Preview only show first 10 pages with watermark. For full document please download

Ddr3 4gb A_die Unbuffered Sodimm_rev1.01_dec

   EMBED


Share

Transcript

Rev. 1.01, Dec. 2010 M471B1G73AH0 204pin Unbuffered SODIMM based on 4Gb A-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2010 Samsung Electronics Co., Ltd. All rights reserved. -1- Unbuffered SODIMM Rev. 1.01 datasheet DDR3 SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First Release Jul. 2010 - S.H.Kim 1.01 - Corrected typo. Dec. 2010 - S.H.Kim -2- Unbuffered SODIMM datasheet Rev. 1.01 DDR3 SDRAM Table Of Contents 204pin Unbuffered SODIMM based on 4Gb A-die 1. DDR3 Unbuffered SODIMM Ordering Information........................................................................................................ 4 2. Key Features................................................................................................................................................................. 4 3. Address Configuration .................................................................................................................................................. 4 4. x64 DIMM Pin Configurations (Front side/Back Side)................................................................................................... 5 5. Pin Description ............................................................................................................................................................. 6 6. Input/Output Functional Description.............................................................................................................................. 7 7. Function Block Diagram: ............................................................................................................................................... 8 7.1 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ....................................................................... 8 8. Absolute Maximum Ratings .......................................................................................................................................... 9 8.1 Absolute Maximum DC Ratings............................................................................................................................... 9 8.2 DRAM Component Operating Temperature Range ................................................................................................ 9 9. AC & DC Operating Conditions..................................................................................................................................... 9 9.1 Recommended DC Operating Conditions (SSTL-15).............................................................................................. 9 10. AC & DC Input Measurement Levels .......................................................................................................................... 10 10.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 10 10.2 VREF Tolerances.................................................................................................................................................... 11 10.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 12 10.3.1. Differential Signals Definition ......................................................................................................................... 12 10.3.2. Differential Swing Requirement for Clock (CK-CK) and Strobe (DQS-DQS) ................................................ 12 10.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 13 10.3.4. Differential Input Cross Point Voltage ............................................................................................................ 14 10.4 Slew Rate Definition for Single Ended Input Signals............................................................................................. 14 10.5 Slew rate definition for Differential Input Signals ................................................................................................... 14 11. AC & DC Output Measurement Levels ....................................................................................................................... 15 11.1 Single Ended AC and DC Output Levels ............................................................................................................... 15 11.2 Differential AC and DC Output Levels ................................................................................................................... 15 11.3 Single-ended Output Slew Rate ............................................................................................................................ 15 11.4 Differential Output Slew Rate ................................................................................................................................ 16 12. DIMM IDD specification definition ............................................................................................................................... 17 13. IDD SPEC Table ......................................................................................................................................................... 19 14. Input/Output Capacitance ........................................................................................................................................... 20 15. Electrical Characteristics and AC timing ..................................................................................................................... 21 15.1 Refresh Parameters by Device Density................................................................................................................. 21 15.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 21 15.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 21 15.3.1. Speed Bin Table Notes .................................................................................................................................. 24 16. Timing Parameters by Speed Grade .......................................................................................................................... 25 16.1 Jitter Notes ............................................................................................................................................................ 28 16.2 Timing Parameter Notes........................................................................................................................................ 29 17. Physical Dimensions : ................................................................................................................................................. 30 17.1 512Mx8 based 1Gx64 Module (2 Ranks) - M471B1G73AH0................................................................................ 30 -3- Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 1. DDR3 Unbuffered SODIMM Ordering Information Part Number2 Density Organization Component Composition Number of Rank Height M471B1G73AH0-CF8/H9 8GB 1Gx64 512Mx8(K4B4G0846A-HC##)*16 2 30mm NOTE : 1. "##" - F8/H9 2. F8 - 1066Mbps 7-7-7 & H9 - 1333Mbps 9-9-9 - DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7) 2. Key Features Speed DDR3-800 DDR3-1066 DDR3-1333 6-6-6 7-7-7 9-9-9 2.5 1.875 1.5 ns tCK(min) • • • • • • • • • • • • Unit CAS Latency 6 7 9 tCK tRCD(min) 15 13.125 13.5 ns tRP(min) 15 13.125 13.5 ns tRAS(min) 37.5 37.5 36 ns tRC(min) 52.5 50.625 49.5 ns JEDEC standard 1.5V ± 0.075V Power Supply VDDQ = 1.5V ± 0.075V 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin 8 independent internal bank Programmable CAS Latency: 5,6,7,8,9 Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock Programmable CAS Write Latency(CWL) = 5(DDR3-800), 6(DDR3-1066) and 7(DDR3-1333) Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] Bi-directional Differential Data Strobe On Die Termination using ODT pin Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C Asynchronous Reset 3. Address Configuration Organization Row Address Column Address Bank Address Auto Precharge 512Mx8(4Gb) based Module A0-A15 A0-A9 BA0-BA2 A10/AP -4- Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 4. x64 DIMM Pin Configurations (Front side/Back Side) Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1 VREFDQ 2 VSS 71 VSS 72 VSS 139 VSS 140 DQ38 3 VSS 4 DQ4 141 DQ34 142 DQ39 DQ35 144 VSS KEY 5 DQ0 6 DQ5 73 CKE0 74 CKE1 143 7 DQ1 8 VSS 75 VDD 76 VDD 145 VSS 146 DQ44 9 VSS 78 A153 147 DQ40 148 DQ45 3 149 DQ41 150 VSS 151 VSS 152 DQS5 10 DQS0 77 NC 11 DM0 12 DQS0 79 BA2 80 A14 13 VSS 14 VSS 81 VDD 82 VDD 15 DQ2 16 DQ6 83 A12/BC 84 A11 153 DM5 154 DQS5 17 DQ3 18 DQ7 85 A9 86 A7 155 VSS 156 VSS 19 VSS 20 VSS 87 VDD 88 VDD 157 DQ42 158 DQ46 21 DQ8 22 DQ12 89 A8 90 A6 159 DQ43 160 DQ47 23 DQ9 24 DQ13 91 A5 92 A4 161 VSS 162 VSS 25 VSS 26 VSS 93 VDD 94 VDD 163 DQ48 164 DQ52 27 DQS1 28 DM1 95 A3 96 A2 165 DQ49 166 DQ53 29 DQS1 30 RESET 97 A1 98 A0 167 VSS 168 VSS 31 VSS 32 VSS 99 VDD 100 VDD 169 DQS6 170 DM6 33 DQ10 34 DQ14 101 CK0 102 CK1 171 DQS6 172 VSS 35 DQ11 36 DQ15 103 CK0 104 CK1 173 VSS 174 DQ54 37 VSS 38 VSS 105 VDD 106 VDD 175 DQ50 176 DQ55 A10/AP 108 BA1 177 DQ51 178 VSS 179 VSS 180 DQ60 39 DQ16 40 DQ20 107 41 DQ17 42 DQ21 109 BA0 110 RAS 43 VSS 44 VSS 111 VDD 112 VDD 181 DQ56 182 DQ61 45 DQS2 46 DM2 113 WE 114 S0 183 DQ57 184 VSS 47 DQS2 48 VSS 115 CAS 116 ODT0 185 VSS 186 DQS7 49 VSS 50 DQ22 117 VDD 118 VDD 187 DM7 188 DQS7 51 DQ18 52 DQ23 119 A133 120 ODT1 189 VSS 190 VSS 53 DQ19 54 VSS 121 S1 122 NC 191 DQ58 192 DQ62 55 VSS 56 DQ28 123 VDD 124 VDD 193 DQ59 194 DQ63 57 DQ24 58 DQ29 125 TEST 126 VREFCA 195 VSS 196 VSS 59 DQ25 60 VSS 127 VSS 128 VSS 197 SA0 198 NC 61 VSS 62 DQS3 129 DQ32 130 DQ36 199 VDDSPD 200 SDA 63 DM3 64 DQS3 131 DQ33 132 DQ37 201 SA1 202 SCL 203 VTT 204 VTT 65 VSS 66 VSS 133 VSS 134 VSS 67 DQ26 68 DQ30 135 DQS4 136 DM4 69 DQ27 70 DQ31 137 DQS4 138 VSS NOTE : 1. NC = No Connect, NU = Not Used, RFU = Reserved Future Use 2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules. 3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor. SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice. -5- Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 5. Pin Description Pin Name CK0, CK1 CK0, CK1 CKE0, CKE1 Description Clock Inputs, positive line Number Pin Name Description Number 2 DQ0-DQ63 Data Input/Output 64 Data Masks/ Data strobes, Termination data strobes 8 8 Clock Inputs, negative line 2 DM0-DM7 Clock Enables 2 DQS0-DQS7 Data strobes Data strobes complement 8 Reset Pin 1 Logic Analyzer specific test pin (No connect on SODIMM) 1 RAS Row Address Strobe 1 DQS0-DQS7 CAS Column Address Strobe 1 RESET WE Write Enable 1 TEST S0, S1 Chip Selects 2 VDD Core and I/O Power 18 Address Inputs 14 VSS Ground 52 A10/AP Address Input/Autoprecharge 1 VREFDQ VREFCA Input/Output Reference 2 A12/BC Address Input/Burst chop 1 VDDSPD SPD and Temp sensor Power 1 BA0-BA2 SDRAM Bank Addresses 3 VTT Termination Voltage 2 ODT0, ODT1 On-die termination control 2 NC Reserved for future use 3 SCL Serial Presence Detect (SPD) Clock Input 1 SDA SPD Data Input/Output 1 SPD Address 2 A0-A9, A11, A13-A15 SA0-SA1 Total NOTE: * The VDD and VDDQ pins are tied common to a single power-plane on these designs. -6- 204 datasheet Unbuffered SODIMM Rev. 1.01 DDR3 SDRAM 6. Input/Output Functional Description Symbol Type Function CK0-CK1 CK0-CK1 Input The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock. CKE0-CKE1 Input Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refresh mode. S0-S1 Input Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected by S1. RAS, CAS, WE Input When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define the operation to be executed by the SDRAM. BA0-BA2 Input Selects which DDR3 SDRAM internal bank of eight is activated. ODT0-ODT1 Input Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register. A0-A9, A10/AP, A11 A12/BC A13-A15 Input During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the fly) will be performed (HIGH, no burst chop; LOW, burst chopped) DQ0-DQ63 I/O DM0-DM7 Input The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect. DQS0-DQS7 DQS0-DQS7 I/O The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to the crosspoint of respective DQS and DQS. VDD,VDDSPD, VSS Supply Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module. VREFDQ, VREFCA Supply Reference voltage for SSTL15 inputs. SDA I/O SCL Input This signal is used to clock data into and out of the SPD EEPROM and Temp sensor. SA0-SA1 Input Address pins used to select the Serial Presence Detect and Temp sensor base address. TEST I/O RESET Input Data Input/Output pins. This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and Temp sensor. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pull up. The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules RESET In Active Low This signal resets the DDR3 SDRAM -7- Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 7. Function Block Diagram: 7.1 8GB, 1Gx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) VDD VDD ± 1% ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D0 240Ω ± 1% ZQ CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D2 DQS DQS DM DQ[0:7] ± 1% ZQ D9 DQS DQS DM DQ[0:7] 240Ω ± 1% Rank0 ZQ D8 DQS DQS DM DQ[0:7] Rank1 240Ω SCL A0 A1 A2 (SPD) WP SDA DQS DQS DM DQ[0:7] DQS DQS DM DQ[0:7] ± 1% ZQ D10 ± 1% ZQ D14 240Ω ± 1% ZQ D15 240Ω ± 1% ZQ D13 VDDSPD SPD VREFCA D0 - D15 VREFDQ D0 - D15 VDD D0 - D15 VSS D0 - D15, SPD CK0 D0 - D7 CK1 D8 - D15 CK0 D0 - D7 CK1 D8 - D15 ZQ D12 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[0:7] DQS DQS DM DQ[0:7] DQS DQS DM DQ[0:7] Vtt Vtt SCL SA0 SA1 240Ω DQS4 DQS4 DM4 DQ[32:39] ± 1% 240Ω DQS6 DQS6 DM6 DQ[48:55] ± 1% ZQ D6 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] S0 CK0 CK0 CKE0 ODT0 240Ω 240Ω 240Ω DQS7 DQS7 DM7 DQ[56:63] ± 1% ZQ D7 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] 240Ω ZQ D4 DQS DQS DM DQ[0:7] 240Ω DQS5 DQS5 DM5 DQ[40:47] ± 1% ZQ D5 CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] D1 DQS DQS DM DQ[0:7] ± 1% CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[0:7] ZQ ZQ D3 240Ω CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS2 DQS2 DM2 DQ[16:23] ± 1% DQS DQS DM DQ[0:7] ± 1% CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[0:7] 240Ω 240Ω Vtt CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS0 DQS0 DM0 DQ[0:7] ZQ D11 DQS DQS DM DQ[0:7] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[0:7] ± 1% CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS1 DQS1 DM1 DQ[8:15] 240Ω CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS DQS DM DQ[0:7] CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] DQS3 DQS3 DM3 DQ[24:31] Vtt CS RAS CAS WE CK CK CKE ODT A[N:0]/BA[N:0] S1 RAS CAS WE CK1 CK1 CKE1 ODT1 A[0:N] /BA[0:N] Vtt D9 V2 D3 V1 V9 V3 D8 D0 V4 V4 D10 D2 V3 D1 V2 D11 V5 V1 V5 Vtt V1 V9 D12 V8 D6 V7 D5 D13 V6 V6 D7 D15 V7 D4 V8 D14 D0 - D7 RESET NOTE : 1. DQ wiring may differ from that shown however ,DQ, DM, DQS and DQS relationships are maintained as shown -8- Address and Controllines Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 8. Absolute Maximum Ratings 8.1 Absolute Maximum DC Ratings Symbol Parameter Rating Units NOTE VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.975 V V 1 TSTG Storage Temperature -55 to +100 °C 1, 2 NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 8.2 DRAM Component Operating Temperature Range Symbol Parameter rating Unit NOTE TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 9. AC & DC Operating Conditions 9.1 Recommended DC Operating Conditions (SSTL-15) Symbol VDD VDDQ Parameter Rating Units NOTE 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 NOTE: 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. -9- Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 10. AC & DC Input Measurement Levels 10.1 AC & DC Logic Input Levels for Single-ended Signals [ Table 1 ] Single-ended AC & DC input levels for Command and Address Symbol DDR3-800/1066/1333 Parameter Unit NOTE VDD mV 1,5 VSS VREF - 100 mV 1,6 VREF + 175 - mV 1,2,7 VIL.CA(AC175) AC input logic low - VREF - 175 mV 1,2,8 VIH.CA(AC150) AC input logic high VREF+150 - mV 1,2,7 - VREF-150 mV 1,2,8 0.49*VDD 0.51*VDD V 3,4 Min. Max. VIH.CA(DC100) DC input logic high VREF + 100 VIL.CA(DC100) DC input logic low VIH.CA(AC175) AC input logic high VIL.CA(AC150) AC input logic low VREFCA(DC) Reference Voltage for ADD, CMD inputs NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175) and VIH.CA(AC150); VIH.CA(AC175) value is used when VREF + 175mV is referenced and VIH.CA(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150); VIL.CA(AC175) value is used when VREF - 175mV is referenced and VIL.CA(AC150) value is used when VREF - 150mV is referenced. [ Table 2 ] Single-ended AC & DC input levels for DQ and DM Symbol Parameter DDR3-800/1066 DDR3-1333 Unit NOTE VDD mV 1,5 VSS VREF - 100 mV 1,6 - - - mV 1,2,7 VREF - 175 - - mV 1,2,8 VREF + 150 NOTE 2 VREF + 150 NOTE 2 mV 1,2,7 NOTE 2 VREF - 150 NOTE 2 VREF - 150 mV 1,2,8 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 Min. Max. Min. Max. VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VIL.DQ(DC100) DC input logic low VSS VREF - 100 VIH.DQ(AC175) AC input logic high VREF + 175 VIL.DQ(AC175) AC input logic low - VIH.DQ(AC150) AC input logic high VIL.DQ(AC150) AC input logic low VREFDQ(DC) Reference Voltage for DQ, DM inputs NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced. - 10 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 10.2 VREF Tolerances. The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 11 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 10.3 AC and DC Logic Input Levels for Differential Signals 10.3.1 Differential Signals Definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC 10.3.2 Differential Swing Requirement for Clock (CK-CK) and Strobe (DQS-DQS) Symbol Parameter VIHdiff DDR3-800/1066/1333 unit NOTE NOTE 3 V 1 NOTE 3 -0.2 V 1 differential input high ac 2 x (VIH(AC) - VREF) NOTE 3 V 2 differential input low ac NOTE 3 2 x (VIL(AC) - VREF) V 2 min max differential input high +0.2 VILdiff differential input low VIHdiff(AC) VILdiff(AC) NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undershoot Specification" [ Table 3 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS. Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min max min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 - 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - - 12 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 10.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 3. Single-ended requirement for differential signals Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [ Table 4 ] Single-ended levels for CK, DQS, CK, DQS Symbol VSEH VSEL Parameter DDR3-800/1066/1333 Unit NOTE NOTE3 V 1, 2 (VDD/2)+0.175 NOTE3 V 1, 2 NOTE3 (VDD/2)-0.175 V 1, 2 NOTE3 (VDD/2)-0.175 V 1, 2 Min Max Single-ended high-level for strobes (VDD/2)+0.175 Single-ended high-level for CK, CK Single-ended low-level for strobes Single-ended low-level for CK, CK NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" - 13 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 10.3.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 4. VIX Definition [ Table 5 ] Cross point voltage for differential input signals (CK, DQS) Symbol DDR3-800/1066/1333 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit Min Max -150 150 mV -175 175 mV -150 150 mV NOTE 1 NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. 10.4 Slew Rate Definition for Single Ended Input Signals See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals. 10.5 Slew rate definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below. [ Table 6 ] Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by From To VILdiffmax VIHdiffmin VIHdiffmin VILdiffmax NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK - 14 - VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax Delta TFdiff Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 11. AC & DC Output Measurement Levels 11.1 Single Ended AC and DC Output Levels [ Table 7 ] Single Ended AC and DC output levels Symbol Parameter DDR3-800/1066/1333 Units VOH(DC) NOTE DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 11.2 Differential AC and DC Output Levels [ Table 8 ] Differential AC and DC output levels DDR3-800/1066/1333 Units NOTE VOHdiff(AC) Symbol AC differential output high measurement level (for output SR) Parameter +0.2 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. 11.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below. [ Table 9 ] Single ended Output slew rate definition Measured Description Single ended output slew rate for rising edge Single ended output slew rate for falling edge Defined by From To VOL(AC) VOH(AC) VOH(AC) VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) VOL(AC) Delta TFse NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 10 ] Single ended output slew rate Parameter Single ended output slew rate Symbol SRQse DDR3-800 DDR3-1066 DDR3-1333 Min Max Min Max Min Max 2.5 5 2.5 5 2.5 5 Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 6. Single-ended output slew rate definition - 15 - Units V/ns Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 11.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below. [ Table 11 ] Differential Output slew rate definition Measured Description Differential output slew rate for rising edge Differential output slew rate for falling edge From To VOLdiff(AC) VOHdiff(AC) VOHdiff(AC) Defined by VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) VOLdiff(AC) Delta TFdiff NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 12 ] Differential Output slew rate Parameter Differential output slew rate Symbol SRQdiff DDR3-800 DDR3-1066 DDR3-1333 Min Max Min Max Min Max 5 10 5 10 5 10 Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 7. Differential output slew rate definition - 16 - Units V/ns Unbuffered SODIMM datasheet Rev. 1.01 DDR3 SDRAM 12. DIMM IDD specification definition Symbol Description IDD0 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD1 Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2N Precharge Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2P0 Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3) IDD2P1 Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3) IDD2Q Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD3N Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD3P Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD4R Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD4W Operating Burst Write Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern IDD5B Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD6 Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD6ET Self-Refresh Current: Extended Temperature Range (optional)6) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD7 Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING - 17 - Unbuffered SODIMM datasheet Rev. 1.01 DDR3 SDRAM NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 7) IDD current measure method and detail patterns are described on DDR3 component datasheet 8) VDD and VDDQ are merged on module PCB. 9) DIMM IDD SPEC is measured with Qoff condition (IDDQ values are not considered) - 18 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 13. IDD SPEC Table M471B1G73AH0 : 8GB (1Gx64) Module Symbol CF8 (DDR3-1066@CL=7) CH9 (DDR3-1333@CL=9) Unit NOTE IDD0 600 680 mA 1 IDD1 720 800 mA 1 IDD2P0(slow exit) 240 240 mA IDD2P1(fast exit) 320 320 mA mA IDD2N 400 480 IDD2Q 400 400 mA IDD3P 400 400 mA IDD3N 520 600 mA IDD4R 960 1120 mA IDD4W 1040 1280 mA 1 IDD5B 1440 1600 mA 1 IDD6 240 240 mA IDD7 1520 1880 mA IDD8 240 240 mA NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. - 19 - 1 1 Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 14. Input/Output Capacitance [ Table 13 ] Input/Output Capacitance Parameter Symbol Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK) DDR3-800 DDR3-1066 DDR3-1333 Units NOTE 2.5 pF 1,2,3 0.8 1.4 pF 2,3 0.15 0 0.15 pF 2,3,4 0.75 1.5 0.75 1.3 pF 2,3,6 0.2 0 0.2 0 0.15 pF 2,3,5 -0.5 0.3 -0.5 0.3 -0.4 0.2 pF 2,3,7,8 CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 pF 2,3,9,10 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 pF 2, 3, 12 Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) Min Max Min Max Min Max CIO 1.5 3.0 1.5 2.7 1.5 CCK 0.8 1.6 0.8 1.6 CDCK 0 0.15 0 CI 0.75 1.5 CDDQS 0 CDI_CTRL NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance. 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF - 20 - Rev. 1.01 datasheet Unbuffered SODIMM DDR3 SDRAM 15. Electrical Characteristics and AC timing (0 °C