Preview only show first 10 pages with watermark. For full document please download

Design Of Scintillator Arrays For Dual-end Depth-of

   EMBED


Share

Transcript

Design of Scintillator Arrays for Dual-End Depth-ofInteraction Encoding Small-Animal PET Detectors Kent Burr, Adrian Ivan, Don Castleberry, Jim LeBlanc Detector Technology Lab, GE Research Challenges in Small-Animal PET Actual Event Line PET Scanner Position Sensitive APD Scintillator block No DOI Recon Line DOI resolution = 5 mm Shrink the bore and use long crystals Æ Increase sensitivity but … Parallax error Æ Lose resolution 3D Position Information Breaks Inverse Relationship between Sensitivity and Resolution *animated Position Sensitive APD* introduction 1000 T = 20°C Gain optical photons incident on front deep-diffused surface silicon APD 10000 100 10 A high resistivity layer on back C B of APD 4 corner contacts on back x= y= 1 0 (A+B)-(C+D) (A+B+C+D) (A+D)-(B+C) (A+B+C+D) 200 400 600 800 1000 1200 1400 1600 Bias Voltage (V) Gain Temperature Coefficient (%/ °C) D 0 -5 normal operating range -10 -15 0 500 1000 1500 Gain 2000 *PSAPDs manufactured by Radiation Monitoring Devices, Inc., Watertown, MA, USA. 2500 3000 z Top PSAPD Scintillator scintillator slab 22Na PMT source array Bottom PSAPD DOI = 0mm (center of crystals) Top PSAPD pulse height Depth-of-Interaction Illustration Bottom PSAPD pulse height 511 keV *animated z z z z z Top PSAPDz Top PSAPD scintillator slab 22Na PMT source Top PSAPD Top PSAPD Scintillator Top PSAPD Top Scintillator Top PSAPD PSAPD Scintillator Scintillator Scintillator Scintillator Scintillator array array array Bottom PSAPD array array array Bottom array Bottom PSAPD PSAPD Bottom PSAPD Bottom PSAPD Bottom Bottom PSAPD PSAPD Top PSAPD pulse height Depth-of-Interaction Illustration Bottom PSAPD pulse height *animated Scintillator Array Design scintillator array selection attribute scintillator material reason mixed lutetium silicate, MLS high light output, high density & Z, fast decay PSAPD size, resolution, array size, crystal 8x8 array, dimensions 1.65mm x 1.65mm x 22mm sensitivity, crystal cutting capabilities experimental reflector material • Teflon tape • VM2000 (3M Corp.) experimental crystal side surface • P (polished, 7nm rms) roughness • M5 (lapped with 5µm grit, 16nm rms) • M10 (lapped with 10µm grit, 700nm rms) • M20 (lapped with 20µm grit, 1000nm rms) reflector material Teflon VM2000 reflector material 1mm Teflon • best light collection • time-consuming to assemble • well-known problems with reproducibility, shrinkage, wicking, etc. VM2000 • laser cut film • much faster assembly • improved reproducibility • reduced dead-space • somewhat reduced light collection efficiency (~75% of Teflon) Scintillator Array Experiments • 4 different surfaces (P, M5, M10, M20) • 2 reflector materials (Teflon, VM2000) P Black M20 M10 M5 M10 M20 M5 P M20 M5 P M20 M10 M5 P M5 M10 M20 P M20 M10 P M5 M10 • 5x5 array of crystals (parallel data acquisition under identical conditions) • 1.9mm x 1.9mm x 20mm MLS crystals • 14mm x14mm PSAPD • arrangement chosen so that: • each row and column have at least one of each crystal type • central 3x3 of array has at least two crystals of each type • “black” crystal used for unambiguous identification of crystals • each corner crystal has different surface • each 2x2 in corner has one crystal of each type, except for corner that has “black” crystal VM2000, 12.4°C Teflon, 19.6°C Teflon, 9.8°C 8 6 15 10 VM2000, 12.4°C Teflon, 19.6°C Teflon, 9.8°C 5 0 Polished M5 M10 M20 Surface Treatment 4 2 0 Energy Resolution (%) 10 20 Polished M5 M10 Surface Treatment M20 Roughening the surface improves DOI … Timing Resolution (ns) DOI Resolution (mm) Scintillator Array Experiments: Results 6 5 4 3 2 Teflon, 12.1°C 1 0 Polished M5 M10 M20 Surface Treatment … without degrading energy resolution and timing resolution. Detector Evolution *animated PSAPD Detector Specifications • 14 mm x 14 mm active area • operated at 10°C and -1630V • gain ~950 • leakage current ~1µA Scintillator array • 8x8 MLS • 1.65 mm x 1.65 mm x 22.00 mm • 1.75 mm pitch • 3M VM2000 reflective film • rough side surfaces, polished ends • coupled to PSAPD using Cargille Meltmount Electronics • corner contacts: low noise JFET input wide bandwidth transimpedance amplifier with a 100 kohm transimpedance gain • trigger and energy signal from analog sum of corner contacts Flood Histogram – 22Na 600 500 400 300 200 100 0 Energy Window: 250-650 keV DOI Resolution Normalized Counts 1 0.8 0.6 0.4 0.2 0 -10 -5 0 Depth (mm) Energy Window: 250-650 keV Integrated counts from all crystals. 5 10 Width of Electronically Collimated Beam z scintillator slab 22Na source PMT Count Rate (Hz) PMT 15 measurements (left scale) Error Function fit (left scale) Implied Beam Profile (arbitrary vertical scale) 10 FWHM = 2.3 mm 5 0 -3 -2 -1 0 1 Distance (mm) 2 3 DOI Resolution (deconvolved) Normalized Counts 1 0.8 0.6 0.4 0.2 0 -10 -5 0 Depth (mm) Energy Window: 250-650 keV Integrated counts from all crystals. 5 10 DOI Resolution Map* 1 Crystal Row Number 2 3.2 3 3.1 4 3 5 2.9 6 2.8 7 2.7 8 1 2 3 4 5 6 7 Crystal Column Number *without deconvolution of beam width 8 2.6 DOI Resolution (FWHM, mm)* 3.3 Energy Resolution Map 19.5 Crystal Row Number 19 2 18.5 3 18 4 17.5 5 17 6 16.5 16 7 15.5 8 1 2 3 4 5 6 7 Crystal Column Number 8 15 Energy Resolution (FWHM, %) 1 Timing Resolution Distribution Number of Crystals 15 10 5 0 2.5 3 3.5 4 4.5 5 Timing Resolution (FWHM, ns) 5.5 Radiation Damage? (preliminary measurements) Small-animal PET is not a “high radiation” environment. 22Na 14mm x 14mm PSAPDs source short distance 8mm x 8mm PSAPD (bias to operating voltage for 22 mm long MLS entire exposure, 10°C) crystals ~10 cm bore 4x4 array of 22 mm long MLS crystals test setup pre-radiation small-animal scanner 200 150 100 50 0 80 60 40 20 0 0 20 40 60 80 100 120 140 160 post-radiation Exposed PSAPD to 2 - 10 years* equivalent accumulated 511 keV flux 300 250 200 150 100 50 0 80 60 40 20 0 0 20 40 60 80 No Negative Impact on Performance Observed *depending on scanner utilization assumptions 100 120 140 160 Conclusion Demonstrated High-Res DOI PET detector with: • 8x8 array of 1.65 mm x 1.65 mm x 22.00 mm crystals, with surface treatments chosen to optimize DOI resolution • Minimal dead-space within array • Compact front-end electronics • No radiation damage effects observed • Tileable design • Excellent performance • DOI resolution of <3 mm FWHM • Energy resolution of ~16% FWHM • Timing resolution of ~4 ns FWHM (vs. plastic) References • DOI in PET L. R. MacDonald and M. Dahlbom, "Parallax Correction in PET Using Depth of Interaction Information," IEEE Trans. Nucl. Sci., vol. 45, no. 4, pp. 2232 – 2237, Aug. 1998. Y. Shao, R. M. Manjeshwar, F. P. Jansen, P. N. Kumar, A. F. Chatziioannou, “Simulation Studies for a High Resolution and High Sensitivity Small Animal PET with DOI Detection Capability,” presented at IEEE Medical Imaging Conference, M6-11, Portland, OR, Oct. 2003. • dual-end readout W. W. Moses, S. E. Derenzo, "Design Studies for a PET Detector Module Using a PIN Photodiode to Measure Depth of Interaction," IEEE Trans. Nucl. Sci., vol. 41, pp. 1441 – 1445, Aug. 1994. Y. Shao, K. Meadors, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, S. R. Cherry, "Dual APD Array Readout of LSO Crystals: Optimization of Crystal Surface Treatment," IEEE Trans. Nucl. Sci., vol. 49, no. 3, pp. 649 – 654, June 2002. • PSAPDs K. S. Shah, R. Farrell, R. Grazioso, E. S. Harmon, E. Karplus, "Position-Sensitive Avalanche Photodiodes for GammaRay Imaging," IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp. 1687 – 1692, Aug. 2002. • MLS C. M. Pepin, P. Berard, R. Lecomte, "Comparison of LSO, LGSO and MLS Scintillators," in Proc. IEEE Nuclear Science Symposium, vol. 1, San Diego, CA, Nov. 2001, pp. 124 – 128. • VM2000 R. S. Miyaoka, S. G. Kohlmyer, T. K. Lewellen, "Performance Characteristics of Micro Crystal Element (MiCE) Detectors," IEEE Trans. Nucl. Sci., vol. 48, no. 4, pp. 1403 – 1407, Aug. 2001. Acknowledgment • K. Shah and R. Farrell (RMD). • T. Lewellen, R. Miyaoka, and M. Janes (U. Wash).