencies. MEASURED AS A FOLLOWER + –20 – –30 –40 –50 T = – 55°C T = 25°C –60 T = 70°C T = 85°C –70 – 80 – 90 –100 –110 –800 –600 – 400 –200 VS 200 COMMON MODE VOLTAGE RELATIVE TO NEGATIVE SUPPLY (mV) LT1218/19 • F03 Figure 3. Input Bias Current vs Common Mode Voltage LT1218/LT1219 U W U U APPLICATIONS INFORMATION Shutdown The biasing of the LT1218/LT1219 is controlled by the SHDN pin. When the SHDN pin is low, the part is shut down. In the shutdown mode, the output looks like a 40pF capacitor and the supply current is less than 30µA. The SHDN pin is referenced to the positive supply through an internal bias circuit (see Figure 1). The SHDN pin current with the pin low is typically 3µA. The SHDN pin can be driven directly from CMOS logic if the logic and the LT1218/LT1219 are operated from the same supplies. For higher supply operation, an interface is required. An easy way to interface between supplies is to use open-drain logic, an example is shown in Figure 5. Because the SHDN pin is referenced to the positive supply, the logic used should have a breakdown voltage greater than the positive supply. 15V The switching time between the shutdown and active states is about 20µs, however, the total time to settle will be greater by the slew time of the amplifier. For example, if the DC voltage at the amplifier output is 0V in shutdown and –2V in the active mode, an additional 20µs is required. Figures 4a and 4b show the switching waveforms for a sinusoidal and a –2V DC input to the LT1218. LT1218/ LT1219 + SHDN – –15V 5V SHDN 74C906 0V LT1218/19 • F05 VOUT Figure 5. Shutdown Interface Trim Pins SHDN 0V RL = 10V VS = ±2.5V Trim pins are provided for compatibility with other single op amps. Input offset voltage can be adjusted over a ±2.3mV range with a 10k potentiometer. V+ LT1218/19 • F04a Figure 4a 10k 2 0V 3 VOUT – 1 8 LT1218/ LT1219 + 7 OUT 4 V– LT1218/19 • F06 Figure 6. Optional Offset Nulling SHDN 0V RL = 10V VS = ±2.5V LT1218/19 • F04a Figure 4b Improved Supply Rejection in the LT1219 The LT1219 is a variation of the LT1218 offering greater supply rejection and lower high frequency output impedance. The LT1219 requires a 0.1µF load capacitance for 13 LT1218/LT1219 U U W U APPLICATIONS INFORMATION compensation. The output capacitance forms a filter, which reduces pickup from the supply and lowers the output impedance. This additional filtering is helpful in mixed analog/digital systems with common supplies or systems employing switching supplies. Filtering also reduces high frequency noise, which may be beneficial when driving A/D converters. positive supply. The LT1219 power supply rejection is about ten times greater than that of the LT1218 at 50kHz. Note the 5-to-1 scale change in the output voltage traces. The tolerance of the external compensation capacitor is not critical. The plots of Overshoot vs Load Current in the Typical Performance Characteristics section illustrate the effect of a capacitive load. Figures 7a and 7b show the outputs of the LT1218/LT1219 perturbed by a 200mVP-P 50kHz square wave added to the V+ (AC) V+ (AC) VOUT VOUT LT1218/19 • F07b LT1218/19 • F07a Figure 7b. LT1219 Power Supply Rejection Test Figure 7a. LT1218 Power Supply Rejection Test U TYPICAL APPLICATIONS Buffer for 12-Bit A/D Converter High-Side Current Source VCC 3V 1µF 0.1µF VIN RSENSE 0.2Ω 1k + LT1004-1.2 LT1219 – 1 0.1µF 2 3 4 VREF VCC + IN CLK LTC1285 – IN DOUT GND CS/SHDN RP 10k 7 6 5 0.0033µF – 8 100Ω LT1218 Q1 MTP23P06 + ILOAD TO µP 40k 5V < VCC < 30V 0A < ILOAD < 1A AT VCC = 5V 0mA < ILOAD < 160mA AT VCC = 30V LT1218/19 • TA03 Q2 2N4340 LT1218/19 • TA04 14 LT1218/LT1219 U TYPICAL APPLICATIONS Positive Supply Current Sense VCC R1 200Ω – RS 0.2Ω Q1 TP0610L LT1218 + ILOAD VO ( ) R2 VO = (ILOAD)(RS) R1 LOAD R2 20k = (ILOAD)(20Ω) 1218/19 • TA06 U PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.300 – 0.325 (7.620 – 8.255) 0.009 – 0.015 (0.229 – 0.381) ( +0.025 0.325 –0.015 8.255 +0.635 –0.381 ) 0.045 – 0.065 (1.143 – 1.651) 0.130 ± 0.005 (3.302 ± 0.127) 0.065 (1.651) TYP 0.125 (3.175) MIN 0.005 (0.127) MIN 0.400* (10.160) MAX 7 6 5 1 2 3 4 0.255 ± 0.015* 0.015 (6.477 ± 0.381) (0.380) MIN 0.018 ± 0.003 (0.457 ± 0.076) 0.100 ± 0.010 (2.540 ± 0.254) 8 N8 0695 *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.189 – 0.197* (4.801 – 5.004) 8 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0.016 – 0.050 0.406 – 1.270 0.014 – 0.019 (0.355 – 0.483) *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 6 5 0.228 – 0.244 (5.791 – 6.197) 0.053 – 0.069 (1.346 – 1.752) 0°– 8° TYP 7 0.150 – 0.157** (3.810 – 3.988) 0.004 – 0.010 (0.101 – 0.254) 0.050 (1.270) TYP 1 Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 2 3 4 SO8 0996 15 LT1218/LT1219 U TYPICAL APPLICATION 8-Channel, 12-Bit Data Acquisition System with Programmable Gain 5V 5V 1µF 1 2 3 4 INPUTS 5 6 7 8 CH0 CH1 CH2 16 V+ 15 D 14 V– 13 + 12 – CH3 DOUT CH4 DIN CH5 CS CH6 CLK CH7 GND 1µF LT1219L 5V 0.1µF 17 ADCIN 11 10 9 LTC1391 8-CHANNEL MUX GAIN MUX CHANNEL GAIN 0 1 1 2 2 4 3 8 4 16 5 32 6 64 7 128 64R 20 CH0 32R 21 CH1 16R 22 CH2 8R 23 CH3 4R 24 CH4 2R 1 CH5 R 2 CH6 R 3 CH7 16 15, 19 VREF VCC CSADC CSMUX 8-CHANNEL MUX + 12-BIT SAMPLING ADC – CLK DOUT DIN LTC1598 18 8 MUXOUT COM NC GND NC 1µF 10 6 5, 14 µP/µC 11 7 12 13 4, 9 1218/19 • TA05 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC 1152 Rail-to-Rail Input and Output, Zero-Drift Op Amp High DC Accuracy, 10µV VOS(MAX), 100nV/°C Drift, 0.7MHz GBW, 0.5V/µs Slew Rate, Maximum Supply Current 3mA LT1366/LT1367 Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps 475µV VOS(MAX), 400kHz GBW, 0.13V/µs Slew Rate, Maximum Supply Current 520µA per Op Amp LT1466/LT1467 Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps Maximum Supply Current 75µA per Op Amp, 390µV VOS(MAX), 120kHz Gain Bandwidth ® 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417● (408) 432-1900 FAX: (408) 434-0507● TELEX: 499-3977 ● www.linear-tech.com 12189f LT/TP 0697 7K • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 1997