Preview only show first 10 pages with watermark. For full document please download

Download Datasheet For 88pg877 By Marvell

   EMBED


Share

Transcript

88PG877 Family Field Programmable DSP Switcher™ 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Advance Datasheet, Patent Pending Doc. No. MV-S103181-00, Rev. B October 30, 2007 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Document Status Advance Information This document contains design specifications for initial product development. Specifications may change without notice. Contact Marvell Field Application Engineers for more information. Preliminary Information This document contains preliminary data, and a revision of this document will be published at a later date. Specifications may change without notice. Contact Marvell Field Application Engineers for more information. Final Information This document contains specifications on a product that is in final release. Specifications may change without notice. Contact Marvell Field Application Engineers for more information. Revision Code: Rev. B Advance Technical Publication: 0.2 No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees: 1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2; 2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and, 3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML"). At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information. Copyright © 2007. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All other trademarks are the property of their respective owners. Doc. No. MV-S103181-00 Rev. B Page 2 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology O VERVIEW F EATURES The 88PG877 device intelligent digital synchronous Step-Down (Buck) switching regulator housed in a 4 X 3 mm QFN-18 package. Internally self-compensated, these step-down regulators require no external compensation and work with low-ESR output capacitors to simplify the design, minimize board space, and reduce the amount of external components. The switching frequency for the step-down regulator is 1 MHz, allowing the use of low profile surface mount inductors and low value capacitors. The step-down regulator includes programmable output voltage to provide the user the ability to easily set the output voltage with external resistors, logic control, or serial data interface. The output voltage range is 0.72V to 3.63V. • • • • • • • • • • Other key features of the 88PG877 family include soft start, an internal current limit, an undervoltage lockout, thermal shutdown, over voltage protection, and a Power-On Reset (POR) signal. • • • • • • Tiny 4 X 3 mm QFN-18 package 1 MHz Switching frequency Low quiescent current of mA (typ.) Stable with ceramic output capacitors No external compensation required Over 95% efficiency Peak switch current limit up to 7.5A Input voltage range: 3.0V to 5.5V Serial / Logic Programmability Any Voltage™ Technology provides 64 output voltage selections to provide flexibility Programmable output voltage range: – 0.72V to 3.63V Built-in undervoltage lockout Over voltage protection Thermal shutdown protection Output voltage margining capability A PPLICATION • • • Portable computing Disk drive power supplies R1 10 ohm SDI 1 18 R3 11K R5 0 13 7 PVIN 6 PVIN SW 88PG877 SW VSET SW PSET SW SGND 9 R6 10K POR SDI C4 22uF/6.3V 3 C2 47nF PGND 16 VBS C3 22uF/6.3V SFB 4 L1 Vout 0.8V/5A 8 1.0uH 12 19 C5 22uF/6.3V C6 22uF/6.3V 14 11 POR C7 4.7uF/6.3V EN PGND 2 17 SVIN 10 15 5 U1 PVIN C1 0.1uF PGND R2 100K Vin 3.0V - 5.5V Figure 1: Typical High Efficiency 5V to 0.8V/5A Step-Down Regulator Caution Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00, Rev. B Document Classification: Proprietary Information Page 3 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Table of Contents SECTION 1. SIGNAL DESCRIPTION ................................................................... 9 1.1 Pin Configuration ...........................................................................................................9 1.2 Pin Type Definitions .....................................................................................................10 1.3 Pin Description .............................................................................................................10 SECTION 2. ELECTRICAL SPECIFICATIONS ..................................................... 12 2.1 Absolute Maximum Ratings ........................................................................................12 2.2 Recommended Operating Conditions ........................................................................12 2.3 Electrical Characteristics.............................................................................................13 2.4 Switching Step-down Regulator .................................................................................14 SECTION 3. 3.1 Regulation and Start-up...............................................................................................16 3.1.1 3.2 FUNCTIONAL DESCRIPTION ......................................................... 16 Digital Soft Start................................................................................................................ 17 Output Voltage Setting.................................................................................................19 3.2.1 3.2.2 3.2.3 Serial Programmability ..................................................................................................... 19 Logic Programmability ...................................................................................................... 21 Output Voltage – AnyVoltageTM Technology ................................................................... 21 3.3 Undervoltage Lockout (UVLO) ....................................................................................24 3.4 Over Voltage Protection (OVP)....................................................................................24 3.5 Power-On Reset (POR).................................................................................................25 3.6 Thermal Shutdown .......................................................................................................25 3.7 Adaptive Transient Response .....................................................................................26 SECTION 4. FUNCTIONAL CHARACTERISTICS ................................................. 27 4.1 Start-up Waveforms .....................................................................................................27 4.2 Short-Circuit Waveforms .............................................................................................28 4.3 Switching Waveforms ..................................................................................................29 4.4 Load Transient Waveforms .........................................................................................31 4.4.1 Step-Down Regulator ....................................................................................................... 31 Doc. No. MV-S103181-00, Rev. B Page 4 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance 4.5 Output Voltage Transient Waveforms........................................................................ 33 4.5.1 4.6 Step-Down Regulator ....................................................................................................... 33 Line Transient Waveforms .......................................................................................... 34 SECTION 5. 5.1 TYPICAL CHARACTERISTICS ........................................................35 Efficiency Graphs ........................................................................................................ 35 5.1.1 Efficiency Graphs in log scale .......................................................................................... 35 5.2 Load Regulation ........................................................................................................... 35 5.3 Dropout Voltage ........................................................................................................... 36 5.4 RDS (ON) Resistance................................................................................................... 36 5.5 IC Case and Inductor Temperature ............................................................................ 37 5.6 Input Voltage Graphs................................................................................................... 38 5.6.1 5.7 Step-Down Regulator ....................................................................................................... 39 Temperature Graphs.................................................................................................... 40 5.7.1 Step-Down Regulator ....................................................................................................... 41 SECTION 6. 6.1 APPLICATIONS INFORMATION ......................................................42 PC Board Layout Considerations and Guidelines for 88PG877 .............................. 42 6.1.1 6.1.2 PC Board Layout Examples for 88PG877........................................................................ 45 Bill of materials for 88PG877............................................................................................ 47 SECTION 7. MECHANICAL DRAWING ..............................................................49 7.1 88PG877 Mechanical Drawing .................................................................................... 49 7.2 88PG877 Mechanical Dimensions .............................................................................. 50 7.3 Typical Pad Layout Dimensions ................................................................................. 51 7.3.1 Recommended Solder Pad Layout .................................................................................. 51 SECTION 8. ORDERING INFORMATION ............................................................52 8.1 Ordering Part Numbers and Package Markings ....................................................... 52 8.2 Sample Ordering Part Number ................................................................................... 52 8.3 Package Marking.......................................................................................................... 53 8.3.1 88PG877 Package Marking and Pin 1 Locations............................................................. 53 Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00, Rev. B Document Classification: Proprietary Information Page 5 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Pin Type Definitions.............................................................................................................................. 10 Pin Description ..................................................................................................................................... 10 Default Value of Data Field................................................................................................................... 20 Voltage and Percentage Set................................................................................................................. 20 Output Voltage Setting ......................................................................................................................... 21 Any Voltage Programming Table ......................................................................................................... 22 Any Voltage Programming Table for 5% Resistors .............................................................................. 22 Output Voltage Option Steps................................................................................................................ 23 88PG877 BOM ..................................................................................................................................... 47 Ceramic Capacitor Cross Reference .................................................................................................... 48 88PG877 Ordering Part Numbers ........................................................................................................ 52 Doc. No. MV-S103181-00 Rev. B Page 6 Copyright © 2007 Document Classification: Proprietary Information October 30, 2007, Advance List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Typical High Efficiency 5V to 0.8V/5A Step-Down Regulator ............................................................... 3 88PG877 Family 4X3 mm QFN-18 Package - Top View...................................................................... 9 88PG877 Block Diagram .................................................................................................................... 16 Output Voltage Window ...................................................................................................................... 17 Soft Startup......................................................................................................................................... 18 Soft Startup......................................................................................................................................... 18 Inductor Current Steps at Startup ....................................................................................................... 18 First Switching Cycle .......................................................................................................................... 18 Serial Programmability........................................................................................................................ 19 Startup Sequence .............................................................................................................................. 23 ............................................................................................................................................................ 23 UVLO and OVP Waveforms ............................................................................................................... 24 Power-On Reset Waveforms .............................................................................................................. 25 Adaptive Transient Response ............................................................................................................ 26 Startup Using the Enable Pin ............................................................................................................. 27 Turn Off Using the Enable Pin ............................................................................................................ 27 Soft Start ............................................................................................................................................ 27 Hot Plug .............................................................................................................................................. 27 UVLO and OVP Thresholds................................................................................................................ 28 Step-Down Short-Circuit Response ................................................................................................... 28 Switching Waveforms - PWM mode .................................................................................................. 29 Switching Waveforms - DCM Mode ................................................................................................... 29 Switching Waveforms - DCM Mode-Zoom ......................................................................................... 29 PWM Output Ripple Voltage ........................................................................................................... 30 Fast Load Rise Time .......................................................................................................................... 31 Slow Load Rise Time.......................................................................................................................... 31 Fast Load Fall Time ........................................................................................................................... 31 Slow Load Fall Time ........................................................................................................................... 31 Load Transient Response .................................................................................................................. 32 Double-Pulsed Load Response .......................................................................................................... 32 Load Transient Response .................................................................................................................. 32 Double-Pulsed Load Response .......................................................................................................... 32 VOUT = 1.0V to 1.2V with No Load .................................................................................................... 33 VOUT = 1.0V to 1.5V with No Load ..................................................................................................... 33 VOUT = 1.0V to 1.2V with ILOAD = 5A.................................................................................................. 33 VOUT = 1.0V to 1.5V with ILOAD = 5A.................................................................................................. 33 VOUT = 1.2V to 1.0V with ILOAD = 5A.................................................................................................. 34 VOUT = 1.5V to 1.0V with ILOAD = 5A.................................................................................................. 34 Line Transient @ VIN = 3.2V to 3.6V .................................................................................................. 34 Line Transient @ VIN = 4.1V to 4.5V .................................................................................................. 34 Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 7 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 41: Figure 42: Figure 43: Figure 44: Figure 45: Figure 46: PCB Layout......................................................................................................................................... 43 88PG877 PCB Board Schematic ........................................................................................................ 44 Top Silk-Screen, Top Traces, Vias and Copper (Not to scale) ........................................................... 45 Bottom Silk Screen, Bottom Traces, Vias, and Copper (Not to scale)................................................ 46 Sample Part Number .......................................................................................................................... 52 88PG877 Package Marking and Pin 1 Location ................................................................................. 53 Doc. No. MV-S103181-00 Rev. B Page 8 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Signal Description Pin Configuration Section 1. Signal Description 1.1 Pin Configuration Figure 2: 88PG877 Family 4X3 mm QFN-18 Package - Top View PSET PG PWM 18 17 16 VSET 1 15 SVIN EN 2 14 SFB VBS 3 13 SGND SW 4 12 SW PVIN 5 11 PGND 10 PGND SW 19 PVIN 6 7 8 9 PVIN SW PGND 88PG877 3x4 QFN-18 Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 9 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 1.2 Pin Type Definitions Table 1: Pin Type Definitions P in Typ e D ef in i t io ns I Input only O Output only S Supply NC Not Connected GND Ground 1.3 Pin Description Table 2 provides pin descriptions for the 88PG877. Table 2: Pin Description Pin # Pi n Na me Pi n Ty pe Pin Fu nc ti o n 1 VSET I Voltage Set 1) This is used for selecting the output voltage level, when it is connected to SGND or SVIN in conjunction with PSET connection to SGND or SVIN. 2) Connect to an external resistor to ground to set the output voltage of the step-down switching regulator. See the “Electrical Characteristics” table for resistor values and Output Voltage Setting section. The total capacitance across this pin and SGND should be equal to 25 pF or less. Use resistors with tolerance 2 EN I 3 VBS O Bootstrap Voltage. Connect a 47 nF capacitor from this pin to SW. 4,8,12, SW O Switch Node. Internal power MOSFET . This pin must connect to an external inductor. 5,6,7 PVIN S Power Input Voltage. Internal power MOSFET . Connect the decoupling capacitors between PVIN and PGND and position it as close as possible to the IC. 9,10,11 PGND GND Power Ground. The power ground must connect to the negative terminal of the input and output capacitors. 13 SGND GND Signal ground. This pin must connect to the power ground. 14 SFB I Switching Regulator Feedback. Senses the output voltage of the switching regulator. Doc. No. MV-S103181-00 Rev. B Page 10 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Signal Description Pin Description Table 2: Pin Description (Continued) Pin # Pi n Na me Pi n Ty pe Pin Fu nc ti o n 15 SVIN S Signal Input Voltage. The input voltage is V to 5.5V for internal circuitry. Connect a 0.1 µF decoupling capacitor between SVIN and SGND and position it as close as possible to the IC. 16 SDI I Serial Data Input: The input data into this pin is used to program the output voltage (see section 3.2). This pin must be connected to ground if not used. 17 P O Power-On Reset. Power-On Reset is an open drain output to indicate the status of the output voltage. The output pin goes high 40 ms after the output voltage is within the specified tolerance. 18 PSET I Percent Set 1) This is used for selecting the output voltage level when it is connected to SGND or SVIN in conjunction with VSET connection to SGND or SVIN. 2) Connect an external resistor to ground to set the output voltage of the step-down switching regulator. See the “Electrical Characteristics” table for resistor values and Output Voltage Setting section. Use resistor value with tolerance Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 11 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Section 2. Electrical Specifications 2.1 Absolute Maximum Ratings1 Pa r a m e te r Symbol R a n ge U n its Signal Input Voltage SVIN -0.3 to 6.0 V Power Input Voltage PVIN -0.3 to 6.0 V Switch Voltage VSW -0.6 to (SVIN +0.3) V V Switching Regulator Feedback Voltage VSFB -0.6 to (SVIN +0.3) V Voltage Set VVSET -0.6 to (SVIN +0.3) V Percentage Set Voltage VPSET -0.6 to (SVIN +0.3) V Shutdown Voltage V -0.6 to (SVIN +0.3) V P Voltage VP -0.6 to (SVIN +0.3) V VSDI -0.6 to (SVIN +0.3) V TOP -40 to 85 °C Maximum Junction Temperature TJMAX 125 °C Storage Temperature Range TSTOR -65 to 150 °C 2 kV SDI Voltage Operating Temperature Range ESD Rating 2 3 1. Exceeding the absolute the maximum rating may damage the device. 2. Specifications over the –40 °C to 85 °C operat ing temperature ranges are assured by design, characterization and correlation with statistical process controls. 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 kΩ in series with 100 pF. 2.2 Recommended Operating Conditions1 Pa r a m e te r Symbol R a n ge U n its Signal Input Voltage SVIN 3.0 to 5.5 V PVIN 3.0 to 5.5 V Power Input Voltage Package Thermal Resistance 2 θJA °C/W θJC °C/W 1. This device is not guaranteed to function outside the specified operating range. 2. Test on 3"x 4.5" 4-layer . Doc. No. MV-S103181-00 Rev. B Page 12 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Electrical Specifications Electrical Characteristics 2.3 Electrical Characteristics The following applies unless otherwise noted: SVIN = PVIN = VEN= VVSET = VPSET = 5.0V, VOUT = 1.5V, VSDI = SGND = PGND, L (BUCK) = 1.0 µH, COUT (BUCK) = 2 x 22 µF (Ceramic), TA = 25 °C. Bold values indicate -40 °C < TA < 85 °C. Pa r a m e te r S y m b ol C o nd i ti on s M in Signal Input Voltage Range SVIN SVIN = PVIN Power Input Voltage Range PVIN Total Quiescent Current Ty pe Max U n its 3.0 5.5 V 3.0 5.5 V No load mA Shutdown Supply Current ISVIN VEN = 0V 1 50 μA Undervoltage Lockout VUVLO High threshold, SVIN increasing 2.85 3.00 V Low threshold, SVIN decreasing Over-voltage Protection VOVP V High threshold, SVIN increasing 5.7 V Low threshold, SVIN decreasing 5.6 V PVIN/2 V Enable Threshold Voltage VEN Enable regulators Enable Hysteresis V Disable regulators Enable Pin Input Current IEN V = 5.0V 5.0 μA V = 0V 5.0 μA Over-temperature Thermal Shutdown TOTS TJ increasing (Disable regulators) 150 °C TJ decreasing (Enable regulators) 120 °C Copyright © 2007 Marvell October 30, 2007, Advance mV Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 13 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 2.4 Switching Step-down Regulator The following applies unless otherwise noted: SVIN = PVIN = VEN =VVSET = VPSET = 5.0V, VOUT = 1.5V, VSDI = SGND = PGND, L = 1.0 µH, COUT = 2 x 22 µF (Ceramic), TA = 25 °C. Bold values indicate -40 °C < TA < 85 °C . Pa r a m e te r S y m b ol C o nd i ti on s Output Voltage VOUT RVSET = 11K, PWM mode 0.8 RVSET = 18.7K, PWM mode 1.0 RVSET = 31.6K, PWM mode 1.2 RVSET = 53.6K, PWM mode 1.5 RVSET = 97.6K, PWM mode 1.8 RVSET = 165K, PWM mode 2.5 RVSET = 280K, PWM mode 3.0 RVSET = 475K, PWM mode 3.3 RPSET = 11K -10 RPSET = 18.7K -7.5 RPSET = 31.6K -5 RPSET = 53.6K -2.5 RPSET = 97.6K 2.5 RPSET = 165K 5 RPSET = 280K 7.5 RPSET = 475K 10 PVIN = 3.0V to 5.0V VOUT = 1.5V ILOAD = A 0.10 Percentage Set M in Ty p Max U ni ts V % Output Voltage Line Regulation VLNREG Output Voltage Load Regulation VLDREG PVIN = 5.0V VOUT = 1.5V ILOAD = 0.10 % Switching Frequency fSW ILOAD = 2.5A 1.0 MHz Minimum Peak Switch Current Limit ILIM 7.5 A Output Current IOUT L = 1.0 µH 5.0 A Switch Leakage Current ILSW PVIN = VEN = 0V 1 μA PVIN = VEN = 0V VSW = 1 Doc. No. MV-S103181-00 Rev. B Page 14 % 50 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Electrical Specifications Switching Step-down Regulator 2.4 Switching Step-down Regulator The following applies unless otherwise noted: SVIN = PVIN = VEN =VVSET = VPSET = 5.0V, VOUT = 1.5V, VSDI = SGND = PGND, L = 1.0 µH, COUT = 2 x 22 µF (Ceramic), TA = 25 °C. Bold values indicate -40 °C < TA < 85 °C . Pa r a m e te r S y m b ol C o nd i ti on s Power-On Reset Threshold Voltage VPORTH VOUT > 1.35V Power-On Reset Output Low Voltage VPORL ISINK = 2 mA, VEN = SGND = PGND Power-On Reset Leakage Current IPOR VEN = 0V Power-On Reset Delay tRESET M in VOUT < 1.32V Copyright © 2007 Marvell October 30, 2007, Advance Ty p Max VOUT* 90% U n its V VOUT130 mV 0.4 V 1 μA 40 ms Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 15 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Section 3. Functional Description Figure 3: 88PG877 Block Diagram R1 C1 SVIN EN ON Vin 3.0V to 5.5V C3 INTERNAL CIRCUITRY POWER SUPPLY PVIN Current Sense OSCILLATOR + VBS - OFF C2 9.5 m ANALOGDIGITAL CONVERTER L1 PWM CONTROL DSP 7.5 m SDI Serial Data Interface THERMAL SHUTDOWN 150 ° C R6 BAND-GAP VOLTAGE REFERENCE UNDERVOLTAGE LOCKOUT Vout SW PVIN C5 PGND Vin SFB RESISTOR NETWORK FAULT R2 PGood RESISTOR SENSING CIRCUITRY SGND VSET R3 POR V POR 40us/40ms PSET R5 3.1 Regulation and Start-up The step-down switching regulator uses Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM) modes to regulate the output voltage using digital control. The mode of operation depends on the level of output current and the output voltage. In steady states, the step-down switching regulator monitors the current flowing through the inductor to determine if the regulator is handling heavy or light load applications. For heavy load applications, the step-down regulator operates in the PWM mode (B and C Figure 4) to minimize the ripple current for optimum efficiency and to minimize the ripple output voltage. The step-down regulator operates in the PFM and Discontinuous Conduction Mode (DCM) (A Figure 4) to limit the switching actions for optimum efficiency in light load applications. In this mode, the average output voltage is slightly higher than the average output voltage for heavy transient load applications. Doc. No. MV-S103181-00 Rev. B Page 16 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Description Regulation and Start-up Figure 4: Output Voltage Window A B C D Typical V OUT PFM Mode PWM Mode PFM Mode 3.1.1 Digital Soft Start During start-up, the 88PG877 provides a soft start function. Soft start reduces surge currents from input voltage and provides well-controlled output voltage rise characteristics. Figure 5 shows that the rise time for a 88PG877 increases from 20 µs at for a 0.8V output to 70 µs for a 3.3V output with a 20 mA load. Higher load current or larger output capacitance will increase the rise time. The load current is increased to 5A in Figure 6. The 3.3V output rise time nearly doubles to 130 µs with this load. The 88PG877 has an internal switch current limit that operates on a cycle-by-cycle basis and limits the peak switch current. During soft start, the current limit threshold begins at approximately 34% of the peak current limit threshold and ramps to 100% in 7 steps at 25 µs per step (see Figure 7). During the switch first cycle, the highside switch stays on until the switch current reaches the first current limit threshold (see Figure 8) which takes less than 1 µs. The high-side switch will then turn off for a fixed off-time. If the output voltage is still low in 25 µs, the current limit threshold increases to the next level. As can be seen from Figure 5, only 25 µs or 1 current step is required for the output to reach 0.8V and 75 µs or 3 current steps for 3.3V. During soft start, the 88PG877 feeds a relatively constant current to the output capacitor in the first two steps. The average switch current during this period is approximately 2A. If more than 2 steps are required, then the switch current limit (ILIM) will need to increase. The output voltage rise time is dependent on the value of the output capacitor, the output voltage, the load current (IOUT), and the internal switch current limit circuitry and can be calculated using the following equation. ( C OUT • V OUT ) RiseTime = ---------------------------------------( I LIM – I OUT ) 2 • 22μF • 3.3V = ---------------------------------------2.0A – 0A = 72.6μS Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 17 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 5: Soft Startup Figure 6: Soft Startup (0.8V, 1.2V, 1.8V, 2.5V, 3.3V) 1V/DIV VBUCK 500 mV/DIV VOUT 2A/DIV IIND 10 μs/DIV 0 μs/DIV ILOAD = 20 mA VOUT = 3.3V COUT = 2 x 22 μF ILOAD = Figure 8: First Switching Cycle Figure 7: Inductor Current Steps at Startup 1V/DIV VBUCK VSW 2V/DIV VOUT 200 mV/DIV 1A/DIV IIND 2A/DIV IIND 50 μs/DIV 500 ns/DIV ILOAD = Heavy Load Doc. No. MV-S103181-00 Rev. B Page 18 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Description Output Voltage Setting 3.2 Output Voltage Setting 3.2.1 Serial Programmability The output voltage of the step-down switching regulator can also be programmed by using 18-bit serial data into the SDI pin. Figure 9: Serial Programmability WRITE MODE DATA FIELD "1" Pulse "1" "0" pulse Pulse "0" pulse "1" Pulse "0" "0" "1" "0" pulse pulse Pulse pulse The period of a pulse is 1 μs +/- 200 ns Vhigh > 2.4V Vlow < 0.8V "1" Pulse D7 D6 D5 D4 D3 D2 D1 D0 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 "1" pulse The write operation: V high V low For "1" pulse, the high is 0.75 μs +/- 150 ns and the low period is 0.25 μs+/-50 ns 1) Each write sequence needs 18 pulses to complete. 2) During a non-write operation, the input needs to be at Vlow (<0.8V) 3) In between two successive write operations, the input needs to be at Vlow (<0.8V) for a minimum of 10 μs "0" pulse 1 st Write sequence V LOW Low for at least 10 μs 2 nd Write sequence V HIGH For "0" pulse, the high is 0.25 μs +/- 50 ns and the low period is 0.75 μs+/-150 ns Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 19 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology The first 4 bits (MSB-bits) of the data field are used to select the output voltage where the second 4 bits (LSB-bits) of the data field are used to trim the output voltage (percent of output voltage). The default value for the data field is as follows: Table 3: Default Value of Data Field Data Field Description Voltage Set Bits 7 6 5 4 3 Percent Set 2 1 0 Default Value 0 0 1 0 0 1 0 0 On power up, the output voltage is set according to RPSET and RVSET. The output voltage can then be field programmed by setting bit 3 and bit 7 to “1”. The output voltage and percent set are selected according to Table 4. Table 4: Voltage and Percentage Set Data Field V OUT (V) Bits 7 6 5 4 Value 1 0 0 0 1 0 0 1 0 1 1 Data Field Perce nt Set 3 2 1 0 0.8 1 0 0 0 -10% 1 1.0 1 0 0 1 -7.5% 1 0 1.2 1 0 1 0 -5.0% 0 1 1 1.5 1 0 1 1 -2.5% 1 0 0 1.8 1 1 0 0 +2.5% 1 1 0 1 2.5 1 1 0 1 +5.0% 1 1 1 0 3.0 1 1 1 0 +7.5% 1 1 1 1 3.3 1 1 1 1 +10% Doc. No. MV-S103181-00 Rev. B Page 20 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Description Output Voltage Setting 3.2.2 Logic Programmability The output voltage of the step-down switching regulator can be programmed by connecting the VSET and PSET pins to SGND and/or SVIN. This can be very useful for standard output voltages. This method will eliminate the use of an external resistor to set the output voltage. Table 5: Output Voltage Setting V VSET V PSET V OUT SGND SGND 0.8V SGND SVIN 1.0V SVIN SGND 1.2V SVIN SVIN 1.5V SGND 11 kΩ < RPSET< 475 kΩ Hi-Z 3.2.3 Output Voltage – AnyVoltageTM Technology The output voltage of the step-down switching regulator is programmed by using Table 6 or Table 7 to select resistor values for VSET and PSET pin. The VSET pin sets the output voltage and the PSET pin trims the set voltage to a percentage value. For example, to program 2.25V output, a 165 kΩ resistor is selected for the VSET pin, and an 11 kΩ resistor is selected for the PSET pin. The 165 kΩ resistor sets the output voltage to 2.5V and the 11 kΩ resistor trims the set voltage by -10%. Using the VSET resistor’s value greater than 619 kΩ or less than 7.68 kΩ disables the step-down switching regulator and sets the SW pin to high impedance. If the VSET resistor’s value is outside the % tolerance, the output can be either higher or lower than the set voltage. Using resistor values greater than 619 kΩ or less than 7.68 kΩ for the PSET pin does not affect the set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor, the percent value can be either higher or lower if the PSET resistor’s value is outside the % tolerance. Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 21 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Table 6: Any Voltage Programming Table VSET PSET -10.0% –7.5% –5.0% –2.5% 0% 2.5% 5.0% 7.5% 1 0.0 % 11k 18. 7k 3 1. 6k 53 .6 k GND 9 7.6k 165 k 28 0k 4 75k 11 k 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 1 8.7 k 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100 3 1.6 k 1.080 1.110 1.140 1.170 1.200 1.230 1.260 1.290 1.320 5 3.6 k 1.350 1.388 1.425 1.463 1.500 1.538 1.575 1.613 1.650 9 7.6 k 1.620 1.665 1.710 1.755 1.800 1.845 1.890 1.935 1.980 1 65k 2.250 2.313 2.375 2.438 2.500 2.563 2.625 2.688 2.750 2 80k 2.700 2.775 2.850 2.925 3.000 3.075 3.150 3.225 3.300 4 75k 2.970 3.053 3.135 3.218 3.300 3.383 3.465 3.548 3.630 2.5% 5.0% 7.5% 1 0.0 % Table 7: Any Voltage Programming Table for 5% Resistors PSET -10.0% –7.5% –5.0% –2.5% 11k VSET 11 k 0% GND 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100 1.080 1.110 1.140 1.170 1.200 1.230 1.260 1.290 1.320 1.350 1.388 1.425 1.463 1.500 1.538 1.575 1.613 1.650 1.620 1.665 1.710 1.755 1.800 1.845 1.890 1.935 1.980 2.250 2.313 2.375 2.438 2.500 2.563 2.625 2.688 2.750 2.700 2.775 2.850 2.925 3.000 3.075 3.150 3.225 3.300 2.970 3.053 3.135 3.218 3.300 3.383 3.465 3.548 3.630 The VSET and PSET resistors are read once during start-up before the output voltage is turned on. After the output voltage is turned on, the output voltage can change to different values using serial programming interface. Otherwise to configure the output to a different voltage, power has to recycle or the 88PG877 has to turn OFF and back ON using the EN pin. Doc. No. MV-S103181-00 Rev. B Page 22 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Description Output Voltage Setting Figure 10 shows the startup waveforms of the 88PG877. Once the input voltage (VIN) is above the under voltage lockout (UVLO) upper threshold (UTH), the VSET and PSET pin becomes active. Current is first sourced out of PSET pin and then the VSET pin, in exponentially increasing steps. After each step there is a blanking time before the VSET voltage is compared to an internal 1.2V reference. If the VSET voltage is below internal reference voltage, the current source proceeds to the next step. Once the VSET voltage is above the internal reference voltage the sequence stops and the output voltage (VOUT) is allowed to turn on. Figure 11 shows the VSET waveform for VSET = 2.5V and PSET = –5% output. The 88PG877 keeps track of how many steps are required to determine the appropriate output voltage. Table 8 provides the number of steps necessary for each output voltage option. Using a VSET resistor of 165 kΩ requires the current source to step 4 times, and a PSET resistor of 31.6 kΩ requires 7 steps. Figure 10: Startup Sequence Figure 11: 2V/DIV VIN 500mV/DIV VOUT 1V/DIV VVSET 2V/DIV VPSET 2V/DIV VPSET 500mV/DIV VVSET 200 μs/DIV 2.0 ms/DIV Table 8: Output Voltage Option Steps St ep VOUT (V) R VSET ( kΩ) St ep PSET (%) R PSET ( kΩ) 1 0 >619K1 1 0 >619K1 2 3.3 475 2 +10 475 3 3.0 280 3 +7.5 280 4 2.5 165 4 +5.0 165 5 1.8 97.6 5 +2.5 97.6 6 1.5 53.6 6 -2.5 53.6 7 1.2 31.6 7 -5.0 31.6 8 1.0 18.7 8 -7.5 18.7 9 0.8 11 9 -10 11 1. 619K or 0V tied to SVIN. Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 23 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology The 88PG877 provides an innovative technique to set the output voltage. During start-up it reads the value of external resistors, which are located outside the regulator’s feedback loop to program the output voltage. By placing the output voltage programming resistor outside the regulator’s feedback loop, its tolerance does not affect the accuracy of the output voltage. Normally, adjustable regulators use 1% resistors to set the output voltage. However, these resistors are located inside the feedback loop, introducing as much as 2% of initial accuracy error to the output voltage, resulting in an overall initial accuracy of 3%. Whereas, the 88PG877 initial accuracy is 2% for any of the eight output voltages. The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The output voltage can potentially be programmed to the lower output voltage if there is contamination, which introduces excessive leakage current on the VSET and PSET pin, especially for the 3.3V output or +10%. The parasitic resistance on these nodes must be greater than 3 MΩ and the stray capacitance must be less than 25 pF; otherwise, a 3.3V output can potentially end up at 3V. 3.3 Undervoltage Lockout (UVLO) At start-up, the 88PG877 incorporates undervoltage-lockout circuitry to enable the step-down switching regulator when the input voltage is above (typical). After the 88PG877 is enabled and the input voltage is lowered, the highest value of the minimum input voltage for both regulators to remain enabled is (typical). 3.4 Over Voltage Protection (OVP) The 88PG877 incorporates an over voltage protection circuitry to disable the step-down switching regulator when the input voltage is above 5.7V (typical). The step-down switching regulator is enabled when the input voltage is below 5.6V (typical). Figure 12: UVLO and OVP Waveforms V OVP_HTH VOVP_LTH V UVLO_HTH V UVLO_LTH VIN BUCK Output Enable Undefined BUCK Output Disable Doc. No. MV-S103181-00 Rev. B Page 24 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Description Power-On Reset (POR) 3.5 Power-On Reset (POR) The Power-On Reset pin is an active-high, open-drain output pin. This output is held low when the output voltage of the step-down regulator is below the threshold. When the output voltage is above the threshold, the Power-On Reset pin goes high 40 ms later. Setting the output voltage greater than 1.35V, the threshold voltage is 0.9% * VOUT (typical). Setting the output voltage less than 1.32V, the threshold voltage is VOUT – 130 mV (typical). A builtin 25 µs (tDELAY) delay is incorporated to prevent nuisance tripping. Figure 13: Power-On Reset Waveforms V POOD t DELAY VPORH V PORL 40 ms 3.6 Thermal Shutdown When the junction temperature of the 88PG877 exceeds 150 °C (typical), the thermal shutdown circuitry disables the step-down regulator. The step-down switching regulator is enabled when the junction temperature is decreased to 120 °C (typical). Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 25 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 3.7 Adaptive Transient Response The 88PG877 device’s Smart Technology allows the step-down switching regulator to quickly respond to the multiple step loads and maintain stability over a wide range of applications. Figure 14 shows an example of a second step-load applied while the output voltage of the step-down switching regulator increased due to the inductive kick from the first step-load. Condition: VIN = 5.0V, RSVIN = 10Ω, CSVIN = 0.1 µF, CPVIN = µF, L = 1.0 µH, COUT = 2 x 22 µF, VOUT = 1.V, ILOAD = 1A to 5A. Figure 14: Adaptive Transient Response VOUT 100mV/DIV ILOAD 5A/DIV 20 μs/DIV The worst case overshoot (VSOAR) during a full-load to light-load transient due to stored inductor energy (Figure 14) can be calculated as: 2 ΔI LOAD ( MAX ) • L V SOAR = ----------------------------------------------2 • C OUT • V OUT Although the VSOAR cannot be eliminated, its amplitude can be controlled based on the COUT capacitor value. The appropriate COUT value can easily be calculated for the acceptable VSOAR level for each specific application. 2 ΔI LOAD ( MAX ) • L C OUT = ----------------------------------------------2 • V SOAR • V OUT Doc. No. MV-S103181-00 Rev. B Page 26 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Characteristics Start-up Waveforms Section 4. Functional Characteristics The following applies unless otherwise noted: TA = 25°C, R SVIN = 10Ω, CSVIN = 0.1 µF, CPVIN = 2 x 22 µF, L = 1.0 µH, COUT (BUCK) = 2 X 22 µF. 4.1 Start-up Waveforms NOTE: When the input voltage rises above the UVLO’s upper threshold, then there is a delay (4 ms typ) before the stepdown regulator’s output voltage turns on. Figure 15: Startup Using the Enable Pin VEN Figure 16: Turn Off Using the Enable Pin 1V/DIV VEN 1V/DIV VBUCK 1V/DIV VBUCK 1V/DIV VPOR VPOR 5V/DIV 5V/DIV 2.0 ms/DIV 10 ms/DIV VIN = 5.0V ILOAD = No Load VIN = 5.0V VBUCK= 1.2V tDLY= 4.0 ms VBUCK= 1.2V Figure 17: Soft Start Figure 18: Hot Plug 2V/DIV VIN VIN 2V/DIV 1V/DIV VBUCK 1V/DIV VBUCK VPOR 5V/DIV VPOR 5V/DIV 10 ms/DIV 10 ms/DIV VIN = 5.0V VBUCK= 1.2V VIN = 5.0V ILOAD = No Load Copyright © 2007 Marvell October 30, 2007, Advance VBUCK= 1.2V ILOAD = No Load Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 27 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 19: UVLO and OVP Thresholds VIN 2V/DIV VBUCK 1V/DIV 100 ms/DIV VIN = 0 to 6.0V VUVLO(HTH) = 2.93V VBUCK= 1.5V VUVLO(LTH)= 2.87V ILOAD(BUCK) = 1A VOVP(HTH) = 5.74V VOVP(LTH) = 5.53V 4.2 Short-Circuit Waveforms Figure 20: Step-Down Short-Circuit Response VSW 5V/DIV VBUCK 500 mV/DIV IIND 5A/DIV 200 μs/DIV Doc. No. MV-S103181-00 Rev. B Page 28 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Characteristics Switching Waveforms 4.3 Switching Waveforms NOTE: For repeatability of measuring output ripple (VBUCK (P-P)) for the BUCK regulator, the standard test procedure limits the scope bandwidth to 20 MHz and uses a coax cable with very short leads terminated into 50Ω. The coax leads must be routed away from the switching node as much as possible. Figure 21: Switching Waveforms PWM mode VSW 5V/DIV IIND 1A/DIV VBUCK 5 mV/DIV VIN 100 mV/DIV 500 ns/DIV CIN = 2x22 μF VIN(P-P) = 101 mV VIN = 5.0V IIND(P-P) = 1.2A VBUCK= 1.5V IIND(PK) = 5.4A IOUT = 5.0A Freq = 964 kHz VOUT(P-P) = 7.3 mV (Note) Figure 23: Switching Waveforms - DCM Figure 22: Switching Waveforms DCM Mode VSW Mode-Zoom 2V/DIV 20 mV/DIV VBUCK VSW 2V/DIV 20 mV/DIV VBUCK IIND 1A/DIV 1A/DIV IIND 5 μs/DIV 1.0 μs/DIV VIN = 5.0V IIND(PK) = 1.42A VIN = 5.0V VBUCK= 1.5V Freq = 89 kHz VBUCK= 1.5V IOUT = 50 mA IOUT = 50 mA VOUT(P-P) = 37 mV (Note) Ringing Freq = 5 MHz Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 29 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 24: PWM Output Ripple Voltage VBUCK 10 mV/DIV 100 ms/DIV VIN = 5.0V VBUCK= 1.5V IOUT = 5.0A VOUT(P-P) = 11.2 mV (Note) Doc. No. MV-S103181-00 Rev. B Page 30 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Characteristics Load Transient Waveforms 4.4 Load Transient Waveforms 4.4.1 Step-Down Regulator Figure 25: Fast Load Rise Time VSW Figure 26: Slow Load Rise Time 5V/DIV VBUCK 200 mV/DIV VSW 5V/DIV VBUCK 200 mV/DIV IIND IIND ILOAD 5A/DIV ILOAD 5A/DIV 5A/DIV IIND 5A/DIV IIND 2.0 μs/DIV 2.0 μs/DIV VIN = 5.0V COUT = 2 x 22 μF VIN = 5.0V COUT = 2 x 22 μF VBUCK= 1.5V tRISE = 27 A/μs VBUCK= 1.5V tRISE = 2.4 A/μs IOUT = 1 A to 5A IOUT = 1 A to 5A Figure 27: Fast Load Fall Time VSW Figure 28: Slow Load Fall Time 5V/DIV VSW 200 mV/DIV VBUCK IIND ILOAD IIND 5V/DIV VBUCK 5A/DIV ILOAD 5A/DIV IIND 200 mV/DIV IIND 5A/DIV 5A/DIV 2.0 μs/DIV 2.0 μs/DIV VIN = 5.0V COUT = 2 x 22 μF VIN = 5.0V COUT = 2 x 22 μF VBUCK= 1.5V tFALL = 190 A/μs VBUCK= 1.5V tFALL = 2.5 A/μs IOUT = A to A IOUT = A to A Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 31 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 29: Load Transient Response VBUCK Figure 30: Double-Pulsed Load Response 200 mV/DIV 200 mV/DIV VBUCK ILOAD 5A/DIV 5A/DIV ILOAD 10 μs/DIV 20 μs/DIV VIN = 5.0V ILOAD = 1A to 5A VIN = 5.0V ILOAD = 1A to 5A VBUCK= 1.5V tRISE = 27 A/μs VBUCK= 1.5V tRISE = 27 A/μs COUT = 2 x 22 μF tFALL = 190 A/μs COUT = 2 x 22 μF tFALL = 190 A/μs Figure 32: Double-Pulsed Load Response Figure 31: Load Transient Response VBUCK 200 mV/DIV VBUCK 200 mV/DIV 5A/DIV ILOAD ILOAD 5A/DIV 10 μs/DIV 20 μs/DIV VIN = 5.0V ILOAD = 1A to 5A VIN = 5.0V ILOAD = 1A to 5A VBUCK= 1.5V tRISE = 27 A/μs VBUCK= 1.5V tRISE = 27 A/μs COUT = 4 x 22 μF tFALL = 190 A/μs COUT = 4 x 22 μF tFALL = 190 A/μs VCG = GND VCG = GND Doc. No. MV-S103181-00 Rev. B Page 32 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Functional Characteristics Output Voltage Transient Waveforms 4.5 Output Voltage Transient Waveforms The following graphs show the effect of changing the step-down regulator’s output voltage using the serial interface. Depending on the change in the step-size of the output voltage, the output load, and the output capacitance, the power-on reset pin de-asserts when the changes of the output voltage occur beyond the 25 μs (typical) delay. 4.5.1 Step-Down Regulator Figure 33: VOUT = 1.0V to 1.2V with No Load VBUCK Figure 34: VOUT = 1.0V to 1.5V with No Load 500 mV/DIV VPOR VBUCK 500 mV/DIV 5V/DIV SDI VPOR 5V/DIV SDI 5V/DIV 5V/DIV 20 μs/DIV 20 μs/DIV VIN = 5.0V VIN = 5.0V COUT= (2 x 22) + 1000 μF COUT= (2 x 22) +1000 μF Figure 36: VOUT = 1.0V to 1.5V with ILOAD = 5A Figure 35: VOUT = 1.0V to 1.2V with ILOAD = 5A VBUCK 500 mV/DIV 500 mV/DIV VBUCK VPOR 5V/DIV VPOR 5V/DIV SDI 5V/DIV SDI 5V/DIV 20 μs/DIV 20 μs/DIV VIN = 5.0V VIN = 5.0V COUT= (2 x 22) + 1000 μF COUT= (2 x 22) +1000 μF Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 33 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 38: VOUT = 1.5V to 1.0V with ILOAD = 5A Figure 37: VOUT = 1.2V to 1.0V with ILOAD = 5A VBUCK 500 mV/DIV VBUCK 500 mV/DIV VPOR 5V/DIV SDI 5V/DIV VPOR 5V/DIV SDI 5V/DIV 20 μs/DIV 20 μs/DIV VIN = 5.0V VIN = 5.0V COUT= (2 x 22)+1000 μF COUT= (2 x 22)+1000 μF 4.6 Line Transient Waveforms Figure 40: Line Transient @ VIN = 4.1V to 4.5V Figure 39: Line Transient @ VIN = 3.2V to 3.6V 1V/DIV VIN 1V/DIV VIN 20 mV/DIV 20 mV/DIV VBUCK VBUCK 2.0 ms/DIV 2.0 ms/DIV VIN = 3.6V VBUCK = 1.2V VIN = 4.5V VBUCK = 1.2V CIN= 22 μF ILOAD = 5A CIN= 22 μF ILOAD = 5A Doc. No. MV-S103181-00 Rev. B Page 34 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Typical Characteristics Efficiency Graphs Section 5. Typical Characteristics 5.1 Efficiency Graphs Efficiency vs. Output Current Vin = 3.3V 100 100 90 90 Efficiency (%) Efficiency (%) Efficiency vs. Output Current Vin = 5.0V 80 3.3V 3.0V 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 70 60 80 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 70 60 50 50 0 1 2 3 4 Output Current (A) 5 0 1 2 3 4 Output Current (A) G77 G1 5 G77 G2 5.1.1 Efficiency Graphs in log scale Efficiency vs. Output Current Vin = 3.3V 100 100 90 90 80 Efficiency (%) Efficiency (%) Efficiency vs. Output Current Vin = 5.0V 3.3V 3.0V 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 70 60 50 0.01 0.1 1 1.8V 70 1.5V 1.2V 60 1.0V 0.8V 10 Output Current (A) 80 50 0.01 G77 G3 0.1 1 Output Current (A) 10 G77 G4 5.2 Load Regulation Output Voltage vs. Output Current Vout = 1.5V Output Voltage (V) 1.60 1.55 1.50 1.45 3.3V 5.0V 1.40 0 1 2 3 Output Current (A) 4 5 G77 G5 Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 35 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 5.3 Dropout Voltage Step-Down Regulator Dropout vs. Load Current Vin = 3.2, Vout = 3.3V 0.200 85C 25C Buck Dropout (V) 0.150 -40C 0.100 0.050 0.000 0 1 2 3 Output Current (A) 4 5 G77 G6 5.4 RDS (ON) Resistance Bottom Switch Resistance vs. Temperature Top Switch Resistance vs. Temperature 0.016 Resistance (Ohm) Resistance (ohm) 0.016 0.014 0.012 0.010 0.008 Vin = 3.0V Vin = 4.0V 0.006 Vin = 5.0V 0.004 0.014 Vin = 3.0V 0.012 Vin = 5.0V Vin = 4.0V 0.010 0.008 0.006 0.004 -40 -20 0 20 40 60 -40 80 Temperature (C) -20 0 20 40 60 G77 G8 Top Switch Resistance vs. Input Voltage Bottom Switch Resistance vs. Input Voltage 0.016 0.014 Resistance (Ohm) Resistance (ohm) 0.016 Ta = 25C 0.012 0.010 0.008 0.006 0.004 0.014 0.012 Ta = 25C 0.010 0.008 0.006 0.004 3 3.5 4 4.5 5 3 3.5 4 4.5 5 Input Voltage (V) Input Voltage(V) G77 G9 Doc. No. MV-S103181-00 Rev. B Page 36 80 Input Voltage (V) G77 G7 G77 G10 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Typical Characteristics IC Case and Inductor Temperature 5.5 IC Case and Inductor Temperature The following data was taken using a 1.4 square inch PCB 1 oz. copper and L = 1.2 μH. Actual results depend upon the size of the PCB proximity to other heat emitting components. Input Current vs. Output Current Vin = 5V, Ta = 25°C Input Current vs. Output Current Vin = 3.3V, Ta = 25°C 6.0 7.0 4.0 3.0 2.0 2.5V Input Current (A) Input Current (A) 6.0 3.3V 3.0V 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 5.0 1.0 5.0 1.8V 1.5V 4.0 1.2V 1.0V 3.0 0.8V 2.0 1.0 0.0 0.0 0 1 2 3 4 0 5 1 2 3 4 5 Output Current (A) Output Current (A) G77 G12 G77 G11 IC Case Temperature vs. Output Current Vin = 3.3V, Ta = 25°C IC Case Temperature vs. Output Current Vin = 5V, Ta = 25°C 80 80 70 Temperature (°C) 60 50 40 Temperature (°C) 3.3V 3.0V 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 70 50 40 30 30 20 0 20 0 1 2 3 Output Current (A) 4 1 2 3 4 5 Output Current (A) 5 G77 G14 G77 G13 Inductor Temperature vs. Output Current Vin = 5V, Ta = 25°C Inductor Temperature vs. Output Current Vin = 3.3V, Ta = 25°C 80 80 70 70 3.3V 3.0V 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 60 50 40 Temperature (°C) Temperature (°C) 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 60 2.5V 1.8V 1.5V 1.2V 1.0V 0.8V 60 50 40 30 30 20 20 0 1 2 3 Output Current (A) 4 5 0 G77 G15 Copyright © 2007 Marvell October 30, 2007, Advance 1 2 3 4 5 Output Current (A) G77 G16 Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 37 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 5.6 Input Voltage Graphs Supply Current vs. Input Voltage Shutdow n Supply Current vs. Input Voltage 1.0 Shutdown Current (uA) Supply Current (mA) 2.0 1.5 1.0 0.5 0.0 0.8 0.6 0.4 0.2 0.0 3.0 3.5 4.0 4.5 5.0 5.5 3 3.5 Input Voltage (V) 4 4.5 5 5.5 Input Voltage (V) G77 G18 G77 G17 Load = No Load VIN = 5.0V Load = No Load Shutdown Threshold vs. Input Voltage 3.0 Shutdown Treshold (V) UTH - Disable LTH - Enable 2.5 2.0 1.5 1.0 3 3.5 4 4.5 5 Input Voltage (V) G77 G19 Doc. No. MV-S103181-00 Rev. B Page 38 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Typical Characteristics Input Voltage Graphs 5.6.1 Step-Down Regulator Efficiency vs. Input Voltage 100% 1.515 95% Efficiency Output Voltage (V) Output Voltage vs. Input Voltage 1.53 1.5 90% 85% 1.485 80% 1.47 3.0 3.5 4.0 4.5 5.0 3.0 5.5 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) Input Voltage (V) G77 G21 G77 G20 IOUT(BUCK) = 1.25A VOUT(BUCK) = 1.5V IOUT(BUCK) = 2.5A Frequency vs. Input Voltage Load Regulation vs. Input Voltage 1200 1100 0.10% Frequency (kHz) Load Regulation 0.20% 0.00% 1000 900 -0.10% 3.0 3.5 4.0 4.5 5.0 5.5 800 3.0 Input Voltage (V) 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) G77 G22 G77 G23 VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V IOUT(BUCK) = 1.25A - 5.0A IOUT(BUCK) = 2.5A Average Output Current Limit vs. Input Voltage 10.0 Current Limit (A) 9.0 8.0 7.0 6.0 5.0 3 3.5 4 4.5 Input Voltage (V) 5 5.5 G77 G24 Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 39 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 5.7 Temperature Graphs Shutdow n Supply Current vs.Temperature Supply Current vs. Temperature 3 Shutdown Current (uA) Supply Current (mA) 2.0 1.5 1.0 0.5 0.0 -40 -20 0 20 40 60 Temperature (°C) 2 1 0 -40 80 -20 0 20 40 60 80 Temperature (°C) G77 G25 G77 G26 IOUT(BUCK) = No Load IOUT(LDO) = No Load UVLO vs. Temperature Shutdown Threshold vs. Temperature 3 Shutdown Treshold (V) 3.0 UVLO (V) 2.9 2.8 HTH 2.7 LTH 2.6 -40 -20 0 20 40 60 80 2.5 2.0 UTH - Disable 1.5 LTH - Enable 1.0 -40 Temperature (°C) IOUT(BUCK) = 10 mA 0 20 40 60 80 G77 G28 VIN= 5V Doc. No. MV-S103181-00 Rev. B Page 40 -20 Temperature (°C) G77 G27 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Typical Characteristics Temperature Graphs 5.7.1 Step-Down Regulator Buck Efficiency vs. Temperature 100% 1.515 95% Efficiency Output Voltage (V) Output Voltage vs. Temperature 1.53 1.5 90% 85% 1.485 80% 1.47 -40 -20 0 20 40 60 -40 80 Temperature (°C) -20 0 20 40 60 80 Temperature (°C) G77 G29 VIN = 5.0V VIN = 5.0V IOUT(LDO) = 1.2A VOUT(BUCK) = 1.5V G77 G30 IOUT(BUCK) = 2.5A Buck Line Regulation vs. Temperature Buck Load Regulation vs. Temperature 0.20% 0.00% Line Regulation Load Regulation 0.10% 0.00% -0.10% -0.20% -0.10% -0.30% -0.20% -40 -40 -20 0 20 40 60 -20 0 80 20 40 60 80 Temperature (°C) Temperature (°C) G77 G31 G77 G32 VIN = 5.0V VIN = 3.0V - 5.0V VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V IOUT(BUCK) = 1.25A IOUT(BUCK) = 2.5A Buck Current Limit vs. Temperature Frequency vs. Temperature 10.0 1100.0 1050.0 Frequency (kHz) Current Limit (A) 9.0 8.0 7.0 6.0 5.0 -40 1000.0 950.0 900.0 850.0 800.0 -20 0 20 40 60 -40 80 -20 0 20 40 Temperature (°C) Temperature (°C) G77 G33 60 80 G77 G34 VIN = 5.0V IOUT(BUCK) = 2.5A Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 41 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Section 6. Applications Information 6.1 PC Board Layout Considerations and Guidelines for 88PG877 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. This is a 2-layer board with 1 ground plane and 1 routing layer. Copy the routing layer in Figure 43 as much as possible and place on the top layer. The ground plane in Figure 44 can be placed on any other layer. Use the recommend BOM in Table 9. Contact the factory if substitutions are made. Review the recommended solder pad layout and notes on page 51. Do not replace the Ceramic input capacitor with any other type of capacitor. Any type of capacitor can be placed in parallel with the input capacitor as long as the Ceramic input capacitor is placed next to the IC. If Tantalum input capacitor is used, it must be rated for switching regulator applications and the operating voltage be derated by 50%. Any type of capacitor can be placed in parallel with the output capacitor. Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide the lowest noise and smallest foot print solution. Use planes for the ground, input and outputs power to maintain good voltage filtering and to keep power losses low. If there is not enough space for a power plane for the input supply, then the input supply trace must be at least 3/8 inch wide. If there is not enough space for a power plane for the output supplies, then place the output as close to the load as possible with a trace of at least 3/8 inch wide. Do not lay out the inductor first. The input capacitor placement is the most critical for proper operation. The AC current circulating through the input capacitor and loop 1 (LP1) are square wave with rise and fall times of 8 ns and slew rates as high as 300 A/µs (Figure 41). At these fast slew rates, stray PCB inductance can generate a voltage spike as high as 3V per inch of PCB trace, VIND = L * di/dt. Therefore, the Ceramic input capacitor must be placed as close as possible to the PVIN and PGND pins with as short and wide a trace as possible. Also, the PVIN and PGND traces must be placed on the top layer. This will isolate the fast AC currents from interfering with the analog ground plane. The 88PG877 has two internal grounds, analog (SGND) and power (PGND). The analog ground ties to all the noise sensitive signals (PSET, VSET, and SVIN) while the power ground ties to the higher current power paths. Noise on an analog ground can cause problems with the IC’s internal control and bias signals. For this reason, separate analog and power ground traces are recommended. The signal ground is connected to the power ground at one point, which is the (-) terminal of the output capacitor. Keep loop 2 (LP2) as small as possible and connect the (-) terminal of the output capacitor as close to the (-) terminal of the input capacitor. A back-to-back placing of bypass capacitors, as shown in Figure 43, is recommended for best results. Keep the switching node (SW) away from the SFB pin and all sensitive signal nodes, minimizing capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a right angle. 14. 15. Try not to route analog or digital lines in close proximity to the power supply especially the VSW node. If this can’t be avoided, shield these lines with a power plane placed between the VSW node and the signal lines. 16. The type of solder paste recommended for QFN packages is “No clean”, due to the difficulty of cleaning flux residues from beneath the QFN package. Doc. No. MV-S103181-00 Rev. B Page 42 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Applications Information PC Board Layout Considerations and Guidelines for 88PG877 Figure 41: PCB Layout U1 R PSET PSET R VSET VSET VBS SVIN R 10 SW Vin PVIN PGND I Cin SFB LP2 Cou t Copyright © 2007 Marvell October 30, 2007, Advance Vout SGND LP1 Ci n LP1 CBS L1 C 0.1uF I Cout LP2 Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 43 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 42: 88PG877 PCB Board Schematic R1 10 ohm R3 R5 R2 100K 16 17 SDI POR SW SW PVIN PGND PVIN PGND 7 6 SGND 88PG877 PGND 5 VBS 15 14 13 12 11 10 L1 1.0uH 9 4 SFB SW C2 47nF EN SW 3 C1 0.1uF SVIN 19 2 VSET PVIN 1 PSET U1 8 R4 100k 18 POR Vin 3.0V - 5.5V Vout C4 22uF/6.3V C3 22uF/6.3V C7 4.7uF/6.3V Doc. No. MV-S103181-00 Rev. B Page 44 C5 22uF/6.3V C6 22uF/6.3V Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Applications Information PC Board Layout Considerations and Guidelines for 88PG877 6.1.1 PC Board Layout Examples for 88PG877 • • Total copper layers = 2 (Top and Bottom) All the components are on the top layer Figure 43: Top Silk-Screen, Top Traces, Vias and Copper (Not to scale) Actual board size = 670 mil x 910 mil Total copper layer = 2 Connect to the input voltage plane of the board. Connect to the input voltage plane of the board. Connect to the ground plane of the board. Connect the BUCK output voltage at this point. Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 45 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Figure 44: Bottom Silk Screen, Bottom Traces, Vias, and Copper (Not to scale) Connect the POR signal to this via Connect to the ground plane of the board. Connect to the ground plane of the board. Connect to the ground plane of the board. Doc. No. MV-S103181-00 Rev. B Page 46 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Applications Information PC Board Layout Considerations and Guidelines for 88PG877 6.1.2 Bill of materials for 88PG877 Table 9 lists the components used with the 88PG877. Table 9: 88PG877 BOM Item Q ty Ref M a n u f a c t u r er P a r t N o. Ma n u f actu r er D e s c r i p t io n 1 1 U1 88PG877 Marvell Semiconductor Inc. 1MHz, 7.5A Peak-Current Limit Step-down Regulator 2 1 C1 C1005X5R1A104K Taiyo-Yuden 0.1 μF, ±10%, X5R, 10V, 0402 Case Size, Ceramic Capacitor. 3 1 C2 0402YD473KAT2A AVX Corporation 0.047 μF, ±20%, X5R, 16V, 0402 Case Size, Ceramic Capacitor. 4 4 C3,C4, C5,C6 C2012X5R0J226M TDK 22 μF, ±20%, X5R, 6.3V, 0805 Case Size, Ceramic Capacitor. 5 1 C7 C1608X5R0J475M TDK 4.7 μF, ±20%, X5R, 6.3V, 0603 Case Size, Ceramic Capacitor. 6 1 L1 FDV0630-1R0M=P3 Toko 1.0 μH, 9.1A, 10 mohm, H=3mm, L=7.7mm, W=7mm, SMD Inductor 7 1 R1 ERJ-2RKF10R0X Panasonic-ECG 10.0 ohm, 1/16W, 1%, 0402 Case size, SMD Resistor 8 2 R2,R4 ERJ-3GEYJ104V Panasonic-ECG 100 kohm, 1/10W, 5%, 0603 Case size, SMD Resistor 9 1 R3,R5 See AnyVoltage™ Programming, 1/16W, 1% 0402 Case Size Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 47 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Table 10: Ceramic Capacitor Cross Reference Manu facturer Manu factu rer Part # Des cription 22 μF Taiyo-Yuden CE JMK212BJ226MG-T TDK C2012X5R0J226MT Murata GRM21BR60J226ME39L Taiyo-Yuden CE JMK212BJ106MG-T TDK C2012X5R0J106MT Murata GRM219R60J106KE190 Taiyo-Yuden RM LMK105 BJ104KV-F TDK C1005X5R1A104K 10 μF 0.1 μF Doc. No. MV-S103181-00 Rev. B Page 48 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Mechanical Drawing 88PG877 Mechanical Drawing Section 7. Mechanical Drawing 7.1 88PG877 Mechanical Drawing 3 INDEX AREA (D/2xE/2) 2x 2x TOP VIEW NX SEATING DETAIL 'A' PLANE SIDE VIEW e 18Xb Terminal Tip INDEX AREA 7 ''A'' 6 (D/2xE/2) 4 15 1 18 BOTTOM VIEW 17XL ''B'' Copyright © 2007 Marvell October 30, 2007, Advance DETAIL 'B' Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 49 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology 7.2 88PG877 Mechanical Dimensions Symbol A A1 A3 b D E e L aaa bbb ccc Dimension in mm MIN --0.00 0.20 2.90 3.90 NOM MAX 1.00 0.90 0.02 0.05 0.20 REF 0.25 0.30 3.10 3.00 4.10 4.00 0.50 BSC 0.40 0.50 ------- ------- 0.60 0.15 0.10 0.10 Note: 1. Dimensioning and tolerancing conform to ASME Y14.5M-1994. 2. All dimensions are in millimeters. 3. The terminal #1 identifier and terminal numbering convention 4. Pin 1 (0.6mm) is longer than other pins (0.5mm) Doc. No. MV-S103181-00 Rev. B Page 50 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Mechanical Drawing Typical Pad Layout Dimensions 7.3 Typical Pad Layout Dimensions 7.3.1 Recommended Solder Pad Layout Package Outline 0.75 1 Package Outline 0.50 3.00 4.30 0.25 1.20 1.00 0.65 3.30 88PG877 4x3 QFN-18 Land Pattern (mm) 0.25 mm 0.25 mm Pad 0.051 mm 2.0 mils SM Pad SM Pad 0.148 mm QFN Lead with Non-Solder Mask Defined Terminal (Not to Scale) Notes: 1. 2. 3. 4. 5. 6. 7. TOP VIEW DRAWING NOT TO SCALE DIMENSIONS ARE IN MILLIMETERS OVERSIZE SOLDER MASK BY 4 MILS OVER PAD SIZE (2 MIL ANNULAR RING) SOLDER MASK (SM) BETWEEN PADS TOLERANCE ±0.05 mm PIN 1 IS LONGER THAN OTHER PINS BY 0.1 mm Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00 Rev. B Document Classification: Proprietary Information Page 51 88PG877 1 MHz, 7.5A Peak Current-Limit Step-Down Regulator with AnyVoltage™ Technology Section 8. Ordering Information 8.1 Ordering Part Numbers and Package Markings Figure 45 shows the ordering part numbering scheme for the 88PG877 devices. Contact Marvell® FAEs or sales representatives for complete ordering information. Figure 45: Sample Part Number 88PG877 –xx–xxx–C000–xxxx Custom Code (optional) Part Number 88PG877 Custom Code Custom Code Package Code NFB = 18-Pin QFN Custom Code Environmental Code 1 = RoHS 6/6 compliant – = RoHS 5/6 compliant 8.2 Sample Ordering Part Number The standard ordering part numbers for the respective solutions are as follows: Table 11: 88PG877 Ordering Part Numbers1 Ma rke ting Part Number Ma rking 88PG877-NFB1 Ambient Tem per atur e Range 2 -40 °C to 85 °C Packa ge 3 4 X 3 QFN-18 1. Contact Marvell® for details. 2. Specifications over the –40 °C to 85 °C operating temperature range are assured by design, characterization and correlation with statistical process controls. 3. Package dimensions are in mm. Doc. No. MV-S103181-00, Rev. B Page 52 Copyright © 2007 Marvell Document Classification: Proprietary Information October 30, 2007, Advance Ordering Information Package Marking 8.3 Package Marking 8.3.1 88PG877 Package Marking and Pin 1 Locations Figure 46 is an example of the package marking and pin 1 location for the 88PG877 part. Markings for the other variants are similar. Figure 46: 88PG877 Package Marking and Pin 1 Location MRVLG77 00XX# YWW$$ M ar k ing Power code, Revision, Assembly code 00 = Power code XX = Revision $$ = Assembly code Year, Work week, Lot Tracking Y = Last digit of year WW = Work week $$ = Lot tracking Pin 1 location Note: The above example is not drawn to scale. Locations of markings are approximate. Copyright © 2007 Marvell October 30, 2007, Advance Doc. No. MV-S103181-00, Rev. B Document Classification: Proprietary Information Page 53 Marvell Semiconductor, Inc. 5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028 www.marvell.com Worldwide Corporate Offices Worldwide Sales Offices Marvell Semiconductor, Inc. 5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1.408.222.2500 Western US Marvell 5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1.408.222.2500 Fax: 1.408.752.9028 Sales Fax: 1.408.752.9029 Marvell Asia Pte, Ltd. 151 Lorong Chuan, #02-05 New Tech Park, Singapore 556741 Tel: 65.6756.1600 Fax: 65.6756.7600 Marvell Japan K.K. Shinjuku Center Bldg. 44F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0644, Japan Tel: 81.(0).3.5324.0355 Fax: 81.(0).3.5324.0354 Marvell Semiconductor Israel, Ltd. 6 Hamada Street Mordot HaCarmel Industrial Park Yokneam 20692, Israel Tel: 972.(0).4.909.1500 Fax: 972.(0).4.909.1501 Marvell Semiconductor Korea, Ltd. Rm. 603, Trade Center 159-2 Samsung-Dong, Kangnam-Ku Seoul 135-731, Korea Tel: 82.(0).2.551-6070/6079 Fax: 82.(0).2.551.6080 Radlan Computer Communications, Ltd. Atidim Technological Park, Bldg. #4 Tel Aviv 61131, Israel Tel: 972.(0).3.645.8555 Fax: 972.(0).3.645.8544 For more information, visit our website at: www.marvell.com China Marvell 5J1, 1800 Zhongshan West Road Shanghai, PRC 200233 Tel: 86.21.6440.1350 Fax: 86.21.6440.0799 Central US Marvell 9600 North MoPac Drive, Suite #215 Austin, TX 78759, USA Tel: 1.512.343.0593 Fax: 1.512.340.9970 Marvell Rm. 1102/1103, Jintian Fudi Mansion #9 An Ning Zhuang West Rd. Qing He, Haidian District Beijing, PRC 100085 Tel: 86.10.8274.3831 Fax: 86.10.8274.3830 Eastern US/Canada Marvell Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824 , USA Tel: 1.978.250.0588 Fax: 1.978.250.0589 Japan Marvell Shinjuku Center Bldg. 44F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0644, Japan Tel: 81.(0).3.5324.0355 Fax: 81.(0).3.5324.0354 Europe Marvell 5 Marchmont Gate Boundary Way Hemel Hempstead Hertfordshire, HP2 7BF United Kingdom Tel: 44.(0).1442.211668 Fax: 44.(0).1442.211543 Taiwan Marvell 2Fl., No.1, Alley 20, Lane 407, Sec. 2 Ti-Ding Blvd., Nei Hu District Taipei, Taiwan, 114, R.O.C Tel: 886.(0).2.8177.7071 Fax: 886.(0).2.8752.5707 Israel Marvell 6 Hamada Street Mordot HaCarmel Industrial Park Yokneam 20692, Israel Tel: 972.(0).4.909.1500 Fax: 972.(0).4.909.1501 Korea Marvell Rm. 603, Trade Center 159-2 Samsung-Dong, Kangnam-Ku Seoul 135-731, Korea Tel: 82.(0).2.551-6070/6079 Fax: 82.(0).2.551.6080