Transcript
Dual/Quad, Low Power, High Speed JFET Operational Amplifiers OP282/OP482
Data Sheet
PIN CONNECTIONS
APPLICATIONS
OUT A
1
8
V+
–IN A
2
7
OUT B
+IN A
3
V–
4
OP282 OP-482
–IN B
5
+IN B
Figure 1. 8-Lead, Narrow-Body SOIC (S-Suffix) [R-8] OUT A 1 –IN A 2
OP282
+IN A 3
TOP VIEW (Not to Scale)
V– 4
Active filters Fast amplifiers Integrators Supply current monitoring
6
00301-001
High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 250 µA/amplifier maximum Low offset voltage: 3 mV maximum Low bias current: 100 pA maximum Fast settling time Common-mode range includes V+ Unity-gain stable 14-ball wafer level chip scale for quad
8
V+
7
OUT B
6
–IN B
5
+IN B
00301-002
FEATURES
Figure 2. 8-Lead MSOP [RM-8]
The JFET input stage of the OP282/OP482 ensures that the bias current is typically a few picoamps and is less than 500 pA over the full temperature range. The offset voltage is less than 3 mV for the dual amplifier and less than 4 mV for the quad amplifier. With a wide output swing (within 1.5 V of each supply), low power consumption, and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power-restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for highside signal conditioning. The OP282/OP482 are specified over the extended industrial temperature range. The OP282 is available in the standard 8-lead, narrow SOIC and MSOP packages. The OP482 is available in the PDIP and narrow SOIC packages, as well as a 14-ball WLCSP.
–IN A
2
+IN A
3
V+
4
+IN B
5
–IN B
6
OUT B
7
14 OUT D – +
13 –IN D
+ –
12 +IN D
OP482
11 V– 10 +IN C
– +
+ –
9
–IN C
8
OUT C
00301-003
The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. The slew rate is typically 9 V/µs with a supply current of less than 250 µA per amplifier. These unity-gain stable amplifiers have a typical gain bandwidth of 4 MHz.
1
Figure 3. 14-Lead PDIP (P-Suffix) [N-14] OUT A
1
14
OUT D
–IN A
2
13
–IN D
12
+IN D
+IN A
3
V+
4
OP482
11
V–
+IN B
5
10
+IN C
–IN B
6
9
–IN C
OUT B
7
8
OUT C
00301-004
GENERAL DESCRIPTION
OUT A
Figure 4. 14-Lead, Narrow-Body SOIC (S-Suffix) [R-14] BALL A1 CORNER 2 1 OUT D –IN D A
3 OUT A
B
–IN A
+IN D +IN A
C D
F
+IN B –IN B
+IN C –IN C
G H
V+
V–
E
OUT C
OUT B
TOP VIEW (BALL SIDE DOWN) Not to Scale
00301-048
J
Figure 5. 14-Ball WLCSP [CB-14-2] Rev. I
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©1991–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com
OP282/OP482
Data Sheet
TABLE OF CONTENTS Features .............................................................................................. 1
ESD Caution...................................................................................4
Applications ....................................................................................... 1
Typical Performance Characteristics ..............................................5
General Description ......................................................................... 1
Applications Information .............................................................. 12
Pin Connections ............................................................................... 1
High-Side Signal Conditioning ................................................ 12
Revision History ............................................................................... 2
Phase Inversion ........................................................................... 12
Specifications..................................................................................... 3
Active Filters ............................................................................... 12
Electrical Characteristics ............................................................. 3
Programmable State Variable Filter ......................................... 13
Absolute Maximum Ratings............................................................ 4
Outline Dimensions ....................................................................... 14
Thermal Resistance ...................................................................... 4
Ordering Guide .......................................................................... 16
REVISION HISTORY 9/13—Rev. H to Rev. I Changes to Figure 5 .......................................................................... 1 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 9/10—Rev. G to Rev. H Added WLCSP .................................................................... Universal Changes to Features Section............................................................ 1 Changes to General Description Section ...................................... 1 Added Figure 5; Renumbered Sequentially .................................. 1 Changes to Large-Signal Voltage Gain Parameter, Table 1 ......... 3 Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4 Change to Figure 30 ......................................................................... 9 Added Figure 53.............................................................................. 16 Changes to Ordering Guide .......................................................... 16 7/08—Rev. F to Rev. G Changes to Phase Inversion Section ............................................ 12 Deleted Figure 45 ............................................................................ 12 Added Figure 45 and Figure 46..................................................... 12 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 10/04—Rev. E to Rev. F Deleted 8-Lead PDIP ......................................................... Universal Added 8-Lead MSOP ......................................................... Universal Changes to Format and Layout ......................................... Universal Changes to Features.......................................................................... 1 Changes to Pin Configurations....................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications ................................................................ 3 Changes to Absolute Maximum Ratings ....................................... 4 Changes to Table 3 ............................................................................ 4
Added Figure 5 through Figure 20; Renumbered Successive Figures ..............................................................................5 Updated Figure 21 and Figure 22 ....................................................7 Updated Figure 23 and Figure 27 ....................................................8 Updated Figure 29 .............................................................................9 Updated Figure 35 and Figure 36 ................................................. 10 Updated Figure 43 .......................................................................... 11 Changes to Applications Information ......................................... 12 Changes to Figure 44...................................................................... 12 Deleted OP282/OP482 Spice Macro Model Section ....................9 Deleted Figure 4 .................................................................................9 Deleted OP282 Spice Marco Model ............................................. 10 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 14 10/02—Rev. D to Rev. E Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1 Edits to Ordering Guide ...................................................................3 Edits to Outline Dimensions......................................................... 11 9/02—Rev. C to Rev. D Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1 Replaced 8-Lead SOIC (S-Suffix) ................................................. 11 4/02—Rev. B to Rev. C Wafer Test Limits Deleted ................................................................2 Edits to Absolute Maximum Ratings ..............................................3 Dice Characteristics Deleted ............................................................3 Edits to Ordering Guide ...................................................................3 Edits to Figure 1 .................................................................................7 Edits to Figure 3 .................................................................................8 20-Position Chip Carrier (RC Suffix) Deleted ........................... 11
Rev. I | Page 2 of 16
Data Sheet
OP282/OP482
SPECIFICATIONS ELECTRICAL CHARACTERISTICS At VS = ±15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grades. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage
Test Conditions/Comments
VOS
OP282 OP282, −40°C ≤ TA ≤ +85°C OP482 OP482, −40°C ≤ TA ≤ +85°C VCM = 0 V VCM = 0 V 1 VCM = 0 V VCM = 0 V1
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain
CMRR AVO
Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 1
Symbol
−11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C RL = 10 kΩ, VO = ±13.5 V RL = 10 kΩ, −40°C ≤ TA ≤ +85°C
Min
ZOUT
Max
Unit
0.2
3 4.5 4 6 100 500 50 250 +15
mV mV mV mV pA pA pA pA V dB V/mV V/mV µV/°C pA/°C
0.2 3 1 −11 70 20 15
ΔVOS/ΔT ΔIB/ΔT VOH VOL ISC
Typ
90
10 8 RL = 10 kΩ RL = 10 kΩ Source Sink f = 1 MHz
PSRR ISY VS
VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C VO = 0 V, −40°C ≤ TA ≤ 85°C
SR BWP tS GBP ØM
RL = 10 kΩ 1% distortion To 0.01%
en p-p en in
0.1 Hz to 10 Hz f = 1 kHz
13.5 3
13.9 −13.9 10 −12 200 25 210
±4.5 7
−8
316 250 ±18
V V mA mA Ω µV/V µA V
9 125 1.6 4 55
V/µs kHz µs MHz Degrees
1.3 36 0.01
µV p-p nV/√Hz pA/√Hz
The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C.
Rev. I | Page 3 of 16
−13.5
OP282/OP482
Data Sheet
ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE
Table 2. Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering 60 sec) 1
Rating ±18 V ±18 V 36 V Indefinite −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C
For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
θJA is specified for the worst-case conditions, that is, a device in socket for PDIP. θJA is specified for a device soldered in the circuit board for SOIC_N, MSOP, and WLCSP packages. This was measured using a standard 4-layer board. Table 3. Package Type 8-Lead MSOP [RM] 8-Lead SOIC_N (S-Suffix) [R] 14-Lead PDIP (P-Suffix) [N] 14-Lead SOIC_N (S-Suffix) [R] 14-Ball WLCSP [CB]1, 2 1 2
θJA 142 120 83 112 70
Simulated thermal numbers per JESD51-9. Junction-to-board thermal resistance.
ESD CAUTION
Rev. I | Page 4 of 16
θJC 45 45 39 35 16
Unit °C/W °C/W °C/W °C/W °C/W
Data Sheet
OP282/OP482
TYPICAL PERFORMANCE CHARACTERISTICS 70
180 VS = ±15V TA = 25°C 135
20
45
0
0
CLOSED-LOOP GAIN (dB)
90
50
PHASE (Degrees)
40
40
AVCL = 100
30 AVCL = 10
20 10 AVCL = 1
0 –10
–45
–20
–20
100k FREQUENCY (Hz)
10k
–90 10M
1M
–30 1k
00301-005
–40 1k
Figure 6. OP282 Open-Loop Gain and Phase vs. Frequency
10k
100k FREQUENCY (Hz)
1M
30 VS = ±15V RL = 10kΩ
40
VS = ±15V RL = 10kΩ CL = 50pF
25 –SR
35 30
SLEW RATE (V/µs)
OPEN-LOOP GAIN (V/mV)
10M
Figure 9. OP282 Closed-Loop Gain vs. Frequency
45
25 20 15
20
15
10 +SR
10
0 –75
–50
–25
0
25
50
75
100
0 –75
125
00301-009
00301-006
5 5
–50
–25
TEMPERATURE (°C)
1000
+OS 50 –OS
30 20 00301-007
10
0
100
200
300
50
75
100
125
400
100
125
VS = ±15V VCM = 0V
100
10
1
0.1 –75
500
LOAD CAPACITANCE (pF)
00301-010
INPUT BIAS CURRENT (pA)
VS = ±15V RL = 2kΩ 70 V = 100mV p-p IN AVCL = 1 60 TA = 25°C
0
25
Figure 10. OP282 Slew Rate vs. Temperature
80
40
0
TEMPERATURE (°C)
Figure 7. OP282 Open-Loop Gain vs. Temperature
OVERSHOOT (%)
OPEN-LOOP GAIN (dB)
60
VS = ±15V TA = 25°C
60
00301-008
80
–50
–25
0
25
50
75
TEMPERATURE (°C)
Figure 8. OP282 Small-Signal Overshoot vs. Load Capacitance
Figure 11. OP282 Input Bias Current vs. Temperature
Rev. I | Page 5 of 16
OP282/OP482
Data Sheet
1000
20
VOLTAGE NOISE DENSITY (nV/√Hz)
VS = ±15V TA = 25°C
TA = 25°C RL = 10kΩ
15
OUTPUT VOLTAGE SWING (V)
VOH
100
10
1k 100 FREQUENCY (Hz)
–5 –10 VOL 00301-014
±5
0
±15
±10
±20
SUPPLY VOLTAGE (V)
Figure 15. OP282 Output Voltage Swing vs. Supply Voltage
1000
VS = ±15V TA = 25°C
100
VS = ±15V TA = 25°C
100
OUTPUT IMPEDANCE (Ω)
INPUT BIAS CURRENT (pA)
0
–20
10k
Figure 12. OP282 Voltage Noise Density vs. Frequency
1000
5
–15
00301-011
1 10
10
10
1
AVCL = 100 10 AVCL = 10 1
–10
–5
0
5
10
00301-015
0.1 –15
00301-012
AVCL = 1
0.1 100
15
1k
10k FREQUENCY (Hz)
COMMON-MODE VOLTAGE (V)
Figure 13. OP282 Input Bias Current vs. Common-Mode Voltage
480
Figure 16. OP282 Closed-Loop Output Impedance vs. Frequency
480
TA = 25°C
SUPPLY CURRENT (µA)
475
470
465
460
470
465
460
0
±5
±10
±15
450 –50
±20
SUPPLY VOLTAGE (V)
00301-016
455
455 00301-013
SUPPLY CURRENT (µA)
475
450
1M
100k
–25
0
25
50
75
100
TEMPERATURE (°C)
Figure 14. OP282 Supply Current vs. Supply Voltage
Figure 17. OP282 Supply Current vs. Temperature
Rev. I | Page 6 of 16
125
Data Sheet
10 VOH 8 6 4 2 0 100
Figure 18. OP282 Absolute Output Voltage vs. Load Resistance
20
15
10
5
1k
10k FREQUENCY (Hz)
140
VS = ±15V 120 TA = 25°C
VS = ±15V TA = 25°C
120
100
100
+PSRR
80
80
CMRR (dB)
60 40 20
–PSRR
60 40 20 0
–20
–20 00301-018
0
–40 –60 100
10k 100k FREQUENCY (Hz)
1k
–40 –60 100
1M
Figure 19. OP282 PSRR vs. Frequency
14
1k
10k 100k FREQUENCY (Hz)
1M
Figure 22. OP282 CMRR vs. Frequency
200
VS = ±15V TA = 25°C
VS = ±15V TA = 25°C 300 × OP282 (600 OP AMPS)
12
160 SINK
10
120
UNITS
8 SOURCE 6
80
4
0 –50
–25
0
25
50
75
100
0 –2000
125
TEMPERATURE (°C)
00301-022
40 2
00301-019
SHORT-CIRCUIT CURRENT (mA)
1M
100k
Figure 21. OP282 Maximum Output Swing vs. Frequency
140
PSRR (dB)
25
0 100
10k
1k LOAD RESISTANCE (Ω)
VS = ±15V TA = 25°C RL = 10kΩ AVCL = 1
00301-020
MAXIMUM OUTPUT SWING (V p-p)
VOL 12
00301-017
ABSOLUTE OUTPUT VOLTAGE (V)
14
30
VS = ±15V TA = 25°C
00301-021
16
OP282/OP482
–1200
–400
0
400
1200
2000
VOS (µV)
Figure 20. OP282 Short-Circuit Current vs. Temperature
Figure 23. OP282 VOS Distribution, SOIC_N Package
Rev. I | Page 7 of 16
OP282/OP482
Data Sheet 70
400
VS = ±15V 300 × OP282 (600 OP AMPS)
360 320
50
OVERSHOOT (%)
280 240
UNITS
AVCL = 1 NEGATIVE EDGE
VS = ±15V RL = 2kΩ VIN = 100mV p-p
60
200 160 120
AVCL = 1 POSITIVE EDGE
40 30 20
80
0
0
4
8
12
16
24
20
28
0
36
32
00301-026
10
00301-023
40
0
100
TCVOS (µV/°C)
Figure 24. OP282 TCVOS Distribution, SOIC_N Package
80
VS = ±15V TA = 25°C
60
0
VS = ±15V TA = 25°C
50 AVCL = 100
CLOSED-LOOP GAIN (dB)
135
PHASE (Degrees)
90
20
500
400
Figure 27. OP482 Small-Signal Overshoot vs. Load Capacitance
45
40
40 30 AVCL = 10 20 10 AVCL = 1 0
180
0
1k
10M
1M 100k FREQUENCY (Hz)
10k
100M
00301-027
00301-024
–10 –20 1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
Figure 25. OP482 Open-Loop Gain and Phase vs. Frequency
Figure 28. OP482 Closed-Loop Gain vs. Frequency
35
25 –SR
VS = ±15V RL = 10kΩ
30
20 VS = ±15V RL = 10kΩ CL = 50pF
SLEW RATE (V/µs)
25 20 15
15
10
+SR
10
0 –75
–50
–25
0
25
50
75
100
0 –75
125
TEMPERATURE (°C)
00301-028
5
5
00301-025
OPEN-LOOP GAIN (V/mV)
OPEN-LOOP GAIN (dB)
60
300 200 LOAD CAPACITANCE (pF)
–50
–25
0
25
50
75
100
TEMPERATURE (°C)
Figure 26. OP482 Open-Loop Gain vs. Temperature
Figure 29. OP482 Slew Rate vs. Temperature
Rev. I | Page 8 of 16
125
Data Sheet
OP282/OP482 1000
1000
VS = ±15V TA = 25°C
100
INPUT BIAS CURRENT (pA)
10
1.0
10
1
0.1 –75
–50
0
–25
25
50
75
100
0.1 –15
125
00301-032
100
00301-029
INPUT BIAS CURRENT (pA)
VS = ±15V VCM = 0V
–10
TEMPERATURE (°C)
–5
0
5
Figure 33. OP482 Input Bias Current vs. Common-Mode Voltage
Figure 30. OP482 Input Bias Current vs. Temperature
60
1.15
5.0
TA = 25°C
GBW
ØM 4.0
45
3.5
–25
50 25 0 TEMPERATURE (°C)
75
100
3.0 125
20
OUTPUT VOLTAGE SWING (V)
40 30 20
1k
±15
±20
10 5 0 –5 –10 –15
00301-031
100
±10
RL = 10kΩ TA = 25°C
15
50
0 10
±5
Figure 34. OP482 Relative Supply Current vs. Supply Voltage
60
10
0.90
SUPPLY VOLTAGE (V)
VS = ±15V TA = 25°C
70
0.95
0
Figure 31. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature 80
1.00
0.85
00301-030
–50
1.05
00301-034
50
1.10
00301-033
4.5
RELATIVE SUPPLY CURRENT (ISY)
GAIN BANDWIDTH PRODUCT (MHz)
55
VOLTAGE NOISE DENSITY (nV/√Hz)
PHASE MARGIN (Degrees)
VS = ±15V RL = 10kΩ
40 –75
15
10
COMMON-MODE VOLTAGE (V)
–20
0
10k
FREQUENCY (Hz)
±5
±10
±15
±20
SUPPLY VOLTAGE (V)
Figure 32. OP482 Voltage Noise Density vs. Frequency
Figure 35. OP482 Output Voltage Swing vs. Supply Voltage
Rev. I | Page 9 of 16
OP282/OP482
Data Sheet
600
100 VS = ±15V ΔV = 100mV TA = 25°C
+PSRR
500
80
400
60 PSRR (dB)
300
–PSRR
40
20
200 AVCL = 100
AVCL = 10
100
0
0 100
1k
10k
00301-035
AVCL = 1
100k
00301-038
IMPEDANCE (Ω)
VS = ±15V TA = 25°C
20 100
1M
1k
FREQUENCY (Hz)
10k
100k
1M
FREQUENCY (Hz)
Figure 39. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency
Figure 36. OP482 Closed-Loop Output Impedance vs. Frequency
1.20
20
VS = ±15V
VS = ±15V SINK
1.10 1.05 1.00 0.95 0.90
0.80 –75
00301-036
0.85
–50
–25
0
25
50
75
100
15
10
SOURCE 5 00301-039
SHORT-CIRCUIT CURRENT (mA)
RELATIVE SUPPLY CURRENT (ISY)
1.15
0
125
–75
TEMPERATURE (°C)
0
25
50
30
VS = ±15V TA = 25°C MAXIMUM OUTPUT SWING (V)
POSITIVE SWING
8
NEGATIVE SWING
6 4
0 100
1k
20
15
10
5
00301-037
2
125
0
10k
LOAD RESISTANCE (Ω)
00301-040
10
100
VS = ±15V TA = 25°C AVCL = 1 RL = 10kΩ
25 12
75
Figure 40. OP482 Short-Circuit Current vs. Temperature
16
ABSOLUTE OUTPUT VOLTAGE (V)
–25
TEMPERATURE (°C)
Figure 37. OP482 Relative Supply Current vs. Temperature
14
–50
1k
10k
100k FREQUENCY (Hz)
Figure 41. OP482 Maximum Output Swing vs. Frequency
Figure 38. OP482 Maximum Output Voltage vs. Load Resistance
Rev. I | Page 10 of 16
1M
Data Sheet
OP282/OP482 320
100
280 80
240 200
UNITS
CMRR (dB)
60
40
160 120
20
80
–20 100
1k
40
10k
100k
0 0
1M
Figure 42. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency
700
VS = ±15V TA = 25°C 300 × OP482 (1200 OP AMPS)
400
300
200
100
00301-045
UNITS
500
0 0 400 –2000 –1600 –1200 –800 –400 VOS (µV)
4
8
12
16
20
24
28
TCVOS (µV/°C)
FREQUENCY (Hz)
600
00301-043
VS = ±15V TA = 25°C VCM = 100mV
00301-041
0
800
1200 1600 2000
Figure 43. OP482 VOS Distribution, PDIP Package
Rev. I | Page 11 of 16
Figure 44. OP482 TCVOS Distribution, PDIP Package
32
OP282/OP482
Data Sheet
APPLICATIONS INFORMATION amp against phase reversal. R1, D2, and D3 limit the input current when the input exceeds the supply rail. The resistor should be selected to limit the amount of input current below the absolute maximum rating. V+
HIGH-SIDE SIGNAL CONDITIONING
VIN
Many applications require the sensing of signals near the positive rail. OP282 and OP482 were tested and are guaranteed over a common-mode range (−11 V ≤ VCM ≤ +15 V) that includes the positive supply.
D1 IN5711
V+ V–
VOUT
V–
Figure 46. Phase Reversal Solution Circuit
VOLTAGE (5V/DIV)
VS = ±15V
0.1Ω 500k Ω RL
2
VOUT
100k Ω 1/2
OP282
VIN
00301-044
100k Ω
OP282/ OP482
D3 IN5711
One application where such sensing is commonly used is in the sensing of power supply currents. Therefore, the OP282/OP482 can be used in current sensing applications, such as the partial circuit shown in Figure 45. In this circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown here, is amplified and compared to 7.5 V. The output can then be used for current limiting. 15V
D2 IN5711
R1 10kΩ
00301-042
The OP282 and OP482 are dual and quad JFET op amps that are optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery-powered or low power applications that require above average performance. Applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation.
TIME (200µs/DIV) 00301-046
500k Ω
Figure 45. High-Side Signal Conditioning
PHASE INVERSION Most JFET input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282/OP482, a negative signal in excess of 11 V causes phase inversion. This is caused by saturation of the input stage, leading to the forward-biasing of a gate-drain diode. Phase reversal in the OP282/OP482 can be prevented by using Schottky diodes to clamp the input terminals to each other and to the supplies. In the simple buffer circuit shown in Figure 46, D1 protects the op
Figure 47. No Phase Reversal
ACTIVE FILTERS The wide bandwidth and high slew rates of the OP282/OP482 make either one an excellent choice for many filter applications. There are many active filter configurations, but the four most popular configurations are Butterworth, elliptic, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic, as shown in Table 4.
Table 4. Active Filter Configurations Type Butterworth Chebyshev Elliptic Bessel (Thompson)
Selectivity Moderate Good Best Poor
Overshoot Good Moderate Poor Best
Phase Nonlinear
Amplitude (Pass Band) Maximum flat Equal ripple Equal ripple
Linear
Rev. I | Page 12 of 16
Amplitude (Stop Band)
Equal ripple
Data Sheet
OP282/OP482 This cutoff frequency can now be expressed as
PROGRAMMABLE STATE VARIABLE FILTER The circuit shown in Figure 48 can be used to accurately program the Q, the cutoff frequency (fC), and the gain of a twopole state variable filter. OP482 devices have been used in this design because of their high bandwidths, low power, and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs.
fC =
1 D1 2πR1C1 256
where D1 is the digital code for the DAC. The gain of this circuit is set by adjusting D3. The gain equation is
Gain =
The DACs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the DAC only and not on the absolute values of the DAC’s resistive ladders. This makes this circuit unusually accurate for a programmable filter.
R4 D3 R5 256
DAC 2 is used to set the Q of the circuit. Adjusting this DAC controls the amount of feedback from the band-pass node to the input summing node. Note that the digital value of the DAC is in the numerator; therefore, zero code is not a valid operating point.
Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1.
Q=
R2 256 R3 D2 R7 2kΩ
R4 2kΩ VIN
DAC8408
1/4
C1 1000pF
R5 2kΩ
OP482
1/4
OP482
C1 1000pF
R1 2kΩ
1/4
1/4
OP482
DAC8408
1/4
OP482 1/4
DAC8408
1/4
OP482
R1 2kΩ 1/4
OP482
HIGH PASS
LOW PASS
BAND PASS
R6 2kΩ R3 2kΩ R2 2kΩ 1/4
1/4
OP482
1/4
DAC8408
OP482 00301-047
1/4
Figure 48. Programmable State Variable Filter
Rev. I | Page 13 of 16
OP282/OP482
Data Sheet
OUTLINE DIMENSIONS 3.20 3.00 2.80
8
3.20 3.00 2.80
5.15 4.90 4.65
5
1
4
PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75
15° MAX 1.10 MAX 0.80 0.55 0.40
0.23 0.09
6° 0°
0.40 0.25
10-07-2009-B
0.15 0.05 COPLANARITY 0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 49. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters
5.00 (0.1968) 4.80 (0.1890)
1
5
6.20 (0.2441) 5.80 (0.2284)
4
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
1.75 (0.0688) 1.35 (0.0532)
0.51 (0.0201) 0.31 (0.0122)
0.50 (0.0196) 0.25 (0.0099)
45°
8° 0° 0.25 (0.0098) 0.17 (0.0067)
1.27 (0.0500) 0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches)
Rev. I | Page 14 of 16
012407-A
8
4.00 (0.1574) 3.80 (0.1497)
Data Sheet
OP282/OP482 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14
8
1
0.280 (7.11) 0.250 (6.35) 0.240 (6.10)
7
0.325 (8.26) 0.310 (7.87) 0.300 (7.62)
0.100 (2.54) BSC 0.060 (1.52) MAX
0.210 (5.33) MAX 0.015 (0.38) MIN
0.150 (3.81) 0.130 (3.30) 0.110 (2.79)
SEATING PLANE
0.022 (0.56) 0.018 (0.46) 0.014 (0.36)
0.195 (4.95) 0.130 (3.30) 0.115 (2.92)
0.015 (0.38) GAUGE PLANE
0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX
0.005 (0.13) MIN 0.070 (1.78) 0.050 (1.27) 0.045 (1.14)
070606-A
COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 51. 14-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-14) Dimension shown in inches and (millimeters)
8.75 (0.3445) 8.55 (0.3366) 8
14 1
7
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10
0.51 (0.0201) 0.31 (0.0122)
6.20 (0.2441) 5.80 (0.2283)
0.50 (0.0197) 0.25 (0.0098)
1.75 (0.0689) 1.35 (0.0531) SEATING PLANE
45°
8° 0° 0.25 (0.0098) 0.17 (0.0067)
1.27 (0.0500) 0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 52. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-14) Dimensions shown in millimeters and (inches)
Rev. I | Page 15 of 16
060606-A
4.00 (0.1575) 3.80 (0.1496)
OP282/OP482
Data Sheet 1.165 1.128 1.090
0.347 BSC
0.347 BSC 3
BALL A1 IDENTIFIER
2.160 2.123 2.085
2
1 A B
0.20 BSC
C D
1.60 REF
E F G H J
0.40 BSC
TOP VIEW
BOTTOM VIEW (BALL SIDE UP)
(BALL SIDE DOWN)
0.645 0.600 0.555
0.415 0.400 0.385
END VIEW
0.694 REF
SEATING PLANE
0.287 0.267 0.247
0.230 0.200 0.170
09-11-2012-B
COPLANARITY 0.05
Figure 53. 14-Ball Wafer Level Chip Scale Package [WLCSP] CB-14-2 Controlling dimensions are millimeters
ORDERING GUIDE Model 1 OP282ARMZ OP282ARMZ-REEL OP282GS OP282GS-REEL OP282GS-REEL7 OP282GSZ OP282GSZ-REEL OP282GSZ-REEL7 OP482ACBZ-RL OP482ACBZ-R7 OP482GPZ OP482GS OP482GS-REEL OP482GS-REEL7 OP482GSZ OP482GSZ-REEL OP482GSZ-REEL7 1
Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C
Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 14-Ball WLCSP 14-Ball WLCSP 14-Lead PDIP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N
Z = RoHS Compliant Part.
©1991–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00301-0-9/13(I)
Rev. I | Page 16 of 16
Package Option RM-8 RM-8 S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) CB-14-2 CB-14-2 P-Suffix (N-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14)
Branding A0B A0B
A2J A2J