Preview only show first 10 pages with watermark. For full document please download

Datasheet For Njm2275 By New Japan Radio

   EMBED


Share

Transcript

NJM2275 VHF/UHF BAND RF AMPLIFIER GENERAL DESCRIPTION PACKAGE OUTLINE The NJM2275 is a low current, low voltage RF amplifier, especially designed for VHF/UHF band. The center frequency of this narrow band amplifier is changed by external components. NJM2275F1 FEATURES Wide Operating Voltage Low Operating Current High Gain Power Gain Voltage Gain Operating Frequency band High Isolation (OUT to IN) Bipolar Technology Package Outline 1.8V to 6V 0.8mA type. @ V+ =1.9V, no signal input 15dB @1.9V, 400MHz input 30dB @1.9V, 400MHz input, 1k load Up to 800MHz 45dB @1.9V, 400MHz SOT23-6 (MTP6) PIN CONFIGULATION Orientation Mark 1 6 2 5 3 4 Pin Function 1. RF IN 2. GND 3. BIAS CAP 4. RF OUT 5. IREF 6. V+ Top View Simplified Block Diagram RF IN 1 GND 2 BIAS CAP 3 Ver.2005-06-01 V+ 6 I REF 5 RF OUT 4 RF IN V+ 1 6 GND I REF 2 5 BIAS CAP 3 RF OUT 4 -1- NJM2275 ABSOLUTE MAXIMUM RATINGS PARAMETER (Ta=25°C) SYMBOL RATINGS UNIT Supply Voltage V+ 10.0 V Power Dissipation PD 200 mW RF Input Level Pinmax 6 dBm Operating Temperature Topr - 40 to + 85 °C Storage Temperature Tstg - 40 to +125 °C RECOMMENDED OPERATING CONDITIONS PARAMETER Supply Voltage SYMBOL TEST CONDITIONS V+ (Ta=25°C) MIN. TYP. MAX. UNIT 1.8 1.9 6.0 V MIN. TYP. MAX. UNIT - 0.8 1.0 mA - 15 - dB - 30 - dB - 2.2 - dB - -8 - dB - - 20 - dB - 45 - dB - - 28 - dBm ELECTRICAL CHARACTERISTICS (Ta=25°C, V+=1.9V, fin=400MHz, unless otherwise noted) PARAMETER SYMBOL Operating Current Icc Power Gain PG Voltage Gain VG Noise Figure NF Input Return Loss l S 11l Output Return Loss l S 22l RF OUT - RF IN Isolation I SL Power Input at 1dB compression Point P–1dB Ver.2005-06-01 TEST CONDITIONS No signal Pin= - 40dBm Test circuit 1 Pin= - 40dBm Test circuit 2 Test Circuit 3 Pin= - 40dBm Test Circuit 4 Pin= - 40dBm Test Circuit 4 Pin= - 40dBm Test Circuit1 Test Circuit1 -2- NJM2275 TEST CIRCUIT These test circuits allow the measurement of all parameters described in “ELECTRICAL CHARACTERISTICS”. Test Circuit 1 for Icc, PG , P–1dB and Pin vs. Pout L in 27n C in 1000p SG (50 ) RF IN V+ 1 6 GND I REF 2 5 Cb BIAS CAP 1000p 3 V+ Cv 1000p Cref 1000p CL 2p RF OUT RL 0 4 Lout Cout 15n 8p Spectrum Analyzer (Zin=50 ) Test Circuit 2 for VG L in 27n SG (50 ) C in 1000p RF IN V+ 1 6 GND I REF 2 5 Cb BIAS CAP 1000p 3 V+ Cref 1000p CL RL 1000p 1k RF OUT 4 Cv 1000p Lout 27n Cout 4p Spectrum Analyzer (Zin=50 ) PG and VG has the following relation. PG = Pout – Pin VG = (Pout + Prl ) – Pin where Pin = input level in dBm Pout = output level in dBm Prl = the loss caused by the voltage drop of RL. RL is 1000 . The input impedance of spectrum analyzer Zin is 50 . Prl is calculated from Prl = 20log ( ( RL + Zin) / RL) Prl = 20 log (1050 / 50 ) Ver.2005-06-01 -3- NJM2275 Test Circuit 3 for NF L in 27n C in 1000p RF IN V+ 1 6 GND I REF 2 5 Cb BIAS CAP 1000p 3 V+ Cv 1000p Cref 1000p CL 2p RF OUT 4 Lout Cout 15n 8p NF m eter Test Circuit 4 for lS11l and lS22l L in 27n C in 1000p Cb1 1000p RF IN V+ 1 6 GND I REF 2 5 BIAS CAP 3 V+ Cv 1000p Cref 1000p CL 2p RF OUT 4 Lout Cout 15n 8p Netw ork Analyzer Test Circuit 5 for S-Parameters (this item is not specified in “ELECTRICAL CHARACTERISTICS”) Cb1 1000p RF IN V+ 1 6 GND I REF 2 5 BIAS CAP 3 V+ RF OUT Cv1 1000p Cv2 0.1u Cref1 1000p Cref2 0.1u 4 Cb2 0.1u Netw ork Analyzer Port1 Port2 HP8753D Ver.2005-06-01 -4- NJM2275 EVALUATION PC BOARD The evaluation board is useful for your design and to have more understanding of the usage and performance of this device. This circuit is the same as TEST CIRCUIT. Note that this board is not prepared to show the recommendation of pattern and parts layout. Circuit Diagram V+ C in 1000p L in 27n RF IN V+ 1 6 GND I REF 2 5 RF IN Cb BIAS CAP 1000p 3 Cv 1000p Cref 1000p CL 2p RF OUT RL 0 4 Lout Cout 15n 8p RF OUT Evaluation PC Board V + Lout 1608 Cv 1608 Cout 1608 RFIN Cin Lin 1608 1608 Cl Rl 1608 1608 RFOUT Cref 1608 Cb 1608 Pin1 This evaluation board is designed to have the maximum value of PG at 400MHz. By using the value of Test Circuit2, this board can have the maximum value of VG at 400MHz. Cref is effective to obtain good NF. However, if the ground has a large noisy signal, NF may become worse. Ver.2005-06-01 -5- NJM2275 TERMINAL FUNCTION (Ta=25°C, V+=1.9 V) Pin No. SYMBOL EQUIVARENT CIRCUIT VOLTAGE FUNCTION RF Input 6 2k 1 1 RF IN 1.09V 3 500 2 2 GND -- -- Bias Capacitance An external decoupling capacitor is placed between this pin and ground. 6 2k 1 3 BIAS CAP Ground 0.33V 3 500 2 RF Output 6 5k 4 4 RF OUT V+ 2 6 5 IREF 5 70 0.75V 2 Supply Voltage ESD protection transistor exists between V+ and ground. 6 6 V+ Reference of Current Source An external decoupling capacitor is placed between this pin and ground. An external resistor from this pin to ground can controls the reference current of current source and the related performances, such as NF and gain. -2 Ver.2005-06-01 -6- NJM2275 TYPICAL CHARACTERISTICS ( Ta=25°C, V+=1.9V, unless otherwise noted ) Operating Current Icc versus Supply Voltage V+ Power Gain PG versus Supply Voltage V+ 1.4 25 No signal 25°C 1.2 20 PG(dB) 1 Icc(mA) Test circuit 1 85°C 0.8 125°C 0.6 -40°C 0.4 -40°C 25°C 85°C 125°C 15 10 0.2 5 0 1 2 3 4 V+(V) 5 6 1 7 Pin at 1dB Compression Point P-1dB versus Supply Voltage V+ -20 2 3 4 V+(V) 5 6 7 Voltage Gain VG versus Supply Voltage V+ 40 Test circuit 1 Test circuit 2 -22 35 -28 125°C 85°C 25°C -30 -40°C -26 VG(dB) P-1dB(dBm) -24 -40°C 25°C 85°C 125°C 30 25 -32 20 -34 1 2 3 4 V+(V) 5 6 1 7 2 Noise Figure NF versus Supply Voltage V+ 4 V+ V 5 6 7 6 7 RF OUT-RF IN Isolation ISL versus Supply Voltage V+ 60 5.0 3 Test circuit 1 Test circuit 3 4.0 125°C 25°C NF(dB) 3.0 ISL(dB) 55 125°C 85°C 25°C -40°C 2.0 50 85°C 45 1.0 0.0 -40°C 40 1 2 Ver.2005-06-01 3 4 V+ V 5 6 7 1 2 3 4 V+ V) 5 -7- NJM2275 Operating Current Icc versus Ambient Temperature Ta 1.4 Power Gain PG versus Ambient Temperature Ta 25 Test circuit 1 No signal 1.2 0.8 PG(dB) Icc(mA) 20 6V 4V 1.9V 1 1.8V 0.6 6V 15 1.9V 1.8V 0.4 10 0.2 0 5 -50 -25 0 25 50 Ta(°C) 75 100 125 -50 Pin at 1dB Compression Point P-1dB versus Ambient Temperature Ta -20 -25 25 50 Ta(°C) 75 100 125 Voltage Gain VG versus Ambient Temperature Ta 40 Test circuit 1 0 Test circuit 2 -22 35 P-1dB(dBm) -24 VG(dB) 1.8V,1.9V,6V -26 -28 6V 30 1.9V 1.8V -30 25 -32 -34 20 -50 -25 0 25 50 Ta(°C) 75 100 125 -50 -25 Noise Figure NF versus Ambient Temperature Ta 5.0 25 50 Ta(°C) 75 100 125 RF OUT-RF IN Isolation ISL versus Ambient Tempeature Ta 60 Test circuit 3 0 Test circuit 1 4.0 55 3.0 ISL(dB) NF (dB) 1.8V, 1.9V 2.0 6V 4V 50 1.9V 4V, 6V 1.8V 45 1.0 0.0 40 -50 -25 Ver.2005-06-01 0 25 50 Ta(°C) 75 100 125 -50 -25 0 25 50 Ta °C 75 100 125 -8- NJM2275 10 V+=1.9V fin=400MHz 20 Pout 10 8 -20 6 -30 7 12 6 10 5 2 0 -50 -40 -30 -20 -10 0 10 8 4 NF 6 Icc -50 3 4 2 2 1 0 20 0 380 390 400 fin (MHz) Pin(dBm) Input Return Loss |S11| versus Supply Voltage V+ 0 8 PG 14 4 -40 9 16 PG (dB) -10 -60 10 18 Icc(mA) Pout(dBm) 0 12 Power Gain PG/Noise Figure NF versus Frequency fin NF (dB) Output Power Pout/Operating Current Icc versus Input Power Pin 410 420 Output Return Loss |S22| versus Supply Voltage V+ -10 Test circuit 4 Test circuit 4 |S22| (dB) |S11| (dB) -40°C -5 125°C 85°C 25°C -40°C -10 -15 125°C 25°C -20 85°C -15 -25 0 1 2 3 4 5 6 7 0 1 2 3 V+ (V) 5 6 7 Output Return Loss |S22| versus Ambient Temperature Ta(°C) Input Return Loss |S11| versus Ambient Temperature Ta(°C) 0 4 V+ (V) -10 Test circuit 4 Test circuit 4 -5 |S22| (dB) |S11| (dB) 4V, 6V -10 -15 1.8V 1.9V -20 1.8V, 1.9V 4V -15 6V -25 -50 -25 Ver.2005-06-01 0 25 50 Ta(°C) 75 100 125 -50 -25 0 25 50 Ta(°C) 75 100 125 -9- NJM2275 S Paramater (reference) 0 0 -2 -2 S22 (dB) S11 (dB) Input Reflection Coefficient S11 versus Frequency Test circuit 5 -4 -6 Output Reflection Coefficient S22 Test circuit 5 versus Frequency -4 -6 -8 -8 -10 -10 0 200 400 600 Frequency (MHz) 800 0 1000 Forward Transmission Coefficient S12 Test circuit 5 versus Frequency 200 800 1000 Reverse Transmission Coefficient S21 Test circuit 5 versus Frequency 10 0 400 600 Frequency (MHz) -10 8 -20 S21 (dB) S12 (dB) -30 -40 -50 6 4 -60 -70 2 -80 0 -90 0 200 MHz 50 100 300 322 400 430 500 700 1000 Ver.2005-06-01 400 600 Frequency (MHz) 800 1000 0 200 400 600 Frequency (MHz) 800 S11 S21 S12 S22 mag(units) ang(deg) mag(units) ang(deg) mag(units) ang(deg) mag(units) ang(deg) 0.95 -2.16 2.23 178.17 0.002 81.16 1.00 -0.42 0.91 -14.64 2.14 161.70 0.004 -162.40 0.99 -3.27 0.84 -45.83 1.99 130.37 0.003 1.93 0.99 -10.85 0.82 -46.06 2.02 125.33 0.004 109.90 0.98 -9.94 0.75 -57.89 1.92 112.13 0.003 115.87 0.98 -12.42 0.75 -61.93 1.91 107.89 0.003 143.47 0.98 -13.94 0.70 -71.95 1.82 96.80 0.005 62.77 0.98 -16.36 0.54 -100.22 1.61 67.85 0.002 160.15 0.96 -21.84 0.39 -146.15 1.35 26.94 0.008 60.40 0.92 -34.32 - 10 - 1000 NJM2275 S11 S22 Test circuit 5 +j50 +j50 +j25 0 25 Test circuit 5 +j25 +j100 50 10MHz 40MHz 100MHz 150 1000MHz 0 25 +j100 50 10MHz 40MHz 100MHz 300MHz 400MHz 500MHz 700MHz 800MHz 1000MHz 150 800MHz 700MHz 300MHz 400MHz 500MHz -j25 -j100 -j50 -j25 -j100 -j50 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. Ver.2005-06-01 - 11 -