Preview only show first 10 pages with watermark. For full document please download

Ect*_pvlas

   EMBED


Share

Transcript

University of Ferrara Measuring the magnetic birefringence of vacuum: status and future perspectives of the PVLAS experiment Guido Zavattini on behalf of the PVLAS collaboration Università di Ferrara and INFN sezione di Ferrara, Italy “Hands holding the void” Alberto Giacometti G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 PVLAS collaboration University and INFN - Ferrara G. Di Domenico L. Piemontese G. Zavattini University and INFN - Trieste F. Della Valle E. Milotti INFN - Lab. Naz. di Legnaro U. Gastaldi R. Pengo G. Ruoso G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Summary •Short introduction to: •aim of the PVLAS experiment •experimental technique •PVLAS - LNL •Overview of published results •Development phases •Several improvements with respect to PVLAS-LNL •Ferrara Test apparatus •Final experiment G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Classical Electromagnetism in vacuum Classical vacuum has no structure. The superposition principle is valid ¶B ¶t div D = 0; rot E = - div B = 0; ¶D rot H = ¶t L EM 2 ö 1 æE 2 = ç 2 -B ÷ 2m 0 è c ø ¶ LEM D= ¶E ¶ LEM H=¶B D = e0 E; G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 m0 H = B Heisenberg’s Uncertainty Principle DEDt³ Vacuum is the minimum energy state and can fluctuate into anything compatible with vacuum 2 Vacuum has a structure which can be observed by perturbing it and probing it. •Evidence of microscopic structure of vacuum is known (Lamb Shift ....) •Macroscopically observable (small) non linear effects have been predicted since 1936 but have never been directly observed yet. G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Vacuum as a Medium • Scheme: – perturb the vacuum state with an external field – probe the perturbed vacuum state with a polarized laser beam – deduce information on the structure of the vacuum state - The propagation of light will be affected by the polarized vacuum fluctuations. - Although we consider vacuum, because of the fermion loop the propagation of photons in an external field is now described by Maxwell’s equations like those in material media. Furthermore they are no longer linear G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Aim of PVLAS • We want to study the speed of light in the perturbed vacuum and therefore study changes in the refractive index nvacuum =1+ (d nr - ik ) field • Absolute changes of nvacuum are too difficult to measure so we study anisotropies due to the perturbing field. • Linear birefringence and linear dichroism G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Linear Birefringence • A birefringent medium has n|| ¹ n^ • A linearly polarized light beam propagating through a birefringent medium will acquire an ellipticity y || a p L(n|| - n^ ) y= = sin 2J b l a n || L || G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 J Eg n b Linear Dichroism • A dichroic medium has different extinction coefficients: k|| • A linearly polarized light beam propagating through a dichroic medium will acquire an apparent rotation e p L(k || - k ^ ) e= sin 2J l Absorption coefficient = 2p l k || k^ k G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 ¹ k^ Linear dichroism and birefringence BExt Dichroism BExt E E| | E E| | E^ Ellipticity E^ before after BExt BExt E| | E E E| | E^ before G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 E^ after apparent rotation e ellipticity y Summary of possibile processes • G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Described by the EulerHeisenberg Lagrangian. Should be there. Also includes MCPs • Correction 1.45% • Hadronic contribution. Difficult to extract from indirect measurements. g-2 open problem. • Contribution from hypothetical new particles coupling to two photons. Euler-Heisenberg Effective Lagrangian For fields much smaller than the critical field (B << 4.4·109 T; E << 1.3·1018 V/m) one can write W Heisenberg and H Euler, Z. Phys. 98, 714 (1936) H Euler, Ann. Phys. 26, 398 (1936) 2ù 2 é 2 æE ö ö Ae æ E ö 1 æE 2 2 L = Lem + LHE = ç 2 - B ÷ + êç 2 - B ÷ + 7ç × B ÷ ú 2m 0 è c ø m0 êëè c ø è c ø úû 2 2 æ a 2 3e ö -24 -2 Ae = =1.32 ×10 T ç ÷ 45m0 è mec 2 ø Are neglected:  a3 terms and higher  virtual pairs with particles different from e+ eG. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Induced Magnetic Birefringence of Vacuum •By applying the constitutive relations to LEH one finds ¶ LEH D= ¶E ¶ LEH H=¶B é æE2 ù ö 2 D = e 0 E + e 0 Ae ê4 ç 2 - B ÷ E +14 E × B Bú êë è c úû ø é æE2 ù ö æ ö E × B m 0 H = B + Ae ê4 ç 2 - B 2 ÷ B -14 ç 2 ÷ Eú êë è c è c ø úû ø ( ) •Light propagation is still described by Maxwell’s equations in media but they no longer are linear due to EH correction. G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Photon propagating in an external field Study the propagation of the photon in an external field The index of refraction gives information on the nature of the “media” Considering linearly polarised light traversing an external magnetic field J Bext E wave w, k G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 w << me me2 c 2 B << Bcr = = 4.42 ´10 9 T e ìï E = Ewave and Bext >> Bwave í ïî B = Bext + Bwave Linearly polarized light passing through a transverse external magnetic field. ìe|| = 1+10Ae B2Ext ï 2 ím|| = 1+ 4Ae B Ext ï 2 în|| = 1+ 7Ae B Ext •v ≠ c •anisotropy ìe^ = 1- 4Ae B2Ext ï 2 ím^ = 1+12Ae B Ext ï 2 în^ = 1+ 4Ae B Ext Ae can be determined by measuring the magnetic birefringence of vacuum. n = 3AeBExt2 n = 2.5·10-23 for BExt = 2.5 T G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Cotton-Mouton Effect Vacuum behaves like a gas: Cotton-Mouton effect Gas CM constant (atm Tesla-2) vacuum equiv. pressure (mbar) N2 -2.45·10-13 1.6·10-8 Ar 6.8·10-15 5.8·10-7 Kr 9.9·10-15 4·10-7 Ne 2.8·10-16 1.4·10-5 He 1.8·10-16 2.2·10-5 H2 8.5·10-15 4.7·10-7 G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 ∆ nCM P 2 = CM B0 Patm For N2: Vacuum is ‘equivalent’ to 4.3·108 molecules/cm3 Post-Maxwellian models L pM 2ù 2 é æ 2 æE ö ö x ê E 2 = h1 ç 2 - B ÷ + 4h2 ç × B ÷ ú 2m 0 êë è c ø è c ø úû 1 æ e ö x = 2 = ç 2 2 ÷ = 5·10 -20 T -2 Bcrit è m c ø 7 (QED) a (QED) (QED) h2 = h1 ; h1 = 4 45p 2 The form of LpM is defined by properties of invariance - η1 represents the interaction between parallel fields - η2 represents the interaction between perpendicular fields ∆n ( pM ) = 2x (h2 - h2 ) B G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 2 Ext Light-Light scattering Very low energy photon-photon scattering is proportional to Ae2. For non polarized light: s gg [*] 973m = 20p 2 0 Eg 2 A e 4 4 c 6 (S.I. units) •For light at 1064 nm this predicts a value of sgg = 1.8·10-65 cm2 •Experimentally Bernard et al.[**] have published sgg < 1.5·10-48 cm2 *Duane et al., Phys Rev. D, vol 57 p. 2443 (1998) **Bernard D. et al., The European Physical Journal D, vol 10, p. 141 (1999) G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 What else? QED •photon splitting? Much smaller than birefringence. •higher order corrections are ~ 1% OTHER •low mass, neutral particle search: axion-like •millicharged particles •hadronic contribution G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Higher order 2 2ù é 2 æ ö æ ö Ae æ a ö 90 ê16 E 263 E 2 LR = ç ÷ ç 2 -B ÷ + ç × B÷ ú m0 è p ø 4 êë 81 è c ø 162 è c ø úû é 90 a æ 263 16 öù 2 2 ∆ nR = 3Ae ê B = 0.0145´ 3A B ç ÷ú 0 e 0 ë 3 p è 648 81 øû G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Axion-like contribution • One can add extra terms [*] to the E-H effective lagrangian to include contributions from hypothetical neutral light particles interacting weakly with two photons ( 1 Lf = f Eg × Bext M ) pseudoscalar case Effects on photon propagation Absorption Dispersion` M, Ms are inverse coupling constants ( 1 Ls = s Bg × Bext Ms ) DICHROISM BIREFRINGENCE scalar case G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 [L.Maiani, R. Petronzio, E. Zavattini, Phys. Lett B, Vol. 173, no.3 1986] [E. Massò and R. Toldrà, Phys. Rev. D, Vol. 52, no. 4, 1995] Propagation of the photon in an external field Dichroism k • Photon splitting • Real particle production Birefringence n • QED dispersion • Virtual particle production • MCPs • Hadrons Both effect n and k are defined with sign G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Summing up Experimental study of the quantum vacuum with: • magnetic field perturbation • linearly polarised light beam as a probe • changes in the polarisation state are the expected signals Ellipticity Key Ingredients pL y= Dnsin 2J l • high magnetic field superconducting dipole magnet or high field permanent magnet • long optical path delay line cavity or very-high Q Fabry-Perot resonator • ellipsometer with heterodyne detection for best sensitivity periodic change of field amplitude/direction for signal modulation G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Heterodyne detection I0 polariser y analyser ITr [ Static detection excluded Itr = I0 s 2 + y 2 ] In the heterodyne detection, using a beat with a calibrated effect, we have • Signal linear in the birefringence • Smaller 1/f noise I0 polariser mirror [ Mod magnetic field y(t) at 2wMag Ellipticity modulator mirror analyser ITr h(t) at wMod ] [ ITr = I0 s 2 + (y (t) + h(t)) = I0 s 2 + (y(t)2 + h(t) 2 + 2y (t)h( t )) 2 Main frequency components at wMod±2wMag and 2wMod G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 ] • Inserting a quarter wave plate before the modulator allows rotation measurements • Ellipticities and rotation do not mix and are independent • In practice, nearly static rotations/ellipticities  s generate a 1/f noise around ωMod. [ ITr = I0 s 2 + (y (t) + h(t) + b s (t)) [ 2 ] ] = I0 s 2 + (h(t) 2 + 2y (t)h(t) + 2b s (t)h(t) + ...) ITR(w) a h2 /2 a hY w wMod - 2WMag w Mod + 2WMag wMod 2w Mod G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 signal noise Fabry Perot Ferrara test apparatus – High finesse successful The Fabry-Perot cavity is a resonant optical cavity that increases the effective optical path. It is composed of two mirrors placed at a separation d which is an integer multiple of the light half wavelength. To obtain this condition a laser is phase locked to the cavity using a feedback circuit. Amplification factor N= 2F p Finesse F= pct d G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 PVLAS at Lab. Nazionali Legnaro Focused on a general study of the vacuum in the presence of a magnetic field Polarizzazione del Vuoto con LASer Major improvements compared to previous efforts: • Resonant FP cavity (6.4 m) for large amplification factor (> 5 104) • Rotating cryostat allows high modulation frequency (up to 0.4 Hz) • Large magnetic field (magnet tested up to 7 T) • Magnetic system mechanically decoupled from optical system G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 PVLAS at Lab. Nazionali Legnaro G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Present published results - QED n = 3 Ae B02 n1064 < 1.05 10-19 @ 1064 nm n532 < 1.0 10-19 @ 532 nm Ae(LNL) < 6.3 10-21 T-2 Ae(QED) = 1.3 10-24 T-2 sgg < 4.6 10-58 cm2 @ 1064 nm sgg < 2.7 10-56 cm2 @ 532 nm G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Bregant et al, PRD 78, 032006 (2008) PRESENT published results - ALP The CAST experiment at CERN has excluded values of M < 1012 GeV Unreachable with present lab techniques G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Some numerical values Main interest is the Euler-Heisenberg birefringence •F = 4·105 •B = 2.5 T ∆n = 2.5·10-23 •L = 2 m y = 3.7·10-11 If we assume a maximum integration time of 106 s (= 12 days) Implies a sensitivity of < 3.7·10-8 1/√Hz e 1 -9 Shot noise limit = = 1·10 for I0 = 100 mW 2I 0 q Hz (I0 = output intensity reaching the analyzer) G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Limitations of the LNL apparatus • Superconducting magnets produce stray field when operated at high fields (saturated iron) • Running time limited due to liquid helium consuption •Observed correlation between seismic noise and ellipticity noise. The Legnaro apparatus is large and therefore difficult to isolate seismically. • No zero measurement possibile with field turned ON. G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Low finesse – seismic isolation Compact 50 cm long ellipsometer without magnetic field Flat noise spectrum above ≈ 5 Hz G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 High finesse – seismic isolation High finesse: F = 414000 Leff = (2F/π)L = 130 km Compact 50 cm long ellipsometer without magnetic field Cavity output power = 25 mW Laser-cavity coupling = 75% Cavity transimission = 25% Record sensitivity with a cavity Ψ = 3·10-8 1/√Hz Assuming B = 2.3 T: Sensitivity in ∆n = 1.5·10-20 1/√Hz G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Permanent Test Magnets G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Test apparatus in Ferrara G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Ferrara test apparatus - sensitivity No cavity – reached expected noise level with rotating magnets No electronically induced signals in the readout system G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Ferrara test apparatus - sensitivity With high-finesse cavity > 400000 G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Two magnet configuration In red, magnets at 0 degrees In black, magnets at 90 degrees With a finesse = 245000 and with the magnets perpendicular to each other we demonstrated a reduction of more than a factor 80 of the Cotton Mouton signal G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Vacuum – perpendicular magnets Finesse ≈ 2·105 (dirty mirrors) Several harmonics at moment under study. Should NOT be there Second harmonic (red) compared to magnetic probes near two optical enclosures (black – output; blue – input) G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Vacuum – parallel magnets Finesse ≈ 2·105 (dirty mirrors) Several harmonics are again present. Different amplitutdes with respect to the previous configuration. Second harmonic (red) compared to magnetic probes near two optical enclosures (black – output; blue – input). Phase with respect to the probes has changed. G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Vacuum – parallel magnets • • • • Integration time = 12400 s Ellipticity = 7·10-9 Clearly systematic Assuming it as limit we obtain ∆n < 4.6·10-20 Ae(exp) < 2.9·10-21 T-2 sgg < 8.9 10-59 cm2 @ 1064 nm This limit is about a factor 2 better than the published PVLAS value of Ae(LNL) < 6.3·10-21 T-2 G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Present - Future Building final apparatus in clean room in Ferrara. Financed by INFN and MIUR • Magnetic field: 2 x 1 m long magnets with 2.5 T (ordered) • Optical bench with isolation system (installed) • Optical enclosures designed and are in ordering phase • New more powerful laser arrived (2 Watts, 1064 nm) • All optical elements, supports and movements will be non magnetic (ordered) • Getters will be used as vacuum pumps. G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 New granite optical bench Installation in Ferrara clean room G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 New granite optical bench Installation in Ferrara clean room G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Parameter space G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011 Thank you! G. Zavattini, ECT*, Trento, 29 Aug.– 2 Sept. 2011