Preview only show first 10 pages with watermark. For full document please download

Dispersion Relation (10 Min)

   EMBED


Share

Transcript

Indiana’s school lecture (black board); prepared by I.V.Danilkin (JLab, June, 2015) Literature: [1] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1995. [2] Bastian Kubis lectures https://www.jlab.org/conferences/asi2012/Kubis/Kubis_lectures123.pdf [3] F. J. Yndurain. Low-energy pion physics. arXiv: hep-ph/0212282, 2002. Dispersion relation (10 min) Cauchy theorem 1 d s ' FHs 'L FHsL = 2i à (1) Π s' - s G for holomorphic function FHsL and G is a rectifiable path. We can always deform the contour until the closest singularity. If FHs ® ¥L ® 0 on the large semi-circle then 1 d s ' FHs 'L FHsL = 2i 1 1 ® à ¥ d s ' FHs ' + i ΕL à 1 - ¥ d s ' FHs ' - i ΕL à = Π s' - s 2 i 4 m2 Π s' - s 2 i 4 m2 Π s' - s ¥ d s ' FHs ' + i ΕL - FHs ' - i ΕL ¥ d s ' Disc FHs 'L 1 = à à 2 i 4 m2 Π s' - s 2 i 4 m2 Π s' - s Disc FHsL = FHs + i ΕL - FHs - i ΕL G (2) Analyticity: 1 FHsL = 2i ¥ à 4 m2 d s ' Disc FHs 'L Π (3) s' - s Reflection principle: F* Hs + i ΕL = FHs - i ΕL (4) allows to relate imaginary part of the amplitude (unitarity) to analytical continuation of the amplitude (i.e. dispersion relation) Exercise: Disc FHsL = FHs + i ΕL - FHs - i ΕL = FHs + i ΕL - F* Hs + i ΕL = 2 i Im FHsL Subtractions: In general, one can always introduce subtractions (5) 2 Documentation_Indiana_school.nb FHsL = ¥ d s ' s ' - s + s - s0 Im FHs 'L ¥ d s ' Im FHs 'L d s ' Im FHs 'L Hs - s0 L ¥ d s ' Im FHs 'L =à =à + à 2 à 2 4m Π 4 m2 Π 4 m2 Π 4 m s ' - s0 s' - s s ' - s0 s' - s s ' - s0 Π s' - s ¥ (6) As a result we got an improved convergence at ¥ (due to additional power of s ' in the denominator); sum rule (when the integral converges) d s ' Im FHs 'L ¥ FHs0 L = à 4 m2 (7) s ' - s0 Π Exercise: If the integral does not converge sufficiently fast on the large semi-circle, derive dispersive relation for (assuming FHs0 L is Real) FHsL - FHs0 L (8) s - s0 General formula. Note that by introducing subtractions you improve the convergence at s ® ¥, however there are additional parameters to determine. n-1 FHsL = â i=0 1 FHiL Hs0 L Hs - s0 Li + i! Hs - s0 Ln Π d s' ¥ à 2 4m Im FHs 'L n Hs ' - s0 L s' - s (9) Calculation of the Disc (10 min) Instead of making full loop calculations one can use Cutkosky (cutting) rule: 1 2 p - m2 + i Ε ® -2 Π i ∆Ip2 - m2 M (10) Example: d4 l iM =à 1 4 H2 ΠL Il2 - m2 + i ΕM IHp - lL2 - m2 + i ΕM d4 l Disc M = H-iL à H2 ΠL4 H-2 Π iL ∆Il2 - m2 M H-2 Π iL ∆IHp - lL2 - m2 M l 2 + m2 ∆ l0 4 2 2 2 2 2 d l = d l0 l d l dW, ∆Il - m M = ∆Il0 - l - m M = 2 2 2 2 2 ∆IHp - lL - m M = ∆Ip + l - 2 p l - m M = ∆Is - 2 p l = p0 l0 - p l = 2 l0 s l0 M, s l0 , cm : p = I s , 0M, l = Hl0 , lL (11) Documentation_Indiana_school.nb p l = p0 l0 - p l = 4 Π2 s l0 , cm : p = I s , 0M, l = Hl0 , lL l2 d l i Disc M = à d W ∆Is - 2 2 l0 s l0 M s 2 ∆Kl0 2 l dl= l02 3 2 - m l0 d l0 , ∆Is - 2 s l0 M = 2 s 4 m2 i Disc M = O 1- = 2 i Im M s 8Π Therefore 4 m2 1 Im M = 116 Π 1 = s ΡHsL (12) 16 Π Pion vector form factor (15 min) We consider the process of a transition of a photon into a pair of pions. This is an important building block: resposible for a hadronic part of e+ e- ® Π+ Π- , Τ- ® Π- Π0 ΝΤ , ... The matrix element: YΠ+ HpL Π- HqL J Μ H0L 0] = Hp - qL Μ FΠV HsL (13) where J Μ is the EM current and FΠV HsL is the pion vector form factor (normalized FΠV H0L = 1). This process does not have any crossed channel exchanges and therefore no left-hand cuts. Note also, that the factor Hp - qL Μ insures gauge invariance when the two pions are on-shell (i.e. Hp - qL Μ Hp + qL Μ = p2 - q2 = m2 - m2 = 0). At very low energy the pion vector form factor can be calculated in Chiral Perturbation Theory (ΧPT). At NLO it reads (11) 4 Documentation_Indiana_school.nb L ~ i A Μ HΠ+ ¶ Μ Π- - Π- ¶ Μ Π+ + ...L FΠV HsL = 1 + 1 1 1 2 6 H4 Π fΠ L HL6 - 1L s + 6 fΠ2 (14) - Is - 4 m2Π M J HsL + OIs2 M, L6 » 16 Improvement: dispersion relation ® need to calculate the Discontinuity (Cutkosky rules again) Hp - qL Μ Disc FΠV HsL = d4 l 1 2 H-iL à H2 ΠL4 H-2 Π iL ∆Il2 - m2Π M H-2 Π iL ∆IHps - lL2 - m2Π M TI* Hs, zL Hps - 2 lL Μ FΠV HsL (15) ps = p + q, s = Hp + qL2 , s z = cos Θ is c.m. angle note also that Hp + qL = 9 s , 0=, p0 = q0 = 2 s = l0 , p = q = l = ΡHsL 2 We obtain Hp - qL Μ Disc FΠV HsL = à Hp - qL ... Exercise: Show that dW TI* Hs, i 2 64 Π ΡHsL FΠV HsL à dW TI* Hs, zL Hps - 2 lL Μ zL Hps - 2 lL Μ = L1 Hp + qL Μ + L2 Hp - qL Μ ... then contract with Hp + qL, (16) Documentation_Indiana_school.nb 5 1 * * à dW TI Hs, zL Hps - 2 lL Μ = 2 Π Hp - qL Μ à â z z TI Hs, zL (17) -1 where TI Hs, zL is the ΠΠ amplitude ¥ TI Hs, zL = 32 Π âH2 l + 1L tlI HsL Pl HzL l=0 (18) 2 ∆l l' 1 à â z Pl HzL Pl' HzL = -1 2l+1 Since Disc FΠV HsL = 2 i Im FΠV HsL, we get Im FΠV HsL = ΡHsL FΠV HsL t11* HsL ΘIs > 4 m2Π M (19) If we consider only elastic scattering: 1 t11 HsL = sin ∆11 HsL e i ∆1 HsL 1 ΡHsL t11* HsL = sin ∆11 HsL e -i ∆1 HsL , ΡHsL (20) Watson final state theorem: the phase of the form factor is determined by the two-particle scattering phase shift: 1 FΠV HsL = FΠV HsL e i ∆1 HsL 1 FΠV HsL = FΠV HsL e i ∆1 HsL (21) Arg IFΠV HsLM = ∆11 HsL The full Omnes–Muskhelishvili problem (20 min) We want to find the most general representation for a function, FHsL, which is the analytic in the complex s plane with the cut from s= A4 m2 , ¥E, assuming that we know its phase on the cut, Arg HFHsLL = ∆HsL, s > 4 m2 (22) Solution is not unique, if F0 HsL is a solution, then eΑ s F0 HsL is a solution too. Need to know the asymptotic information! We look for a solution in the from FHsL = PHsL WHsL 1 HWHs + i ΕL - WHs - i ΕLL = WHs + i ΕL sin ∆HsL e -i ∆HsL , 2i e i ∆HsL - e -i ∆HsL 1 WHs + i ΕL 2i 2i e -i ∆HsL = WHs + i ΕL e -2 i ∆HsL 1 1 = WHs - i ΕL 2i W Hs + i ΕL e-2 i ∆HsL = WHs - i ΕL, ln W Hs + i ΕL - 2 i ∆ = ln W Hs + i ΕL DiscHln WHsLL = 2 i ∆HsL Dispersion relation 2i (23) 6 Documentation_Indiana_school.nb 1 ln WHsL = d s ' DiscHln WHs 'LL ¥ ¥ d s ' ∆Hs 'L , 4 m2 Π s ' - s Π s' - s ¥ d s ' ∆Hs 'L s ¥ d s ' ∆Hs 'L WHsL = Exp à , WHsL = Exp a + à 4 m2 Π s ' - s Π 4 m2 s ' s ' - s 2i =à à 4 m2 s WHsL = Exp Π ¥ d s ' ∆Hs 'L 4 m2 s' s' - s , WH0L = 1 à (24) (25) One subtraction: normalization WH0L = 1. The function W(s) is known as the Omnes function. Many applications! Exercise: Show that Arg WHsL = ∆HsL 1 if ∆HsL ® Α Π, show WHs ® ¥L ® (26) Α s Use f Hs 'L d s à s' - s ¡ i Ε f Hs 'L d s = p.v.à ± i Π f HsL (27) s' - s If one assume asymptotic: FH¥L ® 1  s, then FΠV HsL = WHsL Numerical implementation (25 min) s WHsL = Exp Π Tangent stretching Let’s now consider the integral ¥ d s ' ∆Hs 'L 4 m2 s' s' - s à (28) Documentation_Indiana_school.nb 7 ¥ f HyL â y à a In order to account the whole region, the replacement is needed y ® yHxL, which changes the integrating range (a,¥) into (0,1) f HyL â y = à f HyHxLL a dy Π â x, yHxL = a + Cext tg dx 0 ¥ à dy 1 ¥ à Cext Π  2 x ; = 2 dx Π cosI 2 xM 2 n Ž f HyL â y = â f Hyi L wi . 0 i=1 If the integrand is smooth, it is convenient to use Gaussian weights for integration. Few words about Cext : As you can see y Hx = 1  2L = a + Cext . It means that n/2 points will be accounted before a + Cext and n/2 after. It is very useful when you know the general behavior of your function. If you do not, just put it equal to unity, Cext = 1. ¥ 2 Example 2: Ù2 e-y â y << NumericalDifferentialEquationAnalysis` n = 10; Cext = 1; wg = GaussianQuadratureWeights@n, 0, 1D; yn = 2 + Table@Cext * Tan@Π  2 * wg@@i, 1DDD, 8i, n 4 m2 M à Π 4 m2 s ' s ' - s - i Ε (29) The latter integral can be written as s Π ¥ âs' f Hs 'L s ¥ p.v.à = à s' s' - s -i Ε 2 4m Π â s ' f Hs 'L f HsL + iΠ 2 4m (30) s s' s' - s For the p.v. integral we use the following trick: ¥ p.v.à 2 4m â s ' f Hs 'L s' s' - s ¥ = p.v.à â s ' f Hs 'L - f HsL + f HsL 2 4m ¥ =à 4 m2 s' s' - s â s ' f Hs 'L - f HsL s' s' - s 4 m2 f HsL ln + s s - 4 m2 (31) 8 Documentation_Indiana_school.nb 1 ¥ p.v.à 4 m2 4 m2 1 âs' ln = s ' Hs ' - sL s s - 4 m2 All together (Omnes function) s WHsL = Exp Π ¥ d s ' ∆Hs 'L 4 m2 s' s' - s à (32) Exit@D; << NumericalDifferentialEquationAnalysis` SetDirectory@NotebookDirectory@DD; StyleList = [email protected], AbsolutePointSize@5D, ð< & ž 8Blue, Red, Green, Purple<; SetOptions@Plot, Frame -> True, Axes -> 8True, False<, PlotStyle -> StyleList, AspectRatio -> 0.8, FrameStyle -> Directive@13DD; << PiPi_Madrid.m; mpi = 0.138; mK = 0.4956745; Mrho = 0.770; Ε = 0.00001; LamPhShift = 1.3; OmnesNInt@sig_D@s_D := Exp@s  Pi * NIntegrate@deltaFinal@1D@sbD  Hsb Hsb - s - I sig ΕLL, 8sb, 4 mpi ^ 2, 4 mK ^ 2, Infinity<, AccuracyGoal ® 5, MaxRecursion ® 200DD; nOmn = 120; Cx = 1.0; wg = GaussianQuadratureWeights@nOmn, 0, 1D; s0 = 4 mpi ^ 2; sn = s0 + Table@Cx * Tan@Pi  2 * wg@@i, 1DDD ^ 2, 8i, nOmn 4 mpi ^ 2, Exp@I * sig * delta@1D@sDD * Exp@deltas  Π Log@s0  Hs - s0LDD * OmnesTemp@sDDD; (31) Documentation_Indiana_school.nb ShowBPlotBdeltaFinal@1D@par ^ 2D * 180  Pi, 8par, 2 mpi, 2.0<, PlotPoints ® 50, MaxRecursion ® 0, PlotStyle ® 8Black, Thick<, FrameLabel ® :" s @GeVD", "∆HsL">F, DeltaExp@1D, ImageSize ® 8250, 250F, PlotB8Im@Omnes@1D@par ^ 2DD<, 8par, 2 mpi, 1.1<, PlotStyle ® 8Black<, MaxRecursion ® 0, PlotPoints ® 100, PlotRange ® All, ImageSize ® 8250, 250<, FrameLabel ® :" s @GeVD", "ImHWHsLL">F>F 6 3 5 ImHWHsLL ReHWHsLL 2 1 0 4 3 2 -1 1 -2 0.4 0.6 0.8 s @GeVD Omnes@1D@1D OmnesNInt@1D@1D -1.43762 + 0.680652 ä -1.43777 + 0.680767 ä 1.0 0 0.4 0.6 0.8 s @GeVD 1.0 9