Transcript
StrongIRFET IRF8301MTRPbF DirectFET Power MOSFET
Ultra-low RDS(on) l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Ultra-low Package Inductance l Optimized for high speed switching or high current switch (Power Tool) l Low Conduction and Switching Losses l Compatible with existing Surface Mount Techniques l
Typical values (unless otherwise specified)
VDSS
VGS
30V max ±20V max
RDS(on)
RDS(on)
1.3mΩ@10V
1.9mΩ@ 4.5V
DirectFET ISOMETRIC
MT Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ
SX
ST
MQ
MX
MT
MP
Description The IRF8301MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve very low on-state resistance in a package that has the footprint of an SO-8 or a PQFN 5x6mm and only 0.7mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF8301MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses and very high current carrying capability make this product ideal for power tools.
Ordering Information Base Part Number
Package Type
IRF8301MPbF
DirectFET MT
VGS ID @ T A = 25°C ID @ T A = 70°C ID @ T C = 25°C IDM EAS IAR
Parameter
Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current
g
e e f
Typical RDS(on) (mΩ)
6 ID = 32A
5 4 3
T J = 125°C
2 1
T J = 25°C
0 0
5
10
15
20
VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage
1
IRF8301MTRPbF
www.irf.com © 2013 International Rectifier
Units
±20 34 27 192 250 260 25
h
g
Orderable Part Number
Max.
VGS, Gate-to-Source Voltage (V)
Absolute Maximum Ratings
Standard Pack Form Quantity Tape and Reel 4800
A
mJ A
5.0 ID= 25A
4.0
VDS= 24V VDS= 15V
3.0 2.0 1.0 0.0 0
10
20
30
40
50
60
QG, Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
September 6, 2013
IRF8301MTRPbF
Static @ TJ = 25°C (unless otherwise specified) Min.
Typ.
BVDSS
Drain-to-Source Breakdown Voltage
Parameter
30
–––
Max. Units –––
∆ΒVDSS/∆TJ R DS(on)
Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance
––– –––
21 1.3
––– 1.5
mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 32A
–––
1.9
2.4
VGS = 4.5V, ID = 25A
V
Conditions VGS = 0V, ID = 250µA
i i
VGS(th) ∆VGS(th)/∆TJ
Gate Threshold Voltage Gate Threshold Voltage Coefficient
1.35 –––
1.7 -6.0
2.35 –––
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = 24V, VGS = 0V
IGSS
Gate-to-Source Forward Leakage
––– –––
––– –––
150 100
nA
VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance Total Gate Charge
150 –––
––– 51
––– 77
Qgs1
Pre-Vth Gate-to-Source Charge
–––
12
–––
Qgs2 Qgd
Post-Vth Gate-to-Source Charge Gate-to-Drain Charge
––– –––
5.4 16
––– –––
Qgodr
gfs Qg
V VDS = VGS, ID = 150µA mV/°C
VGS = -20V S
VDS = 15V, ID = 25A VDS = 15V
nC
Gate Charge Overdrive
–––
18
–––
Qsw Qoss
Switch Charge (Qgs2 + Qgd) Output Charge
––– –––
21 28
––– –––
nC
RG
Gate Resistance
–––
1.0
3.0
Ω
td(on) tr
Turn-On Delay Time Rise Time
––– –––
20 30
––– –––
ns
td(off)
Turn-Off Delay Time
–––
25
–––
tf C iss
Fall Time Input Capacitance
––– –––
17 6140
––– –––
C oss
Output Capacitance
–––
1270
–––
C rss
Reverse Transfer Capacitance
–––
590
–––
Min.
Typ.
VGS = 4.5V ID = 25A See Fig. 15 VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 25A
i
RG = 1.8Ω See Fig. 17 VGS = 0V pF
VDS = 15V ƒ = 1.0MHz
Diode Characteristics Parameter
Max. Units
Conditions MOSFET symbol
IS
Continuous Source Current (Body Diode)
–––
–––
110
ISM
Pulsed Source Current
–––
–––
250
VSD
(Body Diode) Diode Forward Voltage
–––
0.77
1.0
V
TJ = 25°C, IS = 25A, VGS = 0V
trr
Reverse Recovery Time
–––
27
41
ns
Qrr
Reverse Recovery Charge
–––
45
68
nC
TJ = 25°C, IF = 25A di/dt = 500A/µs
g
A
Notes:
Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state.
2
www.irf.com © 2013 International Rectifier
showing the integral reverse p-n junction diode.
i
i
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.82mH, RG = 25Ω, IAS = 25A. Pulse width ≤ 400µs; duty cycle ≤ 2%.
September 6, 2013
IRF8301MTRPbF Absolute Maximum Ratings
e e f
PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG
Parameter
Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range
Max.
Units
2.8 1.8 89 270 -40 to + 150
W
°C
Thermal Resistance Parameter
el jl kl fl
RθJA RθJA RθJA RθJC RθJ-PCB
Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor
e
Typ.
Max.
Units
––– 12.5 20 ––– 1.0
45 ––– ––– 1.4 –––
°C/W
0.022
W/°C
Thermal Response ( Z thJA )
100
10
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
0.1
0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50 0.20
0.1
0.10 0.05 0.02 0.01
0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 4. Maximum Effective Transient Thermal Impedance, Junction-to-Case 3
www.irf.com © 2013 International Rectifier
September 6, 2013
IRF8301MTRPbF
Notes:
Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized
Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
Surface mounted on 1 in. square Cu (still air).
4
Mounted to a PCB with small clip heatsink (still air)
www.irf.com © 2013 International Rectifier
Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)
September 6, 2013
IRF8301MTRPbF 1000
1000
100 BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
100
10
2.5V
1
BOTTOM
2.5V 10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
0.1 0.1
1
Tj = 150°C
1
10
0.1
100
VDS, Drain-to-Source Voltage (V)
100
2.0 ID = 32A
VDS = 15V ≤60µs PULSE WIDTH Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
10
Fig 6. Typical Output Characteristics
1000
100 T J = 150°C T J = 25°C T J = -40°C
10
1
V GS = 10V V GS = 4.5V 1.5
1.0
0.5
0.1 1.0
1.5
2.0
2.5
3.0
3.5
4.0
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 8. Normalized On-Resistance vs. Temperature
Fig 7. Typical Transfer Characteristics
5
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd
Typical RDS(on) ( mΩ)
10000
Ciss
Coss 1000
Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 8.0V Vgs = 10V
4
C oss = C ds + C gd
C, Capacitance(pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Output Characteristics
Crss
T J = 25°C
3
2
1
0
100 1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
5
VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V
www.irf.com © 2013 International Rectifier
0
50
100
150
200
ID, Drain Current (A)
Fig 10. Typical On-Resistance vs. Drain Current and Gate Voltage September 6, 2013
IRF8301MTRPbF 1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
100
OPERATION IN THIS AREA LIMITED BY R DS(on) 10msec
100
T J = 25°C
T J = -40°C 10
1
100µsec
DC 10
1 Tc = 25°C Tj = 150°C Single Pulse
VGS = 0V 0.1
0
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
1
VSD, Source-to-Drain Voltage (V)
3.0
Typical VGS(th) Gate threshold Voltage (V)
160
120
80
40
2.5
2.0
1.5
1.0
75
100
125
ID = 100µA ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A
0.5
0 50
100
Fig 12. Maximum Safe Operating Area
200
25
10
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical Source-Drain Diode Forward Voltage
ID, Drain Current (A)
1msec
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Maximum Drain Current vs. Case Temperature
Fig 14. Typical Threshold Voltage vs. Junction Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1200 ID 2.7A 3.9A BOTTOM 25A TOP
1000 800 600 400 200 0 25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Drain Current 6
www.irf.com © 2013 International Rectifier
September 6, 2013
IRF8301MTRPbF
Id Vds Vgs
L VCC
DUT
0
20K 1K
Vgs(th)
S
Qgodr
Fig 16a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 16b. Gate Charge Waveform
V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
V RGSG
+ - VDD
IAS
20V
A
0.01Ω
tp
I AS Fig 17b. Unclamped Inductive Waveforms
Fig 17a. Unclamped Inductive Test Circuit
VDS VGS RG
RD
VDS 90%
D.U.T. +
- V DD
VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
10% VGS td(on)
Fig 18a. Switching Time Test Circuit
7
www.irf.com © 2013 International Rectifier
tr
t d(off) tf
Fig 18b. Switching Time Waveforms
September 6, 2013
IRF8301MTRPbF Driver Gate Drive
D.U.T
P.W.
+
+
-
RG
*
• • • •
***
D.U.T. ISD Waveform Reverse Recovery Current
+
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
D=
Period
V DD
**
+
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 19. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET Board Footprint, MT Outline (Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.
G = GATE D = DRAIN S = SOURCE
D
S
D
G D
S
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8
www.irf.com © 2013 International Rectifier
September 6, 2013
IRF8301MTRPbF DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.
DIMENSIONS METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 H 0.98 1.02 0.67 J 0.63 K 0.88 1.01 2.63 L 2.46 M 0.616 0.676 R 0.020 0.080 0.17 P 0.08
IMPERIAL MIN 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.0235 0.0008 0.003
MAX 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.0274 0.0031 0.007
DirectFET Part Marking
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9
www.irf.com © 2013 International Rectifier
September 6, 2013
IRF8301MTRPbF DirectFET Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION
8301 NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8301MTRPbF IRF6726MTRPBF). For 1000 parts on 7" l d IRF6726MTR1PBF
Z>/DE^/KE^ ^dEZKWd/KE Ydz
K & ' ,
DdZ/ D/E Dy E E
/DWZ/> D/E Dy E E
E E
E E
E
E
NOTE: CONTROLLING DIMENSIONS IN MM
CODE A B C D E F G H
DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 1.50 0.063 1.60
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Revision History Date 09/05/2013
Comments •Added the StrongIRFET logo on the top of the part number, on page 1.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2013 International Rectifier
September 6, 2013