Preview only show first 10 pages with watermark. For full document please download

Effects Of Membrane Action On The Ultimate Strength Of

   EMBED


Share

Transcript

EFFECTS OF MEMBRANE ACTION ON THE ULTIMATE STRENGTH OF REINFORCED CONCRETE SLABS A thesis presented for the degree of Doctor of Philosophy in Civil Engineering in the University of Canterbury, Christchurch, New Zealand. by D. C. HOPKINS 1969 ACKNOWLEDGEMENTS I gratefully acknowledge the assistance that I have received during the course of this project and extend my thanks to: Professor H.J. Hopkins, Head of Department, for his general supervision and guidance. Professor R. Park for his valuable assistance and continued encouragement throughout the project and for his helpful advice during the preparation of this thesis. Members of the academic staff, particularly Dr A.J. Carr, for their assistance. Mr H.T. Watson, and members of the technical staff, particularly Messrs J. Sheard and N. Prebble, for their assistance with experimental work. The University Grants Committee for financial assistance in the form of a Postgraduate Scholarship and a research grant. Certified Concrete Limited for their assistance in making the model floor. Mrs J.M. Keoghan for typing the manuscript. Finally, I wish to thank my wife for her encouragement and assistance at all times. SUMMARY This thesis describes an investigation of the effects of membrane action on reinforced concrete slabs, particularly the implications of allowing for compressive membrane action in the design of slab and beam floors. An examination of the minimum reinforcement re~uire­ ments of a rectangular slab reveals that high design live loads are required before the benefits of membrane action can be fully exploited. Studies of the effect of c.ompression on the flexural capacity of a reinforced conc.rete section and of the effect of membrane action on a clamped circular slab with elastic lateral restraint at the circumference are undertaken. These show that lightly reinforced, thick slabs with high concrete strength will benefit most from compressive membrane action in practical situations, and that if the surround is flexible, tensile membrane action will be evident at the stage when the ultimate load of the slab is reached. The effects of compressive forces in the panels on the design of the supporting beams is studied. It is shown that some beams are required to resist considerable tension and that membrane action may have considerable effect on the torsion induced in the edge beams. A design method is derived to deal with beams subject to tension. An investigation is then made of the lateral restraint provided at the edges of an interior panel by the surrounding panels, considered to be of elastic, homogeneous material. An experimental study of a quarter-scale, nine-panel slab and beam floor was conducted. The equations derived by Park for the ultimate strength of slabs with compressive membrane action were used to design the floor. The membrane action was assessed as sufficient to double the Johansen ,ultimate load of the centre panel. A smaller enhancement was allowed for in the centre-edge panels and none was allowed for in the corner panels. The centre spans of all beams were designed to carry the tension induced by the compressive membrane forces in the panels. Results of fourteen load tests on this model floor are analysed with particular reference to the effects of membrane action. Satisfactory behaviour at service load was observed and the floor sustained the predicted ultimate load before failure of the centre panel. The measurement of concrete and steel strains at critical sections revealed the presenc.e of compressive membrane forees in the centre panel and tensions in the beams that were of the order expected . .A comparison of the volumes of steel reinforcement required in the model floor indicated that design including compressive membrane action brings no advantage except when the additional steel that is required to resist the tensile forces induced in the beams can also be used to resist moments due to earthquake or other lateral loading of the structure. It is concluded that allowance for membrane action in design would be of small benefit for normal slab and beam floors and would be of greatest use when very high loads are imposed on slabs with high lateral restraint at the edges. NOTATION a, a' Depths of the equivalent rectangular stress blocks at the ultimate flexural capacity of sections in regions of positive and negative moment respectively. A Gross area of a section. A s' AI b S Areas of tension steel in slab or beam sections subject to positive and negative moment respectively. Breadth of a rectangular section and of the web of a T- or L-section. Breadth of flange of a T- or L-section. c' c Force in conerete per unit length of a hogging moment yield line. d, d' Distances from the top of a section to the centroids of the tension steel, for positive and negative moments respectively. Depth of the neutral axis of a seetion, measured from the compression face. D Overall depth of a beam or slab. e Strain - subscripts used are defined by Figures 7.7 and E.1 . Young~s modulus. Yield stresS of steel reinforcement. Cylinder strength of concrete in compression. Tensile fracture stress of concrete. Enhancement of the load capacity of a reinforced concrete slab due to membrane aetion, i.e., F the ratio of the ultimate load with membrane action to that calculated by Johansen's yield line theory. Fmax Maximum attainable enhancement factor for a reinforced concrete section. F* Average enhancement of the moment capacities of slab sections along yield lines necessary to produce a load enhancement of F. G Shear modulus of concrete considered as an elastic, homogeneous material. Ratios of hogging to sagging yield moments due to steel in the short and long directions of a slab. J Particular values of is and i L , Subscript denoting the value of a quantity at the Johansen ultimate load. Constants defining the stress block for concret~ ) in compression as proposed by Hognestad et al.l 0 Clear span plan dimensions of a rectangular slab in the x and y directions. m, m' Yield moment capacities, per unit length, along sagging and hogging moment yield lines respectively ~ taken as the moment of internal steel and concrete forces about the mid-depth of the slab. M, M' Moments at beam sections at mid-span and support, taken as the moment of internal actions taken about the mid-depth of the beam. Values of m, M at the Johansen ultimate load. Value of M due to earthquake loading only. Maximum torsional moment in a beam. s Spacing of bars in slabs, or stirrups in beams. Tx' T'x Tensions induced in an x-direction beam due to compressive membrane action in the panels, i.e., the difference between the steel tension and concrete forces at a beam section in the span and at a support respectively~xcept as used in Appendix A). T1 ,· .T 6 , TB,T:8,T:8 Also llsed to denote tension in beams. Tm The maximum torque in an edge beam supporting the square slab of Figure 4.4. u Cube strength of concrete in compression. V Volume of steel in a slab. VI Shear to be taken by stirrups. U W or wM Ultimate load per unit area of slab with membrane action. wJ Johansen ultimate load per unit area of slab. W The sum of in-plane loads acting along each half of each edge of a surround. x, y Rectangular co-ordinates in a horizontal plane. Vertical deflection at points F, S ... Lateral deflection of slab surround. Ratios of the effective outward movement of the edge of a surround to the half span of the slab. Parameters defining the length of top steel as in Figure 2.1. (a) In Chapter 2: Ratio of the sagging yield moment, M , in the x-direction to that in the y-directi~n, My' (b) In Chapters 5 and 7 and in Appendix A: Poisson'S ratio. Capacity reduction fae-tor as used in ACI 318-63. Notes: (i) other symbols are defined in the text, generally by Equations or Figures and apply only to one Chapter. eii) The notation used in Chapter 3 is defined in Figures 3.1 and 3.3 and within the text of the Chapter. Main symbols used·are: K A measure of the flexibility of the restraining springs at the circumference. Moments, per unit length, in the radial and circumferential directions respectively, Moment capacities per unit length of sagging and hogging moment yield lines respectively when no membrane forces exist at the section. '1, '1J' '1 M Intensities of the uniform load - in general, at the Johansen load~ and at the e~Qanced load. QJ' QM Total loads on the circular slab, Qr Shear force, per unit length, at a radius, r. To Force in the tension steel after yield. T e , Tr Net tensions, per unit length, in the circumferential and radial directions. w Deflection of a point on the slab. Wo Deflection at the centre of the slab. CONTENTS Page CHAPTER 1 INTRODUCTION AND SCOPE OF WORK 1.1 Introduction . . 1 1.2 Object and Scope of Work Performed 7 CHAPTER 2 MINT MUM STEEL REQUIREMENTS IN RECTANGULAR SLABS SUPPORTED ALONG ALL FOUR EDGES CHAPTER 3 11 A STUDY OF THE EFFECT OF MEMBRANE FORCES . ON A REINFORCED CONCRETE SECTION AND ON A CIRCULAR SLAB WITH PARTIAL LATERAL RESTRAINT AT THE EDGES 3.1 Enllancement of the Moment Capacity of a Reinforced Concrete Section 3.2 24 The Effect of Membrane Action on a . Clamped Circular Slab Supported and Laterally Restrained at its Circumference CHAPTER 4 31 THE EFFECT OF PANEL MEMBRANE AOTION ON THE DESIGN OF SUPPORTING BEAMS 4.1 Summary 4.2 Determination of Beam Moments . . . . 56 . . 56 Page CHAPTER 4.3 4.4 CHAPTER 5 The Effect of Panel lVlembrane Acti on on Torsion in Supporting Beams 70 Discussion and Conclusion 77 STIFFNESS OF SURROUNDS FOR SQUARE SI,ABS 5·1 Introduction and Summary . 5.2 Method of Analysis and Cases Considel~ed 79 . . . 80 5.3 Displacements of the Loaded Edges 83 5 .L~ Stresse s in the Surround 86 5.5 Deep Beam Approximation 5.6 CHAPTER 6 86 92 Conclusions DESIGN AND CONi3TRUCTION OF A MODEL SI.AB AND BEAM FLOOR . . · · · 6.1 Introduction 6.2 General Design Basis and Specifications 95 ..· 99 6.3 Design of Floor Panels 102 6.4 Design of Beams 109 6·5 Construction 6.6 Material Properties and Final Slab Dimensions CHAPTER 7 · . · 111 · ·.· ... . · · . . . · 117 INSTRDllliNTATION AND TEST PROGRANl1'llE 7·1 Instrumentation 7·2 Test Programme 7·3 Reciuction and Processing of Raw Data . .. · · · 122 · 131 · · . . . . '. ··. . . · 134 Page CHAPTER 8 TESTS ON THE PERFORMANOE OF THE 1ffiTHOD USED TO OALOULATE SECTION AOTIONS 8.1 Summary 148 8.2 Tests on Special Control Specimens 148 8.3 The Effect of Variation in Strain Readings CHAPTER 9 159 BEHAVIOUR OF THE NINE-PANEL MODEL FLOOR DURING THE TEST PROGRAMME ... . . .. 9.1 Summary 9.2 Test by Test Description of Floor Behaviour . . . . . 163 . . 9.2.1 Tests 101 , 102, 105 and 106 168 9.2.2 Tests 103 and 108 170 9.2.3 Tests 104 and 109 171 9.2.4 Tests '107, 110 and 111 172 9.2·5 Test to Failure of Floor as A Whole 9.2.6 181 Test to Failure of Outer P~nels 9.3 168 . . . . . . 190 Examination of Aspects of Floor Behaviour . 196 9.3.1 Deflections 196 9.3.2 Strains 203 9.3.3 Cracking. 209 9.3.4 Reac.tions 213 Page CHAPTER 10 9.3.5 Moments. . . . 9.3.6 Membrane Action Effects DISCUSSION OF TEST . 216 232 RESULTS 1 0 .1 .Summary 253 10.2 Discussion of Test Results . . 253 10.3 Conclusions 262 CHAPTER 11 A C01~ARISON OF THE REINFORCING STEEl1 REQUIREMENTS OF THE MODEL FLOOR, DESIGNED WITH AND WITHOUT ALIJOViTANCE FOR MEMBRANE ACTION 11.1 Introduction and Summary . . 266 11.2 General Basis of Comparison 26'7 11.3 Comparison of Steel Volumes 269 11.4 Discussion. 2'71 11.5 Conclu.sions 278 CHAPTER 12 GENERAL CONCLUSIONS 12.1 Conclusions from Work Performed 12.2 Suggestions for Further Research . APPENDIX A · 280 . . 284 DESIGN CALCULATIONS A.1 Parkus Equations for the Ultimate Loads of Panels · 288 A.2 Design of Panels A.3 Design of Beams APPENDIX B 291 . . . . . · 299 MATERIAL PROPERTIES AND SLAB DIMENSIONS Page APPENDIX B.1 Cone-rete Properties 305 B.2 Steel Properties 306 B.3 Slab Dimensions . 308 APPENDIX C DETAILS OF LOAD INCREMENTS FOR THE TEST ON THE NINE-PANEL FLOOR APPENDIX D 312 REDUCED DATA FROM SLAB TEST D.1 Deflections 314 D.2 Reactions 321 D.3 Strains. . . . . . .... APPENDIX E COMPUTER PROGRArmillE DESCRIPTION APPENDIX F RESULTS OF TESTS ON CONCRETE SLAB STRIPS . 0 • REFERENCES • • • • • • 324 346 350 355 - 000 - THE LIBRARY UNIVERSITY OF CANTERBURY CHRISTCHURCH, N.Z. INTRODUCTION 1.1 CHAPTER 1 AND SCOPE OF WORK INTRODUCTION In the calculation of the ultimate loads of two-way reinforced concrete slabs, the yield line theory due to Johansen(2) has been widely adopted. This theory does not include the effect of forces in the plane of the slab and under-estimates the ultimate loads of slabs when in-plane compressive forces are present because the compression enhances the ultimate moment of resistance of the section. In the common case of a lightly reinforced slab the large shift of the position of the neutral axis which occurs with cracking; causes a tendency for the edges of the slab to move outward as the slab deflects further. If the edges are restrained against outward movement, compressive forces are induced in the plane of the slab. The result- ing enhancement of the load carrying capacity of the slab may be thought of as due to the enhancement of the moment capacities of the yield sections, or to an arching or doming effect in the slab as a whole. - Ockleston(3,4,5) has reported on tests on interior panels of a full scale slab and beam- floor for which the 2 ratios of experimental ultimate load to predicted Johansen load (= enhancement factor) were greater than 2.5. The fact that Ockleston showed that this large increase could be accounted for by the development of in-plane compressiOli has stimulated considerable research, both experimental and theoretical, into the phenomenon of membrane action in reinforced concrete slabs. powell(6) tested small scale rectangular slabs (36" x 20.57" x 1.286") with equal percentages of steel, top and bottom,in both directions. Experimental results revealed enhancement factors between 1.61 (for 1.53% reinforcement) to 8.25 (for .25% reinforcement). Wood(7) tested three square p1;l.nels (68" x 68 11 x 2.25) cast monolithically within a stiff reinforced concrete surround and obtained enhancement factors of 4.38 (for .25% reinforcement top and bottom) and 10.-< Cd) (c) (f) (e) I FIGURE 2 _1 (g) (i) RECTANGULAR SLAB AND POSSIBLE FAILURE MECHANISMS (h) - 13 steel required for the slab was calculated and the conditions giving minimum steel volume were determined. a result, optimum values of i1 and i2 were found; As values of ~, >--2 were related to i 1 , i 2 ; and fie' the most economical coefficient of orthotropy was determined as dependent upon Ly/Lx' i1 and i 2 . In many cases, especially when ~e took high values, minimum reinforcement conditions were seen to govern. 2.2 VOLUME OF STEEL IN SLAB For a lightly reinforced section, the moments per unit width are given by: .... (2 .1 ) similar expressions resulting for the hogging yield moments. For very lightly reinforced sections the value of 'a' is small relative to dx or dy and for the purposes of studying minimum steelrequireme~ts it may be assumed that d = d . x Y It is therefore reasonable to assume that mx and my vary directly with the area of steel, As' in exactly the same manner. . Therefore, in general, As = km where k is a constant incorporating dx and f y ' The volume of steel, V, is then given by v == k L~ymy(1+;U) + 2k L~ymy(i1 A 1 #+ i2 A 2 ) ••• (2.2) (bottom steel) (top steel) - 14 2.3 COLLAPSE MODES OF SLAB Figures 2.1(c) and (d) show the two most probable collapse modes. In (c) full hogging moments are developed around the edges of the slab and full sagging yield moments developed along the sagging yield lines as shown. In (d) the portion of the panel without top reinforcement fails as a simply supported slab of reduced span lengths. Collapse patterns (e), (f), (g), (h), (i), (j) were not considered at this stage, but it will be shown that the conditions imposed by modes (c) and (d) require little or no modification when the other patterns are considered. The collapse load of mode (c) may be shown to be (7) and since mode (d) is a special case of (c) for which i1 i2 = 0, Lx = (1-2~)Lx' Ly 2.4- YYly = = (1-2A2 )Ly : P. 2. .... (2.4) The minimum length of top steel may be obtained by equating Wc = wdo The resulting relationship betweeni 1 , i 2 '.\.1 15 .... (2.5) Comparison of similar terms on the left and right sides of Equation 2.5 gives: (1 - and 2 \1 )"(1-Z'\2.) - (1- 2\2 2 (1 - 2..\1 - .... (2.6) 1 + i1 1 + i 2. .... (2.7) Equating values for (1-2~f given by each of 2.6 and 2.7 gives: = (1_2~)2 (1+i 2 ) (1 +i1 ) .... (2.8) which reduces to: \ 1-21\2 _1_ = /1 +i2\ • D • • (2.9) and similarly 1-2'\1 ~ =)1 +i11 .... (2.10) Thus A1 and "'2 may be determined if i1 and i2 are known. -- 16 2.4 MOST ECONOMICAL COEFFICIENT OF ORTHOTROPY,~ e The value of)A-- which give s the least volume of steel in the slab may be determined by setting ~~= O. From Equation 2.2: v = my and k LxLymy (1+"u+2 i/'1fi-+2iZA2) = w L~ (~)2 t 2. 2..4- .... (2.2a) (1- 2. A'\ ) 4- ,42 (1 - 2 \'2) from Equation 2.4. 2 - 1 in which t = .... (2.11) For differentiation with respect to;U-, values of i 1 , i 2 , Lx' Ly will be constant and therefore substitution for my in Equation 2.2a gives: V= K[~~(1+2i2.A2.) + ~(1+2i1Al~ .. . = 0 for minimum V. Now from Equation 2.11: 2lt ~ = ~(h)2(1- 2>-.,)2- - 2.lt.-t 1) L)(. Substitution for fA' and t -1-1 (1 - 2.>-'2.)2 dt.ln ~ 'dv = ~ 0 gives 17 which is the condition for minimum volume. Substituion for t+1 from Equation 2.11, squaring, and collecting terms leads to the result: ..•. (2.13) which corresponds to the result stated by Wood(7). The validity of Equations 2.3 to 2.13 is limited to the range of i1 and i2 values for which the collapse mode is of the form shown in Figure 2.1(c). In particular, the central sagging yield line must be parallel to Ly . For the symmetrical rectangular slab under consideration, this condition is fulfilled if 2.5 fL ). (Lx )2.(~) \ Ly "~+-I1 . MOST ECONOMICAL VALUES OF i1 and i2 The values of i1 and i2 which give the least volume of steel could be determined by differentiation of Equation 2.2 but this is difficult and tedious and a simple computer programme was written to investigate the effects of i1 and i2 on the steel volume. For each Ly/Lx ratio steel volumes were calculated for a range of i1 and i 2 • For each combination of i1 and i 2 ", f£e was calculated before the volume of steel was computed. In all cases the combination of i1 = i2 = 2.0 gave minimum volume. For a square slab, the differentiation of - 18 the volume expression with respect to i (= i1 in fact, give i = = i 2 ) does, 2.0 for minimum steel. For L/Lx% 1.0 greatest economy is thus achieved if i1 2.6 == i2 == 2.0, provided"ue can be attained. EFFECT OF OTHER COLLAPSE MODES (i) Modes (c),, (d), (e), and (f) By considering modes (e) and (f) as special cases of mode (c) it may be shown that, provided A1 and >-2. are cal- culated from Equations 2.9 and 2.10, modes (c), (d), (e), (f) have identical collapse loads for any given value of~. (ii) Modes (g), (h), (i), (j) Since these bear the same relation to each other as (c), (d), (e), (f), the collapse loads of patterns (g), (h), (i), (j) are identical. It is thus necessary to find the regions of Ly/Lx' i1 and i2 for which the latter modes have a lower collapse load than the former. To achieve this the loads of each set were computed for a range of Ly/Lx' i 1 and i2 (A1 andA 2 were calculated using Equations 2.9 and 2.10; the coefficient of or'thotropy,;U-, was always set at ~ as given by the particular values of Ly/Lx' i1 and i 2 ). Under these conditions, modes (g), (h), (i), (j) governed only when L/Lx' i1 and i2 were such that mode (c) was not valid initially for the calculation of JUe' By considering the case when the collapse pattern 19 consists of diagonal yield lines, it may be shown that the initial collapse mode is valid if the value of f0e cal- culated therefrom (Equation 2.13) satisfies .... (2013a) Only in exceptional cases will this condition not be satisfied since for economy i1 i.e. ~, ~ i2 and /Ae - ~ 3(~:y 2 increases with Ly/Lx while its minimum allowable value decreases. The analysis of modes (c) and (d) will therefore provide sufficient check unless Equation 2.13a is not satisfied. 2.7 PRACTICAL IMPLICA~IONS AND LIMITATIONS For a slab of chosen Ly /Lx , three parameters were investigated for a range of i1 and i2 values in order to assess the practical usefulness of Equation 2.13. parameters investigated were: coefficient of orthotropYi required in the slab; The (i) the most economical (ii) the volume of steel and (iii) the range of load and i values for which minimum reinforcement requirements do not govern. (i) Variation of Most Economical Coefficient of Orthotropy The variation of ~e with i 1 and i2 was determined for - 20 a given Ly /L x ratio by using Equation 2.13. Values of i1 and i2 between 0 and 3.0 were used. For each combination, A1 and A2 were determined by Equations 2.9 and 2.10 and fie calculated. Values of Ae were plotted on an i1 vs i2 graph and contours of equal ~ drawn in the regions where the value of i2 did not invalidate the assumed failure mechanism. Figure 2.2 shows these graphs for Ly/Lx 1.0 and 2.0. (ii) Variation of Steel Volume In this investigation the value of ~e and'used to find the values of mx and my. was calculated The value of my was fouhd from Equation 2.4 and the percentage of steel, 2 p, calculated using the equation Pd fy = m, based on the assumption that the depth of the rectangular stress block, a, is zero. From 2.4 = ..•. (2.4b) in which = VVR is a convenient non-dimensional measure of the load which,.for the purposes of this investigation,was kept high so that minimum reinforcement can. ditions were not encountered in the range of values of i and Ly/Lx investigated. From the values of percentage steel volume calculated for each combination of i1 and i 2 , contours of equal volume were plotted for valid regions on FIGURE 2.2 21 VARIATION OF fie (a) Ly/~=1.0 (b) Ly/Lx = 2.0 3r-----~------~------~~- f4a contours I FIGURE 2.3 VARIATION OF STEEL VOLUME (a) Ly!4<=1.0 I (b) Ly/L)(,.1.50 2~~~--H-~---1~uvl=~m = ~Xl00 contours of equal volume 2 i2 3 ~"t-----t----1.10 0 2 i2 3 O~~~~~~~~~==~==~~~==~----~-2.4 MINIMUM REINFORCEMENT BOUNDARIES I l+\--\---+ (0) Ly /Lx = 1.0 lood contours 41-+----+ (b) Ly / Lx" 1.50 22 the i1 vs i2 graphs. Figure 2.3 shows these c.ontours for Ly /L x = 1.0 and 1.5. (iii) Minimum Reinforcement Restriction Imposed "by Codes of Practice For each value of Ly/Lx' a range of load parameters was used, for eac.h of which the contour on the i1 vs i2 diagram was found which marked the boundary beyond which minimum reinforcement restrictions would govern. The steel percentage was calculated on the basis described in (ii) above. In all cases )&e was calculated before my and p. Figure 2.4 shows contours of equal W for Ly/Lx = 1.0 R and 1.5. The minimum steel percentage allowed in these figures was .15 per cent as in the British Code of Practice CP114. 2.8 DISCUSSION Figures 2.2, 2.3 and 2.4 show clearly the effect of the various parameters. The value of ~ e is not affected greatly by change in i1 and i2 values particularly in relation to the effect of The large increase in Ae with increase in Ly/Lx reduces the steel requirement in the long direction and hence far greater loads are necessary in rectangUlar slabs to avoid minimum reinforcement conditions 23 when the value of A is used. To illustrate the inter- pretation of WR values, consider a slab with (Lx/d) = 30, 2 f; = 4000 Ib/in . The ultimate load, w, is then 106.9WR psi which for WR = .025 is 2.67 psi or 374 psf. Comparison of these values with Figure 2.4 shows just how often minimum steel will govern. When minimum reinforcement conditions do not apply, the volume of steel may be seen to vary considerably with i1 and i2 for a given Ly/Lx' For the very minimum con- ditions of i 1 = i2 = 2.0, increase in Ly/Lx requires more steel per unit volume of slab. The advantages of using a value of i1 in the region of 2.0 are clear from inspection of Figure 2.3 and, for slabs with Ly/Lx> 1 .0, a decrease in i2 from the position,i 1 = i2 = 2.0 l brings smaller penalties than a decrease in i 1 " Penalties for decreasing i2 from this point are relatively less for a slab with Ly/Lx> 1.0, but it is clear that use of i1> i2 should be preferred. It may be concluded that although minimum reinforcement conditions will govern in many cases, values of fix/my = I&e and i1~ i2~ 200 will give greatest economy where these conditions can be achieved. Furthermore, it is apparent that variation from this optimum does not increase the volume of steel greatly but an increase in i2 may result in appreciable change in minimum reinforcement condi tions for slabs with Ly /L x /' 1 .0. 24 CHAPTER A STUDY REINFORCED WITH 3.1 OF THE EFFECT CONCRETE PARTIAL 3 OF SECTION LATERAL MEMBRANE AND ON RESTRAINT FORCES ON A CIRCULAR AT THE A SLAB EDGES ENHANCEMENT OF THE MOMENT CAPACITY OF A REINFORCED CONCRETE SECTION 3.1.1 Introduction The enhancement of the load carrying capacity of reinforced concrete floors by compressive membrane action is due to the enhancement of the moment capacity measured about the mid-depth of the sections along the yield lines. For any singly reinforced section there is a limit to the factor by which the application of compression enhances this moment capac.ity. The amount of reinforcement in the section has the greatest effect on this maximum factor and in the following sections, the effect of reinforcement and other variables on the maximum attainable enhancement factor is examined. 3.1.2 Yield Locus for a Singly Reinforced Section By examining the conditions at ultimate, on a singly reinforced section, a failure locus may be obtained 25 relating the moment and axial compression. Consider the section as in Figure 3.1(a) and having a tensile stress, fy' in the steel and a rectangular stress block £or the concrete, as shown in Figure 3.1(0). With the-notation as in Figure 3.1, noting that the moment of forces is taken about the mid-depth of the section: b~1 ~ I '85td I ·1\ S\..'I" -r- - --- ~~ \ r. \ P,s;: pbd • • 0 (a) Section \ es \ (;'6 y ) -'-- (c) (b) Strains FIGURE 3.1. Stresses (e) Actions SECTION NOTATION. p .85f'.a - pdf M = .85 f'.a.(D/2-a/2)+pdf c y (d-D/2) c Cd) Forces Y . ... (3.1) .... (3.2) and if the moment 'about the mid-depth for P = 0 is denoted l\IT '0' Elimination of 'a' from Equations 3.1 and 3.2 gives the yield locus as .... (3.3) 26 in which g = (.5D/d-2t)/(1-t) .... (3.3a) h = t/(1-t) .... (3.3b) t = pfy/(1.7 f~) .... (3.3c) dM For M/Mo to be a maximum, dP 0, which gives (P/To) = 2g/h .... (3.4) where Fmax is the maximum attainable enhancement factor, and is a function of t and Did only. 3.1.3 Relationship Between t, Did and Fmax The relationships between Fmax ' Did, p, and may be shown on one graph. fy/f~ Oonsidering the relationship between Fmax ' t and Equation 3.5 gives Did, the solution for which is t. =- [2Fmq~-(2-~)] - J[2FT'ro.<-(2-~~2_Fvvw«~)21 4 F"n<;;K •• 0 ( 3 .6 ) Therefore t may be plotted against Fmax for a given Did. From Equation 3.3(c) it is clear that it' may also be plotted against fy/f~ to give a straight line of slope = 27 (0 ~ .02r-~r-HIT~~~~~~~~r-+-~~---r- .15 -0 C o u f11, (T) \I) .O'rTrffl~~~~~74~~~~--+--------r- 0'" W l.4J dD ~-"""'1.2 =9.0 o ~---l-1.0 ~------~----~~------~------~------o 5 10 15 20 fy/f~ and FIGURE 3.2 ~ax MAXIMUM ENHANCEMENT FACTOR 28 p/1 .7. The plots of fy/fc' and Fmax (horizontal axis) against t (vertical axis) are shown in Figure 3.2. The maximum attainable enhancement factor fo:r:. a given fy/f~, D/d and p is determined by following the appropriate vertical line corresponding to f y /f'c until the desired straight line for p is met at an ordinate t 1 . The point" wi th ordinate t1 on the appropriate curve of constant D/d has an abcissa equal to the maximum attainable enhancement factor. process is shown on the figure for and p = .003, to give Fmax 3.1.4 = fy/f~ = This 9.0, D/d = 1.20 5.3. Condition That Steel Will Yield at Maximum Enhancement In the above analysis it was assumed that the steel strain, e s ' exceeded the yield strain, e y ' at all times. The situation giving least steel strain is that when maximum moment enhancement is reached. This is when the depth of the rectangular stress block, a = .5D since any increase of 'a' beyond .5D would reduce the moment about the middepth. Villen a .5D, d n = D/1.7 and consideration of similar triangles on the strain diagram (Figure 3.1(b)) = yields .... (3.7) If the modulus of elasticity of the steel, E , s = 30 x - 29 106 psi, then e y = fy/30 x 106 and for yield to take place 8 > ey . This requires S .... (3.8) For e u = .0033, the following conditions result if yield is to occur: Did = 1 .0, fy ~ '70,000 psi Did = 1.1, fy ~ 54,500 psf Did = 1.25, fy ~ 36,000 psi Thus for most mild steels in sections with values of Did ~1.2 the condition of a = .5D does not invalidate the assumption that the tension steel is yielding. 3.1.5 Discussion and Conclusion The variation of Fmax with f y If'c' Did and p is summed up in Figure 3.2. Quantitative data as to the reduction of Fmax with increase in p, the increase in Fmax with increase in Did, and the reduction of Fmax with increase in may be obtained therefrom. fy/f~ This diagram serves also as a compact qualitative description of the factors influencing the enhancement of the moment capacity of the section. is clear from Figure 3.2 that to obtain the highest enhancement factor,any design should aim at: (i) A low value of f y-c' If'. which would be best It 30 achieved by increasing the concrete strength since it is the concrete which is providing the enhancement. (ii) A high value of Did gives a large enhancement factor. Howeverya high value of Did would cause a reduction in stiffness and in the absolute value of the unenhanced moment, Mo' Other factors such as crack widths dictate that minimum cover to the tension steel is preferable and the Did value would thus be fixed within close limits. (iii) A low reinforcement content. is the most critical. This requirement The low reinforcement content of reinforced concrete slabs leads to the enhancement of their load carrying capacities due to self-induced compression on the sections when the outer edges are restrained from moving laterally outward. This great- er enhancement for lower slab reinforcement is not due entirely to the fact that greater enhancement of the moment capacity of a section is available. The tendency for the edges to spread outwards as the slab deflects is greater for lightly reinforced slabs since the neutral axis is nearer the compression face of the concrete. The benefit gained from this effect is not apparent in the figure. Finally, it must be remembered that for slabs,the attainment of the maximum available enhancement will be impossible in practice if the net compression is provided 31 by passive restraint against lateral movement,since the lateral movement and vertical deflection will impose the condition that a . j::2.0 :s I ........ «.. .... 2.0 -.. '( CD «.. 1.0 " J: du/Os=O.O 0 1.0 1.5 2.0 enhancement factor 3.0 (c) effect of membrane action on maximum torque [ FGURE 4.4 TORSION IN EDGE BEAMS I 00 74 torque is imJ L/2(1 + A) as would normally be the case. However, once membrane action enhancement takes place the position of the slab centroid with respect to the shear centre of the beam becomes important. This effect is taken into account by the term B and the magnitude of this effect may be conveniently determined OY,calculating the ratio, H == (1 + A + B): (1 + A), ,for various F values and beamslab junctions. The results of these calculations for a typical beam are given below. Calculation of theR,atio H Example beam. b L= .05, Assuming F* == .1 , F. . Therefore 1 + A == 1.225,1 + A + B Load Enhancement Factor F 1 .0 1.25 1 .50 2.0 2·5 ~" == 2.0, i == Values of H du/Ds==O 1 .00 059 .32 -.02 -.23 -1 005 du (F -1) (1 - D) 1.225 - 2.5 -F---.--£ := ~1+A+B2/~1+A) d u /Ds==1.0 1.00 1.00 1.00 1.00 1.00 1.00 These values are plotted on Figure 4.4(c). du /Ds=2.0 1.00 1 .41 1 .68 2.02 2.23 3.05 75 The effect of change in du/Ds is understandably large and changes sign when the mid-depth of the slab coincides with the mid-depth of the beam. The reduction in maximum torsion is remarkable when the top of the slab is flush with the top of the beam. 4.3.3 Conclusion Design of a slab such as in Figure 4.4 to include the effects of membrane action would require the beams to be designed for a laterally outward load in addition to the normal vertical load. Placement of the slab flush with the beam at the top would offset this additional requirement by reducing the torsion induced in the beams. In the more general case in which lateral restraint is provided by surrounding panels and the supporting beams the effect on the beams would not be as great. The surrounding panels would take most of the lateral force and the nett lateral force on the beam would be smaller. Less effect on lateral bending and torsion would result. Nevertheless, the high sensitivity of the maximum torque,even at low enhancement factors, indicates that consideration of this behaviour is important in many cases. 4.3.4 Suppression of Hogging Yield Moment Development Along Exterior Edges of Panels in Which Membrane Action is Present In designing edge panels to develop full hogging 76 moments along the exterior edges, only the torsional strength of the edge beam need be sufficient for this to occur ultimately. In the case of panels which may develop membrane compressive forces which enhance the load capacity of the panel, the full development of the exterior edge hogging yield moments may not be required. In the test to destruction on a model nine-panel reinforced concrete slab and beam floor described in Chapter 9, the steel strains along the exterior edges of the edge panels were well below yield values at the predicted ultimate load and a reduction in the edge beam torsion was evident. The presence of compressive membrane forces normal to the edge would account for the reduction in torsion, and, because membrane action is not purely an ultimate phenomenon, the value of the restraining moment could have been enhanced above that which the level of steel strains would normally imply. However, the capacity of the edge beams to resist lateral force was not high and an alternative mechanism was sought. Recently~39) it has b@'e'n report~d that the torsional stiffness of a reinforced concrete beam reduces remarkably when cracking occurs. It is clear then that large twisting deformations of the beam would be required before the full yield moment could be developed and the slab element would have to rotate even further to create the differential movement necessary for the development of the yield moment. 77 No attempt was made to analyse this case but the observed behaviour during the test suggested that membrane action in other regions of the edge panels provided assistance in carrying the load before sufficient slab deformation could occur to develop the hogging yield moments along the exterior edges. Torsional moments in the edge beams computed on the basis of the full development of these hogging yield moments could thus considerably overestimate the true values. 4.4 DISCUSSION AND CONCLUSION It is clear that membrane action in panels will affect the flexural and torsional steel requirements of beams. The method of determining beam tensions is a simplification but values of beam section actions resulting provide adequate strength and a realistic distribution of moment between mid-span and support sections. The equations derived to determine the flexural reinforcement at critical sections of a T-beam subject to moment and axial tension require some qualification in that at sections of the beam at which the moment is zero, a sufficient amount of longitudinal steel must be placed to take the tension. Furthermore, at the critical sections it is necessary to check that the neutral axis lies within the section. Because of the likely adverse effect of beam deform- 78 ations on the development of panel membrane action it would be wise to ensure the beam collapse mechanisms do not occur before the panel mechanism. The effect of compressive membrane action on the torsion induced in the supporting beams is clearly considerable, and worthy of consideration in design. For the case in which membrane forces acting normal to the edge beam reduce the torsion, any advantage so gained could be offset by any extra provision required for biaxial bending of the beams. However, in cases where membrane action may exist in other regions of the edge panels it is likely that the torsion for which the edge beams would normally be designed will not be attained. This latter effect, or even the combination of the two effects discussed could provide an instance in which the neglect of membrane action leads to the overdesign of edge beams for torsion. 79 5 CHAPTER STIFFNESS 5.1 OF SURROUNDS FOR _§9JI1\._R_E_-,S_L_A_B-.;.,,s INTRODUCTION AND SUMMARY The degree to which compressive membrane action enhances the load carrying capacity of a reinforced concrete slab depends principally on the lateral stiffness of the elements providing restraint against outward movement of the slab edges. For interior panels of a multi-panel slab and beam floor, this restraint is provided by the panels surrounding the one in question. Thus when the interior panel exhibits compressive membrane action, the surrounding panels are subject to in-plane forces. The surrounding elements may therefore be considered as a flat slab with in-plane loads applied normal to the edges of a central hole which corresponds in size to the panel exhibiting compressive membrane action. In order to obtain some measure of the variation of surround stiffness with the size of the outer panels, slabs of analysed. elasti~ isotropic, homogeneous materials were The study was restricted to the consideration of a squ~re slab with a square central hole. 80 A library computer programme employing the finite element method for the solution of plane stress problems was used to calculate the deflections of the loaded edges and the stresses within the surround. Because the rigorous plane stress analysis required large computational effort an alternative method of computing the edge deflections was sought. Consideration of each edge of the surround as a deep beam proved very satisfactory in this respect. The rapid computation of edge displacements would permit extension of theories such as that due to park(11) to include interaction of the edges of surround and slab. 5.2 METHOD OF ANALYSIS AND CASES CONSIDERED The dimensions and properties of the slab considered in this study are shown in Figure 5.1(a). Due to symmetry it was necessary to analyse only the portion ABCDEF with boundary conditions as in Figure 5.1(b). For each sur- round shape, three separate load distributions were applied to the edges, BC and CD, each of the same total load. The shapes of these distributions (see Figure 5.1(c)) were chosen as representative of the possible distributions of membrane forces along the edges of a square interior slab. Analysis was carried out using an existing computer programme for solving plane stress problems by the finite element method based on a quadratic strain triangle(21). ~______~A______~~ horJ'l(_~.,,'leOl·""" *-tie WckMU. t ~lII l"CItIo~"J.ly ...15 E (i) uniform ~ d i ..-~__ '----_ _-----' ~ I w--l c c B (iii) cubic (ii) pOl"!lbolic B (c) Load dlllltributionlil FIGURE 5.1 SLAB SURROUND ANALYSED II') ~ ~ II') ~ " II') ~ II') q ....1:1 ~ 1..125 ~ .125., .125, I ~IGURE 5.2 ~.125 f ~INITE .125 ~ .~ ~ .or 5 ELEMENT MESH 6t 1 I c 82 Each of the portions ABCF and CDEF was divided into 160 triangul ar elements as in Figure 5 .2 . Loads were applied to nodal pOints in the y direction along Be and in the x directi on along CD . The study was limited to cases in which ax = a y and = by' In the first seri es , t he slab was of uniform x thickness throughout and f our cases were considered with b ax/bx tak ing t he values: . 5 ,1. 0 , 1 . 5 , 3 . 0 . To investigate the effect of supporting beams, the case of ax/bx Be and CD. 5.2. = 1.5 was analysed with a thick band a l ong The dimensions of this band are sh own in Figure. The symmetrical shape was r equired bec ause a two- dimensional s tress syst em was being analysed, and the tapering thickness ac r os s the second row of elements was necessary t o a~oid stre ss di s continuity at the element b oundari e 5 • . For each surround under each load the following quantiti es were determined at each n odal point . (i) The normal stresses and strains in t he x and y direction . (ii) The she a r stre ss a nd s train in t he x 'or y , direction. ( iii ) (iv) (v) The maximum and mi nimum principal stresses. The maximum shear stress. Displacements in the x a nd y directi on. For reasons outlined under 5 .1, displacements of the 83 loaded edges were of particular interest in the context of membrane action and it is these that receive greatest attention in the following sections. 5.3 DISPLACEMENTS OF THE LOADED EDGES Although stress concentration at the re-entrant corner, B, cast doubt on the accuracy of computed stresses near this point, the use of small elements in this region ensured that its effect on stresses at other points was very small, and the effect on deflections even less. In Figure 5.3 the displacements in the y direction of the edge BC of the surrounds are shown. The quantity, n = ,\tE, expresses this movement in non-dimensional form. t, ~ = deflection of the edge, t = thickness of slab, E modulus of elasticity of slab material, W = = total load applied normal to the edge BC ( = one half of total load applied to one edge of the interior hole). Hence the deflection, ~, of the edge may be obtained from ~ =nW/tE Features to note in Figure (a) .... (5.1) 5.3 are The small difference between load cases (i) and (ii). (b) The large difference between load case (iii) and load case (i). 84 (c) The ratio of maximum deflection (at B) to on at C is greater for low values of defle surround. width. (d) ons along the edge are remarkably Defle constant for load case (iii), especially for ax/b x =1 00 and ·1 (e) .5. The maximum deflection falls off rapidly as ax/bx is decreased from 3.0, but the change x Ib x is decreased from 1.0 to 0.5 is very small. in maximum deflection when a Figure 5.4 shows that load case (iii) has less sensitivity to change in ax/bx than load case (i) and gives a clear indication that decrease in a x Ib x lower than ttle increase in surround stiffness. 1 00 brings The effect of increasing the surrourld width is further lessened when the results of Chapter 3 are recalled, viz., an inGTeaSe in surrom:d ate increase (f) ffness does not produce a proportion- the enhancement factor. The effe of uding the thicker edge beam on the maximum deflection is plotted in Figure 5.4. In both load case (i) and load case (iii) its inclusion is equivalent to increasing the surround width. However, this '. effective increase in width was less than could have been achieved by using the same amount of extra material to increase the ,surround width directly. This situation load i load ii load iii 20 --- --- -----....... 6 ........ 5 deep beam values 3: ;) ... ... ... ... .- ._._._._._._.L-.--..:-._ +' "'-ReadingS not tatcen beyond this point o o 12500 37000 25000 MICROSTRAlN 50000 - 121 6.6.2 (i) Final Slab Dimensions Level of Top Surfaces: Precise level readings on the top surface taken to :t.005" varied from -.20 to +.15" above the mean level. The standard deviation of the 169 readings was .073", The planeness of the top surface was better than these figures indicate since readings revealed a small overall slope. (ii) Panel Thickness: The overall average of nine readings per panel was 1.976" with range of a standard deviation of .048". 2:..11 11 and At the end of the test, thickness measurements were taken at the edges of the centre panel (E), and a corner panel (J). centre~edge panel (H) and a The average of all these readings was 1.904". (iii) Beam Thickness: Beam depths were measured at the ends and quarter points of each span before the test. Results were: 6" beams: Average depth::::: 5.965", s.d. 7.1.2 II b earn",: !=( Average depth (iv) test. Cover to Steel: 7.490 11 , s.d. = .036 tl .030 11 A check was made after the Both panel and beam steel cover were generally wi thin 1/32" of the expected value. Fuller details of the measurements of the slab are given in Appendix B. 122 CHAPTER INSTRUMENTATION 7.1 AND Z TEST PROGRAMME INSTRUMENTATION 7.1.1 Reaction Measurements Figure 7.1 shows details of a support B2. The 10- ton capacity Philips PR 9226 electrical resistance load cell is shown sitting between a two-way roller system and a 1i" mild steel bearing pad. Adjustment of the nuts at the column head enabled the whole assembly to be levelled. All reaction points were of similar form. The roller supports for the outer ring of support points were i" ball bearings between hardened, ground plates. Two of the inner supports (B3 and C2) had one-way- rollers while support C3 was fixed against horizontal movement ensuring that, although the floor as a whole could not move, all reactions were vertical. Each load cell was wired to a 16-way, four-channel switch connected to a Budd Strain Indicator, and readings on each cell recorded manually. Values of reactions were calculated using the load-strain calibration curves obtained for each cell as a result of tests performed before and after the testing of the floor. FIGURE 7. 1 DETAIL OF SUPPORT FIGURE 7.4 TEST SET-UP B2 124 7.1.2 Strain Measurement Strain gauge positions are shown in Figures 7.2 and 7.3. All gauges were wired to a 140-channel strain data logger in a two-arm circuit. The data logger (right foreground of Figure 7.4 ) was accurate to + -5/LS .and could read automatically each gauge in turn. A digi t8.1 vol t- meter incorporated in the logger provided output, in microstrain units, on a typewriter and tape punch~ The automatic switching facility required that each active gauge have its own dummy. The active concrete gauges were PhiJips PH 9810 C/11 (600 ohms,' flat grid, 1 inch gauge length, i" grid width) glued directly to the concrete with Philips cement kit PH 9244/04. Concrete dummy gauges were of the same type and glued in the same manner to the three concrete blocks to be seen in Figure 7.4. Active steel gauges were BLH SR-4 A-12 paper backed gauges (flat grid, 1 inch gauge lengths, 120 ohms, gauge width, 3/32"). The reinforcing steel was exposed by the removal of the cork blocks and considerable care was necessary in obtaining uniform adhesion onto the diameter bars. i" Grooved rubber pads were used to form the gauge around the bars. Nitrocellulose adhesive from the Duco Cement kit was used throughout. Dummies for these gauges were temperature-compensated, 120 ohm gauges mounted on Aluminium. Two unstressed SR-4 gauges mounted 125 in the same way as the active gauges and having dummies on the aluminium, were used to assess the effects of temperature on the strain readings. Following initial placement, all gauges were checked for continuity and resistance to earth, the necessary replacements being made until all gauges were satisfactorily mounted. Gauges were then waterproofed with wax. The 140 channels of the data logger were split into blocks of 20, the first channel of each block being wired to a Philips PR 9249A dummy strain gauge to check drift. Gauges 7-32 were placed so as to afford measurement of membrane force in the centre panel in a region of low moment. Gauges 33-46 provided this facility in a centre- edge panel, 47-50 in a corner panel. Gauges 78, 79, 76, 80, 82 were placed to give an indication of T-beam flange widths. Hair cracks normal to the line of the gauges in mid-span necessitated their placement slightly off centre. Gauges 112-120 were placed for measurement of moment and membrane action force in a region of high moment. Gauges 94, 95, 105-108 served a similar purpose for a centre-edge panel. All other gauges were placed to give an indication of stress levels at critical points and in some cases, means of calculating moments and forces at a section. 126 FIGURE 7.2 [ STRAIN GAUGE POSITIONS ON 1- Denotes strain gauge C - Denotes BOTTOM position concrete gauge on upper surface STEEL I ' I -fff1='-'---rI I t-i--t---~ ~I-I-I- l m~ --ru--~, \ -+----+--t -----r- G: -TI,·.--+,[' _.-+-_ , II ' tm. .*-+.+ 'ij 8~ I , }j-' ~ I' I',tt'-1 -1- I ,I J~7 --\-1-- -; 0 I . :: I I I i r I i I i I I : 11 A I JI I 'j I tv=,,'l" H 1 ~v" ~ --1----I i-:. !---LI.' --1------.--J ; .! I i I I' _-I- i Ii I I I 192 I f:zl-I-I---r--r--r--r--t--!-l I I h2¥ilI 1217f---I-+ I--f-FI-I-f---i--I--l t- h,Ir-f--- I- r-I--f-I~~-·---- t- r- I- h I~ c_ --------'--t---h 11 1128(; I I I I -LI i i 1--1-t---. I I Ii I I I I I i i +-'-- I i i ' I 118 ~I~C-_i I J --+U---t+- u I r i - i - I - I - ' - - -,I-I-t-h r I--:..:-ri t- 11----+.--1 . , -h.--+---'-+--1 II' ~ ___ ~ 1-1-'1 \-f-~jr:-:n--j-- .-~-+---L-i I ---L---~I _.' I-f--I-·- I : I I + II I ~--+- t--- 127 -+.~ ·t~l~4.r';' I 1001 I E I I B I II 117C i I ; I i I i I 1 116 110pC I I 1D5 r I "5 1(8(: I I "4 1D7 1 I th3 i 1~,ei n2 :, IO~ ,:7'1 I I i I I I 11 I I I I C 134111f.lr-:r-+,---+4.1-r+'OJ'hse -----~-+- --~>_~eJ f'~+- + -r--,c~ r'-"-fgo t-t+- --r- --tJ<:~:~~"'--------Ig:-I~ t91 j : " - ~I :3 i: : -t -- --, I I 1~~ I- I- 91 I ~ 1 !1 I : -4 - t - · -+-t--++ -+-_Ll -1' L--1 I I ~ I I 8B __ _ ----'---~ 1 ___ t J ~r~ - t --~- - TJ - -r 1 _ _ _ _ '---_ n --+- ~i ~_~ i ----r- -- -- I I L I f~ rT,-t-t i__ ~ . W--~TI , 1861 I I , -+-=1tTTfli3tc~f-;1:::,3j6--t--+ '-{fl -- -- -+ -'-----j--t---i-h ! , -~ I -h I ; I i ' 1I i 113 I • F . 98 l i e ' I I I ~ I I T T 1---.-1-J I l, I I I '-~ ~ c--t--I!,: I I I ~ +-+t I- t- +-t-+ t-I--l i I : I L,-----f-rllit--f-J h' FIGURE 7.3 STRAIN : GAUGE POSITIONS ON I - Denot~ gauge position C-- Denot~ concrete gauge on TOP un~rside STEEl 128 7.1.3 Deflection Measurement Dial indicators mounted on a 'Dexion' frame attached near the top of the supporting columns were used to measure deflection at critical points. One at the centre of each panel and one at the centre of each beam span provided vertical deflection data. Gauges to measure horizontal movement at supports B3, B2, 02 were placed to measure movement in the direction of the rollers at the support points (North-South at B3, East-West at 02 and both North-South and EastWest at B2). 7.1.4 ·Load Application and Measuremen~ Water-filled bags placed between a reaction platform (erected over the slab and tied down to the laboratory floor) and the top surface of the slab provided means of load application. Nine bags (one over each panel) were made with a 3 11 high wall and covered the whole top surface of the slab when placed and filled with water. Pressure was applied by forcing water into the bags. The four corner bags were inter~connected, there being no provision to have one corner panel at a higher load than the other three. panel bags. Figure The same was true of the centre~edge The centre panel bag was a separate system. 7.5 is a diagrammatic representation of the 129 hydraulic loading system, Apart from the main feed hose which was 1" diameter, all hoses were 1\:-" diameter plas- tic tubing. The main feed hose came from a constant head device which could be adjusted to any level to suit the load requirements, providing an effective means of maintaining the load at the set level. Due to scaling down in the model, there was a difference of 75 psf between the self weights of proto- type and model. Another constant head device fixed at the appropriate height above the level of the slab was used to apply this difference so that the self weight of the model plus the applied "dead 10ad l1 was equal to the prototype dead load. This load was the starting point for all tests. For pattern loads where two different load levels were required, panels not loaded with live load were switched to the IIdead-load-onlytl constant head device leaving the variable device for setting of the live load on the others. When the lower load of a pattern was greater than the prototype dead load, a mercury manometer was used to set the load and the dead load device was not used. The mercury manometer served also as a means of checking the reading on the calibrated variable head device. --<> Mains Voriable Head O-Valve IIMen:ur~ Manome l -_I Constant Head N-+- J 6 7 8 10 I ..... .... ..... C~ 'OJ .... ...., Comer Pcnei BOIs >. . . ..... C "" "I Centre-edge f'bneI Bags ) ...... ..... .... 2 I .---1-. 0 .... 1 3 I 4 Centre Panel Bag 5 -"'"'a'" ,...- .... I FIGURE 7.5 LOADING SYSTEM I l I - ."" 124.25", 27.25".1 31.25- I FIGURE I 31.25" I 27. 25" 124.2~1 7.6 MOMENT LINES ACROSS SLAB I ....W o 131 7.2 TEST PROGRAMME 7.2.1 The Dead Load Reactions 75 psf difference between the prototype and model self weights was applied to the model throughout the programme. The application of this load provided a more stable arrangement in reducing the difficulty of setting and maintaining the dead load reactions at the required level. These reactions were set several times before the testing programme was started, for as long as the tendency for the corners to lift re~ained. When tolerable stability had been achieved, Tests 101 and 102 were performed. In the design, moment redistribution was kept to a minimum and for this reason the dead load reaction for each support was taken equal to the reaction at ultimate load, scaled down linearly. An initial setting of reactions was made for self weight only, before a more accurate setting was performed for prototype dead load. Successive trials were made until the required value at each point was obtained. The corner reactions tended to reduce due to uplift and reactions were reset after ~est 102 because this tendency was then less and small differential movement of reaction points had caused some redistribution. this no further reaction adjustment was made. After 132 7.2.2 Load Tests Performed The overall test programme, carried out between 6th and 22nd May 1968 is summarised in Table 7.1 . Table 7.1. Summary of tests performed. Maximum Panel Loads No. of Increments (~) Test Load ~ Stage Centre Centre Corner !I£ Down - - - -Edge Nos. 101 1-10 102 13-23 103 104 25-38 225 225 225 51-63 1A-13A 75 225 76-94 375 105 106 225 225 225 225 225 75 225 225 75 225 375 375 7 7 7 3 7 6 6 10 7 12 5 6 95-109 375 375 375 7 13 108 114-132 400 75 400 10 9 107 109 133-151 200 375 200 10 12 110 152-167 450 450 450 11 10 11/1 168-189 375 375 375 9 112 189-220 775 775 775 16 113 221-227 850 850 6 114 228-239 600 966 1170 8 Remarks 12 (Live load (removed from (outer panels (with centre (panel load at (375 (Corner and (centre panel (loads adj(usted to give (upward corner (reactions (Outer panels (held at 225 (while C,P, (loaded to 375 (and back. All (then loaded to (375 (66 hours at 375 (then loaded to (775 (To failure of CePe (To failure of (centre=edge (then corner (panels 133 Figures in psf are applied loads including the 75 psf difference between model and prototype self weights. Three hundred and seventy-five psf is dead load plus full live load. Seven hundred and seventy-five psf is twice dead load plus twice full live load. Full details of all load increments are given in Appendix c. 7.2.3 Procedure at Each Load Increment The load was set using the hydraulic system described in 7.1.4, a period of a few minutes being allowed for the system to settle. A check between mercury mano- meter readings and 'Tariable head device setting was used to ensure that a static state had been achieved. Dial indicator readings were then taken, the load cell readings taken once and one cycle (140 channels) of strain readings performed. The whole floor was then checked for cracks, new cracks being marked with the corresponding load stage number. Load cell readings were taken again and if considerable cracking or reaction distribution had taken place since the start of the increment a further cycle of strain readings was taken. On the completion of reading the load was set for the next increment and during the time taken for the load of the next increment to settle graphs of load versus deflection and load versus strain were drawn for some critical points. 7.3 REDUCTION AND PROCESSING OF RAW DATA 7.3.1 Deflections Readings were taken in ten thousandths of an inch and punched into cards. The start of Test 104 was used as datum in the reduction of all readings. 7.3.2 Reactions Bridge readings taken for each reaction point were punched into cards and the reactions at each point computed on the assumption of a linear relation between load and bridge reading. Calibration of each load cell provided the constant relating the two quantities. As a check, the sum of the reactions was compared with the total applied load plus self weight, in which the total applied load was the sum of the products of the nominal bag pressure and full panel areas. In all cases the sum of the reactions was the smaller quantity since the bags could not be made to apply pressure over the whole area, due to curvature of the bag walls. effective loaded area was surface area. The II The 94 per cent of the total top c l ear span" area of slab panels was 81 per cent of the total top surface area so that the load applied represented some loading arrangement in between the total area and the clear span area of the panels. Placement of the bags was such that the unloaded area was directly above the beams and therefore each slab panel was subject to the full measured bag pressure over its total clear span area. No reduction of this value was therefore necessary to obtain the pressure sustained by the panels. Figure 7.6 shows the lines along which moments were calculated from the reaction values and applied loads, the latter being scaled down by the ratio of effective loaded area to total top surface area. The moments so calculated were used in checking the results of moment computations from strain readings and in assessing moment redistribution. 7.3.3 strain Readings Readings of each gauge in microstrain were punched onto paper tape and processed by computer. The raw strain readings were reduced in the following manner. (i) Datum correction A particular load stage was chosen as datum, and for each gauge and the reading at the datum stage was subtracted from all other readings. (ii) Drift correction The first channel of each block of 20 gauges was a standard strain gauge of high stability. The variation of reading in these gauges was used to assess the electrical drift of the Strain Data Logger. ation was not great (se~ Vari- Appendix D listing of gattges 1, 21,41,61,81,101,121). The readings of gauge 81 were taken as representative and the datum~corrected reading of this channel at any load stage was subtracted from the readings of all other channels at that stage. (iii) Temperature correction Dummy gauges for the active concrete gauges were of the same type and mounted on similar concrete blocks. Thus variations of length due to temperature were assumed to be compensatory and the concrete strain gauge readings assumed to require no correction for temperature. The active steel gauges had dummies which were temperature compensated and mounted on aluminium. Temper- ature could therefore be expected to affect the readings of the steel gauges. To compensate, two steel gauges, (Nos. 139 and 140), mounted in the same fashion as the active gauges were used. These were of the same type and were mounted on steel reinforcement embedded in a block of concrete. The blocks remained unstressed by external forces and had identical dummies to the active gauges. The datum~corrected reading of channel 140 was subtracted from all steel gauge readings at each load stage to correct for temperature. (iv) §Eecial drift correction At the beginning of each test, up to LS 151 (see Table 70'1), the corrected reading of each channel was compared with the corrected reading of that channel at the end of the previous test. If any differencE occurred, the readings of the gauge in the test to follow were 137 corrected by this difference. (v) Zero correction Initial balancing of the gauges was performed when the total load on the slab was 100 psf. Allowance for this initial load was made by computing the difference in readings of each channel at LS1 (75 psf applied) and LS5 (175 psf applied) and adjusting all readings of that channel by this amount. At sections at which measurement of normal force and moment were to be made one gauge was mounted on the main steel and one mounted on the opposite face of the concrete. This permitted the determination of the strain profile, assumed linear, across the section. This linear strain profile as given by the corrected strain readings was used, in conjunction with section properties, to determine the actions on the section. Computer sub- routines were written to compute the steel and concrete forces resulting. was assumed to be The stress-strain curve for the steel tri~linear and the stress-strain relationship for the concrete was assumed to be of the form proposed by Hognestad et al.(20). The derivation of the subroutines is described more fully in Appendix E. 7.3.4 Computation of Section Actions from Strain Readings 7.3.4.10 General basis The subroutines, CONACT and STEEL, described in 138 Appendix E were written to calculate the concrete and steel action in a section whose strain profile was linear. In the computation of section actions from the test readings, a linear profile was defined by a measured concrete strain and a measured steel strain. The steps in the computation were as follows: (i) Reduction of strain readings This was done by the method outlined in Section 7.3.3. (ii) Computation of strains for equivalent strain profile (a) ~uivalent steel strain: (e ) s When two steel strain readings were taken at the section at the same level, the average value was taken. In cases where only one reading was taken, this was assumed to be the strain in the section at the level of the centroid of the steel. (b) Equivalent concrete strain: (e ) c When only one gauge was used it was placed parallel to the steel bar and the concrete gauge reading was taken as the section strain at the face of the concrete. When two concrete gauges were used, one was at right angles and the other parallel to the reinforcement. Poisson effect was considered in reducing e to the relation: c according where e 1 = concrete strain measured parallel to reinforcement e 2 = concrete strain measured perpendicular to the reinforcement ;tv = Poisson's ratio For the two sections for which three concrete gauges were used these were in 120 0 I1rosette" form and two-dimensional strain analysis was used to obtain the principal strains which were used to obtain the equivalent strain component parallel to the reinforcement. The strain profile was then defined, and was as shown in Figure 7.7. 1/ • A 65_, e~ Section Strain Profile FIGURE 7.7. STRAIN PROFILE 0 strain~ Values of equivalent top and bottom concrete and e~ were computed directly and stored. and e' were likewise storedo s strains ec~ e~, e s and e~ Values of ec 8 S For each load stage, the corresponding to the strain profile defined by the values computed for e c and e s were calculated and stored. (iii) Computation of concrete actions The values of e c and e~ were used in the subroutine CONACT as top and bottom concrete strains and the concrete forces determined. (iv) Computation of steel actions Arrays of top and bottom steel strains had been stored. The loading and unloading performed during the test necessitated the examination of the strain history to determine the plastic portion of the indicated strain. The method used to determine this is shown in Figure e 5 e ---I r;/ 5 til depends on whether e 6 - e eyo p5 Each array of top and bottom steel strains was searched in the manner outlined and only the elastic portion of the strain retained for input into subroutine STEEL for computation of steel forces. (v) Calculation of section moments and forces Output from the subroutines CONACT and STEEL were in non-dimensional form, giving the steel and concrete forces and moments, acting at and about the non-dimensional values, M/f~bD2 and mid~depth. T/f~bD, plied by the appropriate values of f ' bD c 2 These were multi- and fibD c respectively. (vi) Cracked and uncracked sections In tension the concrete stress-strain curve was assumed to be linearly elastic with a modulus of elasticity as given by the secant from 0 to 1000 psi on the compressive stress-strain curve. 142 For each load stage the concrete was assumed first to be uncracked in which case concrete tensile stress was assumed to be proportional to concrete tensile strain, no matter how large the strain. Actions were then computed and the section assumed to be cracked. In this case concrete was assumed to have no tensile strength and the actions were again computed. (vii) Factoring of concrete strains The reduced and corrected value of concrete strain parallel to the reinforcement, e ' was factored by 1.0, c 1.20 and 1050 for each load stage for panel sections only. In regions of steep strain gradient, the gauge length of 1" would lead to an average strain value, when in fact the maximum strain was required. Concrete gauges on the undersides of the panels were thought to suffer most from this effect but this factoring made little difference to the computed actions along panel edge sections and only in uncracked sections away from the edge where strain gradients were probably insufficient to warrant this factoring, was any appreciable difference evident. Special measures had to be taken to obtain more realistic values of panel edge section actions as described below. (viii) Effect of T~ and L-beam flange width For all beam sections the procedure described above was used to determine the actions on the rectangular portion of the section only. The effect of flange width was determined by assuming the flange to be of plain concrete and that the strains in the flange sections were the same as those in the rectangular portion at the same level. Thus from the strain profile of Figure 7.7 the concrete strains at the top and bottom of the flange were calculated and used as input in the subroutine CONACT. each load stage~ For total flange widths of 100,2.0 and 3.0 times the web width were used in computing section actions. 7.3.4.2 Modified method for calculation of panel edge section actions The modified method to be described was necessary because the steel strain and concrete strain measured near a panel edge section did not apply to the same crosssection. This is illustrated in Figure 7.9(a). The steel strain measured corresponded to the cracked section at BB but the concrete strain to the uncracked section at AA. Further~ at the end of the test the zone of crushing at Y was no wider than itl~ and as the small values suggested, the concrete strain measured was not that existing at y. The key to the modified method is given by the forces on the section at BB shown in Figure 7.9(b). required were the action at mid~depth, The values mE and C , resultE ing from the steel tension Ts and combined steel and concrete compression, c . c Even for large variations of c , c B X I 144 Steel gauge W ~--------~;i~--------------------~ Slab y Concrete gauge (a) Section showing Beam difference in gauge positions IFIGURE 7.9 ACTIONS AT EDGE OF PANEL I o q (\/ (a) Concrete strip element I FIGURE 7.10 I (b) Computed strain profiles I Tension" •'It • o C\l I (V) 0"": f / /' ----- -.. '" .."..-. ........... . ~.', -;;:: / ~ .... . .",,' ... . ./ ' .... .. ' --- GG _._. LL ........ AA (gauge position) --DD ----- .- 145 , the level of its line of action will not alter significantly and may reasonably be assumed constant. The value of mE' however, is dependent very largely on the magnitude of C = CD' the shift in the line of action of Cc being E of the second order. Thus, if moments are taken about the assumed line of act~on of cc' the magnitude of CE need not be known for an accurate assessment of mD to be made. o It is reasonable to assume that the moment and force at Section AA will be equal to those at Section BB. If moments are taken about the level D at Section AA, these should sum to mDo On the basis that moments about D, at the level of the bottom steel, are equal at AA and BB it may be seen that (mD) AA = (mD) =T 1 BB s a Knowledge of the bottom concrete strain at AA was used to obtain mE and C E in two ways as follows. (a) Assuming full bond transfer of steel force between BB and AA. If full bond transfer occurs between BB and AA concrete and steel strains at the level of the top steel are equal at Section AA. steel force at BB. mD was calculated from the known The section at AA was uncracked and the strain profile was found which satisfied the condition that (mD) = (mD) and having the bottom concrete strains AA BB 146 equal to that given by the reduced and corrected value of concrete gauge reading at AA. This was done by increasing the top strain from zero in steps of .000005 unttl (mD) = AA (mD) . The actions, mE and CE for this strain profile BB were then determined. (b) Assuming no bond transfer between BB and AA This assumption meant that at AA, the top steel force was equal to that at BB. A strain profile in the concrete, having the strain at the bottom surface equal to that given by the gauge at AA, may be found such that (m ) = (mD) • D AA BB Since the contribution of the top steel force to mD is the same at AA as at BB, the required strain profile would result in the'moments of the concrete forces at BB, about the level D~ being zero. For D at a level of .94 of the total depth the linear strain profile which gives zero moment of concrete force s about D has e ~ ~ - 2. e c (Figure 7.7) for a material linearly elastic in both tension and compression. To check the linearity of strain profile, the strip of concrete WXYZ, assDlTIled to be of elastic material, was analysed for a load at Y and the relationship between top ahd rJottom concrete strain at AA was found. Figure 7.10(a) shows the unit width concrete strip analysed, and the load assumed to be acting upon it. Analysis of this element was done using a library finite element c;omputer programme, with elements as drawn. It was fOUIld that the strain in the concrete at the top surface was approximately equal to -.5 times the concrete strain on the bottom surface when the strain profile was linear. At AA the strain profile was not precisely linear but very nearly so as may be seen in Figure 7.10(b) which shows the computed strain profiles, In this case, therefore, the concrete strain profile was calculated directly from e c := ~ e' where e was c c known, and the section actions computed. The difference between methods (a) and (b) above was not large and in the analysis of results, values of method (a) were used. CHAPTER TESTS ON USED 8.1 THE TO 8 PERFORMANCE CALCULATE OF SECTION THE METHOD ACTIONS SUMMARY In this chapter two types of test on the method used to compute the moment and normal force on a section are described. The first was on a series of three specially cast slab strips with identical strain gauges to those on the model floor. Known actions were applied to the gauged section and these were compared with the values computed from the strain readings. The second test was on the sensitivity of the actions on a section to change in strain reading in order that the likely effect of electrical drift and other unwanted components of the strain reading could be assessed. 8.2 TESTS ON SPECIAL CONTROL SPECIMENS 8.2.1 Introduction In order to check the suitability of the method used to compute axial force and moment in slab sections, a series of three slab strips of the same mortar mix used for the model floor was testedo The strips had the same 14-9 depth and bottom reinforcement as the model panels. Strain gauges on the steel and concrete were of the same type and mounted in the same way. A range of moments and axial forces was applied to the gauged section. Gauge readings were processed by the method described in Section 7.3 and the computed and applied axial forces and moments compared. 8.2.2 Strip Dimensions and Test Set-up Each strip was 36 11 x 8i" X 1.98" with two lead bath annealed bars as reinforcement. %11 apart~ symmetrically placed in plan at the bottom. i" diameter The bars were with 3/16" cover Each strip was loaded at the third points of the 33" span. Vertical load was applied with a screw jack through a proving ring and spreader beam. At each end of the strip a steel end block was attached, covering both the ends and the end portions of the underside in order to transfer both the vertical reaction and the applied axial compression. , Axial compression was applied by tightening each of the two tie rods. Two diametrically opposite strain gauges on each rod placed parallel to the longitudinal axis provided the means of force measurement~ each rod being thoroughly checked and calibrated before and after the tests. Force in the rods was transferred to the slab strip through beams across the ends. These beams consisted of 150 two steel flats with a gap for the rods. Force from these onto the end blocks was transmitted through two half-round mild steel pieces for which the end blocks were shaped. This arrangement ensured that the tie rods remained horiz ontal throughout the te st. Figure 8. '1 shows the te st set up at the end of a test and Figure 8.2 shows strips 1 and 2 after testing. 8.2.3 Instrumentation The mid-span section of each strip was strain gauged with a gauge on each steel reinforcement bar and a gauge on the top concrete surface above each bar. Each tie rod had two electrical resistance strain gauges cemented to it which were used to measure axial force. Dial gauges were used to measure the vertical displacement at mid~span the roller support. and the horizontal movement at Proving ring readings provided a measure of the applied vertical load. 8.2.4 Tests Performed Each load increment represented a combination of moment and axial force at the mid-span section. Incre- ments of proving ring force were 50 lbs giving moment increments of 275 lb~in. Axial force increments were approximately 1000 lb or 118 lb/in width. Table 8.1 gives a summary of tests performed on the three strips. FIGURE 8. 1 TEST SET-UP FOR STRIPS STRIi-' N" 1 FIGURE 8.2 STRIPS 1 AND 2 AFTER TESTING -152 Table 8.1 . Strip Test Summary. Axial Force Strip Load Range No. lb. Ran~ Strip Load No. Range lb. lb. 1 0-800 3500-4000 3* 0~700 5000 0-5000 2* 0-700 3000 3* 0-600 4000 5000 2* 0-550 2000 3* 0~500 3000 100-450 0-5000 2* 0-400 1000 3* 0-400 2000 0 3* 0-400 1000 3* 0-350 0 0 1* 0-450 1* 0-400 1000 2* 0-200 2 0-400 0-5000 2* 0-700 2000-4000 3 0-550 2 * Strip Load Axial --No. Range Force lb. Range lb. 2 0-450 0-5000 1* 1* Axial Force Range lb. 400-950 5000 0 3* 350-4-50 0-2000 Denotes cracked section. 8.2.5 Behaviour During Tests All strips developed a single crack near mid-span which led to high steel strains. The cracks in strips 1 and 2 did not form directly beneath the centre of the concrete gauges on the top surface and these readings were low as a result. exactly at For strip 3 a groove was made in the underside mid~span. This ensured that the cracking took place at mid-span and that the region of highest concrete strain was near the middle of the gauges. The very small percentage of reinforcement made the ultimate moment less than the cracking moment and cracking was accompanied by large increases in steel strainjespecially when the applied axial force was low. 153 When the vertical load was increased for a set value of axial force, the outward spread of the ends caused an increase in axial force, but only in cases where variation became large was any adjustment made. 8.2.6 Results Only the comparison of calculated and applied values of moment and normal force is presented in this Section. The full results are given in Appendix F. (a) Determination of Applied Actions: Moment at the mid-span section about its mid-depth was computed from the three components: moments~ (i) Dead load including allowance for the weight of the proving ring and spreader beam; (ii) Moment induced by the verti- cal applied load and (iii) Moments induced by the eccentricity of horizontal force applied at the ends of the strip. (b) Determination of Section Actions from Strain Readings: The method of Section 7.3 was used. Section strain values were taken as the average of the two taken on the steel and on the concrete. Both the normal method and the second modified method (Section analysis. For strip 7.3.4) were used in this 3, the normal method was used since the crack formed exactly at mid~span but for strips 1 and 2, cracking was not exactly at mid-span and a situation similar to that described in Section 7.3.4.2 arose whereby concrete strain readings greatly underestimated the maximum concrete strain. The second modified method, in which no bond transfer was assumed, was used. (c) Comparison of Applied and Calculated Section Actions: Figures 8.3 and 8.4 show graphically the results of In Figure 803(a)~ the ratio of calculated this comparison. moment to applied moment is plotted against applied moment for the uncracked sections. Results from each strip are recorded, and for strips 1 and 2, values of the ratio for applied axial compression, N app = 0 and N app = 5000 lb are given for each level of Mapp$ Figure 8.3(b) is a similar plot for the ratio of calculated and applied normal forces, Ncalc/Napp for an uncracked section. plotted for Mapp For each value of Napp ' the ratio is = 330 lb-in and Mapp = 2550 lb-in. Figure 8.4 shows similar plots for a cracked se on. The range of normal force and moment was not as great as that applied before cracking and less points are shown. Because the cracks were close to the gauge"the results of strips 1 and 2 after cracking were calculated with a linear strain profile approximating that given for Section GG of Figure 7.10. For this the strain at the level of the bottom surface was taken as -1.8 times the top surface o DenotJ 2 • Strip 1 • Strip 2 A Strip3 Napp = 5 kip 0.. 0.. 2 (a) Forces o Nap? = 0 ex z "c:t "0 zo 1 ~ M app =330Ib-inj O-Mapp= 26001b-in ® ______________~______________~~_______ ® ® (0) Moments OL-______ ~ ______ ~ o ______ ~ 2 II ______ ~ 3 ________ ~ _____ O~------~------~------~ o 5 4 ______ ________ ~ 2 ~ 5 4 Mepp (kip-in) FIGURE B_3 ACTION COMPARISON BEFORE CRACKING .... Mapp 2 =330 Ib-in; 0 FIGURE B.4 ACTION COMPARISON Mapp = 2550 ib-in 2 AFTER CRACKING (b) Moments 0.. 0.. o 2: €I 'u- .·-Napp=Oj O-N app =4kip ~ "8 1 I------....:.:...--~:,..-_rr----=----------------2: ® ® c!>® ® ® ® (b) Forces OL---____ o ~ ______ ~ 2 ______ ~ 3 ______ ~ ________ 4 ~_ 5 o~ o ______ ~ ______ ~ 2 ______ ~ ______ 3 Mapp(kip-in) ~ ________ 4 ~ 5 156 strain reading. Further evidence of good correlation of results for strips 1 and 2 is given in Figure 8.5. This shows plots of moment, both calculated and applied, versus proving ring force. The results cover tests on strip 2 in which the proving ring force was increased with the applied compression set at 2000 lb and later 3000 lb, and a similar test for strip 1 for Napp = 1000 lb. 8.2.7 Discussion Results from all strips before cracking showed agreement within ~ 20 per cent for most cases, many of which corresponded to wi thin 10 per cent. Before cracking, strain was easier to measure in that the effect of finite gauge length was not as great as after cracking. This led to more accurate calculation of section moments and forces but the low values of strain at this stage made the effects of electrical drift and other strain reading errors relatively greater. The position of the crack in relation to the concrete gauges was obviously significant 0 For strips /1 and 2 where the cracks did not form at the gauge points, it was possible to obtain good correlation of applied and calculated values of section actions. These were still dependent on the position of the crack since it was shown that the strain profile across a section near the crack was not linear. By taking account of this factor 1 satisfactory 4 FIGURE 8.5 MOMENTS FOR STRIPS 1 AND 2 FIGURE 8.6 GAUGES 118,119.120 MOM ENT AND FORCE 60 VARIATION Cracked section --Moment --- -Compression 3 ~-------+------~~~~~--~--------- 400 a - applied c -computed - - - - Strip 1 Napp.. l000 Strip 2 Napp " 3000 _'_'_'Strip 2 Nopp .,2000 o 200 400 600 800 Load (psf) o ~------~-----------------------o 200 400 600 FIGURE 6.7 GAUGES 73,77 MOMENT AND FORCE Proving ring force (Ib) VARIATION <40 10 ---M ----T o o~------~------~------~--------~-200 400 600 800 Load (pst) o '158 correlation of results was achieved, especially for strip 2 where the crack corresponded almost exac.tly to the end of the concrete gauges. The results of strip 3 did not compare as favourably. The measurement of concrete strain directly above the crack was not simple because of its rapid imriatiort along the gauge length. This method of calculation of panel section action could be expec,ted to give results wi thin approximately 30 per cent of actual values. In assllillingthe applicability of this conclusion to results of the model floor, the following points must be borne in mind: (i) For the uncracked se ons of the model the variation of strain reading due to electrical drift and other time effects may have had a signifJ.canteffect. (LL) For sec were see ons at the panel edge the concr'ete gauges 8 011 considerable d:L anae from the cracked, and therefore the assumption of a linear strain profile for the concrete afforded a closer approximation to actual behav:Lour than a similar assumption used for these strip tests. (iiDEach strip was tested over a period of several hours. Strain reading errors introduced 'by time-dependent effects the slab model st may therefore have been greater than in the strip tests. 159 8.3 THE EFFECT OF VARIATION IN STRAIN READINGS Of importance in the interpretation of results is the sensitivity of the values calculated to change in strain reading. Considerable variation in strain readings between the end of one test and the beginning of the next test on the following day was detected and although this was accounted for in reducing readings, it pointed to the possibility of appreciable discrepancies between strain readings and the true strain due to stress alone. In order to examine the effects of strain reading variation on the section actions, four typical sections were chosen and the raw readings of steel and concrete gauges varied from the actual values. The resulting moments and forces were compared. The four sections taken were as follows: Description of Section Gauge Numbers 118, 119~ 120 Centre panel edge, modified method used on cracked section. 8, 10 Centre panel span, normal method used. Section uncracked almost throughout test. 73, 77 Interior beam, centre span, at mid-span, normal method used. 126, 129 Interior beam, centre span, at support, normal method used. Four runs were performed for each section using different values of strain deviation, D. In each run the value, 6 , was subtracted from datum-corrected readings of concrete strain gauges and added to datum-corrected readings of steel strain gauges. The four values of Dused were: -20, 0, +20, +40 microstrains. Results are compared graphically in Figures 8.6 to 8.9 inclusive. These show the increase of section actions with increasing load after load stage 168. At 775 psf the ratio of moment or normal force for 6= +40 to the moment or normal force at ~= ~20 had the following values: Ratio Mmax1M. mln Section Ratio Nmax/Nmin 118, 119, 120 1 .23 1 .40 8, '10 1 .40 1 .60 73, 77 1 .05 1 .04 126, 129 1 .08 'I .0"7 The curves shown represent a variation of 60 microstrain in both concrete and steel strain. The fact that steel strain was increased and concrete strain decreased could be expected to produce a greater effect on the moments than on the axial forces. Variation in the panel sections was greater than in the beams. Gauges /1-18~ 119 and 120 were at a centre panel edge section where the modified method of computation was used. The 60 microstrain variation in this case is a large proportion of the measured concrete strain. The same is true of the section at gauges 8, 10 which did not crack 161 FIGURE 8.B GAUGES 126,129 MOMENT AND FORCE VARIATION 100 75 15 --Moment .=-~-=-.=J Tension 50 10 -0_. o O _ _ _ _.....I...._ _ _.....-l._ _ _ _.........._ _ _ o 200 400 600 ~--- 800 Load (pst) FIGURE 8.9 GAUGES 8,10 MOMENT AND FORCE VARIATION A =-20ps ----C ---M o~------~--------~------~~------~----200 o 600 400 BOO Load (pst) 162 until late in the test. cent and Lf,O The variation of moment (23 per per cent) and normal force (40 per- eent and 60 per cent) for the 60 mic.rostrain variation indicates the appreciable sensitivity of the computed actions to strain reading variat;ions. For this same strain variation? the beam actions show markedly less change. The variation of le ss than /10 per cent in the se actions due to the 60 microstrain variation is clear evidence of their insensitivity to such change. The magnitude of likely strain variation in the slab test is difficult to determine exactly but variations in the temperature and zero gauges during the test suggested that 30 microstrain would be an upper limit. Most of the actions computed from strain readings during the test would therefore vary by less than one half of the above values. 163 CHAPTER BEHAVIOUR OF THE DURING 9.1 THE 9 NINE - P ANEL TEST MODEL FLOOR PROGRAMME SUMMARY This chapter describes the behaviour of the floor during the test programme in terms of the strains, deflections, loads and reactions measured at each load stage, and the examination, during and after the test, of physical effects such as cracking. ! The floor had been designed for an ultimate load of 800 psf including membrane action. This load was twice the Johansen ultimate load of the centre panel, 1.35 times the Johansen load of the centre-edge panels and equal to the Johansen load of the corner panels. Pattern loads were applied in early te'st runs but beyond 400 psf all panels were loaded equally until the centre panel failed at almost 850 psf, a failure brought about by the transition of the panel from a state of predominantly compressive membrane action to one of predominantly tensile membrane action. were intact at this stage. The outer panels Following the failure of the centre panel the load fell to 540 psf. Load on all p~nels was then increased to 710 psf at which time the centre 164 panel loading bag was in danger of bursting through the full depth cracks which had formed at the centre of the panel. Load on the centre panel was then reduced to 600 psf and the load on all outer panels increased to 960 psf when the centre-edge panels failed in a combined panel and beam mechanism. The centre-edge panels were held at 960 psf while the loading on the corner panels was increased. The end spans of the interior beams developed plastic hinges at 1170 psf* and the test was stopped at this load with panel failure mechanisms in the corner panels incompletely developed. Symmetry of behaviour was excellent throughout the test programme until after the centre panel failure. During the loading to failure of the outer panels the plastic hinges in the end spans of the interior beams did not develop simultaneously and the symmetry was upset noticeably. Reactions were not affected greatly by moment redistribution and values remained close to those expected. Summation of reaction values indicated that the loading bags applied load over only 90 - 95 per cent of the total top floor area due to rounding of the bag edges. * Figures quoted indicate the intensity of load applied to the panels of the model floor. This includes the 75 psf difference between prototype and model self weights but does not include the self weight of the, model (= 25 psf). 165 Compressive membrane action enhancement was exhibited by all panels. Measured compressions at the edge of the centre panel were of the order used in design and beam tensions in the centre spans of the interior beams were accordingly large. Tension in the exterior beam centre spans indicated the presence of compressive membrane forces in the long direction of these panels as expected. measured along the interior long edge~ Forces parallel to the short side, were large enough to suggest considerable membrane action in this direction. Beam tensions in the centre spans of both interior and exterior beams were large and may have been larger if all panels had failed simultaneously. Values were higher at the support than at mid- span. Initial cracking of the undersides of the outer panels produced a marked effect on the centre panel. The loss of lateral restraint caused an increase in deflection and strain values in the centre panel. hours of sustained loading at Stability during 66 375 psf was good but instab- ility was evident at 550 psf when the undersides of the corner panels cracked for the first time and cracking of the centre-edge panels extended. The effect of membrane action on the torsion in the edge beams was evident in the slow increase in strain in the panel reinforcement at the sections adjoining the beams. Torsional deformation in the beams was not large 166 until after the centre panel had failed and the end spans of the interior beams had developed large cracks prior to the full development of plastic hinges there. Moments along lines traversing the whole floor were calculated from reactions and applied loads. The rise with load of the 'free' moment so calculated was linear and agreed well with the expected value throughout the test. , Initially, moments along mid~span sections were relatively high in comparison with the support values but as load increased, the rate of increase of mid-span moment fell and a corresponding rise in the rate of increase of support moment took place. Moments at beam sections computed from the strain readings showed a similar trend. The line moments, cal- culated from the sum of beam section moments, showed satisfactory agreement with those calculated from the reactions and applied loads. The effect on line moment calculations of the net beam tension and net slab compression was large since each force was taken to act at a different depth below the top surface of the slab. The two forces thus formed a couple which had to be taken into account. The rate of increase of compression at the edges of the centre panel was similar to that of the increase in supporting beam tension, being small at low load levels and increasing with load. 167 Although strain readings afforded some measure of panel and beam section forces and moments which in many cases compared satisfactorily with values determined by other means, the accuracy of the results was not sufficient to distinguish any difference in centre panel behaviour with varying load pattern. Only the variation of steel strain at the middle of the centre panel showed signs of the surround being slightly stiffer laterally when the outer panels were not loaded fully. Deflections at DL + LL* were small for all components with the centre panel showing greatest deflection to span ratio. This ratio first exceeded L/360 at 450 psf when considerable surround stiffness loss occurred with the initial cracking of the underside of the centre-edge panels. This loss and the extended cracking of the centre panel caused appreciable unrecoverable deflections. strain levels were also low at DL + LL. At this load, after the floor had been loaded to a maximum of 450 psf, strains at the panel edges ranged up to of yield values. two~thirds Steel strains in the beams were approx- imately one half yield values. The application of 450 psf had yielded the steel at the middle of the centre panel. At the stage of failure of the centre panel most of the beam steel had yielded or was near to yield, and steel "'The abbreviation DL denote s the prototype dead load II II LL II " II li ve II = = 100 psf 300 psf 168 at the edge of the panel was well beyond yield. edge steel along the exterior beams~ Panel however, showed very small values of strain. Panel deflections at this stage were large in both centre-edge and centre panels though rapid increase had not commenced until 600 psf. The deflections of the centre spans of all beams were le ss than 1/360 of the span and other beams deflected little in excess of this. The applied load of almost 850 psf at the stage of failure of the centre panel was 10 per cent in excess of the design ultimate load. Details of slab behaviour follow in the next two sections. In Section 9.2 the behaviour of the floor during each of the 14 tests performed is described. Although chronological order of te sting is :not strictly adhered to j this section is intended to give a cliar impression of the floor behaviour as the test progressed and to indicate the effect of different load patterns. A more detailed analysis of particular aspects of the floor behaviour is given in Section with all-over load. 903 which deals mainly Deflections, strain readings, cracking, reactions, moments and membrane ac.tion effects are dealt with in turn. 9.2 TEST BY TEST DESCRIPTION OF FLOOR BEHAVIOUR 9.2.1 Tests 101 ~ 102, 105 and 106 In these tests the slab was loaded over its whole 169 surface to a maximum of dead load plus full live load (375 psf applied). 9.2.1.1 General Tests 101 and 102 (to DL + ~LL) were preliminary tests only, serving to test the loading system, data recording devices and the symmetry of response. Embedment of the load cell ball bearings into the mild steel bearing plates caused differential settlement of the reaction points and redistribution of reactions. This, and the tendency for the corners to lift made resetting of the reactions necessary after Tests 101 and 102. No further adjustment was made. Test 105 was a repeat of Tests 101 and 102, performed after the pattern load tests (103 and 104) had been performed. In Test 106 the load was increased to DL + LL before being released in stages. 9.2.1.2 Deflections Load-deflection relations were linear for all vertical deflection gauge points. In Tests 101 and 102 full recovery was not achieved due to the embedment of the load cell bearings into the mild steel bearing plates. Deflection levels in Tests 101,102 and 105 were very low. The maximum deflections occurred in Test 106 when DL + LL was applied. Values of the largest deflection occurring within each of the element type groups are given below (Table 9.1). "Q:J:Eur~ 6.2 ( 0) Reference Mark MaximUIll Deflection ~ Interior Beam Beam NS3 .0285 /1: 2/190 or Beam Beam NS1 .0154 1 : 1+050 ~Panel Panel C .0210 1:2120 Centre-edge Panel Panel H .0403 1: 11 00 Centre Panel Panel G .0616 "I :/lcY12 Elem~i,~lle Exte Corner Deflection: §li3?-_~__IE~ ) -----------~-----~--.- 9,281.3 Membrane Action Effects There was no cracking of the underside of the centre panel during these tests but the cracking at the edges could be expected to cause the development of compressive membrane forces normal to the edge. fJ:lension in the beams was high hut compressiV'e membrane forces were iable. Figure 9.1 shows the increase of this edge compres apprec~ on during Test 106. 9.2.2 Te sts 1 03 and "108 General In both these tests the load on the centre-edge panels was held at 75 psf while the centre and corner panels were loaded to 225 psf (DL + .5T~) in Test 103 and to 400 psf (DL + 1.08LL) in Test 108. 9.2.2.2 Deflections With one exception the deflections of beams and panels were smaller than those occurring at LS85 (see Table 9.1). The cracking of the underside of the centre panel which took place during Test 107 produced nonrecoverable deflections and the maximum deflection to span ratio rose to 1:678. 9.2.3 Tests 104 and 109 In Test 104 the centre-edge panels only were loaded to 225 psf, while the load on the other panels was maintained at 75 psf. In Test 109 the load was taken up to 375 psf on the centre~edge panels. The load on the other panels was kept at 75 psf until, at a load of 250 psf on the centre-edge panels, when the corner reactions were about to become zero, the load on the other panels was increased to 200 psf to ensure that the corner points of the floor did not lift off their supports. When 375 psf was reached on the centre-edge panels the load on the other panels was reduced from 200 to 150 psf at which stage the corner reactions were again nearly zero. - This latter condition represented the most severe loading applied during Test 109. Test 104 brought no further cracking but in Test 109 cracks appeared near the centre of the middle spans of the exterior beams 172 NS4 and EW1. 9.2.4 Deflections during both tests were not large. Tests 107, 110 and 111 9.2.4.1 General The loading sequence in these tests was designed specifically to examine the behaviour of the centre panel in the presence of reduced load on the surrounding panels, the effect of reduced edge moment restraint and modified surround stiffness being of particular interest. Time dependent effects were examined during two periods in the course of these tests. The whole floor was loaded to a maximum of 375 psf in Test 107. This was followed by reduction of the load on all but the centre panel to 75 psf, the original condition of 75 psf allover then being achieved by reduction of the centre panel load in stages. All panels were loaded equally in Te applied load was first increased to 450 psf~ 110. The reduced then to 375 and held for 22 hours and then reduced to 75 psf. In Test 11"1 the load on all panels was taken up to 225 psf, the centre panel load then being raised to 375 psf and reduced again to 225 psf. All panels were then loaded to 375 psf and held at this load for 66 hours while time=dependent effects were examined. 90204.2 Deflections Cracking produced by the higher load levels eaused 173 larger deflections than in previous tests. Much of the deformation in the centre panel was not recovered on release of load. The effect of cracking is clear from the examination of the maximum element deflections for each test (see Table 9,2) but the different load conditions must be taken into account in making any comparison. Table 9.2. Maximum Deflections of Elements for Tests '107, 11 0 and 1 /j 1 . Element Type Reference Mark (Firure 602 a)) Test No. Interior Beam NS3 EW3 EW3 Exterior Beam NS1 NS'l NS1 Corner Panel Centre~edge J J J Panel Centre Panel * ** *** F F D G G G Span: Deflection Maximum Deflec,tion "Cinches) ~atio) 107* 110* * 11'1*** 00305 00550 .0470 2040 1140 1330 107 O'1c:.9 ,'0 ,0399 .0309 3700 1570 2020 002'19 00305 .0197 2030 1460 2260 00380 .0732 .0546 1~170 .0871 66 02 1 37 720 289 29 4 c..l "110 11/! /107 '\10 111 10'1 1'10 1 'l/t 107 110 0 111 375 psf on centre panel; 75 psf on all others. 450 psf on all panels,@ 375 psf on eentre panel; 225 psf on all others. The effe of the application of 4~~50 psf (rye; psf I / excess of the design serviee load) on the centre panel 610 810 174 deflections was very marked. The maximum deflection of the centre panel before design service load was exceeded was only 1/600 of the span. 9.2.4.3 Crackigg Cracking in the centre spans of beams and in both the centre and centre-edge panels took place during these testso First cracking of the underside of the centre panel occurred when the load on the outer panels was reduced to 275 psf and left for one hour (LS100). Three cracks radiated from the centre and extended well towards the edges of the panel (see Figure 9.2 (a)). reduction of outer panel load~ one of these cracks took place. the centre panel~ On further considerable extension of The maximum crack width in measured when the load on the outer panels was 75 psf, was 0002110 The maximum load of 450 psi (DL + 1 025LL)J applied in Test 110,produced further cracking in the centre panel, in the centre spans of all beams and c,aused the initial cracking of the underside of the centre~edge panels. At 400 psf and 425 psf (LS156 and 157) small extensions in the centre panel cracks were noticed and the maximum crack width was .003". Some new cracks appeared in the centre spans of interior beams. At 45.0 psf (LS"158) eracks formed in all elements except the corner panels and their supporting spans. the middle of each centre~edge In panel a crack ran the full ( / a) Centre Panel - Test 107 - 375 sf (c) Centre panel Test o- 450 psf \ Cd) Interior beam FIGURE 9.2 centre span - 550 psf CRACKING DURING TESTS 07 (b) Centre-edge panel - Test o- 450 p 10 A.ND 176 width,parallel to the short sides,and in one panel two smaller cracks formed in the L-beam flange, either side of mid~span (Figure 9.2(b». Cracking at the supports of the centre spans of the NS interior beams was notieed for the first time and several new cracks appeared at the middle of these spans. Each centre-edge panel crack caused increased cracking in the centre panel and since an appreciable time elapsed before all four centre-edge panels had cracked, a similar time passed before cracking of the centre panel ceased. Comparison of Figures 9.2(a) and 9.2(c) reveals the extent of cracking in the centre panel produced by this load increment. Figure 903 shows the crack pattern for the whole slab at this stage o· New cracks appeared in Ere some beams supporting the centre panel steeply inclined cracks (marked 0 0 Further, smal b In beam EW3 two "177" in Figure 902) appeared at the thir1 points of the these did not age /177 load om span. the One am. r cracks of a similar nature appeared after the load of 375 psf on all panels had been maintained for nine hours. After 21 hours 1Tery few new cracks had formed and after 29 hours the extension of existing cracks was negligible. ulr__________-LnL'______~;~~~cl~i____~L~till~LI__________~iI EW1 o... --.' EW2 < -.fJ.'. r-------li------ I Ii I II I II II I 2 5 : II I: I I II II I L ________ L ______ 3.. ___ ....:_J L _______ J J ,--------l---J1:s------M ,------, I I1 I I I 4 6 .5 2 II I I I I I'll iI 11[7f5 I II I 450 PSF APPLIED LOAD :l'::..: I I I Maximum crack widths shown in .001" units for load at 375 pst 1 .1 I II L _______ J L _________ :-------1 I I I I II II I II CRAD< PATTERN AS AT ::1<; ~ I~ I I~ I I I FIGURE 9.3 I I I I I L______ --l i-----~--~-: :-------l II I I I II I I I J I I I I II IL ________ -.JIIL ______ I: 2 _____ '" I JI I II I L _______ J z EW3 EY>'4 b Ij a· t. [] Lr yr;'L(I~ E 1.5\.5 L~ Y 3ll Ul .U @ 8 !I w z ~ -- -....J -....J Maximum :Load Table 9.3 shows the values of strains and computed moments and normal forces for four critical load stages. IJoad stage 98 preceded the first cracking of the under·· side of the centre panel and much of the beam cracking. strains are low as a result. The effect of the application of 450 psf at LS158 was to increase steel strains sharply, particularly in the centre panel. At both panel and beam sections, sharp increases were evident in the values of moments and mambrane forces. Loads applied in Tests 111 produced relatively little change, 9,2.4.5 Membrane Action Effects Small changes in beam tensions and panel membrane forces resulted from the removal of load from the outer panels in Test 107. The difference in behaviour between the load configuration in Test 111 and that in which load was applied equally to all panels was not large enough to be detected. The most vivid expression of membrane action came in Test 110 with the application of 450 psf when the loss of surround stiffness resulting from the cracking of the centre-edge panels caused a marked change in the -behaviour of the centre panel. The cracks in the centre-edge panels (Figure 9.2(b)) ran along radial lines from the centre of TABLE GAUGE ELEHENT 9.3 - STRAINS, HOi"ENT·S AND NORMAL POSITION GAUGE NO'S MAXIMUM CCNC. STRAIN ,?ORC;;:S [,1' Lon:: STA'}r;::; ,,3, 15S, 17G end if,') MAXn11lM S7EEL STRAIN MONE1·;T YORC;;; C:i;cs -cr.:: LSN Ext. Beam C.Span Ext. Beam C.Span Ext. Beam E.Span 133,134 Mid-Span 53,55 Mid-Span 59,62 Support Int. Beam C.Span Int. Beam C.Span Int Beam E.Span 126,129 73,77 Mi:1-Span 64,67 Centre Panel Centre Bottom Centre Panel Edge Centre Panel Edge Centre Panel 9" from Edge Support Hid-Span Edge Panel H Centre Edge Panel H ::;dge -In t. Long Edge Panel HEdge Ext.Long Edge Panel H Edge Short Bottom Corner Panel Edge Int. Corner Panel Edge Ext. 6 114,115 118,119 20,22 -45 -246 -76 -63 176 -122 -20 -31 -225 -45 -51 -97 -62 -44 -163 -92 -63 -75 -31 -38 -124 -50 -59 -54 -117 40 -52 -161 62 -14 -115 61 -18 -128 -108 -182 -107 98 -143 -70 98 409 371 596 50 l ! 109 164 423 549 101 73 279 306 338 -38 1650 1441 1431 -91 1575 1305 1261 -'18 1638 1422 -1390 -110 39 -133 172 8 -3 719 16 195 390 -42 681 -29 328 -13 776 -13 404 246 14 870 12 780 -21 919 All Strains Corrected for Drift (Gauge 81) and 100 PSF Initial Load. Steel Strains Corrected for Temperature (Gauge 140). Refer to Figures 7.2 and 7.3 For Gauge Positions. 92 297 508 50 106 91 86 Moments and Forces Calculated From Strains Shown. 176 231 486 21 339 102 5 94,95 97 102 158 .)03 534 53 -1 -3.6 -13.0 6.4 7·5 4.6 +3.2 -13.6 12.4 7.4 -23.6 12.6 -17.,., - -c"./ 1.7 -.9 -2.6 -21.7 -.5 1.: -141 -300 -171 -188 -302 -'17 -257 -137 -239 1.6 -~,. "I .l. j • fJ -i .. ~ -.? .6 11; -106 -74 73 -109 -207 -121 -232 -1:'1 5·5 -114 -206 -74 15S 0 -13.1 -76 -172 117 -6~ -213 -158 -180 the floor. This, and the presence of more cracks towards the outside edge indicated that these panels were acting as deep beams and ties against the compressive membrane forces in the centre panel. Each of these long cracks was seen to produce immediate and sharp deterioration of centre panel behaviour. 9.2.4.6 Effects of Sustained Loading At two stages during these tests, design service load was maintained on all panels for an appreciable time. The application of 375 psf for 22 hours at LS161 revealed negligible time effects, but the 66 hours at this load (LS189) produced detectable changes. Figure 9.4 shows defleetion in the centre panel, steel strain at its edge and steel strain at the mid-span section of an interior beam plotted against time for LS189. The effect at zero time has been set to zero for each curve and steel strains have been corrected for temperature variation. The total increases over the 66 hours are small and a general trend towards stability with time is apparent. The values of the centre panel parameters continued to rise at the end of 66 hours but at a decreasing rate. Changes in compressive membrane forces in the centre panel and changes in beam tensions were slight. 181 9.2.5 Test to Failure of Floor as a Whole 9.2.5.1 General This test was performed in two parts: the slab was first loaded to the predicted ultimate load of 775 psf applied after which the load was reduced to 400 psf. The load was then taken up again until failure of the centre panel at almost 850 psf. Failure of the centre panel was deemed to be the failure of the floor as a whole. At this stage the deflection of the centre panel increased markedly as tensile membrane action took over from compressive membrane action as the principal load carrying mechanism. Centre- edge panels were showing only moderate signs of distress at this stage and the corner panels even less. 9.2.5.2 Deflections Maximum levels of deflection for the floor elements at the predicted ultimate load are shown in Table 9.4. Most elements showed a sharp increase in deflection at 550 psf when the first cracking of the underside of the corner panels occurred, and a general loss of stiffness was evident after this stage. The deflection of the centre panel increased steadily with load and was approximately equal to the depth of the slab when failure occurred and tensile membrane behaviour became predominant. The centre spans of all interior beams and the EW exterior beams tended to stiffen in the latter stages of the test,immediately prior to the failure of the Compression - lb/in ~ 1001 , / , ............... ~ o 7r 0 I . !I . I I I I ! I ::::.....6---'" !l __ 75 I ,/, 7 ll\)~a;OO J " IOU! C 11 ..... tE~ (Il- ::J .... ::: o o o 50 I iI ~/ cll) o~ :;Sc ~.- ;;::: E ~ U) 25 I I oH I o l _. " I 12 r , 24 48 36 Hours since load first attained 60 ~ [flGURE-9.4 TIME EFFECT =1..:5189] -J> CD I\) centre panel. Table 9.4. Deflections at LS220 (775 psf). Reference Mark (F:igure 6.2(a)) Maximum Deflection (inches) Interior Beam NS2 .143 438 Exterior Beam NS4 .123 510 Corner Panel A ·523 85 F .649 68 Element T2:I2e Centre~edge Panel Deflection: ~pan ratio) Centre Panel E Interior Beam) East Span ) EW2 0430 104 Exterior Beam) East Span ) EW'1 0135 330 9.2.5.3 1 .32 47 Cracking No fresh cracks appeared until a load of 500 psf was applied when a small number of cracks appeared in the beams. At 525 psf one further crack in the centre span of beam NS4 appeared. The application of 550 psf (LS200, 200A, 200B) produced cracks in almost all elements with dramatic effect. Further cracks appeared in the centre panel (Figure 9.5) and some centre~edge panels. Cracks appeared in all beam spans and first cracking of the undersurface of the corner panels occurred (Figure 9.7). Again each new craek in any of the panels surrounding 184 the centre panel brought further cracking in the under- surface of the centre panel. The cracks in the corner panels were limited to one per panel running along the diagonal passing through the middle point of the centre panel giving the floor panel crack pattern an even more radial nature and further indicating the effect of compressive membrane action in the centre panel. The low reinforce- ment content of the panels meant that the cracking and ultimate loads of the corner panels were almost equal, and cracks formed rapidly and extended almost the whole distance from one corner to the other. In some cases the crack formation caused dull thuds. Cracking in the beams at this stage was also significant. In the exterior beams cracks appeared over some interior supports and at the middle of some centre spans. In the end spans 1 cracks appeared very near the corner r (lower right of Figure 9.7) indicating the considerable bending moment induced by the twisting moment in the adjacent exterior beam at right angles. Similarly induced cracking took place in the end spans of interior beams (Figure 9.6 left middle; Figure 9.7). Cracks also appeared over the interior supports of these beams. Although the crack widths in the panels and end spans of the beams shown in Figures 9.9, 9.10, 9.11 and 9.12 (taken at the end of the test programme) are very much greater than they were at failure of the centre panel, FIGURE 9.5 CENTRE PANEL FIGURE 9. 7 FIGURE 9.8 FIGURE 9.6 CENTRE-EDGE PANEL FIGURES 9.5 to 9.9 FIGURE 9.9 CRACKING AT LS 200 (550 PSF) CORNER PANEL EXTERIOR BEAM, END SPAN INTERIOR BEAi'1, CENTRE SP Ai\)" 186 the figures do show that much of the new cracking after LS200 (550 psf) was confined to the outer panels and end spans of beams (numbers lower than 228 indicate the extent of cracks formed before centre panel failure). The centre spans of interior beams showed few further cracks but the centre panel cracking extended considerably on the application of loads greater than 550 psf. Load increase beyond 550 psf brought more cracks in the centre panel, radiating from the centre j extending further towards the edges of the panel as the tensile membrane region extended. These cracks became wider near the centre of the panel, becoming full depth before loading of the panel was stopped. The state of cracking in the centre panel after loading of it had been stopped may be seen in Figures 9.11 and 9012. The zones of crushing on the top along the diagonals show the effects of the large 11 circumferential 11 compression. Full depth cracks extended further towards the edges of the panel in regions away from the diagonals. 9.205.4 Moment, Strain, and Normal Force Levels at Maximum Load The wide load range of this test c,aused great changes in the levels of the above quantities and only a brief description of the changes occurring is given here. A detailed description follows in later sections (9.3.2, 9.3.5, 9.3.6). 187 Table 9.5 shows the values of strains~-i moments and normal forces for LS220 (775 psf) affording comparison with Table 9.3. Almost all steel strains tabulated are either past yield or very close to it and the values of these at midspan and support of the centre spans of both interior and exterior beams are nearly equal indicating little postyield moment redistribution. Formation of cracks in the end spans did not coincide with the steel gauge position and some erratic strain values resulted. In the centre panel, the strain in the steel at the centre increased to beyond the limit of the data logger. Steel strains at the edge were well in excess of yield as was the case for most points along the edges that were continuous over the beam supporting them. Values of steel strain at the panel edges supported by the exterior beams were remarkably low, especially in the corner panels. Values of beam moments compared favourably with design moments at the supports but were lower than design values at mid-span. Tensions at the supports of the centre spans of both interior and exterior beams were larger than those at mid-span. The average magnitude compared well with design values but exterior beams carried a greater portion of the total than was expected. 9.2.5.5 Evidence of Membrane Action The application of 550 psf at load stage 200 provided 188 Table 9.5. Strains, Moments, and Normal Forces at Load Stage 220. Gauge Position Gauge Max. Max. Moment Force Numbers COlle. st. steel K" or K or Strain ;US Ext. )kS Ib"/" Ib/" '1256 1584 30.2 13.1 10.6 1978 -304 1447 1270 -92.0 Beam~ C. Span Support Co Span Mid-span E. Span Mid~span Into Beam: C. Span Support C. Span Mid-span E. Span Mid-span Centre Panel: Centre Bottom Edge Edge 9" from edge 133,134, 53,55 59,62 19 -11 126,129 -572 -209 -* 73,77 64,67 6 114,115 118 ,11 9 20,22 Edge Panel H: Centre Bottom 5 Edge Int. Long 94,95 Edge Ext Long 97 Short "102 Edge 0 Corner Panel: Edge Int. Edge Ext. -212 91 86 * 7.3 1.7 15.3 9.6 3.6 43.5 9·3 -187 -295 48 *6979 8158* 2428* -71 -352 -509 -1'13 =197 =222 2306 2'136 -405 -195 ~149 -308 '193 4137 2723 103 All strains corrected for drift (gauge 81) and '100 psf initial load. Steel strains corrected for temperature (gauge '140) Moments and forees calculated from strains shown. * Values off scale or gauge broken. 0 189 clear evidence of the reliance of the centre panel on compressive membrane action. Later in the test, as failure of the centre panel approached, the level of beam tension and slab compression rose steadily but finally fell away rapidly with the push~through of the centre panel. At LS200 cracking in the outer panels was radial in nature indicating the effect of membrane action in the centre panel. Again the effect of outer panel cracking was observed - the thuds produced 'by the cracking of the corner panels were coincident with sharp increases in centre pane~ :.;. deflection. The three~quarters of an hour taken to settle at LS200 was a measure of the instability of the centre panel and a static situation prevailed only when all outer panels had ceased to crack. steeply inclined shear cracks in the interior beam centre span were indicative of the presence of considerable tension. 9.2.5.6 Failure Mec,hanism The centre panel IIfailed li with the progression of the tensile membrane region towards the slab edges and panel edge compression decreased with consequent loss of beam tension. fened. Centre spans of interior beams accordingly stifTowards the outside edges of the centre panel a wide region of slab at high (tlcirumferential tl ) compression developed to support the tensile membrane area at the centre. ~!, As the panel was pushed on into a more complete tensile membrane stage this region became narrower until crushing occurred... The centre-edge panels at this stage were in a fairly advanced stage of forming a composite panel and beam mechanism as can be seen in Figures 9.10, 9.11, 9.12. (The predominance of the beam mechanism evident in this illustration developed as a result of later loading.) Corner panelf3 had cracked across both diagonals and were forming a panel mechanism, but again, later loading brought about the predominance of the beam failure mechanism. Beams showed little sign of distress at this point. Centre spans of interior beams became increasingly stiff with the reduction in tension c.arried and the cracks in their end spans, whic:h were later to develop into wide cracks at pl.astic hinges, were at;]'ll narrow (see Figure 902.0:, Test t;c;. E'a:Llure of Outer 1)8.ne18 -~------~- In this test the centre panel load was kept constant at 600 psi" while the outer panel load. was increased. until the centre-edge panels "failed" at 966 psf. Corner panel load was then increased with centre panel load still 600 psf and centre-edge panel load 950 psr. Failure of the corner panels occurred at 1170 psf. Only a general description of the floor behaviour and failure modes is given. Many steel gauges had gone off the Exterior beam Interior beam EW2 FIGURE 9 Al'1S AT E OF TEST FIGURE 9. 11 LOADED SURFACE AT END OF TEST FIGURE 9. 12 UNLOADED SURFACE AT END OF TEST 194 data logger scale and cracks had rendered many concrete gauges useless. Figures 9.10, 9.11, and 9.12 show the final state of the floor. The formation of plastic hinges in the positive moment regions of the end spans of the interior beams brought about a pronounced folding mechanism in the centre~edge panels and affected the Icorner panels similarly at a later stage. load The centre edge panels showed no sudden drop in capacity but at 966 psf on all outer panels, the rate of deflection under constant load was so great that the load on these panels was not increased further. Full depth cracking at the middle of the centre-edge panels had only just developed at this stage, the principal cause of the loss of load capacity being the full development of the combined beam and slab mechanism, evident when concrete crushing occurred at the interior supports and on the top surface above the wide cracks in the end spans. The load on the corner panels was taken up until these panels could sustain no further load. Again, beam mechanisms were respnnsible for this inability to sustain further load. Concrete crushing at the supports of the interior beams continued and large rotation of plastic hinges in the end spans caused considerable twisting of the exterior beams and the development of the combined torsional and flexural hinges near the corners resulted (see Figures 9.10, 9.11 195 and 9.12). The test was stopped at 1170 psf when the deformation rate was excessive. An interesting feature of this test was the lack of development of yield moments along the slab edges supported by the exterior beams. The following steel strains indifate the degree to which yield moments were developed along these edges. Readings were taken at LS239. Position Corner panel: Interior edge Exterior edge Centre e~panels: Interior edge (short) Exterior edge Gauge No. Microstrain 83 91 84 90 85 '1870 44-40 2130 2000 2300 86 88 87 89 240 2200 220 970 98 99 100 102 96 97 2970 3100 2040 8000+ 1860 2220 At the end of the test the principal crack in each centre-edge panel was that along an arc between cracks in 196 the end spans of the interior beams supporting the panel (see Figure 9.12). This crack was full depth for the middle 24" but T-beam flange effects caused closure at the top of this crack in the region of the beams (see Figure 9.11). Cracks along the exterior edges of the corner panels were measured at .002" at the end of the test programme. Development of flexural hinges in the end spans of interior beams allowed large torsional rotation of the exterior beams and torsional resistance was provided only by the end spans of the exterior beams. Each such span showed the effect of this with the development of a torsional and flexural hinge, to a greater degree in some beams than others. Figure 9.10 shows the most fully developed of these at the end of the test programme. 9.3 EXAMINATION OF ASPECTS OF FLOOR BEHAVIOUR DURING TESTING 9.3.1 Figures Deflections 9.13 and 9.14 show load-deflection plots for the full range of load applied over the whole top surface. Each curve is typical of its group and the values plotted include residual deflections. The difference between NS and EW exterior beams is apparent when the curves for the east and south exterior beams are compared. The curves for the centre, corner, and centre-edge panels all show the effects of cracking at 550 psf but at 197 450 psf, only the centre-edge and centre panel deflections show a marked increase. Loss of stiffness of all panels after 550 psf is clearly seen and the similarity of shape of the corner and centre-edge curves after this stage show the effects of supporting beam deflection. The centre panel load~ deflection curve indicates the push-through failure that occurred at a deflection of nearly 2 11 , Because 850 psf was not fully attained the path of the load-deflection curve for the centre panel was not accurately determined. load~deflection The plot for the tensile membrane stage is close to a straight line through the origin. The curious shape of the curves for the centre spans of interior and exterior beams is due to the effect of tension in these spans. The loss of tension in the beams towards the end of the test is evident in the steepening of these curves, especially in the interior beams in which deflection decreased with increase in load near the end of the test. However, this was due in part to the formation of plastic hinges in the end spans of these beams. The varying scale used in Figures comparison of stiffnesses difficult. 9.13 and 9.14 makes Figures 9.15 and 9.16 show load-deflection plots for Tests 1 06 and 110 in which deflection at the start of Test 110 has been set equal to that at the end of Test 106 and the constant horizontal scale makes direct comparison of relative stiffnesses --. 9 f--- - - f-- 8 .- f---- /' 7 /' 6 ~ 3 -- r - - - -l-- - ,/ {( ! 2 / o o VI 1-/!f / ~ - ~~ .---- I 8 V I f 7 / /' 6 DEFLECTION - -- t 21 24 27 30 12 24 36 48 00 .01 in. units DEFLECTION (al . 9 9 8 8 7 7 e - 6 5 5 ~4 8. 4 / ' ----- ~ ), S I J ...J2 U V f I I II ~3 --.----~ J f- - 96 '108 120 ( b) / i-- -- / L-- j/ III I J PANE -l---j---- 84 72 F - - t----- -.--~ t------ I--- o o DEFLECTION 17 .01 in. units (c) -- j' fj PANE _. , o 15 .01 in. units V ~ - I r I 12 l.----- - 1 ... - I f BEAM NS4 CentrE span 9 l..--- hr If J " 6 -- i rh f 3 1 9 I--- I FIGURE 9.131 34 51 DEFLECTION 68 85 102 .01 in. units (d) 119 136 153 170 900 +- 900 800 -- f 7 -1--I , o (§ ~Jt--.HII-+--+---+----'f----";c;F-.~"",,,,---1--+ ---1--+-"-- ~300~~~--~--~--+----~~~~-~---1~-~---+--- O~ o 7 14 21 DEFLECTION - 28 35 .01 in units 49 42 63 56 __ ~ __ 3 70 ~ ____ ~ __- L_ _ 8 7 --r( / / 1~ r-~ I 21 9 8 ...... ...... " " " 7 V ----V 1------ - 18 24 27 30 (b) I V _ _ _ _~_ _- L_ _ _ _~_~_ _ 6 9 12 15 DEFLECTION - .01 in. units (al 9 ~ 6 ( V ~ i (r-- ~ ? I---- - j/ 1/ V I l' ,I 2 CE TRE I I ~NEL IIbrth 'SiIlIilI1 I I U- BEAM 1'>151 I I 2 I o o o 12 30 24 42 48 54 60 o 5 DEFLECTION - .1 in units (c l I FIGURE 9.141 10 15 20 25 DEFLECTION - .01 in. units (d) 30 35 40 45 50 200 possible. Table 9.6 gives the deflection readings for all gauge points. In some cases, pattern loading caused upward deflections (negative values) and the sharp increases in deflection at LS158 and LS200 are noticeable, especially in panels and centre spans of beams. It is of interest to compare the deflections in the table with ACI code requirements for deflections. ACI-318- 63 Clause 209 specifie s '1/360 of the span as the maximum allowable for floors carrying plaster ceilings, 1/180 of the clear span otherwise. The most stringent requirement for long term loading is the allowance of an additional deflection of twice the short-term deflection. The first values which exceed the L/360 requirement are marked. with an asteri sk in Table 9.6. When the first values of deflections at design service load are factored by 3.0 to allow for long term deflections, the centre panel just exceeds the L/360 requirement. However~ the dependence of the centre panel on compres- sive membrane action makes the assessment of long term deflections a special case in which the deflection is unusually sensitive to outward creep of surrounding elements which provide the necessary lateral restraint. At service load, however, the magnitude of the membrane forces may not be high and it is reasonable to conclude that the deflections of the floor at service load would not be T,1,BLE 9.6 LOAD STAGE 1·:AX LeAD DEFLSCTIONS AT SELECTED LOA;) STf..GES FOR ALL Gt.U:;E [rIFTS (.or01 n:CH lI!HTS) 32 57 225 225 375 3 PAT'rERN 14,0 104 7A 225 155 177 375 3'75 .?13 375 400 5 2 25 107 25 15 64 46 99 97 20 o 68 43 110 375 375 3 500 217 600 ?20 22" 775 825 5 GAUGE NO. -16 23 39 48 -19 3 4 37 41 -8 -6 33 5 42 -12 6 41 7 42 -9 -18 8 34 -17 29 21 10 27 64 57 1c 107 21 9 59 76 15 116 26 8 71 30 69 20 110 25 10 51 20 24 55 21 101 21 6 53 71 56 30 79 30 102 36 25 77 98 29 59 2 94 -6 -21 39 49 65 22 77 90 512 268 52 69 90 13 4 57 P6 109 345 80 98 212 72 91 1'+1 90 110 46 70 195 129 212 9('0 1435' 1000 1560' 5'7 877 1346* 2136 410 1160 1900· 436 591 881 425 950 1630* 391 559 1029 40 136 61 101 112 111 124 175 123 155 213 719 1591" 2397 ;;3 144 47 104 119 115 143 190 130 176 231 475 11P:? 23(';2* 2943 4,:c7 6447 11 17 21 ,9 112 37 87 103 97 106 147 103 147 191 492 1(,42' 12 20 21 40 121 55 111 108 116 161 150 221 256 478 801 1811" 2731 13 22 26 41 111 43 93 90 99 93 71 63 54 131 163 391 821 1701" 2661 2645 14 24 24 45 120 32 84 944 1795' 122 37 87 155 154 495 43 115 122 198 25 93 95 152 25 95 101 106 15 106 151 194 379 757 1462' 2232 16 11 21 32 111 31 86 87 80 103 141 93 141 191 318 691 1571' 2461 17 18 32 40 40 75 262 230 220 250 240 310 550 470 510 650 1342 1452 85 285 266 273 235 257 315 409 465 445 1135 1186 1245 19 25 30 60 261 227 210 240 231 290 540 445 490 555 612 963 861 1234 45 902 1090 1147 1220 20 40 35 80 253 210 205 225 225 274 435 365 405 555 901 1235 1425 1555 21 -35 -30 70 40 110 15 -37 141 162 121 320 240 300 371 580 562 425 73 65 50 140 -18 165 34c 260 )45 1228 1540 -22 223 184 367 293 176 435 464 1()~7 110 170 164 200 40 6-,. 30 34 685 590 440 154- -:09 -1 189 ~-- T79 --399 309 384 479 969 1139 1204 22 24 -33 -21 23 81, 25 100 -5 85 205 40 250 115 85 215 293 400 886 1975' 4500 6820 100 -5 210 48 268 120 89 210 193 296 400 1230 2405' 4342 8130 27 28 100 5 90 82 305 291 197 26 42 75 190 282 195 282 383 1242' 2770 5230 7650 L/360 :::: 1240 uni ts for short spans -1 79 31 239 229 101 92 185 184 94 69 189 279 179 269 372 785 2074' 4279 6579 L/360 :::: 1730 uni ts for long "'~pans. 29 20 122 122 365 .105 90 400 417 430 732 920 2050' 3855 6490 9230 -10 133 122 335 121 96 402 415 330 672 535 440 700 30 648 840 1924' 3390 6330 8882 31 5 145 138 345 97 75 367 390 385 727 546 705 924 1802' 3385 5428 7537 32 75 135 135 403 114 95 378 385 391 725 543 694 907 1227' 3054 5655 7775 33 211 -6 214 616 524 976 216C* 2137 ?139 2746 921 .. First value in excess of L/360 FIGURE 9.15 DEFLECTIONS-T~~TS 106J11~ I ~~--+----t--+---t---t----r-----t---r----t BEAM I EW2 WEST SPAN l~'~~~~--~-----+----~r----r---i-r~~iI~--t-----t I "tI ~ ~~~--~~~-----+~Lh~~~-r-r~-r--Jti-~B~~M-t-----t EW3 CENTRE SPAN FIGURE 9·16 DEFLECTIONS - TESTS 106 • 110 I CENTRE a300~--~~~-4---.H+T----r----~--~4-r---T-----T----I ./ oL---~-----J----~----~----~----~----~----~---- I~ 203 excessive in the long term. 9.3.2 strains 9.3.2.1 General Readings in microstrain at selected gauge positions are presented in Table 9.7. Load~strain curves for the latter part of the test programme appear in Figures 9.17 to 9.21. Appendix C contains readings for all channels at all load stages. 9.3.2.2 strain Levels Table 9.7 shows the generally low level of strain at 375 psf applied at LS85, no underside panel cracking having taken place· at this stage, but the shr;inkage eraeks present before testing commeneed~ show up in the higher strain values at the panel edge seetions. Craeking of the under- side of the eentre panel at L.8100 (as the outer panel load ~as reduced) brought a sharp increase in strain in the een'tre panel bottom steel (eogo gauge 6) with little effect on the strains at the edge of the panel. Strain values were still comparatively low at LS155, gauge 5 recording the highest level at less than half the yield strain. The effect on the strain levels of the application of 450 psf is seen most clearly in Figures 9.18 to 9.21 inelusiveo Centre~edge and eentre panel strains showed a partieularly large rise with the occurrence of underside eraeking in these panels~ yield being reaehed in TABLE 9.7 STRAINS '_T SELECTED POINTS GAUGE No. YIELD STRAIN 57 52 63 73 1340 1340 1340 1340 124 136 LSN 104 375/3 155 375/1 158 450/1 175 350/5 189 375/1 193 475/1 200 550/1 213 600/1 218 725/1 220 775/1 226 825/1 -27 97 279 -19 117 97 265 33 107 132 331 47 548 161 596 7 478 96 497 38 529 136 549 77 641 193 680 83 996 985 794 134 1145 1636 982 1566 1362 2098 1271 2135 1478 4713 1270 2159 1685 6629 1297 87 87 110 104 135 175 168 216 373 439 330 379 377 452 443 543 496 618 804 846 1206 1206 1358 1462 1630 1916 9 260 -39 126 -64 165 -52 306 -54 390 -35 633 -83 542 -71 659 -27 813 -27 890 20 1133 599 1786 840 1922 1046 2000 18 _12 -17 242 383 2 870 -35 779 -19 919 13 1079 11 1196 21 233 2 216 _6 128 1513 35 2623 91 2723 2655 221 177 246 625 278 683 237 494 361 671 1272 1650 1063 1540 1223 1638 1528 1909 1764 2264 1921 1945 1976 1600 32 225/2 57 225/3 7A 225/1 85 375/1 375/5 123A 400/2 49 11 73 125 -9 95 65 101 23 71 83 160 45 112 125 323 -5 18 26 299 1430 1430 44 43 49 54 63 65 111 135 96 98 1690 1690 _6 55 9 88 -3 97 88 91 1690 1690 13 89 6 83 7 118 111 6 1690 1690 113 68 85 29 139 56 LOAD 142B 84 128 All values corrected for temperature and drift. Refer to figures 7.2 and 7.3 for gauge positions. I\.) o .t:. 205 __ - 7 600 ... ---- r- J J 600 I ) / / - I ~ II C\ ..::I 200 { , , ---...".- ...--, //) I , I / / IFIGURE 9.17 LOAD V. STRAIN-GAUGES 128.130 ] {' o 2000 1000 MICROSTRAIN FIGURE 9.18 LOAD v. STRAIN GAUGES 51,53,70,71 0 0 500 1500 1000 MICROSTRAIN --600 /' I / 600 124)-'/ II! '!- I ·. ./'26 ~ ~400 s:: FIGURE 9.19 LOAD v. STRAIN - GAUGES 124,126,133.136 200 MICRQSTRAIN 0 0 ~ ---128 --130 I o ~ V L ,- I;~" 0400 - - .. ..... - ... -' 500 1000 1500 2000 206 \ 800 - V ~ 600 ~ ~--- ~ " v~--~~ .- ~ 't;; 400 .....-:. 0- / I r ,.- - -- 1121 / ,/ / o >- ( .3 / a t-~'116 / "0 / I I I 200 I I FIGURE 9.20 STEEL STRAIN AT EDGE OF CENTRE PANEL If o I 1000 I I I 2000 Microst.rain :] w >- 400~~--+-~------~--------+-~ 200 H--IJr-----_+_ FI GURE Q.21 STEEL STRAI NAT EDGE OF CENTRE-EDGE PANEL o 1000 2000 Microstrain 207 the bottom steel at the middle of the centre panel. Levels of strain continued to rise with load but not always at the expected rate, a feature particularly noticeable at the edges of the centre panel. at the edges of the panels (see Figure The slower increase 9.20) coupled with the steady increase in beam steel strain indicate quite clearly the effect of membrane action. A slow rate of steel strain development in the edges of the centre-edge and corner panels was also evident 0 In the centre-edge panel, steel strain development along the short edges lagged that along the interior long edge but yield was reac.hed before floor. 5 psf was applied to the whole At this stage, however 9 gauge 96, on the exterior long edge showed only 990fLS and it was only during the test to failure of this panel that the steel along this edge yielded. Along the outer edges strains were small through to failure the corner panels steel and even in the later test these panels these strains never became large. The reason for this low value of strain at the edges was clearly a result of the smaller edge restraint afforded by the edge beams~ retarding the development of moment. Although the edge "be,ams were sufficiently strong to carry the torsion induced the full yield moment, the rotation required to achieve this was too great and compres 208 membrane action developed in the panels to compensate for the slow development of the full yield value. In the corner panels the beam mechanism formed completely before the panel mechanism was fully developed and so the yield value was never reached at the edge. Figure 9.19 shows the strains at the supports of the centre spans of both interior and exterior beams while Figure 9.18 shows the steel strains at mid-span of both beams. The similarity between exterior and interior beams is good,and after cracking,the separate curves of load versus strain have nearly identical shape for both mid-span and support. Beam steel strains at vicinity of yield. 775 psf are seen to be in the This has two important implications. The closeness of both mid-span and support values to yield indicates that little moment redistribution was required and secondly, the fact that yield of this steel was accomplished is indicative of large beam tensions of the order expected. Steel strains in the interior beams show a tendency to reduce with increasing load beyond about 750 psf, a clear indication that the maximum tension had been r.eached and was reducing. This effect was more marked at mid-span than at the support where steel was required to take the moment due to the load on the end spans. Generally the concrete strains were of little value as 209 a means of determining the maximum strains in the concrete. This was particularly noticeable for the panel edge sections where the region of high concrete strain was confined to about one eighth of an inch width at the beam-slab junction. The gauge was not therefore in the correct position to measure the maximum strain. Even if the gauges had been correctly positioned the small area over which high strains took place would have led to reduced readings since the gauge reading would be an average over the 1 inch gauge length. These factors did not render the readings useless for the purposes of computing membrane forces as is discussed in Section 7.3.4. Beam concrete strains were less sensitive to this effect and Figure 9.17 shows the strains as measured by gauges 130 and 128 followed through increasing load. The curve for gauge 130 has a continuous form and the two curves are almost identical up to 550 psf, the small increase at 450 psf showing up in both curves. At 550 psf when the corner panel cracked on the underside for the first time and the centre-edge panels cracked further, the curves part, the strain in gauge 128 dropping significantly in magnitude. This drop, with the slower increase that followed it give a clear indication of the presence of tension in the beams. 9.3.3 9.3.3.1 Cracking General Development of crack patterns in the elements of the 210 floor during testing has been described fully in the preceding sections on test by test behaviour of the floor (see Sections 9.2.4.3, 9.2.5.3, 9.2.6). This section is devoted to the examination of the serviceability of the floor at design service load with respect to crack widths. 9.3.3.2 Crack Width Serviceability Only at Load Stage 161 were widths measured in detail. These are shown in Figure 9.3 (p. 185). Although the measurements were taken at an applied load of 375 psf (DL + LL), the maximum load sustained up to that stage was psf. 450 This overload had little effect on the beams and centre-edge panels, but the cracking in the centre panel that took place at 450 psf was considerable and crack widths were substantially larger than the first DL + LL values. The values shown in Figure 9.3 are maximum values and as such may not be compared directly with the quoted limits of ACI 318~63 Clause 1508 which gives .015" as the maximum mean crack width for interior members, 0010 11 for exterior members. In this comparison, the effect ~ scale and of the relation between maximum mean crack widths and maximum crack widths was accounted for by adjusting the code ues. Average crack widths are generally taken as val~ two~thirds of the maximum values and the ACI code values were therefore increased by 50 per cent for comparison with maximum r 211 prototype crack widths. Allowance for scale was made in two ways: (i) on the assumption that crack width varies as the square root of the scale factor and (ii) on the assumption that crack width varies directly with the scale factor. The maximum allowable model crack widths resulting from the above adjustments are summarised in Table 9.8. Table 9.8. EX:Qosure Condition Maximum Allowable Crack Widths For the Model Floor. Maximum Allowable Crack Widths ~inches) 1 2 4 3A 3 1 Scale 4A Max. Observed Crack Width }!'igure 9.:2 Interior .015 .022 .005 .013 .011 .028 .015 Exterior .010 .015 .004 .010 .007 .018 .015 The numbers 1=4 in the table refer to the difference adjustments, as follows: 1. Normal ACI 318-63 Code values for maximum allowable mean crack width. 2. Values in 1. increased by 50 per cent for comparison with absolute maximum crack widths on prototype. 3. Values of 2. adjusted for scale variation directly proportional to the scale factor. 4. r- Values of 2. adjusted for scale variation proportional to the square root of the scale. " 212 Columns 3A and 4A require further explanation. crack widths in Figure 9.3 The were measured at the design service load but only after the overload to 450 psf had produced a marked effect on the centre panel cracking. Values of columns 3 and 4 were factored by the ratio of steel strain in the bottom steel of the centre panel for design service overload. load~ before and after the application of This was found to be approximately 1:2.5. Since crack width is proportional to steel stress, the relationship between the values of columns 3A or 4A and those of Figure 9.3 may be assumed to be the same as the relationship between centre panel crack widths before overload~ and the actual maximum allowable crack widths for the model. Comparison of values of Table 9.3 9.8 with those of Figure reveals that for an assumed variation proportional to the square root of the scale factor, all beams and outer panels satisfy the more stringent limit of .007", Centre panel crack widths do not satisfy either exposure condition but when adjustment is made according to the ratio of steel stresses, all centre panel crack widths are seen to be less than the more stringent exterior exposure condition for maximum allowable crack widths. It was concluded that if crack widths were assumed to vary as the square root of the scale factor, the service~ ability of the model floor with respect to crack widths was 213 more than adequate for loads not in excess of the design service load. Two qualifications must accompany this con- clusion, viz: (i) Exposure to exterior conditions would result in marginal serviceability if crack widths varied directly as the scale factor. (ii) The dependence of the centre panel on compressive membrane action to improve its load carrying capacity and serviceability. 9.3.4 9.3.4.1 Reactions General Measured reactions came close to expected values throughout most of the test programme. The prime use for these was in the calculation of moments across full width sections of the floor (see next section). In this section, the variation of reaction with load is discussed briefly and a comparison with expected values is made. 9.3.402 Variation of Reaction with Applied Load Figure 9.22 shows plots of reaction value against load for support points C3, A2~ and D1 respectively. The scale for reaction value was chosen to make direct comparison of the three figures possible. The reaction ratio plotted is the value of the reaction measured,divided by the expected value of reaction at the point for a load of 775 psf applied over the effective loaded area of the floor surface. The true origin for the graph is at -33 psf (= dead weight/ 1.0 .8 tv Support C3 o .6 ~ (b) Support D1 - - EXPECTED - - - - - LS1l4-B2 _·_._.-LS 133-151 - _ . - - LS 166-227 ~ j ~ .6 (c) Support A2 i ~ o~Ar-----~----~-7~~----+-----+ ~l FIGURE 9-22 REACTION vs LOAD r o 100 200 400 LOAD-PSF 600 215 effective loaded area) and the straight line joining the origin with the point (775~ 1.0) provides a useful reference. For equal load on all panels~ the corner support reaction, D1, was uniformly higher than expected up to 550 psf, thus when the initial discrepancy was allowed for, the variation with load almost exactly corresponded to that of the expected reference line. After 550 psf the rate of increase of this reaction became greater at the expense of the other reactions. The degree to which this affected the other reaction was exaggerated by the scaling effect used to plot the reaction variation. A detailed study of the variation of the reaci:;:ions provided no reliable information as to the distribution of loading along the beams. 9.3.403 Method of Calculation of Line Moments from Reactions and Applied Loads The moments~ M1 @. 0oM10 , about lines 1 .... 10 of Figure '7.5 (p. 130) were calculated using the measured values of reactions and the known values of the loading pressures on the panels. Nominal values of applied load could not be used because the sum of all 16 reactions was always less than the sum of the products (nominal applied load x corresponding total available area)~ indicating that the bags did not exert pressure over the full area 9 rather 92~96 per cent of it. It was most likely that the unloaded area was in the region of the beams (at the edges of the 216 bags) but in calculating the line moments, load was assumed to act over the full area with reduced intensity. Calcul- ation of the line moments was therefore both accurate and straightforward. Moments General Two sources were available for the determination of moments in the slab. Strain readings were used (see Section 7.3.4.3) to compute the moment and normal force at sections of the slab and beams. The other source was the reaction values and applied load, which provided a means of determining the moment along a full width seetion of the floor. Moment computation from the strain readings gave the values at particular seetions whereas those computed from the reactions afforded only the total moment along the section line. The results of the latter method were in- herently more accurate than those of the former. Comparisons between the two methods were made by summing the section moments across the floor and plotting the load-moment curves for both methods. 9.3.5.2 Basis of Calculation of Line Moments from the Sum of Section Moments Consider the element of floor cut out by lines 2 and of Figure 7.5. Eaeh line cuts through four beams and exposes three lengths of panel edge. The total moment 3 217 acting along each of these as given by the strain lines~ readings, was calculated by summing the individual beam and slab moments across the line. Let Figure 9.23 represent one of the beams and enough slab section on either side of it to make the sum of the slab compression equal to the tension in the beam, with the following notation: Mb = moment in the beam at the support about the mid-depth, as calculated from the strain readings. Tb = tension in the beam at the support acting at mid-depth as calculated from the strairi readings. 0 sum ' = sum of slab compression over the length of slab . O~um considered such that m'sum = Tb. = sum of slab moments acting about the mid-depth of the slab, summed over the length of slab as defined by O§Uffi = Tb o Mb , Tb , 0sum' msum are similar values at mid~spano The moment of the exposed actions in the beam, Mtotal is therefore given by 0 ••• (9.1) and so across the full line 2, the moment is the sum of the computed beam moments plus the sum of the computed slab moments across the full width minus the sum of the products 218 -b w'1 ~ on\ y- F" -r- o If) 1_- ..- 0\ M' - I , Mid-span Line 3 Support Line 2 FIGURE 9.23 COMPUTED ACTIONS ON A TYPICAL SLAB AND BEAM ELEMENT w per unit length a t c b r wa 2 - F- a -a I ... a/2 -l" a/2. I b/2 .. ~ b/2 [FIGURE 9.24 FREE MOMENTS B •v 219 of Tb(D-D )/2 for each beam, bearing in mind that D may s vary from beam to beam. At mid-span the total moment, Mtotal' of the actions exposed in the beam of 9.23 is ... 0(9.2) and a similar summation of these quantities, beam by beam yields the total moment along a line such as line 3. For checking purposes, a most useful quantity is the "free" moment, which for any symmetrically loaded span is the average of the two support moments plus the moment at mid-span. This moment should equal the moment induced at mid-span by the same load on a simply supported span of the same length. The case of a uniformly distributed load is illustrated in Figure 9.24. Referring to this figure and denoting the total moment at the opposite support (not shown) as Mtotal~ Free moment ~ Mf = t(Mtotal + Mil total) + Mtotal == .1- (M' 2 9.3.5.3 11 ) b + Mil) b +.1-2 (M'sum + Msum Comparison of Line Moments Each line cut through four beams,not all of which 220 were strain-gauged sufficiently to determine moments at the sections cut. The sum of moments in the beams cut by any line was computed by assuming complete symmetry of floor, behaviour, eogo,when only two beams Cone exterior and one interior) were suitably gauged, the sum of the two known moments was doubled. Unknown tension couples were similarly treated. m~um The slab moments, msum ' were not known at all and for only one edge of the centre panel was suitably gauged. Thus assessment of the contribution of slab moment was not at all accurate and in most cases the difference between the full moment as calculated from the reactions and the sum of beam moments only was examined to ensure that it was of reasonable magnitude. Figures 9.25 to 9.28 show moment-load curves for lines 2, 3, and 4 calculated from reactions and applied loads and from strain readings. All curves are for increasing load from LS168 upward to LS227. described Figure ~nd Each figure is more fully discussed below. 9.25~ All curves in this figure are calculated from the reactions and applied load by the method described above C9.3.4). Line 1, line 2 and line 3 moments are shown individually, together with the free moment in the end span Ci line 2 + line 1) and that in the centre span CiCline 2 + line 4) + line 3). The latter may be seen to compare 221 2 favourably with the w1 /8 values. Line 3 moment increased linearly from the outset but curled over to reach a maximum value at approximately 800 psf. Line 2 accordingly showed the reverse tendency, increasing more sharply after 650 psf. The larger value of mid-span moment initially suggested a relatively large EI value in this region, probably due to the contribution of flanges in the T- and L-beams, and the subsequent reduction in the rate of increase of moment was probably due to the decreasing role played by the flanges, and to the increased cracking at mid-span. Figure 9.26~ Comparison of line 2 moments is made in this figure, the curve for moments calculated from the reactions and applied loads being the basis for comparison (curve 3). Along line 2, only two beams were gauged to give values of beam tension and moment (gauges exterior beam; 126~129 133~134 in the interior beam). in the Curve 1 is the sum of moments only in these two beams, calculated from the strain readings and doubled to allow for the other two beams. For curve 2, curve 1 values were reduced by the total value of the tension couples as given by Equation 9.1. The difference between curve 3 and curve 2 represents the sum of slab moments along line 2. No slab edge moments were measured along line 2 but it is reasonable to assume that the centre panel edge moments will be approximately equal to those along the centre panel 222 edge at right angles to line 2. 114,115; 116,117, Gauges 118,1'19,120; showed nearly equal values of slab edge moment at LS227 and it is reasonable to take this value as acting along the whole length of the centre panel edge. Further, since no moment values were obtained for the edges of the centre-edge panel, the values of moment per unit length of edge obtained for the edge of the centre panel were taken as representative of the centre-edge panel values. The total length of edge over which this moment could act was thus 62.5 + 2(4405) = 151.5 inches. At load stage 227 the slab edge moment per inch given by gauges 118,119 etc., (650 Ib/in) required multiplication by 130 inches to make values of curve 2 + slab moments equal to curve 3. This same factor was applied to the slab moment at the other load stages,resulting in curve 4 which compares favourably with curve 2. The factor of 130 inches implies a high value of moment (500 Ib/in) along the short edge of the centre~edge panels. Some estimate of the feasibility of this value may be gained by comparison of the expected normal forces along these edges (340 Ib/in. in the centre panel; the centre-edge panels (see Figure 6.3)). 270 lb/in. in The centre panel edge forces given at these sections from which the moments were taken are all of greater magnitude than expected at LS227. If it is assumed that the expected and actual mem- brane force values compare as well in the centre-edge 3 FIGURE 9.25 MOMENTS CALCULATED FROM LOADING ___ __ .~ 400 • 5(UNE 2 2 :i 3 4 5 6 7 $ ~_~~ ~~~~;;;bI;-----1I-,r~-L--+---- LINE 4) ~ LINE ;3 I, .~~".,..,,- . . .",..1. .92W(62.5"~/8 :2 LINE 3 LINE 2 .92W(44.5,,)2/a .5L1NE 2 .. LINE 1 LINE 1 / ....- ....- ....- ....- .-' 100 200 300 400 7 600 500 TOTA L LOAD - PSF 800 700 "W 250 IFIGURE 9·26 MOMENTS ALONG LINE 21 200 1- BEAM MOMENTS ONLY " 2- " MINUS ~<. 5 T( D· 1:\» 3- AS CALCULATED FROM LOADING 4- CURVE 2 .. 130" x SLAB MOMENT 100 oL-____-L______L-____- L______ ~ o 100 200 300 ____ ~ ____ 500 400 TOTAL LOAD - PSF ~~ 600 ____ ~ ____ 700 ~ ____ 800 ~ 221+ panels,an enhanced moment of 500 lb/in along the short edges is reasonable. Figure 9.27: This figure shows line moment values for the middle sections of the floor in both directions (lines 3 and 8). The lower two curves are plo~s of the sum of beam moments only, in each case this sum comprising the two separate interior beam values and twice the one exterior beam value obtained. Both these curves fell well short of the curves calculated from the reactions (upper two curves). The two middle curves compare far more favourably with the top pair, since for these the necessary addition of tension couples has been made, according to Equation 9.2. The difference remaining represents msum and is well within the capacity of the slab portion. Figure 9.28: The lowest curve (1) in this figure is the graph of, the sum of beam moments only along line 3~ again being twice the exterior beam value + the two separate interior beam values. No tension couple adjustment was made for this or for curve 2 which is a plot of line 2 moments. Curve 3 shows the sum of these. Equation 9.3 that Mtotal = If it is assumed in Mil T - TI total' B - B curve represents the total free momen~ • less the portion of + ~(m U + mil )) . sum sum When 130" times the centre panel edge moment per unit moment taken by the slab sections (m sum FIGURE MOMENTS ALONG LINES 3 AND 8 A - AS CALCULATED FROM LOADING B - SEAM MOMENTS .~lr(D·D;J/:2) C _" • II ONLY --UNE :3 ----LINE ---- ...." a ---- ----- --OL-____ o ~ ______ ~ ____ ~ ______ ~ ______ ~ 100 ____ ~ ______ ~ ____ ~ ______ 700 FIGURE 9.26 MOM ENTS ALONG LINES 1,2 AND 3 EXPECTED FREE MOMENT I-LINE .'3 (BEAM MOMENTS ONLY) :2 -LINE :2 ( " ' ,,) 3 - LINE :1/ • LINE 3 (BEAM MOMENTS ONLY) <4 - " (ADJUSTED FOR ,5(D-~T AND l3O"x SLAB EDGE MOMENTS) .100 200 3QO 500 TOTAl LOAD - F'SI" 700 800 ~ 226 width is added to this curve, values are significantly in excess of the theoretical free moment (solid line). How- ever, when each beam moment was adjusted separately for the Tb (D-D s )/2 terms and the same slab edge moment term added, curve 4 resulted. 9.3.5.4 Variation of Section Moments with Load Values of section moments as calculated from the strain readings are shown for several cri tic,al, sections in Table 9.9, for increasing load in pattern 1 after LS168 and for critical load stages before LS168. Some of the former values are plotted in Figures 9.29 to 9.31 inclusive. Figure 9.29 shows the beam moments plotted against load. For the exterior beam centre spans, the support mom- ent rose far more sharply than the mid-span values. In the interior beam centre spans, values at support and mid-span showed marked equality up to 550 psf after which a sharp rise in support moment occurred and the rate of increase in mid-span moment fell. The values of design moment are marked in the figure and may be seen to compare favourably at the interior beam centre span and the exterior beam support. Values at the exterior beam mid-span were less than the design moment, while those at the interior beam support were greater. In Figure 9.30, the moments at sections along the edge of the centre panel are plotted. The curves for gauge posi- tions 118,119,120 and 114,115 (near the middle of the edge) are T!lBLE 9.9 BEAll STEEL GAUGE LSN 71 73 70 - ... J\.ssuminr; complete bond transfer. HO!v:E~;TS AT SELECTED LCJ..D ST1\GES (CRt,eKED SECTIC'NS BF=1.0 FOB BEtlMS) HnlENTS 72" - KIF-IN ... ·Concrete eauee not at mid-span. SUB tCll'lNTS lb. in/in. 127 126 132 136 116" 114" 112" 107" 105" LOAD 32 225/2/75 9.1 12.9 11.6 12.1 -124 -116 -82 -49 -67 -82 10.3 11.0 10.0 -5.0 -3.8 -6.4 1.6 7.4 -3·5 -4.2 +1.3 225/3/75 -6.9 -6.9 -5.0 57 0.4 6.1 -82 -49 -25 -99 9.6 15.4 13.0 13.0 -9.2 -7.1 -4.9 -6.7 "-6 4.3 -129 -82 -40 -97 -100 -103 225/1 -79 -131 -114 -128 7A -86 79 225/1 8.8 15.2 12.7 13.2 -9.2 -7.0 -5.0 -6.3 3.9 3.9 -141 -124 -83 -37 -103 -115 -130 84 350/1 15.4 10.8 6.3 -190 -179 -127 -51 -13.2 -11.4 7.2 7.0 -20'5 -193 -135 -58 -131 -142 -165 12.2 -7.9 -8.9 6.5 16.9 -15.5 -16.9 -10.1 375/1 14.3 16.3 -12.5 85 17.2 18.4 -178 -188 96A 225/1 12.3 8.7 13.1 12.1 -11.6 -7.8 -6.4 -7.6 3.2 375/1 16.8 12.4 17.8 17.4 -17.9 -13 .. 6 -9.4 -11.6 6.2 3.7 6.4 -71 -114 -21 98 -87 -128 104 375/5/75 13.8 -3.7 -4.5 -130 11.3 15.5 14.1 -5.4 400/2/75 14.9 12.2 -9.4 123A 9.9 8.2 -113 -169 -114 -11.9 -6.9 -4.7 -4.0 -107 -134 142B 375/3/150 -13.4. -11.2 -6.3 -10.'5 -151 -176 9.7 13.2 11.8 -6.4 225/1 7.3 6.2 11.3 153A 10.1 8.6 --4.0 -4.8 -135 155 375/1 13.9 10.4 18.9 17.5 -18.9 -11.7 158 450/1 23.0 18.6 23.8 168 171A 75 9.8 8.5 23.5 10.6 225 15.1 12.1 15.5 183A 225 11.0 185 275 13·7 15.4 14.9 16.6 15.2 14.2 -30.0 16.0 21.4 187 325 189H 375 17·1 18.9 22.7 20.2 22.6 12.0 10.3 -171 -128 -109 -1.0 -206 -194 -192 -172 -86 -43 -26 -5.3 -213 -184 -81 -23 -175 -132 -36 19 -7.2 3.9 -1.6 -62 -114 .4 -162 -123 -30 -12.5 2.3 -208 -166 -190 -9.5 -15.0 -141 -94 -167 -229 -302 8.4 16.2 10.3 7.9 10.6 3.4 1.0 -176 -241 -57 -23.9 3.7 6.4 -83 -112 -113 -8.6 19 18 -77 -128 -170 3.5 4.6 -293 -114 -71 -80 -7 -53 -48 -145 -47 -73 -82 -119 -188 -109 21.5 16.4 10.8 10.7 1.9 1.6 4.3 -187 -184 -143 -44 -72 -170 23.4 17.6 11.5 11.7 1.9 4.7 -212 -165 -63 -83 -79 -102 -129 15.7 17.4 -148 -195 25.3 12.4 12.8 2.3 5.3 -237 -192 -78 -90 -118 13.1 13.5 13.9 14.7 5.3 6.4 -270 -213 -217 -132 -146 20.6 32.9 25.2 14.1 16.0 6.9 -293 -234 -97 -97 -104 -93 -103 24.5 -113 -170 -217 26.8 22.8 35.2 38.5 40.3 37.3 27.4 15.3 16.4 2.6 3.3 3.8 4.0 4.6 -270 19.4 27.6 30.6 -170 -188 -196 -213 19.0 19.5 21.7 23.4 7.5 8.2 -310 -341 -256 -285 -124 -145 -142 -182 -242 -246 -200 -265 5·0 5.6 8.4 8.5 -370 -370 -305 -305 -159 -165 -286 -424 -213 -208 -277 -257 -283 -302 -326 -323 6.6 7.0 9.3 -3~4 -340 -160 -221 -322 9." -405 -362 -195 -472 -494 -236 -335 -313 -297 18.4 191 425 24.3 13·7 15.2 17.3 18.6 193 475 26.6 20.5 23.6 30.1 24.9 27·2 31.9 35.7 25.9 27.4 30.1 2~.0 30.5 40.3 32.8 36.0 -239 -232 3~.1 32.0 39.2 41.4 20.0 17.3 19.4 20.0 23.3 24.4 40.6 44.0 20.5 25.9 38.4 45.2 50.6 16.8 28.5 6.9 -369 -205 -519 -270 -385 -241 51.6 60.5 20.8 26.9 -494 -586 -726 -375 -443 -428 -374 63.2 47.6 75.0 91.9 -263 -281 43.5 59.9 74.8 -447 -492 -358 46.5 7.4 7.8 -451 57.0 29.7 30.0 9.5 10.9 12.9 -388 44.5 -515 -494 -352 -869 -356 -434 -405 47.5 47.2 So.3 96.1 37.5 38.4 13.0 66.6 29.5 31.4 9.4 45 •.7 47.5 11.5 -512 -506 -418 -923 -420 33.3 40.5 11.6 -537 -554 -511 -1024 -370 -401 -476 99.2 13 •.2 12.8 -514 -445 50.3 40.4 ~1.3 46.9 33.7 34.0 42.2 12.0 13.0 -560 -1175 -418 -459 43.8 12.2 13.1 -650 -555 -659 -575 39.1 98.6 108.8 102.5 67.0 -1953 -1866 -542 -541 -474 -509 199 525 200 550 20b 575 29.4 38.2 32.7 35.6 213 600 3< .1 31.5 214 625 4c.3 35.4 42.0 216 675 44.3 38.9 49.5 218 725 47.6 42.1 220 775 48.7 224 775 51.0 225 800 52.4 226 825 54.8 227 850 50.8 68.2 30.2 106.5 17.2 18.5 -302 -316 J , / / / 100 i I i a- GAUGES 1IS,l1Q,120 ( I b- ) .. .. c-.. I I d- w .. 116,117 112,113 114,115 J , II ~ Q. 52 . a-INT. BEAM b -" • .. c - EXT. BEAM d - .. I- Z iii :::r: 0 :::r: / Y I I - GAUGES 105, 106 94,95 107,108 G .. SUPPORT(12e,12Q) I MlD-SPAN(71.75) " SUPPORT(13a,138 / b MD-SAt.N (53,55) 2 O~----~------~----~------~--- o 200 400 600 APPLIED LOAD - PSI'" 800 FIGURE 9·29 MOMENTS AT BEAM SECTIONS o~~--~------~----~------~- o 200 400 600 BOO APPUED LOAD - PSI'" FIGURE 9-30 MOMENTS AT EDGE OF CENTRE PANEL o~----~------~----~-- o 200 400 600 Af'PU ED LOAD - PSI'" ____ __ FIGURE 9_31 rvlOMENTS AT EDGE OF CENTRE -EDGE PANEL ~ 229 similar but towards the corners the initial rate of increase of moment was lower. Membrane compression became enormous near the corners towards the end of the test, a fact which explains the steep rise in moments in this region. Moment values at sections along the interior long edge of the centre-edge panel showed good grouping as Figure 9.31 shows. The effect of the crack along the centre of each of these panels was evident in the discontinuity in the curve for gauges 94,95 which were located on the line of this crack. 400 lb lt / It The moment values of at 775 psf indicate considerable compressive membrane action in this direction. 9.3.5.5 Discussion Line moments calculated from the measured reactions and applied loads were expected to be reliable and accurate and were shown to be so. Values of line moments computed from the strain readings showed similar trends to the reaction-load line moments and the values compared well. The effect of beam tension and slab compression on the line moments was shown to be large and the conclusion that the strain moments compared well with the reaction-load moments was based on values of strain moments in beam sections only, corrected for the couple induced by the beam tension and slab compression. The assumption that concrete in a cracked section 230 carried no tension in regions of tensile strain once the extreme fibre strain exceeded the nominal cracking strain could have been the cause of the general tendency for values computed from the strains to rise slowly until relatively high loads were reached. Cracks did not form exactly at the gauge positions and bond transfer from steel to concrete between the crack and the gauge position would have reduced the tension in the steel, while at the same time inducing some tension in the concrete. The loss of steel tension was accounted for inherently in the strain reading but the "no tension" assumption ignored the corresponding tension in the concrete and therefore the section moment and tension would have been underestimated in the most likely case of this tension having its centre of action near the tension steel. At higher loads, further cracking would result in reduction of the force transferred by bond and -better values from the computation would result. Residual strains at LS168 have clearly led to high initial values, though not in all cases is this fully applicable. Cracking of the floor in previous tests caused redistribution of moments which remained effective when load was removed 1 causing significant alteration in the initial conditions of subsequent tests. The effect of variation of flange width on the computed moments at the mid~span sections was small 0 For a section at the mid-span of an interior beam section, the maximum change in moment due to an increase in flange width from 1.0 to 3.0 times the web width was 14 per cent. All values plotted are for a flange width equal to the web width. 9.3.5.6 Conclusion Line moments calculated from reaction values and applied loads showed good agreement with expected values. Lack of slab moment data made direct comparison of line moments difficult. Nevertheless,! favourable results were obtained from comparisons of line moments calculated from the two·· independent methods. Beam section moments followed the same trend as the line moments and compared well,overall,with the design values. Mid-span moments for both lines and sections tended to be large initially showing a slower rate of increase at higher load while support moments showed the reverse tendency. Slab moments were well in excess of Johansen values due to enhancement by compressive membrane action. Vari- ation of these moments with load was approximately linear for sections near the middle of the edges but values nearer the corners showed slow development initially followed by a sharp rise at higher load values. All moment values calculated from strain readings 232 contained inherent inaccuracies of sufficient size to make it difficult to draw firm conclusions from their variation with load, but good results were obtained in the comparisons of these values with the moments calculated from the reactions and applied loads. The slow rise in moment in some beam sections was attributable to the transfer of steel force to concrete, a factor not accounted for in the method of moment computation from the strain readings. 9.3.6 Membrane Action Effects 9.3.6.1 General The effects of membrane action were the subject of particular study in this experiment. Analysis of strain readings, deflections, beam and slab sec,tion moments and axial forces provided quantitative data on the membrane action in the floor while effects observed both during and after the test provided qualitative information on the action of membrane forces. Values of forces computed for the slab and beam sections compared well with those expected but no useful information was obtained from these as to the effect of varying load forces. patte~n on the distribution of membrane However, study of the centre panel deflection and the strain in the bottom steel at the middle of the centre panel did reveal some differences. Effects of sustained loading were negligible, except for the centre panel where deflection and strains increased 233 by detectable amounts and redistribution of compressive forces took place. In Section 9.3.6.2 the effects of membrane action on each of the floor elements is examined in detail~ Section 9.3.6.3 deals with the comparison of membrane forces, and some aspects of particular interest are discussed in Section 9.3.6.4. Table 9.10 shows values of net force on critical sections at selected load stages. 9.3.6.2 Effect of Membrane Action on Floor Elements Compressive membrane action caused enhancement of the load carrying capacities of all three panel types. At what was deemed to be failure of each panel type, the following values of the ratio of actual load to Johansen load were obtained~ Centre panel: • i· } ~~ -~ 2018 cf 200 required in design. Centre-edge panel: 1·55 cf '1 .35 II Ii Ii Corner panel: 1 046 cf 1000 Ii Ii II Although values for the centre~edge and corner panels were affected by large beam deflections, it is clear that for these panels, the enhancement due to membrane action was significantly in excess of that required. Compressive forces in the panels gave rise to considerable tensions in the beams~ thereby reducing their flexural capacity. The fact that the panel types had unequal ultimate loads eased the burden of tension carried by the beams~ T/,ELE 9.10 - SECTIm: FORCES ;·.T SELECT:::n T,OAr. S'!'t.3ES SLr\B STEEl. GAUGE _ _ _ 71 73 70 72 2.7 2.6 32 225/2/75 1.6 4.0 57 225/3/75 1.1 2.6 127 126 132 136 54 53 2.6 -.2 1.1 -1.1 -.7 -.2 .8 -1.1 -.5 -1.6 -1.1 2.2 -1.9 -106 -11? -68 -30 -"2 -62, -Po -62 -17 -34 -102 -90 -118 -122 -68 -106 -71 -33 -23 -93 -106 -102 -109 -125 -.f, -181 -1'54 -115 -36 -128 -141 -181 -175 -112 -166 -110 -27 -131 -159 -121 -1.5 -.7 -.3 _1.4 -90 -3'7 -83 -103 -121 -1.3 -.9 -.9 -172 -163 -76 -4 -12 -118 -153 -181 -1.9 -3.2 -2.9 -169 11 -64 -106 -125 20 -137 -1.2 -1.8 .5 .1 -?3 2.6 84 350/1 2.7 1.5 3.5 1.5 -2.4 -.2 -2.4 -1.P 85 375/1 3.0 1.8 ;,.6 2.0 -2.5 -.3 -2.0 -1.4 -.G 96A 225/1 2.3 1.6 3.0 -2.4 -.4 375/1 3.0 1.9 3.8 -2.8 -·5 -2.7 -0.6 -1.4 98 1.9 2.4 375/5/75 2.6 1.7 3.5 2.5 -1.0 -4.4 ? .1 2.8 2.0 -3.7 -1,.9 -.:.'.2 1.h -G.4 -3.0 -7·2 -8.1 2.6 1.5 2.2 -6.9 -2.9 -1.4 -8.8 5.0 3.8 2.9 3.0 -1.9 .6 .2 3.7 4.0 -1.3 3.7 -2.3 -2.3 -2.4 -2. ~ -0,.5 -4.7 -170 -132 -142 -3.5 -3.0 -141 -1no -53 -38 10 -4.2 -4.9 -4.1 -7(; 25 58 -6.8 -2.h -3.6 -3.0 -132 -124 -87 33 -2.4 -1.0 .8 1.4 -118 -51 -1.2 .8 1.0 1.7 +52 1.2 1.9 +9 -78 73 +125 .0 1.0 1.7 1.0 1.7 -25 -50 10 -.1 -.3 _.4 + .6 1.0 -66 _60 -79 -88 -19 -26 -8 117 117 123A 400/2/75 1.9 1.5 375/3/150 1.6 .9 153A 225/1 1.3 .u 155 375/1 2.2 1.2 158 450/1 4.0 168 75 4.4 2.4 3.0 171A 225 3.4 3.7 4.1 3.5 183A 225 3.0 3.2 3.9 4.1 -.4 3.3 -.7 187 275 325 3.3 3.4 3.2 185 3.5 3.7 4.4 3.5 -.9 189H 375 3.8 4.6 3.9 4.8 4.6 5·1 3.7 5.1 -1.0 -.1 5.0 5,0 -.7 -.7 94 -128 3.0 2.9 142B 105 -.6 4.8 4.8 2.9 1.0 -6.0 107 -1.0 1.2 225/1 o 112 -1.4 225/1 104 - } b/in. 114 -59 -122. .1 79 7A FC'R~ES 116 -40 -84 -11)1' -128 -175 -71 -103 -140 84 -100 -144 -187 67 -120 -131 -232 119 75 71 3 -41 -31 -33 -99 122 74 -32 -34 -99 130 70 -42 -62 -115 115 79 70 69 -61 -69 -140 -73 -86 -94 -94 -158 -140 -95 -111 -156 -175 191 h25 4.8 5.0 5.0 -.6 1.5 -30 123 475 5.2 5.3 5.3 5.6 -.3 193 5.3 5.6 1.7 1.6 2.3 2.4 -.2 5.2 -.6 .4 1.7 2.6 -113 -36 122 69 40 -09 -105 199 525 5.5 .2 5.S 2.0 -66 -100 -120 -175 .4 5.4 6.6 7.8 7.8 ,t, -110 -159 105 87 -97 1.2 2.3 2.6 -135 G.o 6.2 6.9 -37 -(8 -(9 118 6.1 6.1 3.0 3. 3 3.3 -116 5.7 -.5 .3 .3 .5 550 8.9 6.1 6.7 6.1 200 -222 -11 -130 -A9 -1208 -152 0.9 o .u 1.~ 3.2 -1~9 -113 '/4 -20 -U""j -122 7.2 10.5 -195 -123 59 -290 -0 -98 -100 11.3 -171 28 -308 -22 -162 -21 _""Z.oP: -1LJ1 -22? -71 -569 -1(-;2 -234 -159 -195 208 213 575 600 6.9 7.2 7.8 7.9 214 625 8.0 8.9 216 218 675 725 220 225 775 775 800 226 825 227 850 224 1.1 1.6 7.3 7.4 '/.) R.6 8.0 9.4 7.5 0.4 9.9 _?4h 10.0 7.9 9. 2 9.7 12.2 -290 - ~14 7.7 7.4 9.6 7.2 6.0 9.9 13.0 15.5 -303 -320 -149 -722 -161 -254 9.4 14.7 14.6 11.9 -320 -234 -812 -177 -293 -210 7.2 9.0 5.5 10.7 F 1?7 1C·7 ,).8 -41G -255 -933 -213 -352 -228 6.7 4.9 8.5 4.4 -272 -?52 7.~ r 10.4 11.1 13.G p.4 12.6 9.? 10.6 ).8 1n.7 12.4 f. 'i , - 0.1 6.4 6.') 7.3 7.3 -334 -82 7.2 - 390 -422 -10')9 -::~34 7.1 _")('7 -2017 _1c n ') -378 -,7, -308 235 particularly the centre spans of the interior beams, because the degree of development of compressive forces in each panel type was different, i.e., by the time the centre-edge and corner panels were in greatest need of compressive membrane action enhancement, the centre panel had failed and formed a tensile net which tended to reduce the tension in the beam spans supporting it. The interaction of elements was important "in assessing the effects of membrane action in the floor, a fact revealed in the following element by element analysis of the effects of membrane action on the floor behaviour. (i) Centre Panel The development of membrane forces in this panel was slow at low load levels but increased very rapidly after the Johansen load was exceededo As the collapse load was approached, evidence of a significant reduction in membrane compression near the centre of the panel was detected. Edge forces continued to rise during this stage and strains which indicated the level of "circumferential" compression near the edges increased sharply. The variation of edge force with increasing load beyond LS168 is shown in Figure 9.32, from which it may be seen that the delay in rise of compressive force is more marked near the corners of the panel. Values at 775 psf compare reasonably with the pre- dicted average force of 340 Ib/in. The rate of increase 236 in this edge force showed no sign of reduction while the load was increasing, but the level of compression did drop with the push-through failure of the centre panel. Figures 9.11 and 9.12 (pp. 192~3) illustrate clearly the transfer of compressive force from the middle region to the edge. Zones of crushing on the diagonals reach only half way along, decreasing almost linearly in width. An increase in crack width is then evident. These photo- graphs were taken after this panel was loaded well into the tensile membrane range but they only exaggerate an effect which was evident at initial failure. '. Strains parallel to the edge provided clear evidence of the increasing compression and subsequent decrease. Readings of gauges placed in this direction were examined and the readings of the two rosette stations were resolved into components parallel to and perpendicular to,the edge. The variation of some of these with load is shown in Figure 9033. This figure shows the variation for channel 78 and the components perpendicular to gauge 14 and gauge 25, the latter showing larger values by virt;ue of its closeness to the diagonal, where compression was higher. For comparison, values for gauges 82 and 76 are plotted. Gauge 76 represents the strain in the top of the beam, directly above the web, and values are very much less than those for gauge 78, indicating that the strain in gauge 78 237 500 I FIGURE 9.32 FORCES AT EDGE OF CENTRE PANEL ,, I 400 300 --Gauges 118,119,120 .£ :a ---" -. - " I, 1# 116.117 114,115 c: o '(ij 200 tI) QJ t- o. E o u 100 I I ) I / -..,.,- -' ( I 1 60,0 800 " , ./ / -. _,_,_o~ - . /'---._.-.-" ) I .J' ........... \ \ \ , 1000 14* _...l_.;rr- 8 -- .--___-:r. ......... .... \I) 0.. "-' 1:1 0 .2 600 1:1 .~ Q. 0.. <{ FlGURE 9.33 CONCRETE STRAINS IN THE CENTRE PANEL) PARALLEL TO THE BEAMS Gauge nos. shown beside curves *- Component parallel to gauge o~------~------~--------~------~--------~------~--------~------~--------~o 100 200 300 400 500 600 800 1000 1200 Compressive strain ~S) 239 was due principally to centre panel action and not to compression in the T-beam flange. Gauge 82 shows a little of this effect of "circumferential" compression. the strain in gauge 78 Whereas became tensile as the centre panel failed, gauge 82 strain remained compressive. Study of Figure 9.11 reveals that the spread of the tensile membrane is greater away from the diagonals, revealing an important difference between circular and square slabs in this respect. for strain in gauge 78 Comparison of the curves and the strain perpendicular to gauge 25 illustrates that this effect was present at the time of initial failure, and again this effect is merely exaggerated in the photograph. The effect of surround stiffness on the centre panel behaviour was particularly marked at three stages during the test programme as described earliero The effect of loss of surround stiffness on steel strain at the middle of the centre panel is shown in Figure 9.34. Causes of the large increases are shown on the figure. At 550 psf readings of strains were taken several times and the variation of strain with time during this unstable period was quite erratic; i.e., there was no suggestion that the cause of the increase in deflection was due to creep deformation of the surround. This graph shows clearly the effect of having a lower FIGURE 9.34 LOAD v. STRAIN - GAUGE 6 (CENTRE OF CENTRE PANEL) First cracKing in corner panels. Extensive cracking elsewhere. 600 Stable conditions reached after 75 minutes. Cracking of rectangular panels 40 45 5565 75 / Time at which reading taken - minutes since load first attained / / 5 load on outer / / / / j 400 I.L. tri a.: z panel 300 Q « 0 ...J 200 100 o 3 6 9 12 15 18 21 24 27 STRAIN 30 33 36 39 42 100 microstrain units 45 48 51 54 57 60 63 66 69 72 2~ load on the outer panels. In spite of reduced moment restraint at the edge of the centre panel, the increased surround stiffness resulting from the lower load on the outer panels caused a slower rise in strain with load. The effect of the application of 375 psf for 66 hours is shown to be small and a recovery to the original path on application of further load is evident. The increasing stability with time during this test was illustrated previously (see Section 9.2.4.6). The membrane forces perpendicular to the diagonals appeared to vary approximately linearly. Some assessment of these forces was made by measuring the depth of crushing along the diagonals at the end of the test. Results of this investigation are given in Figure 9.35. Measurements were taken along each of the four diagonals. The average force per Unit width was determined and plotted against the distance from the centre. Variation is almost linear and very large values are reached near the edge of the panel. (ii) Centre-edge Panels These panels sustained loads well in excess of their Johansen loads due to enhancement by compressive membrane action but evidence of this was not as clear as in the centre panel. Compressive forces were expected parallel to the long side and although no provision for measurement of these r 242 forces was made, the presence of tension in the centre spans of the exterior beams indicated that panel compres~ sion in this direction was considerable. 9.36 shows Figure the values of measured compression along the interior long edge of one of these panels, plotted against load. The rate of rise was steadier than for similar sections in the centre panel but there was still the evidence of a steeper rise for loads greater than 600 psf. Values are considerably less than those in the centre panel but indicate substantial compressive membrane action in this direction, although much of this force was a reaction to the centre panel forces. At the end of the test programme the panel mechanism was considerably developed as Figures 9.11 and 9.12 show. These Figures show clearly the zones of concrete crushing in the end spans of the interior beams and a study of the panel crack joining two of these zones revealed the presence of mambrane action of a different nature. Near the beams, this crack was present on the underside of the panel only, while the concrete at the upper surface above this crack had crushed. At its middle, the crack penetrated the full slab depth so that the panel sections along the crack were subject to high compression near the beams and tension in the middle. (iii) C r Panels The assumption that membrane action would not enhance the load capacity of these panels was clearly conservative. 243 FIGURE 9.35 AVERAGE COMPRESSION NORMAL TO THE DIAGONALS OF THE CENTRE PANEL AT THE END OF THE TEST ""'2000 c ~ Force :: .85f~ c X (average depth of crushing) ,2 lI) ~ 1000 E o u Ob-------L---____ o 400 6 ~~~ __ ~ ____ ~~ 12 18 Distance from centre ______ 24 30 {in} FIGURE 9.36 CENTRE-EDGE PANEL FORCES AT THE INTERIOR LONG EDGE 300 Gauges 107, 108 § ,., /I " " 105,106 94.95 200~------~------~--------+-~--~Hr-----­ 'iii lI) tl t- o.. E o U 100~------~r-----~~~~~~~r----r------- O~~~--~------~--------~------~------- o 200 400 600 Applied load (psf) 800 ~ ____ ~k_ 36 244 The lower span to depth ratio partially compensated for the more flexible surround of these panels. The T-beam flange effect described for the centre-edge panels was also evident in these panels and the panel mechanism was not as fully developed even at the end of the test programme, suggesting that more membrane action enhancement may have been available if the beams had not failed. The low steel strains at the exterior edges of the panels indicate the degree of development of the full yield moment along these edges. Extra membrane compres- sion would account for this, the moment required being taken by the moment of concrete compression force about the mid-depth rather than by steel force moment. High concrete compression along these edges affects the torque induced in the exterior beams for the reasons discussed in Section 4.3. (iv) Interior Beams In the absence of any net- axial tension, the centre spans of these beams were capable of carrying a far greater load than 800 psf but in fact steel strain readings reached yield values at this load,indicating the presence of large tensions in the spans. Analysis of section strains showed larger values at the support than at mid-span as may be seen from Table 9.10 and Figure 9.37(a). The rate of rise in beam tensions followed a similar pattern to .that followed by the panel 245 edge compressions, tensions being small at low load levels and rising steeply in regions of higher load. During the test,the tension gave evidence of its presence with the formation of steeply inclined shear cracks (see Figure 9.10). Values of tension measured in the end spans were not reliable and the behaviour of these spans during the test showed no conclusive signs of the tension implied by the presence of compressive forces along the interior long edge of the centre-edge panels. After the centre panel pushed through to form a well developed tensile membrane, the effect of reduction of induced tension was clear. Deflections and mid-span steel strains reduced considerably, but this was not wholly due to the effects of reduced tension because at this time~ the end spans were showing signs of development of plastic hinges in the positive moment regions and the resulting increase in support moment tended to produce the same effect as the reduced tensions. As loading progressed this effect became more marked and the tensions continued to reduce. (v)" Exterior Beams Visually detectable effects of membrane action on these beams were few and confined to the cent~e spans. ( IA. The forces measured at the sections showed a similar trend to the interior beams in their variation with load, as may be seen in Figure 9.37(b). Values were appreciably less / 14 l- I FIGURE 9.37(0) TENSION IN INTERIOR BEAMS 12 I- 1- Gauges 2 " If I' 3 ,. 4 " " i~ I .I 1\\ /r \ 126,129} Support 127,128 section 73,77 ] Midspa-n 71,75 section i/ I/ i i / /.", / 31: ' 111 c .Q c: ~ 6 ~ 11 I- /J ,- --'"". ..... ..... /r;../ If ; ..... " 53,55JMidsp an 54.56 section 10 "- "\ ~2 ,.-3 \ \\ '. '[8 \ \ \ i \ ;g 3 c 0 'iii c , ~ 6 / \ 4 -~.,...j-::I J' 1- Gauges 132,133,134} Support 136,137, 138 section 4 \ ""/ 4 12 2 3 4/\ if 1/1 'y--1 / f2 10 ].8 l- FIGURE 9.37(b) TENSION IN EXTERIOR BEAMS / ",. ",.' . ".. ",.' /- 2 2 0 0 --- ---- 1_ _ _ _ / 1- ----- -'- ___ J -, 200~ "--"" /' - ",. ..... '" 0 600 Applied load (pst) 800 800 (pst) 1000 I\) ~ (J) 247 than interior beam values and again the mid-span tensions were less than those measured at the support. In spite of this, even the lowest mid-span value was larger than the design tension. The presence of membrane forces in the centre-edge and corner panels reduced the torque which would normally have been induced in the exterior beams and slowed the development of steel strains at these edge sections. It was only after the formation of plastic hinges in the end spans of the interior beams that the torsion in the end spans of the exterior beams showed up clearly. The reduction in torque to be carried would cause the beams to have greater flexural strength but the presence of axial tension would offset this advantage. 9.306.3 Comparison of Measured Membrane Forces Membrane forces were compared in two ways: Panel and beam forces ,were compared with the design values, and the beam tensions compared with the sum of slab compressions along a line traversing the full width of the floor. (i) Comparison of Membrane Forces with Those Expected In designing the beams, the mean membrane forces were taken as 340 Ib/in for the centre panel; long direction of the centre-edge panels; 270 Ib/in in the 'zero in the short direction of the centre-edge panels and in the corner panels. Figure 9.32 shows that, at 775 psf, centre panel forces 248 were close to 340 lb/ino No measurement of forces was made in the long direction of the centre-edge panels but Figure 9.36 shows clearly that the membrane action force in the short directions was underestimated and had a value of approximately 200 lb/in at 775 psf, set up principally as a reaction against the compressive forces in the centre panel. Expected and actual beam tensions did not show particularly good agreement at 775 psf as may be seen from Table 9.11: Table 9.11. Beam Tensions at Predicted Ultimate Load (775 psf). Interior Beam Centre Span Exterior Beam Centre Span Expected Value K 17.6 5.2K Measured QijIid~s12an) 8.7K 6.6K Measured (SuJ2J2ort) K 1409 11 .4K 26.3 Total 22.8 (ii) Comparison of Tensions with Compressions Line 2 was the only line along which sufficient data existed to allow such a comparison to be made. Figure 9.38 shows the variation of the sum of support section tensions in the exterior and interior beam sections cut by line 20 As in the summing of moments along this line, the figure of 130" was used to factor the panel edge forces per unit width. The force at each of the panel edge sections wa,; weighted according to the length of centre panel edge it covered (half the distance to the next gauged section on either side). Between 550 psf and 775 psf, the values compared well but after 775 psf, panel compression continued to rise while the tension in the beams fell. In this comparison it was assumed that the centre-edge panel forces were of a similar order to that expected, which leaves room for considerable variation. However, unreliable strain read- ings in the panel edge sections seem to be the only possible source of this divergence of values. Values of compression at the panel edge did fall sharply as the pushthrough failure -took place and continued to fall as the tensile membrane was forced to spread from the centre. The curves show good correlation of rates of increase for the greater part of the load range. 9.3.6.4 Conclusions and Discussion In spite of some inconsistent results, the measured tensions and compression8 and the variation of strain readings with load served to illustrate how enhancement of panel strength by membrane aetion was achieved and the effect it had on the supporting structure. The mechanIsm by which panel compression was resiDtod by beam tensions was clearly active. The presence of com- pressive membrane action in the corner panels and the short 250 70 I- ,I FIGURE 9.38 COMPARISON OF BEAM AND SLAB FORCES I J ALONG LINE 2 60 , I- I I - - - Twice the sum of beam tension as given by gauges 126,129 and 133,134 ,I 1\ 501130" x (weighted average of compressions at the edge of the centre pane!.)- I 40 - • At positions of steel gauges I J 112 / 114,116 and 118. I I I I 201- ~I , //, I I I 10~-------+--------4------4~~-------+--------+- o lODe direc on of the centre-edge panels produc~d a more com- plex distri ()lition of membrane forces than would have resulted from the simple mechanism assumed in the design of the floor. Beams would have shown greater distress if all panels had reached failure simultaneously since all panels would then have exhibited maximum compressive membrane action. Craeking, especially cracking, of the panels surrounding the centre panel had a marked effect on the centre panel behaviour: The centre panel deflection increased with the loss of surround stiffness. As centre panel deflection increased? membrane com-pressbre forces normal to the diagonals increased near the corners but decreased towards the (';entre of the' panel. The def etion at failure of almost equal to the panel in Park's equations. Ii depth~ The le to do with this high fle centre panel was as compared with .5D used ons the beams had The more flexible surround clearly allowed greater deflection, while the development high compres on near t;he edges of the slab provided sufficient enhancement; for the panel to sustain the required load in spite of a small central tensile membrane region. The low reinforcement content meant that a relatively low compressive force was needed to produce the requ:lred el1D.ancement and the high span to depth ratio and low surround stiffness combined to affect the geometry 252 of the mechanism in a way that allowed the development of the tensile membrane before concrete crushing occurred. These factors also led to the higher stability in the centre panel, though at the expense of load enhancement. The instability brought by a stiffer surround was seen at LS200 when the deflection of the centre panel increased in jumps and it was clear that had the surround not cracked and become less stiff the ultimate load of the centre panel .. would have been greater than 850 psf. The l~rge difference between measured tensions at the \ ..., mid-span and support sections of the beams could be due, in part, to the effect of horizontal shear along the junction of beam and panel. Further difference could have resulted in the different accuracies of the "no-tension" assumption in the computation of moments due to the different flexural bond requirements at these points. 253 CHAPTER DISCUSSION OF 10 TEST RESULTS 1 0 .1 SUMMARY The effect of membrane action on the behaviour of the model floor was the subject of particular interest. The preceding three chapters have dealt with the design, construction, instrumentation and behaviour under load, of the nine-panel model floor. In this chapter the principal findings of the test are discussed. Particular reference is made to the adequacy of the ,design method. General conclusions as to the behaviour of the floor and the suitability of the design method are drawn. 10.2 DISCUSSION OF TEST;' RESULTS 10.2.1 Beam Behaviour Without question, the behaviour of all spans of all beams was satisfactory at service load. Flexural steel in the end spans was known to be excessive and it was the behaviour of the centre spans of both interior and exterior beams which was of chief interest. That all the additional longitudinal steel placed in these spans was required to resist:, the induced tensions was evidenced by the high 254 tensions measured and the high level of steel strains recorded simultaneously at mid-span and at the support, immediately prior to the failure of· the centre panel. The behaviour of these centre spans showed that the assumption that the concrete would take no shear was conservative for the interior beams at least. This was probaply true for the exterior beams but the incomplete development of yield moments along the edges of panels adjoining these spans reduced the torsional load on the exterior beams and the situation was not as clear. The proportion of the total tension taken by the exterior beams at design. 775 psf was larger than calculated in Design values, computed assuming the two corner and one centre-edge panel to be a continuous beam of K constant flexural rigidity, were 17.6 and 5.2 K for the interior and exterior beam respectivelY5 a ratio of 3.4 to 1. Had the deep surrounding beam,formed by the outer panels, been assumed rigid and the tensions distributed according to the concrete section areas of the beams, K values of 12.8 and 10K would have resulted giving a ratio of 1.28 to 1. Ratios of measured values were 1.32 at mid- span and 1.30 at the support. Both methods of calculation are simplifications but the measured values suggest-that the latter method is a closer approximation to the actual relative distribution of tension. 255 10.2.2 Lateral Restraint of the Edges of the Centre Panel Outward movements of the elements surrounding the centre panel had a marked effect on the centre panel behaviour. The outer panels clearly contributed to the lateral surround stiffness by flexural and shear action. The fact that cracking of the undersides of the outer panels produced large increases in centre panel deflections, strains and cracking, was a vivid illustration of this. The reduction in lateral stiffness produced by this cracking was not measured but the sharp change in centre panel behaviour after cracking suggested that the uncracked surround would have had sufficient lateral stiffness to enhance the load well beyond that finally attained. 10.2.3 Centre Panel Behaviour The behaviour of this panel at service load was very satisfactory but an illustration of the possible effects of surround stiffness loss which could occur with time was obtained when the load was raised 75 psf above the total service load of 400 psf. Cracking of the panels surround- ing the centre panel caused large increases in strains, deflections and cracking in the centre panel. The pos- sibility that this could have resulted from sustained service loading can not be overlooked, but the centre panel did show adequate stability during the application of service load for 66 hours. 256 The increase in membrane compression normal to the edges was sharper at higher loads, most probably as a result of the high cracking load and the greater tendency for the edges to spread outward after underside cracking. With the loss of lateral stiffness of the surround, edge compression reduced and the deflection increased, but the sensitivity of the panel to further loss of surround stiffness was reduced. There was an increased tendency for the panel to form a tensile net at the centre, supported by an outer region of high compression. With very stiff sur- rounds, much greater enhancement factors than 2.0 may be achieved for lightly reinforced panels and the failure is far more unstable. The failure of the centre panel in this case was not sudden, due to the gradual spread of the tensile membrane region and large deflection which took place before very high compressive forces normal to the diagonals crushed the concrete in these regions and brought about failure. It was because this region of high com- pression did not extend the full length of the diagonal and because the deflection at the middle was already high that "failure" was comparatively gentle. The ability of the centre panel to sustain more than twice its Johansen load in this practical situation was encouraging, especially in view of the near equality of experimental and predicted ultimate loads. 2~ 10.2.4 Centre-edge and Corner Panel Behaviour These panels sustained well in excess of 800 psf due to enhancement by compressive membrane action. Values of measured membrane forces suggested that membrane action enhancement was active in both directions. The low level of hogging moment along the exterior long edge indicated that enhancement due to membrane action was larger than expected. Two possible causes account for the low moments along this line. Membrane forces perpendicular to this edge would have reduced the torsion in the exterior beam and at the same time enhanced the moment at the edge beyond that indicated by the low level of steel strains. If no compressive membrane forces had existed perpendicular to the beam at the edge of the slab~ the edge mom- ents would have been very low and the load carried by membrane action in the long direction would have had to be greater. Hogging moments would not develop because of the reduced torsional stiffness of the exterior beams after cracking. Which of these situations applied was not clear. Large membrane forces were measured perpendicular to the interior long edge and for equilibrium it appears that forces perpendicular to the exterior long edge must be of similar magnitude 0 However, it is unlikely that the exterior beams alone could withstand a lateral force of 258 200 Ib/in without deflecting sideways. It seems more likely. that only small compressive membrane forces acted normal to the exterior long edge and that the large forces in this direction at the interior long edge were distributed to the beams in the manner shown in Figure 10.1, leaving very little compressive membrane force reaction against the laterally flexible edge beam. Compressive membrane force in the centre panel acting on centreedge panel. ~---- FIGURE 10.1. Forc.e transferred to interior beams. MEMBRA..NE FORCE DISTRIBUTION IN SHORT DIRECTION OF CENTREEDGE PANEL. Compressive membrane action accounts for the high load capacity of the corner panels~ although in this case membrane action was not allowed for in either direction. The low span to depth ratio and the relatively higher lateral stiffness of the edge beams (due to their shorter spans and to the effect of the extra steel placed in sections where cutoff could not be achieved) favoured the 259 development of compressive membrane action. Again, forces perpendicular to the exterior edges of the slab could not develop to any large degree and the reaction due to the centre-edge panel membrane action could enhance the load in the manner shown in Figure 10.2. Reaction on corner panel edge due to centre-edge panel membrane action in long direction. Compression across corners enhances the moment capacity of sections in this +egion. FIGURE 10.2. 10.2.5 CORNER PANEL MEMBRANE FORCES. General Behaviour of Floor The method of design for the centre panel and beams proved adequate in that the expected loads were sustained and the extra steel placed in the beams was required. The interaction of elements was seen to be of critical importance when membrane action is to be relied upon to enhance the load carrying capacity of slab panels. Had the enhanced capacities of the outer panels all been 850 the centre panel may not have carried this load. psf~ Increased deflection of the outer panels would have reduced the 260 lateral stiffness of the surround restraining the centre panel edges. Such a situation could have been achieved by increasing the size of the outer panels but this would have meant designing the corner panels with an enhancement factor substantially greater than 1.0. The effects of an increase in outer panel size would be beneficial to the centre panel initially but after the outer panels cracked and their deflection increased,the advantage of greater breadth of surround would be lost. approximately the same load Had all panels shown capacity~ beam tension would have been higher as a result of the simultaneous ac.tion of high membrane forces. Extrapolation of the results of this test is therefore difficult in view of the unknown effect that transverse loading of the outer panels has on their lateral stiffness. However~ the results indicated that it would be possible to assess the contribution of membrane action provided due allowance was made for the sensitivity of the panels to loss of surround stiffness. 10.2.6 Measurement of Moments and Forces at Slab and Beam Sections The methods used to measure forces and moments at sections by means of strain readings proved satisfactory. The performance of the method in this test pointed to several ways in which the method could be improved. Measurement of concrete strain must be made over a length sufficient to average the effects of aggregate size. In lightly reinforced slab sections the length over which very high concrete strains occur is much smaller than the desirable length for gauges. Furthermore, in any section, measurement of concrete strain at the point where crushing will occur, must be subject to doubt when high strains are reached because of the steep strain gradient likely to occur along the length of the gauge. It appears more reliable to place the concrete gauge in a position of low strain gradient and relatively low maximum concrete strain, In the centre panel, the compression perpendicular to the diagonals reached a very high value and increased with distance from the centre. Measurements of this compression during the test would have been valuable, especially when the initial failure of the centre panel was imminent. In tests carried out over a period of days, electrical drift and time effects in the concrete are likely to introduce errors into strain readings. Reduced sensitivity to such errors may be achieved by placing gauges in regions of relatively high strain. In cases~ such as in the centre panel of this floor, when membrane forces will be only moderately high, tests of short duration would probably yield more reliable results. 10.2.7 Technical Aspects The methods used for recording and measuring reactions, 262 strains and deflections were entirely satisfactory. The use of water in the loading bags presented problems in the manufacture of absolutely water-tight bags but this did not outweigh the advantage of safety arising from the use of water instead of air in the pressure bags. The simplicity of setting and maintaining the load with waterfilled bags proved a great advantage. The flexibility of the reaction frame did reduce considerably the sensitivity of the loading system to rapid fall-off in load and although this meant that the falling branch of the loaddeflection curve of the centre panel could not be followed exactly, the use of water permitted satisfactory control of load during failure. 10.3 CONCLUSIONS On the basis of the behaviour of the model floor under load and the above discussion,the following conclusions as to the behaviour of the floor and design method were drawn. (i) The design method for the panels proved satis- factory but left no margin for deterioration of behaviour of the centre panel under the action of service load for an indefinite period. (ii) Compressive membrane action enhanced the load carrying capacities of all panels. The corner and centre- edge panels carried well in excess of the required 800 psf. 263 In the centre panel~ compressive membrane action more than doubled the load capacity and enabled it to perform satisfactorily at a total service load of 400 psf. (iii) Membrane forces measured at the edge of the centre panel were of the same order as those predicted by the theory due to Park. (iv) The deflection of the centre panel at failure was approximately equal to the slab depth and occurred after tensile membrane forces had developed at the centre. (v) Only moderate lateral restraint was provided by the panels surrounding the centre panel, resulting in large deflection at failure and the formation of a partially self-equilibrating system of a central tensile region supported by an outer region of compression. (vi) Cracking of the panels surrounding the centre panel caused a significant loss of lateral stiffness. (vii) Compressive membrane forces in the floor panels were carried almost entirely by tension in the beams. Outer panels provided stiffness against outward bowing of the surround but carried little or no tension after they had cracked. (viii) The tension induced in the beams was of the same order as designed for. (ix) It is conservative to neglect shear taken by the concrete in beams carrying axial tension but some account must be taken of the reduced shear capacity due 264 to the effect of axial tension. (x) Membrane action in the outer panels suppressed the formation of hogging yield moments along those edges supported by exterior beams: the panel deflection required to develop sufficient membrane action was less than that required to develop full hogging yield moments against the torsionally flexible edge beams. (xi) Stability of the centre panel under 66 hours of sustained service load was more than satisfactory but extrapolation of this result to predict behaviour under loading sustained indefinitely is difficult in view of the sensitivity of the centre panel behaviour to very small increases in outward movement of the panels surrounding it. (xii) Had the outer panels been larger, their increased deflection and cracking at any given load would have reduced the surround stiffness even further 9 and the simultaneous demand of all panels for high membrane action enhancement would have increased the tension induced in the beams. (xiii) Measurement of compressive membrane forces perpendicular to the diagonals would have provided interesting information as to the extent of the tensile membrane at the time of initial failure. The large values that these attained would have made their measurement easier. (xiv) The interaction of the different elements of 265 the floor was particularly noticeable in this case ~ an example of the value of testing structural systems rather than separate elements. 266 CHAPTER A COMPARISON OF THE OF MODEL THE REINFORCING FLOOR, WITHOUT ALLOWANCE 11 FOR STEEL DESIGNED MEMBRANE WITH REQUIREMENTS AND ACTION 1 '1 ."1 INTRODUCTION AND SUMMARY When compared with normal design procedure, the method of design used for the model floor resulted in, a saving of panel reinforcement but an increased amount of steel in the beams. In view of the satisfactory behaviour of the model floor it is of interest to compare the actual amounts of steel in\lolved and to determine whether a net gain results. loss or Such an analysis was performed using straightforward procedures to calculate the steel volumes required. The analysis showed that for the model floor, approximately 7 per cent extra steel was required for membrane action design. Howeyer, in cases where the beam steel for earthquake moments CEQ + DL + Seismic LL) exceeded that required for full service load moments (DL + LL) plus tension induced by membrane action, a saving of total steel could be made by allowing for membrane action in the design of the panels. It was concluded that when earthquake moments go\rerned the 267 strength of the beams, design of the panels for a service load of DL + j-LL (without allowance for membrane acti on) could be considered. 11.2 GENERAL BASIS OF COMPARISON In calculating the volume of longitudinal steel in the beams, the area of steel at any section of the beam was found by linear interpolation between the critical points (see Figure 11.1). No allowance was made for anchorage length or for standard bar sizes. One quarter of the positive steel was continued to the support unless a greater amount was required for torsion. One third of the negative steel was extended a distance of one tenth of the span past the point of inflexion. The additional steel required for beam tension was calculated from the difference between steel areas at the critical sections with and without tension. The extra volume is represented by the shaded areas on Figure 11.1. The volume of shear and torsion steel stirrups was calculated according to the actual area of the shear force and torsion diagrams. No extra torsion steel was required for membrane action design but extra shear steel was required because,when the beams were required to carry tension, the shear force carried by the concrete was assumed to be zero. Panel steel was calculated from the lengths actually 268 "-3" :£ 0 - -_ _ _:::..1-_ 1'-0" ~I Interior beam 4'-0" 2'- 9" (\I C .~ (\J (\J ~ q .. ~ ('t) I~ "it If') r l'-6 N I FIGURE a) 0 Exterior beam 11.1 LONGITUDINAL STEEL IN BEAMS --: 269 used. For design with no membrane action the volume of steel in the slab was taken as the volume allocated for the membrane action design multiplied by the enhancement factor appropriate to the panel. 11.3 COMPARISON OF STEEL VOLUMES 11.3.1 (a) Panel Steel Bottom steel as placed: 35 lengths of i" diameter each way~ 13079 ft. long Volume =142.2 in3 (b) (51? off each end for Top steel as placed: anchorage) 80 lengths of 80 11 II iii diamet;er each way x 11 II Ii /j 9.5" x 11 .0" Ii Vollrne = 5708 in 3 Distribution between the panels was the same for top and bottom steel as follows: Centre panel .165 times total area 4 Rectangular panels .485 4 Corner panels .350 Ii 11 II " 1.000 Without membrane action, panel steel volumes were increased according to the enhancement factors, vizo~ 1.00 for the corner panels, 1035 for the rectangular panels and 1097 for the centre panel. 270 Table 11.1 summarises the results of the panel steel comparison. Table 11.1. Panel Steel Volume Comparison. Panel(s) Centre Rectangular (4) Corner (4) All Membrane Action Design: Top Bottom Total 9.5 23.5 33.0 28. -1 6900 97·1 18.7 4-6.3 65·0 38.0 93.0 131 .0 9.2 22.8 32.0 909 24.0 ~7, 9 5..1 57.8 142.2 200.0 Conventional Yield Line Theory' Design: Top Bottom Total 20.2 49.7 69.9 76.9 189.0 265.9 fference: Top Bottom Total All volu~es 11.3.2 0 in cubic inches. Overall Comparison The volumes of longitudinal beam steel were calculated from the are as shown in Figure 1-1.1. The total vol~lIDe of shear steel in the beams was assumed to be proportional to the total area of the shear force diagram, less the area represented by the shear taken by the concrete.' Similarly the total volume of torsion stirrups was assumed to be proportional to the net the torsion diagram. area of 271 The results of calculations of beam and slab steel volumes are given in Table 11.2. Table 11.2. Steel Volume Comparison - All Elements. Element Steel Volume Cin3) Membrane Y.L.T. DifferAction Design ence Per Cent Saving DeSIgn SLAB Centre Panel 4 Recto Panels 4 Corner Panels All Panels 32.0 49.3 33.0 97·1 69·9 200.0 65·0 131 .0 69.9 265.9 33.9 0.0 65.9 25·9 0.0 24.8 Long. Steel Shear Steel Torsion Steel 1Tl.8 24.8 56.0 153.9 16.8 56.0 -17.9 -800 0.0 -11 .3 -47·7 0.0 EXT. BEAM TOTAL 252.6 226.7 -25.9 -11 Long. Steel Shear Steel Torsion Steel 213.6 40.6 0.0 146.6 20.4 0.0 -67.0 -20.2 000 ~4508 INT. BEAM TOTAL 245·2 167.0 ~87.2 -52.2 BEAM TOTAL 506.8 39307 .1 -28.8 FLOOR TOTAL 706.8 659.6 EXTERIOR BEAMS .3 INT. BEAMS ~113 -9901 000 47.2 1-1 .4 DISCUSSION The figures of Table 11.2 show that for the membrane action design the volume of the additional steel required in the beams exceeded the volume of steel saved in the 272 difference was 7.2 per cent of panels and that the net the total steel volume which would have been required for normal yield line theory design. Before conclusions can be drawn from these figures several aspects require discussion. (a) Method of Steel Volume Calculation The method of longitudinal steel volume calculation represents a compromise between the exact following of bending moment, tension,and torsion variation,and the restraints imposed by practical considerations. The method used for shear and torsional stirrup requirements, in following exactly the variation of shear force and torsion, took no account of minimum codes of practice. ste~l requirements of There was therefore a tendency to underestimate the total stirrup steel volume and to overestimate the additional steel required when tension was present. (b) ", Adequacy of Design Assumptions The volume of steel required for membrane action design was computed on the basis of the steel used in the model floor. High steel strains in both interior and exterior beams confirmed that the longitudinal steel placed was not excessive. However the beams did not show signs of failure at any stage and a small percentage of this steel ,could have been UllneCessary. said of the stirrups. The same may be No strain measurements were taken 273 on this steel and the degree of excess was difficult to determine. It is reasonable to conclude that a small amount of the steel placed in the beams was unnecessary and that the net loss would be no greater than the 7.2 per cent quoted in Table 11.2. (c) Dual Use of Beam Steel Required for Earthquake A.ctions The model floor was typical of a floor in a multistorey reinforced concrete frame building but the beams were designed for vertical loads only. In earthquake~ prone areas, beams supporting a typical floor of a multistorey frame building would be required to resist considerable earthquake moments. The steel placed to counter these moments could well be more than 'is required to resist the moments and tensions due to vertical loads alone. Two principal reasons exist for this. Firstly, the earthquake moments in the beams may act in either direction requiring additional steel at the bottom of the support sections. The second factor is the allowable reduction in live load when earthquake forces are considered. NZSS 1900 Chapter 8(36) allows design for the combination of earthquake forces and the vertical loads to be for a load of Dead load + (DL + '1- LL ~ live load + earthquake + EQ) '"'174-. c. for buildings with relatively low live loads and DL + %LL + EQ for high live loads. Thus, when earthquake beam moments are relatively high, it may be possible to design some interior floor panels by ordinary yield line theory for a load of DL + ~ LL or DL + % LL having ensured that when vertical load only is considered: (i) Membrane action in the panels will provide sufficient assistance to carry the balance of live load. (ii) The beam steel required for the full live load condition does not exceed that required for DL + part LL Condition (i) will be satisfied if the surrounding panels provide sufficient lateral stiffness, and if the beam steel is sufficient to carry the tension induced by the membrane action. Satisfaction of condition (ii) will depend upon the relative magnitudes of earthquake and full live load moments. For the steel areas involved in the model slab, the ratio (MEQ/MDL+LL) was determined for which, at the sup~ port section of the beams: (Steel for DL + part LL + EQ) = (Steel for DL + LL) The method by which comparison was made is described below. Let A = total area of steel at section for moment and 275 tension at DL + LL. Am == that part of A I'equired for moment only. At = A - Am = F = ratio of panel ultimate load to Johansen load. v = the proportion of live load considered to act extra steel required fo~ tension concurrently with horizontal earthquake loads. The moment acting on the section is directly proportional to the load and the following assumptions were made in determining the steel areas: (a) Am was directly proportional to moment. This is true to a first approximation since the distance between the lines of action of the steel and concrete forces in the section is relatively insensitive to change in moment. In fact, an increase in moment will cause a reduction in this distance and the actual amount of steel will be slightly more than assumed here. (b) At was directly proportional to tension (c.f. Figure 4.3 (b)). (c) Tension was directly proportional to the amount by which the applied vertical loading exceeded the Johansen load. This implies that compressive membrane aetion in the panels commences when the Johansen load is reached, which, although open to question is reasonable in this context. (d) The tension induced in the centre spans of beams K at the ultimate load was 5.2 for the exterior beams and K K 1706 for the interior beams. It was assumed that 5.2 of ., ., 276 the 17.6K was due to the compression in the centre-edge panel. Calculation of MEQ/MDL+LL(=Z) for the Interior Beam for v = 1- At the support: = 1.25 Am' 2 A = .54 in In this case DL ultimate load = 800 psf. 2 11 Am = 02 -r l'n :, = At = 0 301'n2 100 psf, LL = 300 psf., Johansen load of centre-edge panel = 800 71.35 = 594 psf. panel = 800 7 2.0 = 400 psf. Johansen load of centre DL + ~LL = 300 psf which requires design for an ultimate load of 300 x 2.0 = 600 psf. By ass-umption (c) there is no membrane action in the centre~edge panel at this load and from assumption (d) the tension in the interior beam will be reduced by 5.2K . Membrane action in the centre panel will be reduced to (600-400)/(800-400) = i of its full load value. The contribution of the centre pa.nel to the interior beam tension at full load is, by assumption (d), = 1706K - 502K 12.4K . Therefore the tension must be reduced by half of K this = 6.2. = Thus the tension in the beam at 600 psf is a.ssumed to be T = KKK K 17.6 - 5.2 - 6.2 = 6.2 . ~ Using assumption (b) it is found that the area of steel required for this tension is (6.2/17. 6 )A t = o35At = •44Am , The steel required for moment will be (600/800) Am = o75Am 277 and the steel required for earthquake moment only is equal to Am (MEQ/MDL+LL) = Am' Z The total steel required for DL + j-LL + EQ will thus be Am (.44 + .75 + Z) whereas for DL + LL the total required is Am (1+1.25) = 2.25Am, Hence for earthquake conditions to govern: 1 .19 + Z > 2.25 or Z /' 1 006. Conditions for this case and the others were: DL + j-LL DL + j-LL Interior Beam: Z > 1 .06 Exterior Beam~ Z > .72 Interior Beam: Z > 1 .75 Exterior Beam: Z >- .97 It is important to note that whereas the DL + j-LL condition required extra tension steel~ the DL + j-LL condition did not, However~ any disadvantage in the former ease is offset by the presence of earthquake steel required for the reversal of loading which was not included in the above analysis. Since the values of Z shown above are frequently exceeded in practice, it would be possible in many cases to design the panels by normal yield line theory to sustain substantially less than the full live load. Such a design procedure would require careful 278 consideration of the conditions of lateral restraint at the edges of the panels which would make the method less attractive. But the above analysis indicates that existing floors satisfying the necessary conditions for membrane action would have a considerable reserve of strength. 11.5 CONCLUSIONS The preceding analysis has shown that membrane action design requires more steel to be placed in the supporting beams than could normally be saved in the panels. In situations in which beam steel is required for other loads sueh as earthquake loading, a net saving of steel could be achieved. Floors in which this saving could be made would have to: (i) Be required to sustain live loads high enough for minimum steel requirements not to govern the determination of panel steel. (ii) Be part of relatively tall frame buildings in which earthquake moments are high. (iii) Contain panels whose edges meet a high degree of restraint against lateral movement. An important corollary to the conclusions above refers to panels of multi-panel slab and beam floors in which the beams have been designed to resist earthquake moments, viz., many of these panels? even when designed by yield 279 line theory, will be capable of carrying loads which are very much greater than those for which they have been designed. Furthermore, this will apply to cases in which adjacent panels of the floor are loaded simultaneously, provided the supporting columns are not overloaded. 280 CHAPTER GENERAL 12 CONCLUSIONS 12.1 CONCLUSIONS FROM WORK PERFORMED Conclusions have been drawn at the end of each section, some of which are included in the following general conclusions. (a) Concrete slabs reinforced with the minimum of steel required by Codes of Practice can sustain high loads without assistance from compressive membrane action. The benefits of enhancement of load due to membrane action will therefore be of greatest significance for slabs which are required to carry high loads. (b) For a rectangular, orthbtropically reinforced· slab with equal hogging moments along opposite edges, a ratio of hogging to sagging moment in each direction equal to 2. 0 gives the least volume of slab steel. Negati '.re moment steel should extend into the slab for a fraction, the span from each edge such that 2A 1 = 1 - 71 + i' ~ , of , where i is the ratio of hogging yield moment to sagging yield moment in that direction. This length of top steel results in identical collapse loads for all four symmetric.al yield line patterns for the panel. 281 (c) The assumption of rigid-plastic materials in the analysis of a clamped circular slab with its edges restrained elastically against outward movement is not accurate when the edge restraint is small. For very stiff surrounds the assumption is sufficiently accurate to compare well with experimental results. (d) The absence of top steel at the edges of laterally restrained slabs has little effect on the ultimate load. The complete omission of top steel may not be wise but its length could be reduced in slabs subject to compressive membrane forces. (e) Assessment of the effective surround movement should include the effects of slab shortening, creep and shrinkage. As the flexibility of the surround increases, it becomes increasingly important to account for vertical slab deformations occurring prior to the full development of yield lines. (f) When compressive membrane action is exhibited in two adjacent panels of a slab and beam floor system, the common supporting beam must be designed to accommodate the tension induced. Design of the critical sections of such a beam may be performed using the ultimate strength method and limit analysis. It is recommended that in these cases moment redistribution should be kept to a minimum to guard against the adverse effects of beam deformation on the development of compressive membrane action in the panels. 282 (g) Extra longitudinal beam steel is required in beams which are designed for tension as well as flexure. ever~ How- the extra steel required is less than would be required for a pure tie of the same length as the beam. (h) Membrane forces in slab panels can have an appreciable effect on the torsional moments induced in the beams supporting them. (i) The outward deformations of the sides of a square surround of elastic material subject to in-plane loads can be closely approximated to those of an equivalent deep beam. Such a simplification would greatly assist in the development of a theory for membrane action which takes into account the interaction between membrane forces and surround movement. (j) The theory due to Park proved satisfactory in designing a nine-panel model floor. High margins of safety were required when the outward movements of the surrounding panels were calculated on the basis of an elastic,uncracked surround. (k) Failure of the centre panel of the model floor took place at a higher deflection than the O.5D used in Parkis theory and although membrane forces at the edge were of the same order as predicted by the theory, the tensile membrane stage had commenced before failure occurred. (1) The extra steel added to the beams of the model floor to take the tension induced was no more than sufficient, 283 indicating that the beams must be designed to resist the tension induced and that the magnitude of the tensions was satisfactorily predicted and designed for in this case. (m) Strain gauge measurements on the steel and concrete afforded a successful means of measuring compressive membrane forces in the panels and the tensile forces in the beam sections. (n) The serviceability of the model floor designed by membrane action theory met code requirements as to deflections and crack widths at service load. The stability of the central panel under sustained service loading was encouraging, especially in view of the high span to depth ratio of 32. More knowledge of the effect of long term loading on restrained slabs in practical situations is required before confident predictions of the long term behaviour of such slabs can be made. (0) Consideration of membrane action in the design of the nine·-panel model floor re sul ted in a considerable saving of slab steel but the extra beam steel required for tension exceeded that saved in the panels. stances, however, a net In favourable circum- saving of steel could be achieved by using the beam steel provided for earthquake moments to carry the tension induced. (p) When design for earthquake allows a reduction in live load, the steel required for earthquake moments in the beams can be used to carry the tens~on induced by panel 284 membrane action. The panels could be designed for reduced live load by yield line theory provided the capacity of membrane action to take the balance is ensured. 12.2 SUGGESTIONS FOR FURTHER RESEARCH An additional margin for safety exists in panels, designed by yield line theor~ but having boundary con- ditions conducive to the development of membrane action. This additional capacity may be utilised by permitting floors to be loaded in excess of the design live load in favourable circumstances. However, the design of such panels to allow for membrane action is another matter, requiring a reliable and accurate means of assessing the enhancement that membrane action will produce. Although the ultimate load of the central panel of the ''Irl:tia-panel model floor described in ..' Chapter 9 was accurately predicted by an existing theory for membrane action, more research would be required before a reliable design method could be derived. Existing theories and methods of analysis which have been developed principally for slabs with high lateral restraint allow quite accurate prediction of the behaviour of such slabs. But in floor slabs where only moderate lateral restraint exists, these methods cannot be regarded as reliable. In the case of floor panels in buildings, extremely high design loads would be required before the benefits of 285 membrane action could be fully exploited. In floors where the enhancement by membrane acti.on could be used, it appears that the overall economic advantages would not be great. The development of a reliable design procedure for slab and beam floors would require: (i) The development of a theory which accounts for the interaction of membrane forces along the boundary of the slab and the outward movement of the restraining medium. This in itself would not be sufficient because the increasing deflection at ultimate load with decrease in surround stiffness would have to be recognised. In particular, future theories should recognise the tendency for a tensile membrane region to form at the middle of the slab before the ultimate load is reached. Extension of Park's theory(11) using a more refined strip approximation, possibly using the results of GUrfinkel(16), could provide a solution, but the assumption that the membrane force is constant along each strip would require close examination. (i~) Further investigation of the effects of tension on the behaviour of beams, particularly as to the flexural and shear reinforc~ment requirements. In cases where the beams provide much of the lateral restraint, knowledge of the effect of tension on the axial stretch would be valuable. (iii) Experimental studies of the effects of long 286 term loading of slabs with surrounds of reinforced concrete. These would do much to remove the uncertainty inherent in the sensitivity of membrane action to loss in lateral stiffness. This work would probably not be warranted in the case of floors where lateral restraint at the edges is usually low and the design loads insufficiently high. For struc~ tures such as pressure vessels and blast resistant structures, where the surround stiffness is high, the rigidplastic theories incorporating an allowance for edge movement (e.g.,thetheory due to Park) will give ,+,c satisfactory results, but research on (i) and (ii) above could provide useful improvements for this situation. The study of the effects of panel membrane action on other parts of the structure is important whether or not the enhancement of the panel is allowed for in design. Further research, particularly experimental, on the effects of membrane action on the torsion induced in the supporting beams could lead to less stringent design requirements for torsion in edge beams in some cases. This points to the need for further studies of whole structural systems. Tests on separate structural elements have the advantage that the actions applied to the element may be accurately determined because forces due to the interaction of elements may be eliminated. Membrane,',!(: action is a very good example of a case in which these f 287 interaction effects are beneficial to a degree which is worth considering in design, even if very high safety margins must:be imposed. In studies of whole structural systems it is not sufficient to rely on the equality of steel tension and concrete compression in a beam or slab section and greater importance must therefore be placed on the role of the concrete strain gauges. Further research into the measure- ment of actions on a reinforced concrete section would be valuable in providing a reliable means of interpreting the experimental data obtained. 288 APPENDIX A.1 A DESIGN CALCULATIONS PARK'S EQUATIONS FOR THE ULTIMATE LOADS OF PANELS For the design of the centre and centre-edge panels of the nine-paneL: model floor, the equations derived by Park(11) were used to estimate the contribution of compressive membrane action to their load carrying capacities. The equations were derived using the approximate yield .-" line pattern(~df Figure A.1 (a). The slab was envisaged as a series of strips in each direction and the sum of axial, creep and shrinkage strains, G, and the outward boundary movement, t, was the same for all strips in the same direction. Conditions of geometrical compatibility and equilibrium of horizontal forces were used to obtain the actions at the critical sections of each: strip (see Figures A.1(b), (c), (d)). Analysis by virtual work for a slab with all edges restrained and with an empirical value of O.5D for the central deflection at the ultimate load gave w~~ (3\:; ~ 1) ~ ~'R3uD2{~(183~ .281"2) + (-479 -.490R2) + 6~ ( L)Se. r2. !::z. (3R2. - 1) + h -1l 11:::> D/ L Lx j ::3 -'c (T~ -Tx - Cf + ~x[-e C~- cj,,) +~} + T~ {e( d~x -~) - ~} - 2 -I- u. [ TY(d1Y- ~) x +- + + CsxY- 4- r &( Lx) 1b J5 2 (7 k2. - 3) - R2.8 kLx.1>7 (Lx 14 IE." 2. + lx Ly Lx +(T; - Ty - C~y + Cs y ) z. ] C;x { ~~dix) + ~} - C$Ye~~ d~y) Ty (d 1'y - :;) + 4- ~Gly2l} J Lx . 1x {e(d1X - ~) ~~] C~y( 2; -d~y) •••• (A.1) 4 (b) O.5Lx Hogging moment yield lin~ yield line - MECfolANISM OF A STRIP. O.5Lx - - Sagging moment - COLLAPSE "'-"'-"'-"'-Fully fixed pl ... O.5£(l~2p)l ... t edge ASSUMED YIELD LINE PATTERN ~lrfll]irl~~1 " " , I- c~ -- - ----" , __ ; ~--~::::::::::::i:::::--1- ~_=t _________ -~_ ~ D"",,-,,,-,,,,,,,,,-C x direction or - Yield STRIPS (a) strips (c) sections OF EOUIVALENT UNiFORMLY LOADED WITH ALL EDGES unit width I 0 0 0 0] 0 0 SLAB SECTIONS FIG. 2 TWO -WAY SLAB FULLY FIXED I~l(-! :j f"WI CONDITIONS O.5d n,D ~eu~ral_ ox's f~ Strain Distribution Elevation AT fsc M 0 Cross - Section (d) INTERNAL ACTIONS AT YIELD END PORTION OF STRIP. A SECTION ON A VIELD Cc --f> T \ centroid , Inhrnal Actions Stre s s Distribution LINE WITH FIGURE A.1 STRIP APPROXIMATION DUE TO PARK _ Cs ~~) A rectangular section was taken'in this case Since the torsion was induced by yield moments which developed at the ,junction of the beam and slab. For the middle span of the exterior beams the ratio of nominal torsional stress to nominal shear stress (ACI 318-63 Clause 1(101) was approximately .7: ~3. This ratio was used_ in ,:listributing the shear and torsion taken by uncracked concrete sections. Maximum allowa'ble nominal shear stress in concrete from ACI 31c1~63 Clause 1701 = 2jl1 jif "" 135 psi (.0"".945) Shear taken by concrete = 850 lb. Foree 1n two legs of stirrup = 1000 lb. V.~,s for verti,cal stirrups :0 6000 lb.in (ACI Equa- t Jl,' on -1 r{7 _il"T ') U 'V u.s f" or 45 0 S-lrrups t' = 8500 Ib .. in (ACI Equation 17.6) sMt for vertleal torsion stirrups = 12,700 lb.in 2 (Australian Code Equation (25) with yield stress r 1'- 8" 1.70 t06 Moment (lb-inx10 4 ) 1'-6" Moment (Ib-in x 104 ) 1'- 5" I- 4'- O· I I .34 ~ EXTRA STIRRUPS 1.25 4-0 11 .62 2'_9" Torsion Ob-inx 104 ) IFiGURE A.3 EXTERIOR BEAM ACTIONS I IFIGURE AA INTERIOR BEAM ACTIONS I 302 used in lieu of permissible stress) Maximum torque in end spans 10630 lb-in == Maximum torque in centre spans lViinimmn stirrup spacings: == 12500 lb-in end spans: s, mU1. -1.2 in centre spans: s mln 1.0 in Maximum longitudinal steel required for torsion (Equation 26 of Australian Code), ASh == .172 in2 for 0 end f:rparw ~ Ash 2 .205 in == ~,' / d- )\ Allocation of Flexural Steel (i) In the centre span with tension: In Equations 4.14 and 4.15: D == 6.0 11 , f! '" LJ200 c At the support: fy ~osi, == o ,-- 1- 3 • 5" , b/b f == .4, LI-2000 psi, T/f,;'bd:= .064, M/f~,bd2 Equation 4.14 gave pi :::: == .089 1.28 per cent,, AIs , 2 == .25 := " 2 010 :t.n l.n Longitudinal torsional steel required at top 2 at i" 2 at dia. , 2 -lit elia. ll1 r) M/f'bd c L - .044, T/f,!bel v == .064 Equation 4.15 gave p = .85 per cent, Ac o 2 .16 In .:0 " 2 In 3 at 1l-1i dia. (ii) In the end spans (no tension): At the support M == 3.29 x104 1b t1 , from ACI 318~63 Equation "16~1, As == .15 in2 Torsional steel 2 at iii dia. , 2 In == r, .-' .22 inC-, 303 But the 2 - -a:" dia. bars on the other side of the support could not be curtailed and As supplied was .32 in 2 At the position of maximum positive moment 2 4 M = 1.55 x 10 Ib-in, As = .07 in 2 at -a:" dia. A.3.2 Interior Beams (a) Design Actions Figure A.4 shows the design actions which were obtained as for the exterior beam except that the moment applied at the end due to edge beam torsion was the sum of the yield moments from the adjacent half span on each side of the beam. (b) Size of Cross Section This was set at 7.5" deep and 3.5" wide. ACI Clause 906(b) imposed the condition that the maximum flange width should not exceed was therefore taken as 66+4 (c) (d) = i of the span which 16.5 in. Allocation of Shear Steel Shear taken by concrete = 2460 lb Force in two legs of stirrup = 1000 Ib VI s for vertical stirrups u· = 7500 Ib-in VI s for 45 0 stirrups u· = 10600 Ib-in Allocation of Flexural Steel (i) b = In the centre span with tension: 3.5", D At the support: = 7.5", b/d = .2 f 2 M/f'bd = .140, T/f~bd c = .171 304 Equation 4.14 gave p':=2.33 per cent, A' s .57 in 2 := ·54 in2 4 a t : II di a . + 2 at -2, II di a . ') At mid-span: ]jf'bd c c := .034, T/f'bd .171 c ,-, Bquation 4.15 Gave p := 1.30 per cent, A "" . 32 in':::: x it 2 at (ii) II di a. + 2 at -l- II eli a . In the end span: 4 M := 7.00 x 10 lb-in, A i" 2 at s dia. ::IovJever, on the other side 4 at vided and only 2 at 2 := .32 in . i" i" + 2 at ill were pro- were cut off so that As provided At point of maximum positive moment: 4 3.03 x 10 lb-in, As M 2 at A.3.3 1 " 4" dia. + 1 at e;1 " dia. .11 in .11 in 2 2 Graphical Allocation of Shear and Torsion Steel The quanti tie s V~. s and r\~t' s for each stirrup repre sent an area on the shear force and torsion diagrams res-pectivly. Stirrup spacings were determined by dividing the areas into elements of area V's u or Mt.s. For shear the total area covered was that representing the shear not taken by the concrete. For torsion the gross torsional moment was used after the total torque applied exceeded the torsional capacity of the uncracked concrete section. Maximum spacings as governed by ACI 318-63 Clause 1706 (b) were 3.0 in for the exterior beams and 3.7 in for the interior beams. Final steel placement is shown in Figure 6.1 (-p. 96). SLAB DIM:ENEUONS I-'HOPEW2 TES Is 'Mix Certified Coners ;31 , , l' EtT!:.L 0 6 (" '12 of 'J - -, '; j 72 ~506 r ( '\ d) Cylinder strength Age When Tested (12 a;ys) ---- 21+ 28 163 181 198 2 2 4 6 1 Cube Strength Age Number Te ste-d Number -~- 163 181 198 (e) B.10,3 Modulus of Rupture 163 18'1 198 4 5 3 Ave.f' ]2s1) c, -G~ ')77S 3850 4350 4350 '- I ~ L~420 Ave, u ---.~-=--=--.,. 53'10 pt1i 4890 II 4700 If L~ 3 710 psi 0 11 2 (n~o It Modulus of Elasticity 'rable B.1 gives a summary of readings taken on test cimens to determine the modulus of elasticity of the concrete used, Ree/dings of shrinkage in the unreinf::lI.'ced specimens are B.2 sed in Table B.2. STEEL PROPERTIES The results of tensile tests on the reinforcing bars used are givBn in Table B.3. A Baty extensometer was used to measure extension over a two inch length. were tested without being machined. All bars SUMMARY OF MODULUS OF ELASTICITY RESULTS ON MORTAR MIX SPECIMENS SUMMARY OF SHRINKAGE AND TEMPERATURE MOVEMENT READINGS TAKEN ON SAMPLES OF UNREIN FORCED ~ STRESS CONCRETE SPECIMENS No. 4 (psi) (OS) 0000 0000 STRESS (psi) 0000 SHRINKAGE IN MICROSTRAIN TEMP. 145 20/12/67 68 1300 328 514 21/12/67 21/12/67 66 68 0900 122 100 93 1200 129 108 103 735 1015 22/12/67 66 144 128 193 163 1308 69 68 0900 1700 171 22/12/67 23/12/67 1100 211 184 151 168 0000 0000 155 314 353 124 102 500 707 242 216 1000 1061 366 1500 1414 1768 498 640 350 502 624 2120 778 2475 2830 1172 774 952 1146 3180 1398 1374 1544 4125 1720 4250 4375 2230 956 DATE 0000 2000 2500 3000 532 688 900 1124 TIME 1700 23/12/67 69 1800 219 189 172 1436 1990 24/12/67 63 1300 243 196 1644 2332 26/12/67 1100 1789 2664 27/12/67 63 68 300 346 258 296 2010 3102 29/12/67 1/01/68 66 1200 68 0200 395 464 331 356 3500 3530 3710 1944 1670 1852 3890 2222 2082 3/01/68 69 1100 583 446 175 234 269 300 338 406 2312 4/01/68 6/01/68 72 64 1600 1600 642 670 479 488 449 452 8/01/68 66 0900 745 543 498 66 0900 505 70 0900 754 803 551 Prisms were 18" x 6" x 6" with 8" demec gauge readings. 9/01/68 10/01/68 The above readings are the average of two taken, in each case I from opposite sides of the specimen. 11/01/68 12/01/68 69 70 0900 597 586 539 528 13/01/68 74 1100 609 644 15/01/68 17/01/68 69 1400 1500 18/01/68 19/01/68 73 67 64 1400 907 993 972 945 551 586 602 23/01/68 70 0900 987 29/01/68 3/02/68 65 65 0900 7/02/68 21/02/68 67 0900 925 974 1068 3360 4070 4250 2742 Cylinders Sample 1: 3750 4000 12" x 6" diD.. with 4" demec gauge readings. Average of 3 readings 1.94" thick strip_ Sample 2: Average of 6 readings two blocks 18" x 6" x 3.5". Sample 3: Average of 6 readings two block.s 18" x 7.5 x 3.5". All readings in the above table have been corrected for temperature variations and thus represent the unrestrained shrinkage of the .specimens. A value of 8 micros trains per degree Fahrenhei t was taken in reducing 13/03/68 1/04/68 the readings to an equivalent reading 27/05/68 at 68°F. 67 1500 0900 1700 1300 790 804 881 651 691 693 698 741 739 793 855 900 658 644 640 681 679 729 794 836 1500 1055 0900 1043 1034 935 938 869 0900 0930 1205 1102 1020 875 w o'-l 308 Table B. . Tensile 'I'e st s on Reinforcement. Yield Modulus Steel Nominal Yield No. Where --Diameter Force Tested Stress of Used - - - - (lbj CJ2sij Elasticity: .211 '4890 A 44,400 31 .0 x 106 Beams 8 8 Only 1 II 40,100 29.9 x 106 Beams A "1920 -4 9 Only 1 II 616 A 8 50,300 29.8x10 6 Slab 8 Beams 1 11 502* B 39,000 29.6 x 106 All 5 E'Stirrups ~; s.d. ~- 1.65 3.3 3.16 2.4 * .2% proof stress. Type A: yield British ateau. Type B: New Zealand soft drawn wire. B .3 steel~ lead bath annealed to give extended SIJAB DIMENSIONS B.3.'1 Pan~ Leyel of ,Top Surface of Floor and Beam and DE?,Pth§ Readings of level on the top surface before the test are shown in Figure B.1. Panel and beam depth measure- mentis taken before the test are shown in Figure B.2. Average thicknesses taken from the nine readings per panel were: \ 12" !!l .p I I ," >" ll6.5 O 12" 12" \ ,'" ,,~ 12" \16.5" ,~ ,'i!I ,~ ;-''' Jo ," /1, 'l,. 0 ,OJ " " I 16.5" I 16.5" lIZ' I I I I 12" Oli>O , ~ ~ ., '" \!> ~ rv ,'7 12" ~ ~ ~ '.fJ~ t> "'.;> .fP ~ W' ~ , ,0 I'\",'!> "'f''O ",'I' ",rJ> +'0 ",-I> W> # ~ #' , ",rl' "., -9~ ., ,cI' #" 1# #' -I' ...,p # # ", ., b? 1-1' '# l.,y f'I~ 1"14- ~ ~ ..;- ~ ~ #~ ,cI' -9" 4> ,.,.<'!J ~ .rI' +" ~ .y f'I~ ,9'" t$' ~V Iff>' I~- , "" ." ' " ., I., ¢ ~ ,~ ,0- , ., f" '!J " .Jo ~ ~ ~ ,0 II!> ~ Pb ~ ." ,0 ~ ~ " ",I> 1n J !I- 0 I).. " ,'!> ,i> ,I).. , , IE> i> I,,> 1)... ,I).. J'.; ,'!> I" ,.... II), ~ " ,~ ,'" 0 , " I), " Ib "> ,II- !I- 51- 0 0 '!> '1. 0 ¢ ~ ,"> '!> ~ ~ ~ ~ ¢ ¢ ¢ lib " '!I ,0 •..0 ,0 •...0 ~ !b ~ ., Do " ~ r-' !!! :n I ,4? <¥ ~ :'J ,OJ\!> ~" 1),& ,0 !b 01), q; ..,r:!' 1# ~ j!) ~ ~'" .#J -& ~ " .,Q" ~ r., ~ 0 ~ ri' ~ /'; I' ,j1' ,~ "> 112" I 12" 1 12" I f'J'" ~ ~ , 112" .p' # 1# # .#' .,r>J'" # "cfJ " 10 ," " FI' o ~ ." 'l,. 1 12" I 12"\ 12" 112" I las" I las" I 16.5"1 16.5" 12" I!> :- ,i< ,'l,. <;} 2 0 ~ " , }III FIGURE B.l LEVELS ON TOP SURFACE ~ r., "> '" .... 10 ,'1- :- }/J ;f? ~ t '(?t:P 4} 1o:P" ~ !Il ~. kP ~ ~ 1# 125 1005 75 150 75 68 54 75 55 69 1020 7"> 175 56 75 200 75 70 1050 57 75 225 75 70 1105 75 71 ' 1125 58 75 200 75 59 75 175 71 1138 1152 75 60 75 150 71 75 75 125 72 1208 61 75 75 1222 63 75 71 APPENDIX C DETAILS OF LOAD INCREMENTS FOR THE TEST ON THE NINE PANEL FLOOR Column Load Stage Number. Column 2-4 Panel loads in lb/ft. 2 Column 5 Temperature. lA Column 6 Time at which load first attained. Column 7 Time at which load changed for next stage. 2A 3A 4A 5A 6A 711 8A 9A lOA 11A 12A 13A 76 17 77A 78 19 80 81 82 LOAD STAGE NO 83 84 85 86 87 8a 89 90 91 9111 92' 9211 93 94 75 125 150 175 200 225 250 275 300 CEIIIT PNL LOAD 325 350 375 350 325 300 275 250 225 200 175 150 125 75 95 95A 96 9611 97 9711 978 98 99 lCO 101 102 102A 103 103A 104 105 106 107 108 109 75 125 175 225 275 325 350 375 375 375 375 375 375 375 375 375 325 275 225 150 75 7811 LOAD CENT RECT CRNR - TE~P STAGE PNL PNL PNL DEG F NO LOAD LOAD LOAD 75 75 75 11 1 11 2 100 100 lCO 72 3 125 125 125 4 150 150 15C 11 10 5 175 175 175 70 6 200 200 200 225 7 225 225 200 200 2eC 8 9 150 150 15C 75 75 69 10 75 13 14 15 16 17 18 19 20 21 22 23 75 100 125 150 175 200 225 200 175 125 75 75 100 125 150 175 200 225 200 175 125 75 75 1CO 125 150 115 20C 225 200 175 125 75 65 67 26 27 28. 29 30 31 32 33 34 35 36 37 38 75 100 125 150 175 200 225 2eO 175 150 125 100 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 100 125 150 175 20e 225 2Ce 175 150 125 loe 75 70 71 71 71 71 72 72 72 72 72 72 72 72 68 69 68 68 68 69 70 TIME ON 1340 1400 1425 1450 1515 1540 1605 1640 1655 1708 1005 1025 1041 1057 1114 1129 1143 1155 1208 1222 1345 1400 1415 1430 1445 1509 1530 1545 1602 1616 1632 1645 1700 TI"E OFF 1400 1425 1450 1515 1535 1603 1640 1655, 17C6 TESHOt 6/5/68 lCCO 1020 lC37 1052 1109 1125 1140 1153 1205 1219 TESTl02 715/68 1355 1410 1430 1443 15CO 1525 1540 1557 1613 1626 1642 1656 TESTl03 715/68 75 100 125 150 175 200 225 200 175 150 125 100 75 75 100 125 150 175 200 225 2'0.0 175 150 125 100 75 75 100 125 15C 175 20C 225 200 175 150 125 100 75 72 72 72 72 72 72 72 72 73 72 71 72 71 75 75 68 125 125 68 150 15-0 70 70 175 175 200 20C 10 225 225 70 250 25C 10 275 275 70 300 300 72 RECT CRNR TE"P PNL PNL DEG LOAD LOAD F 325 325 72 350 350 72 375 375 72 350 350 72 ,325 325 72 300 30C 72 275 275 72 250 25C 72 225 225 12 200 200 72 175 175 72 150 150 72 125 125 72 75 75 72 75 125 175 225 275 325 350 375 325 275 225 175 150 125 leo 75 75 75 75 75 75 75 125 175 225 275 325 350 375 325 275 225 175 15C 125 10C 75 75 75 15 75 75 67 67 68 68 69 69 70 70 11 71 71 72 13 73 73 73 73 72 71 12 1400 1412 1425 1440 1455 1515 1526 1547 1559 1612 1624 1640 0910 0928 0943 1005 1024 1040 H05 1133 TI~E ON 1155 1215 1350 1415 1432 1443 1458 1520 1530 1545 1555 1608 1625 1640 0950 1005 1040 1055 1112 1128 1140 1212 1225 1355 1410 1435 1455 1525 1540 16CO 1612 1620 1635 1650 TIllE OFF 0918 0942 lCCO 1015 1045 11CO 1120 1134 1147 12C5 1215 TESTl04 8/5/68 1355 1408 1422 1433 1450 15C2 1522 1544 1554 1607 1620 1630 TESTl05 8/5/68 Cge6 0921 0932 0958 1011 1035 TESTl06 9/5/68 nco 1125 1147 Ufo'E OFF 1207 1235 14C8 1432 1443 1458 1518 1530 1545 1555 16C8 1623 1635 0945 lCOO 1022 1050 n05 1122 1135 12C8 1222 1350 1405 1430 1450 1520 1535 1550 1608 1617 1630 1645 TESTl06 9/5/68 TESTl07 10/5/68 W --l> I\) LOAD CENT RECl CRNR TE{IIP PNl PNL DEG STAGE PNL F NO LOAD LOAD LOAD 66 114 75 75 75 67 75 125 115 125 116 175 75 68 175 68 75 225 117 225 118 250 75 68 250 69 75 275 119 275 300 75 30C 120 75 70 121 325 325 70 75 122 350 35C H 123 375 75 375 72 123A 400 75 40C 75 375 72 1236 375 75 74 124 350 35C 74 75 325 125 325 126 300 75 74 3CO 275 74 127 275 75 75 128 250 15 25C 129 225 75 225 75 75 130 175 75 175 15 125 15 131 125 15 75 75 75 132 - 133 134 135 136 137 137A 138 139 140 141 142 142A 1426 143 144 145 146 llo1 147A 148 149 150 151 15 75 75 75 75 200 200 200200 200 200 175 150 150 150 150 150 150 15 75 15 75 15 75 125 175 225 250 250 275 300 325 350 375 375 375 350 325 300 215 250 250 225 175 125 75 75 75 75 200 20C 200 20C 20C 2ce 175 150 150 15C 15C 150 15C 75 75 75 15 75 152 152A 153 153A 154 15loA 15lo6 15loC 155 156 157 158 159 160 161 162 164 165 166 161 75 125 175 225 215 300 325 350 315 400 425 lo50 425 loOO 315 350 325 275 225 175 125 75 125 175 225 275 300 325 350 315 400 425 450 425 400 375 350 325 215 225 175 125 75 125 175 225 275 300 325 350 315 400 lo25 45C 425 400 315 353 325 275 225 175 125 168 169 170 111 172 173 15 125 175 225 250 275 75 125 175 225 225 225 75 125 175 225 225 225 163 15 H 72 72 73 73 73 73 74 74 74 74 75 15 15 15 74 75 15 15 75 16 75 14 14 74 14 74 74 74 13 73 73 73 73 72 72 12 71 11 11 12 12 71 71 71 7.1 70 71 TI~E ON ana 0940 0953 1010 1027 1103 1120 1130 1150 1210 1225 1356 1415 1430 1445 1457 1521 1535 1550 1610 e9lo0 0955 1015 1028 1050 1105 1120 1140 1157 1212 1410 1425 1440 1455 1523 1538 1550 16CO 1612 1622 1636 1650 TI ~E CFF e'll5 0935 0948 1004 1022 1057 1112 1125 1145 12C7 1220 1352 14C9 1425 14lo0 1454 1504 1530 15lo5 1600 0930 0953 1010 1023 10lo0 11CO 1118 1135 1152 12C7 1410 1420 1435 1450 1505 1533 15lo7 1556 1606 1618 1630 IM5 0915 0920 0932 0935 0945 0950 10C3 1005 1020 1040 1105 1110 1120 1125 1140 1145 12eo 1205 1355 1400 1430 1432 1545 1550 1600 1605 1610 1615 /14CO 1405 1418 1423 1437 1440 1455 15CO 1520 1530 1540 1545 1555 1600 1615 1620 1640 1645 1650 1655 10915 e920 C9" 093A 0941 LOAD CENT REel CRNR TEfJP 1I1"E TII'E STAGE PNL PNL PNl DEG CFF ON F NO LOAD LOAD LOAD lCC8 0950 72 225 TESTl 08 174 300 225 1013 1030 72 225 13/5/68 175 325 225 1045 nco 176 350 225 225 72 1105 1125 225 177 375 225 1130 1138 12 225 178 350 225 1143 1150 72 225 179 '325 225 1155 12C3 13 180 300 225 225 1208 1215 14 225 225 181 275 14 121'5 1220 182 250 225 225 1225 1350 14 225 225 183 225 75 1355 14C5 184 250 250 250 1418 1410 75 275 185 275 275 75 1423 1430 186 300 300 300 1445 1435 75 325 325 325 181 75 1450 15CO 188 350 350 35C 20/5/68 68 1515 lOCO 189 315 375 375 !ESTl12 61 1005 1025 190 400 4CO 400 20/5/68 1045 1104 191 425 425 425 61 1110 1128 192 450 450 45C 67 1135 1155 193 415 475 lo75 68 12eo 1230 194 500 500 '500 69 1235 14CO 30C TESH09 195 300 300 1418 69 1408 14/5/68 196 400 400 4CC 69 1425 1lo32 450 450 197 450 69 1440 1453 198 500 500 5CC 69 1458 1535 199 525 525 525 1540 1705 200 550 550 55C 69 1710 1720 201 400 400 40C 21/5/bB 1725 /l015 61 202 200 200 2ce 66 1020 1C30 300 300 30C 203 1105 1045 66 204 400 4CO 400 66 1110 1122 500 5CO 500 205 11lo0 H21 66 206 525 525 525 61 1145 12C2 201 550 550 550 1223 1210 67 515 575 575 208 67 1230 1345 209 375 375 315 67 1350 14CO 210 500 5CO 500 llo 10 67 1405 550 550 550 211 67 1415 1425 515 575 575 212 68 1430 1512 600 600 600 213 68 1520 1540 625 214 625 625 69 1545 1600 650 650 215 650 1610 1633 675 675 216 ~~6 1640 1703 1CO 700 211 1710 1735 725 125 218 725 1750 1740 15C ,750 150 219 TESTl10 1830 1755 220 775 115 115 15/5/68 TESTl13 62 1830 /C940 221 400 400 40C 2215/68 62 0945 0955 600 600 222 600 1COO 1020 750 63 223 750 750 1025 10lo5 224 775 775 775 1050 1108 225 800 8CO 800 65 1115 1135 226 825 825 825 1140 67 850 850 850 227 67 1200 1340 556 556 556 228 67 1345 1355 229 543 543 543 1351 1420 600 60C 230 600 68 1425 1445 231 660 660 660 68 1450 1515 232 710 710 HC 16/5/68 TEST1l4 68 1520 1535 233 600 825 825 68 1540 1550 850 85C 234 600 68 1550 16C5 875 815 235 600 69 1610 1620 900 900 236 600 68 1625 1635 231 600 925 925 68 1640 17CO 600 950 95C 238 239 600 966 966 600 950 1110 TESTlll 16/5/68 850 PSF NOT ATTAINED DUE TC FAILURE CF T~E CENTRE PANEL. 1 715/68 fAILURE OF RECTANGULAR PANELS. FAILURE OF CORNER PANELS. , '" ** *"'* **'" **'" !.AiI 314 APPENDIX REDUCED D.1 DATA FROM D SLAB TEST DEFLECTIONS Reduced readings of all deflection gauges with Load Stage 51 as datum are tabulated below. The first column contains the Load Stage Numbers, columns 2, 3 and 4 show the nominal panel loads in psf and the subsequent columns contain the deflection data in .0001 inch units. The numbers at the head of these columns refer to the dial gauge positions as given in Figure D.1. 4- 5 b N " 2.7 14- t 2.4 ....31 13 ,,3 0 :1 a7 13 2.0 15 7 ,28 8 FIGURE D.1. I'" 12- '<.~ ""tor it36 " 3) 18 t7 ~34 .32. 9 21 . II II 2.9 £2 10 .2.':. 1 DIAL GAUGE POSITIONS. 315 "i T t.G~ (\Hf< 1.0 7". 2.0 ICO. "l, .n 125. '.0 150. " .0 17<]. f..O 2eo. 7. (] 22S. 7.1 225. 7.2 225. Q.I] q. r: 1 r:.O 13. () Ui.r; 1'J .0 u.n 17,0 IR.f) 10. () 20. () 21. I) 22.1) n.n ch .0 2eo. 15("). ':II.n 'i'i .n ",toO ')7.r, ')P .0 5" .r; hf';. f) h 1.r} 63. r] 1,4 2.4 :3 .4 4.4 5.4 t,.4 7.4 P .4 9.4 10.4 l1.4 12.'-1 1 ~. '-I 76.0 77. () 77,1 78.n 7P.l 7Q.O CPlj'< 7, • 1'> • 1 CC. 12'1. lee. 1 {":; , 15(;. 11 '). 2en. 22"1, 22'> • 225. 221) • 225. 225. 20U. 200. 150. 1"(',. 1'-) • 75. 7'? • 75. Ion. ICC. 12'1. 12'"1. 15C. 15e. 1 7S. 17S. ,'" 7'. 75. 75. ". 75. 75. 75. 75. 75. ?'. 2eo. ?'. 22:>. 7" • 2Cf) • 75. 17,). 7'1, 1 c:;c, 7'). 12"; • 7" • lCr, • 7'1. 7'1. 7") , tcc, 7", 7'. 12'1. 1 'lC 7" • ". 0 -7,)C -22'1 4 7 I'. \7 27 '9 -1"7 P , 75. 75. 7 '5. lCr} • 12'). 150. 175. 2Cr; • 225. 2eo. 17'" • 1 '5C. 12') • ICC. 1" • 7, . 125. 150. 17') • 2Cr}. 22'5. RC TR CP'f\)~ 2')C. ?l5. 25e, 27'5. 3CC. 32'5. 35C. J • In.o 75. 75. 13lj. n 75. 12"). 75. 75. 115. 1 3'i.0 75. 7"; • 11f-.O 75. 221) • -164 -1'10 -151"'; -14P -141'; -141 ?fl n, 34 '" l'l 30 " 1q I" 6 a -2 -5 -6 -1(: -10 -10 -13 -2 -4 ?e. -17(', -1"''] -17r, -1 c:'S 75. 17'). 70. -1 '1i'l -\ Pl -} 7') 7 9 12 19 -u 0 - (;?P " " 29 75. 7" • zoe, -,(11 -7'1C Z -6 -73 75. QO. () 2')C. 'll.n 275. P2.r} 100. H.3 .0 325. '14.f) 350. H5. <; '1 17'io STAGE CNT!.l. 8'1.0 ~ -17('; -21,6 -?6C -254 -?';C - ')')<) 20C. 22 S 75. 1 ')0. 7". 12'. 75. 7". 75. 75. 100. ICC. 12'5. 125. 150. lSf':. 175. 175. ,C(';. zoe; • 225, 2Z'; • 2CO. 2GG. 175. 17'1. 15C. ISO. 125. 12"'. 100. tor:: • 7'1. 75. 7'j. 75. 12'S. 12'5. 1 'JC. 150,. 175. 17'). 200. 2orl. Z2"1, ?2"i • 84. t 3110. '!I;. 2 ,')0. -} - -2.7h -16 -13 0 -11, 1 -177 "I,'41 1,9 ',g 29 \9 11 7 ( -2 -5 -8 -1 C - 1S -1 q -11 -1r e -1 2 -1 r 2 -1 14 1" 23 2" l' )5 6 20 14 14 7 I, -"0 7 12 23 15 JO 16 44 '.6 ~c 60 -55'1 64 63 60 58 ""50 Sh 45 1,0 "" 17 'P 15 24 43 44 52 61 h4 6Q 'is 54 47 45 15 15 10 25 25 20, 21) 7C 20 1, 24 30 45 57 ,,6 74 00 09 95 107 lC 3 1()1 97 05 p) ;:]D 70 70 60 45 23 21 11, \0 5 1r. 12 22 11 1~ C -9 -~~ 2 10 15 "C zg ;i ~5 "C 50 -15( 57 52 , -5 'J 16 l'1 27 32 -h? -~ -623 17 32 1" 2, ,9 12 16 41 1,7 I,R 4, 45 42 31 32 ".'3 41 47 27 32 '17 37 ,2 26 11 16 8 0 35 be 57 50 49 40 30 25 1C Ie 7 7 9 9 9 5 0 12 10 42 52 C9 U 72 P5 '17 97 n 94 gC '8 A2 72 70 65 51 4e 17 e 1 -1 -8 -22 -15 -6')tj -654 -22 - 32 -47 -4 1 8 16 20 25 27 25 18 P 3 3 7 16 21 27 35 41 35 27 21 16 7 1 a } " 5 -2 -0 -2 f) -2 3 9 7 8 8 17 18 26 28 27 ?7 ?h 19 17 12 10 12 14 2Jj 31 '3 37 38 1,2 44 54 57 -623 SA 20 20 -29 8 9 41 5C 05 -;s 6 40 35 10 2C 2C 6 C 12 -52 -42 -j 58 S7 56 52 48 46 18 '17 29 29 17 21 5(; 32 32 -% 38 42 46 52 C;;. ~ OJ '8 47 46 42 37 21 26 24 1" 17 22 22 22 27 19 27 39 56 62 6'J 77 PO 87 99 In7 1{12 102 'll 94 R9 79 77 74 '2 47 27 27 17 12 I, 1 -3 -4 -6 -4 -4 -3 -3 ? 4 7 11 17 2l 26 13 26 22 17 15 7 I. 4 10 26 27 11 35 3R 47 56 61 6A hR -654 76 72 66 61 57 52 47 45 36 34 11 1" 35 37 37 46 5" h7 74 76 67 57 56 47 36 31 27 19 15 15 16 16 17 21 17 42 57 70 70 76 e5 91 101 lOR 116 111 112 106 97 94 87 RO 7? 50 41, 2R " 23 17 11 -48 -40 -33 -25 -lA -5 ? -1"0 -)40 0 -R -28 0 6 9 12 18 22 28 25 20 15 9 4 10 17 21 zq 35 42 39 31 27 20 12 5 0 -2 -3 -5 -8 -10 -12 -9 -7 -1 0 5 5 10 12 19 -42 - 37 - 29 - 24 -18 -12 -9 -779 -7F} -10 -18 - 29 -4 1 I. 10 13 19 1 1 21 13 3 3 9 16 21 23 36 41 36 32 26 21 14 10 0 -R -4 1 -1 -8 -9 -9 -7 1 1 , 5 6 10 11 20 20 20 24 21 21 l' 11 11 6 1 15 21 29 31 10 23 26 26 39 4" 51 60 62 62 12 38 42 51 56 51 -77g 55 55 52 51 46 41 40 36 31 26 21 11 1 21 22 28 30 29 25 20 17 11 8 11 -'340 69 65 SA 5A 52 50 47 45 40 31 29 25 15 25 35 40 50 59 61 '6 60 51 51 45 3A 35 30 25 20 20 20 20 21 22 21 32 '.5 60 65 72 ao 87 95 105 110 105 105 105 99 9? BA 8, 75 r.1 50 37 30 25 20 15 , 32 39 42 51 52 57 52 46 46 41 36 31 28 21 21 21 l' 16 16 l' 10 19 33 52 60 66 71 71 86 9' 101 98 98 95 90 86 81 72 69 54 43 31 21 14 11 6 -,(' -14 -14 -os -25 -9 -9 -4 7 -'0 -4C -23 -13 -11 -110 -110 -15 -23 -25 -8 -3 -71 P 11 Ie 20 2C 2e Ie 0 0 7 13 20 11 15 2C e " 37 42 ~~ 20 21 2C 10 0 5 -5 -7 -8 -11 -18 -11 -g -5 -5 1 1 1 7 14 20 27 ~c ~ 0 3C 25 2e 15 10 10 19 21 28 24 313 41 49 53 '0 67 67 -11C 79 75 70 67 C3 ,0 60 ;S 50 I.a 45 "3224 4C 49 56 65 71 75 10 62 62 57 50 45 39 35 30 28 3e 30 3C 30 21 34 45 60 te SO C4 71 80 90 102 lC 2 lC9 105 1C5 g5 90 90 PI .1 50 4C 32 29 24 15 11 lC 8 -47 -47 -11 -24 -17 -8 15(]. 17'1, ZCil • ?S. 75. 100. 125. 1 '0. 175. 200. 2eu. zen. 22<), 22'" • ? 2 S. 200. ?CC. ('cr; • 17"i. 1 75, 17'). 125. t?'). 12'1. 7') • 7'j • 7~. 7'. 7" • lee. 75. 1 CC. 7'1. 12':1 • 1Z 'J. 7'l. l'JG. 150. 7'). 11<). 175. 27.n 2 p ~ f) 2<).0 ~O. 0 lI.n zco. 12.0 22') • ~ ~. 0 2CO. 34.n 17'). ]'1.n 1 'i0. 1f;.'1 125. n.n 100. lO. lP .0 ')2.n 5?t .0 ')4. (' :1.CP. -71 lC , , -1 ,9 22 21 21 14 -1 1 4 12 It 22 28 34 " 34 1< 19 -IC -, -9 4 -12 -t -17 -lC -lC -5 -2 < q 9 11 18 2C 24 29 21 19 H 11 t C -2 9 I'. 19 21 29 3C 3C 41 49 5f j 54 -71 59 54 49 47 "34 3> 29 27 23 19 g 4 14 21 3e 38 46 5C 55 48 3g 39 29 21 17 11 9 2 2 4 4 4 9 4 17 3e 44 5C 59 64 71 79 86 94 a9 89 59 ~4 49 41 37 29 19 < :~ -17 -22 -29 -2 1 -4 4C 51 5t a2 -7 -7 82 C4 3' 4C 1<7 i;E 55 '5 72 H 82 81 66 52 4g 4g 49 49 22 29 29 29 28 21 19 15 5 0 4 , 7 11 19 21 23 22 17 9 5 e 7 9 25 28 36 4C 41 34 24 Ie 9 2 2 14 23 29 31 3' 44 5e 83 99 122 129 -7 136 127 123 llC 1C9 Ie 1 1C9 lCl 91 91 81 "6355 83 9C 102 130 131 133 DC 1C 1 1C5 lC3 95 87 77 68 , 1 58 56 43 51 4g 5C 58 C3 ,a 7C 80 e1 89 92 96 101 g, 97 91 93 91 89 86 E5 79 '9 63 51 56 63 67 -5C -3' - 21 -4 11 2, 4C - E7 - 87 3~ 2C -11 -lC C 8 l' 2E ,7 45 3< 31 ~~ -' -2 4 P l' 23 27 " 22 1\ 14 9 2 ( , 4 1, 1< 23 2f 24 2C 15 E C -8 I. 2 24 32 44 77 -2'5~ -253 59 42 13 -,I, 12 24 ~~ ~2 1'1 29 14 -1 2 2 4 -1 12 14 17 14 12 8 4 1 -3 C S II 17 21 17 14 9 4 -I. -; 5~ 4E 35 3C 2C lC C C 18 27 37 45 53 ~~ 3 12 1q 24 32 2~ 1< 12 2 -e -1 4 19 24 " 3S 1C 11 67 83 95 114 12S 13C - 87 144 52 67 79 g4 lC 4 le4 131) 132 125 1H 10E le2 91 e1 71 7C 39 ~~ 7§ 97 lI? 129 1~ 1 14 ~ 134 liE lit 101 84 7/ " 56 47 45 44 42 42 39 4C 47 5< 7C 75 ac a, 8< 9' 1ec 1C4 Ie 1 1C 1 98 95 89 85 82 77 67 57 47 41 5C 5\ 71 13 -29 -zq -12 1 13 31 -109 -lC9 -39 -42 -77 -60 11 l' 23 28 36 43 40 Vi 22 1 2 3 6 10 12 16 2C lfJ 14 11 ~ i 0 7 7 l -1 7 11 2E 4( I., 12 -57 -44 -253 118 114 1e7 1C2 q 89 e3 75 67 62 52 39 38 52 67 82 9; Ice 115 122 IC7 g4 n 71 64 58 54 44 37 37 37 ~~ 42 41 54 57 64 H <9 72 17 81 8'. e7 84 84 75 78 74 72 61 6 /• 51 52 44 42 49 57 6 /• 9 12 17 21 19 15 1C 6 1 0 , 12 22 28 32. 4C l3 27 21 12 6 -2 1 26 26 22 28 34 12 46 62 al 92 lC8 1C8 -1 C9 121 12C 112 111 101 96 91 89 81 76 65 53 56 61 82 n lC3 114 121 126 11' 1 C6 lC6 92 82 78 71 62 55 55 56 56 56 58 6C 73 76 76 76 79 82 84 90 91 93 91 91 91 89 86 81 81 78 72 '06156 6t 71 ec -24 -IC 1 13 26 41 -39 -39 -34 -39 -39 -39 11 26 33 37 43 51 44 4C It 11 10 12 16 18 21 22 22 22 21 16 13 11 9 0 9 13 16 20 22 26 22 2e 17 13 8 8 12 H 23 31 39 41 36 31 22 16 10 2 -2 lC 23 31 36 41 13 51 62 76 89 101 101 -39 III III 103 g8 91 86 81 76 71 65 61 4g 48 59 78 8S 100 110 115 121 110 108 99 63 11 62 61 51 43 43 47 47 51 53 53 60 63 73 73 77 81 82 85 87 90 86 86 85 81 76 76 it '6 61 59 71 60 62 7e 31E SHGE 137 .n 137.1 1 -~P. a C~ Tf... 7S. zro. zeo. 1 )1).0 200. 140. C 2CO. 141.0 2eo. 142.0 142.1 142.2 142.3 141.0 144.0 14<). a 146.0 147. () 147.1 148.0 14Q. n 1 ':iO. 0 151.0 1 ')2.0 IS.?1 1 '13.0 103.1 1 '14. () 154.1 1 '}~. 2 1"i4.3 155.0 1 Sf. 0 15t: .1 157.0 1 ')8.C 1 ':is.O IhC .0 101.0 11'11.1 1" 1. 2 Ih 1 03 1 hI. 4 Ihl.'i 162.0 1f:?O 164.0 161) .1) 1 hf.O 167. G lbP.O I &s.r. 170.0 171. 0 171.1 172.0 17 3. () 17 1,.0 1 f".O In .0 177.0 11 p.O 1 IS. 0 1Ar.a lA 1.0 182.0 19"3.0 U13.1 H14.0 185.0 ~C T'l. Cf( 2"iC. 2'Jn. 275. 3011. 12"l. 350. 2CO. 375. 2eD. 375. 175. 37') • 1 'So. 37<), 150. 350. 150. 32'1. 1 '50. lCO. 15(:. 275. 150. t''':iC. 75. 25C. 75. 225. 75. 175. 75. 1211, 7 S. 75. 75. 7"" 12'1. 17S. 17'), 17 ~. 22'3. 22'3. 27<). ?7':i • 300. 30r) • 12 'J. 32'1. 150. ~ 'J C • 37':1. 37"i. ',00. (.CC. 40(1. ~OO. 425. 42'1. ~5C. 458. 42'1. 42<). 400. 4CC. 175. on'). 37 S. 37<) • 37'5. 37'5. ~n'). 17"i. ns. 37'1. 37 S. H'1. 350. 15(1. 12'3. 32'1. 275. 275. 225. 225. 175. 17'1. 125. 12" • 1,. 15. 125. 12'1. 175. 170;. 215. 22'1. 225. 22'1. 250. 22':1. 275. 22, • 'lOC. 22'i. 125. 225. l'5C. 225. 175. 22'1, 'l50. 225. 12'). 22'>. 300. 22'1. 275. 225. 250. 22"'. 22'5. 22'i • 22'5. 225. 250. 25C. 27'1. 27'), zco. zco. 2eo. 1 'i0. 150. 1 'ie. 1 ')C. 75. 75. 75. 75. 75. 75. 125. Ht';. 1 375. 375. p)9.5 31"1. 189.6 375. 189.7 375. trig .'1 37'5. PO.r) 400. Hl.r: 4?5. 1 '12.0 4'50. l'n.o 47'5. 1 '14. C 5CC. 1 ':j5.0 )CO. 3CG. 125. 3'10. 3 7':1. .f. 20-tl.O 207.f) 20~ .0 209.0 (lor) .1 210. a 211.0 212.n 213 .1] 213 .1 214.0 215.0 211"1.0 21 7. C 21R .0 ? 1 g.o ?20 .n 221. 'J 222.0 22:3 .0 224.0 ?2 '5.n 2U.rJ 227. a Z 2(:).n 22CJ .f) 2 3r.O 231. C ?3?O {' j"~ • (J (' 34. C 235. C 216.0 237.0 67 71 ~C(). 42" • 4 'j C. 42':; • 175. -i 7,. 37'). 37'). 175. 4Cr, • 425. 41jC. 47'1. " JO 21 29 16 4S ',5 '.5 ';1 ';1 5a 4H 46 4b 47 51 s; 53 5', -')'i"i 55 55 50 h5 37'i • "7175 175. 75 71 72 75 7R 79 79 R4 375. 37'1. 37') • 4r.0. 425. 450. 475. % " ~Go • 3CC. 400. 4CO. 450. 41iO. 2eo. 100. 3CO. 550. S51'J. 200. zen. 2eo. 300. 4CO. 4Cr, • 4CO. '30C. suo. "SCI";. ')25. ':125. 5/'."). 5')0. ': 5C. 55C. 575. 57'5. 575. ,75. 175. 37') • 375. 37,. 375. ')00. 500. 5eo. ,)'1C. ,)5C. 550. ')75. 575. 575. 600. 6()O. 6CC. flec. teo. 6CO. 62S. 625. 625. 1)50. 6<)0. 658. 675. 67 -14 -5 -1 , 7 I" 24 ,1 41 47 , 7 64 71 7H HI "7 70 Ph 1H 73 7J 73 16 79 gO 76 71 H 56 40 lh 26 3', 4J 51 51 hi 73 73 5" 57 57 57 57 57 56 " 57 46 -654 52 57 57 6h 61 71 77 ?2 -62 "3 56 9 41 41 4n 38 35 25 25 20 10 15 II 2n 20 20 -13 -15 -9 0 h 1 In I' 27 35 40 45 4g 51 to 12 71 gO 7P 74 7n 70 70 72 7h 76 71 69 60 55 ;g 41 )5 40 49 52 55 55 55 5') 57 57 5h 56 5R 60 59 59 59 -140 61 65 I 16 32 31 26 2t 21 21 16 6 II 16 13 21 21 - 19 -14 -1 1 6 1 le l' ~~ 4i 46 51 53 fl 71 15 71 11 12 4F 4e 42 4C 4C " 17 31 25 30 3C '0 ~ 5 J7 5 12 15 10 " 30 3'1 40 ~ C " "1e11 ;s BC gr 92 Sf '-:10 so 11 71 71 6S gO SO " "61 gO 90 PO 17 t6 61 '1 " 4C 4C II 41 46 51 51 46 51 53 hi f1 56 51 56 56 53 53 52 -179 56 61 pI Ph 67 '0 52 4" 32 41 54 '0 10 '2 ha ,a " H t5 1:5 11 " '1 62 62 -110 7C 75 CR"IR 52') • 525. ')25. '525. 'l50. '55(;. 55!';. ~ 50.. 550. 5'1C. 'J5r. • 5 'J 0 ~ 4CO. 40C. 200. 200. 4CO. 26 21 I' 11 9 17 22 17 22 ?7 75 ;7 ',7 '<1 37'). "37'5. 37">. 371) • 375. 375. 375. -375. 17''' • 22 'C 25 Ie C 0 C Ie 11 11 ?2 75 " 17<) • '3 7':i. 37<). -I '3 75 67 07 7C 1C 7C 72 og 'fCO. -19 10 1O 22 ec q 1 <)cc. soo. "ica. 11)9.0 52'5. 1 ')1.1 '12'5. 21"]0.0 S'10. ?r]r.l ')50. nO.2 201. a 202. n 202 ,[ 203. C 204.0 20") .0 h4 4C'1. ':icc. sec. 1 9f. 0 400. 2eo " ',4 '0 ')5 H '12 94 19 74 10 1 '17.0 450. l1R.O 9 17 15 17 21 17'). 10q. 3eo. 32'1. 325. 3'iC. 35C. 139.4 -5 -3 5 22'1. 27<). RC 37'1. 24 15 I, 15 17 ?? 25 15fJ. 15(). 300. IP 7.r. 12'1. IPR. f) 350. lng .0 375. 189 .1 375. 1 >Jg. 2 ] 75. T~ n 17"i. STAGE CNTR Plf .0 0 )2 34 14 29 29 25 ICO. 37'). 31j0. 325. 275. 225. 17'3. 125. 7'1. 12 5. 17'1. 22 'i. 22'1. 22'). 221j • 22'3. 22<) • 225. 22') • 22 "i. 22'1. 22<) • 22 "i. 22"i • ?2'l. 22'i • z5C. 275. p5(;. R75. 9(0. 'J25. q2'> • 11 10 '!~ 7,. zec. zeo. (lcn. 17 1 C3 llh 119 124 - 55"i 14C 115 77 14 ")0 1r;7 116 110 131 17l 1(]') 1 "2 ?C5 211 225 234 -55') 1(:f:, 139 4g1 51? 1'-25 755 hO h7 70 A5 '2 "73 74 '74 Al 81 '1 Rl n 95 102 I1C 70, 9S 99 1(:~ III 117 11' 120 -75C 2?') I go 152 141 115'5 172 20 1 7~1: 222 7'11 215 212 232 241 ?4O nA -7tjC 3 ~ c; ihC ",r:c ;SC 54r. f,lC 't " h7 04 f,ij h4 h? 70 7, 7L 79 7" 112 Ro 90 61 77 87 95 97 te7 lng 109 -6? 3 116 104 R2 b1 79 80 102 F17 117 124 102 'n 184 lib 118 134 -623 140 102 204 212 4r:7 4')": 0;")7 Ph R6 7' 74 12 74 71 77 77 g3 Ril 90 103 lO-} 7J 99 103 10h 120 lIB 13h 141 -654 226 19' 150 146 167 191 211 213 227 2)g 246 241 ('68 204 295 345 -hS', 3'13 41h 513 623 "17 Sr.S 1r,4'1 -555 141'5 Ie 1 C 1 C'1e 1 ?3C -7'1C 1 ';6C "5111 5R7 627 -623 077 10 11 134h 1270 135'5 1426 1516 -654 -'J,),) -7')( ItS') It'15 -A23 -AS.:, 119C 17 liC 1 FlC 17S2 l>llC 1 rJ"i( r;,:'l 1 rr]l"' '20 1'" ~ q ') Uf;S 1672 If:'?5 17'17 17P') 1 R62 l1Q 5 2231) lfl7C 2C 11 2112 2372 111--.1 1157 11"'7 1157 1157 1169 1176 11 PC) 12ft 1 1317 Zllh 23116 235/1 211,/1 2378 {,3Q 1 2446 2~ 78 2611 7801 315t 69 71 75 80 AO 74 6R 6S 71 72 72 75 19 85 89 q1 9R 71 R7 gO gR 102 10) 109 165 -3~O 172 150 115 110 121 142 160 t6,) 169 teo 150 149 170 180 185 212 -340 237 312 310 410 537 741 1160 1110 1160 1240 1360 -,40 1900 -,40 2170 2170 2170 2182 21S2 2251 ??87 241 ') 2595 2B50 " 70 12 72 71 '9 71 11 70 72 72 73 7' Rl 8J 81 91 71 PO 82 91 ql n 102 126 -17q 132 121 10 1 82 g1 101 ll2 114 121 132 121 11' 122 131 133 141 -779 208 256 271 ':'36 471 511 ,;qt 52t 551 HI 641 -779 f? 1 -779 Ie 31 IC 31 1031 1eZl le31 1071 lC81 1122 1216 1 ~ 31 79 81 E7 gO 97 gc 84 A4 "' 86 8' 90 g1 -,-, -9 leo 9se PtO G2C <;<;C 10ee -liC I I'; ~ C -lle HeC 1 esc 1 et C le7C 18<]C 1 G40 1'1E5 ,(9C 2175 22'iO 3E 42 44 51 11 " llC 111 12~ 1~ t 1~ ~ 151 H, U6 49 49 44 41 30 3g 3S 39 44 171 lSC IE: 17€ 171 17C 1 "1 ~ 11< 1 7~ 11 ~ 168 It2 14i 131 II, S3 7C 81 lC4 122 121 13C 13C 13C 142 175 lH US It) Hz 162 162 114 174 154 154 149 135 121 ,7 44 'S ;. 29 21 10 4 -8 1 9 1G IS 1, IS 2C 23 23 22 22 22 24 24 25 P5 92 91 lC1 114 123 123 123 123 123 123 124 124 124 12 .... 121 127 -1 125 127 22 -71 28 30 13C 13C 13C 13C 13C 13C 131 I ~l - 87 136 144 9 ,. 131 14C 144 155 175 1'8 169 169 169 170 111 3S 41 46 44 44 39 41 41 44 45 44 39 11 39 34 4S 67 11 11 gO 96 69 , 7 84 92 98 129 -71 2" 2?-S ?-44 391 434 511 ': '3S 484 53<] ssg '" -71 1 C29 -11 1149 11 ~q B6 0,9 224 261 8, 95 ge I C1 lC) IC4 lC 2 91 so 94 E9 94 82 11 61 ~ 9 52 ',2 41 57 72 '4 g, n 52 ss [C' 114 115 1" 147 144 1~ E D3 133 134 1 ~ '1 141 141 134 131 liS 1 C7 S4 7, h3 H " 1 C4 lOS 117 113 1 CS 1 C4 lC4 1 C~ lC 0 ICS 106 1 C1 108 lC9 -253 117 122 11 127 133 ?C7 211 231 Jee 2CI 221 236 247 ,:;:; 0; ~ 27'; 271 - '7 4Sf 453 271 L 64 ~~~ 38 j ~ eE 3SS 421 ~7~ ?- 7, 4C1 41f 444 47'; - E7 ~7t 654 E8C 1181 -87 71~ ;C2 12 ~ ~ 1; ii~ S1~ St,.: -87 C 31 COC cce CCC cce - ~5 151 I'C 1 '1 176 17C; 171 171 177 17, 18~ 181 183 19C lq 213 161 1" 2CO 2C9 217 241 241 247 -7 317 2eg 22g 215 229 241 2et 297 311 333 302 1S1 315 32: 332 362 -7 475 517 103 l1S g74 1177 ISS 1 1475 154C 1645 17P5 -7 23(17 -7 US I::S5 "0 712 73< OS 10 18.? 184 192 2C C 11 ~ ~~ 1szq ~ 53 41 58 72 e2 103 101 120 124 13C IS 'C 34 ,g 42 114<; llSE 1170 121e 1246 1?-7<; 1544 q; 79 13 ~1 , 54 68 74 79 80 85 e7 -11 94 " , P4 1~ 21 100 105 III 116 122 135 138 -110 1 SO 110 125 115 127 132 170 11 ~ 121 111 11= 111 Ie? 1 C2 18 72 61 ~ 2 -~~ '4 10 18(; 192 180 1'S7 172 189 191 195 -110 1'0 272 ?-75 425 505 592 llC 111 112 112 II, 111 10e 92 9C EE -14 - 21 - 2C -1> -15 -11 -9 - 3e - 29 -21 -14 -9 5g ez 91 lie -I gR " 91 1C~ IC 1 It:! 11> e4 e lC7 110 leo 71 - 32 4 4 C3E ;5?,5) ?-5~ - 87 139 141 147 139 143 143 141 14> l'SC L 51 157 168 liC 178 1>1 148 173 184 197 211 2IE 239 271 -253 337 2,2 222 214 241 2€1 31' 327 339 3t5 319 317 35t 372 384 4S2 -253 'C7 667 1412 )642 509 3337 4307 3t: 52 4 U1 -43S1 4517 -253 1';441 -253 74C 7 7402 7437 7471 1511 1647 e3C7 E537 <1422 11212 12 82 92 101 IC I 103 lC' 111 III III ICE 103 96 91 91 89 81 18 7C 63 5) 51 " 16 'S gg 101 103 III 116 124 131 141 161 161 151 151 146 152 153 151 151 142 141 131 12C III gj 81 131 140 151 153 162 15y 161 152 152 150 151 152 153 Isc 1,1 1,1 -IC9 198 201 12 20' 211 215 221 211 205 21C 20e 211 213 213 216 221 226 231 239 256 216 238 25C 2" 27C 271 283 /AI -IC9 29C 25b 211 2C5 22c 248 2iO 277 212 326 291 291 31, 329 )40 4ie -IC9 52e 572 693 801 1126 1431 1811 1661 1761 ISH 2C21 -leG 2731 -109 3101 )(91 3121 1151 3191 I) 11 e3 8, 91 9) 94 99 1 CC 91 q] 91 91 e' 84 81 11 71 65 61 53 51 61 72 83 g5 51 61 " 11 78 81 gl 6' 64 59 54 54 61 61 152 152 144 142 131 118 111 10C ee to 54 63 61 56 51 5, 61 56 54 62 61 61 61 go 98 -H lC3 lIC 13 114 12C 126 131 113 III 118 11' 120 122 122 129 131 141 144 15C 1<3 123 146 152 162 172 176 19C 193 - 39 201 171 126 111 142 lel 18' 10C 19o 253 222 222 250 261 273 391 -H 471 583 631 881 1066 1301 1701 1565 1651 1771 1911 -39 3336 2l::c 1 -39 3C71 3071 31e 1 3131 J 166 3331 3468 3711 4Cf 1 4c171 3751 4cef; 4661 ~411 3i 7 s T ~GE c~nf{ 7S. Hi('. 3.0 125. 4.0 150. 5.0 175. 0.0 21':0. 7.0 225. ).1 22'). 7.2 22'5. '.0 2CC. g .0 1 'lC. 70. 10.0 ll.r) 70. 14. Q leo. 15.0 12'). 1f.. II 1 se. 1 7 ~ n 17">. l>l.() 200. 1 'J.n ??S. 20. n ?(;o. 21.n 1 7 ~. ??f) 17'). 7,-). 23 .f) 75. f) 77. () 100. ?R.(l 12ii • ;'<").0 15C. Ie' .r 17'), 31. f) ?r;n. L? .0 22'J. 1.0 2.r: 2". 1).f) 2en, Vi.O 17<). 1,). r) 1 so. 1h. n 12'1, ICC. in .0 75. n.c "il.n ·)2.() 'J 3.0 IJ/f • n ?'i. e 5t..f) S7.0 'iP .0 5').0 be ,0 r,l.() 1':1.0 70. )5. 7'5. 70. 75. 75. 70. 75. 75. ". 11;C. 12') • ISC. 17'i, I?, • IFi. -RP 1'1 -12'7 41 22':1. 12'). 12<). 17'1. 200. ? 2 'i. 17<"). zcr. 7'1, 7"'. 7',. )S. 75. 75. ICC. 12~ • 1"(;. 17') • ~O() • 22'i • zoe. 175. 12') • 1':>('. 17'1. lei] • 2?"i • 7'1. 1 so. 5.4 1 7~. ICC. 12'1, 15C. 175. 17'1. 2 2 ~. ?CC. 22'1. 't I,. it ~. 6.4 ,Cf'). 7.4 22 'J. R.'t 200. q ,It 17,. 10.ll 1 '10. 11. it 12'), l2.4 100. 11.4 7C ,0 75. 77 ,0 125. 77.1 150. 7P.0 17';, H.i 2CO. 7g .0 225. ". lZt). 75. 7<) • 2(;r,. 2CCl • 170:, • 125. zce. 17S. 12'5. ICC. 75. 75. 12-:1. 125. ?C~ • 22<-' • leo. T~ (R'lP 7,), 6 11 IS 17 24 21 23 21 21 1 2 h IS 24 H " " 45 '1(; 35 17 " -3 0 ?O 25 12 , 7 22') • 4 /• 250. 250. 2 7S. ~c r. 300. 32>i. 32') • 350. :'150. l~C. 350. 27') • . 3":0. 37'5. 350. 32'1. 3CO. 275. 250. 225, 2CO. 175. 150. 125. ?S. 7'l. 12'). 17'3 ~ 22'1. 27') • 32 'l. 350. 37') • 321:) • 27 5. 275. ?2t""1. 175. 151]. 12') • l', p " 17 22 ?'i 22 IS " 11 2 I 9 Ie 23 12 '7 '.3 '9 32 n 17 1 I 15 2" 11 °2 14 lr::7 to 7 -00 ! 20 11'5 llO "117 31 112 1 cz 97 02 02 77 07 '.2 57 39 45 '2 h4 IfJ'> ','1 'lO "I 75 >,7 U 1,7 15 75 eo 10;5 112 117 186 95 '14 77 co 'i'") 91 h7 hi 14 35 ',4 00 47 52 32 15 10 "AO 6 ?I 10 rl 6 10 -12 -9 l~ 11 Ig H 12 " 37 " -! 16 '.2 00 76 81 96 10 -129 111 III 107 101 01 PI 7f 71 61 52 I.C .? :~ " " 8£:1. Oh 1(;1 122 8' R8 89 72 H 52 46 311 11 31 28 32 31 II " 42 to 52 "50',7 43 40 "PO 77 325. -") 7C h1 72 th 4CO. 3CO. 2 75 ~ 250. 2 2S. 17'5. 125. )5 • 75. 75. 75. 75. RO 67 (jS ""').: 07 42 J6 1C 40 4h 55 ,9 " " " 6"3 4S 42 43 52 he 5\ 45 30 15 20, 40 50 65 76 g5 h "375. 375. 321i • 3':lC. 375. 7(1 73 75 ,,0 65 21 l' 3<)U. 3CO. 70 85 80 17 71 )4 '7 H2 "7 "2 °2 7P 6') 6n n 4< 52 45 17 37 37 17 32 34 y 5 71 ll4 122 111 87 96 82 0, 0 10 15 20 25 30 45 32 30 20 15 5 5 20 30 40 -2 5 '1C 18g 40 30 25 20 II 0 " 5C 20 l '1 122 22 ,0 1,0 -1 44 _po 10 \ 0 1P 71 02 9) III 112 0 II 111" -17 3 12 21 28 15 n I ) '")7 75. 75. 75. 70. 2 oS leo. 7S. 75. 125. 175. 22" • 25C. 275. 1 1 /;h 47 40 70. l' 17 IS 22 r 15e. 150. 11 S. 17'1, il4.1 150. '1442 ~5r • 35e. 85.r, 37 '1. 375. -It ~O 150. ]~() 87. n 325. 325. ep. r. 100. 30r: • HS .0 275. 27" • gO~O 250. 25C. <) 1.0 225. 225. '11.1 2ce. 200. g2.0 17'5. 175. ':;2.1 Ise. t5e. 93.f) 125. 12'1. 70. 94.0 75. ')"i.O 75. 75. ')5.1 125. 12'), '1c .0 175. 17'3. 'Jt-41 22'5. 225, J7.0 275. 27 S ~ iJ7 ~ t 325. 32';, ')7.2 150. 150. ,)8.0 375. 37'i. q Cf ~ r:J 375. 325. IGo. r:J 17') • 27'1. 100.1 375. 27 5 ~ 1 (Jl .0 37'5. 22'1. 102.0 175. 17'i, le2.! 175. 15C. 103.0 375. 12" • 103.1 375. lOCo 104.0 375. 75. le5.0 325. 7' • 75. 1()~ .0 275. 75. 1 C7. 0 225. 10A.O 150. 75. 109.0 75. 75. 75. 114.n 75. 7'5. 115.n 1". Itf .0 175. 75. 75. 117.0 225. 11 e.o 25C. 75. Its .c 275. 75. 7'3. 120. C 3CO. 75. 121. C 32 '5. 122. a 350, 75. 7,_ 123.0 375. 7"i. 12.3 ~ 1 'tOO. 75. 123.2 375. 75. 123 ~ 1 375. 7C, , )110. 124. n 75, 125. 1) 325. 12t. f) 300. 75. 7'1. 127 .r. 27'1, 12>1.0 250. 7"i. 75. 12\j .D 225. 13('.0 175. 75~ 75. 131.0 12') 132.() 7~ • Fi. 133. 1) 75. 75. 7.,. 125. 114.0 75. 171)4 135.0 75. 22') • 136.0 0 75. t ')c. 1 ')0. 1 ce. 7'1. HGE C'lTR RC 80.0 250. et .0 275. P2.0 300. H"'~ • () ~ 2 "i. nt,.o 3')0. 75. 1 co. 125. 15C. 0 I'. 12 7 2 lcr::. 7'1. 75. "., 21 7 'J t 1 71 71 7 tl P6 " 74 71 61 56 Sl 41 41 35 2" 41 43 52 -12 Q '12 50 30 -) 20 10 -0 5 17 25 ~o " , ':if. Ie 2e cO 23 >5 -15 '5 4'5 6{' IS I? .... 10 -" 50 00 50 50 5e 20 4' 2:1 ~~ ?cr:: • J7·" I "in. 5C "15, 22 -<;s 21 110 PR 1 21 -2C -Ie 2/1 2l ~ Ie 7 70. 75. ) "3<; ICG. 7'). 7'1. -) 51 ',4 7'5. 75. 75. 75. 70 • 7'3. 75. 12 2(" 1 C0 -'?0 -u -4gS -17 ~ 50 5C 50 -41<) t OC 51' 5 to lh ?7 lh (I 22'), ?r;r;. 17') • 17') • 12" • 121;1. 7' • 21 30 2e t "iC. 1 '30. 1')(;. 75. 75. 75. loa. 125, 17 -11 ? lcn. len. 70. J ?l -12') I' --10r -70 -40 - 20 -J -e~ 15C. 1 "iC. 75. 7' • 7r;. 7'1. 70. 75. 75. 1 22') • zee. zen. 70. 7C,. 70. -If. ~ zen. 22"> • 75. -1 ) - 0 1 'q 72" • 2Gll. 17 I' -I.t -21 -1 151; • ?or, • 225. 22':1. IS 1'. 70. 1 CI1. 7S. 1.'1 ?4 ~ 1.:( TI; eo Sf' 3e ~~ -sC 5 l(} 10 20 25 2G 15 Ie 5 0 -5 c 2 R IJ 20 25 3e 35 20 IS 10 C 0 10 20 10 40 50 60 52 45 3C 2e IC e 0 30 19 "70 SA -3': 'i ~~ 4e 10 -Ie " tC (,-I 40 C6 15 -17 -10 -d 25 -~ 0 I 10 15 25 30 35 '0 " 15 10 =~ 1C 25 35 47 65 PO t5 SC 40 ~ c 15 =~ 45 "3 " 53 t5 84 20 90 113 155 IRe 1 jC 1 S~ 262 265 2SO 240 230 215 2eo 1 qr; 17') Inc 145 115 11 , 141 17C I 96 220 285 275 205 255 237 250 27G 282 ZoC 270 270 260 2')0 241"3 24C 735 230 205 2ee 1R1 lOS 11C 139 1;2 IhC I7C IRO IP '5 19f) 200 210 212 ??C 215 21 I) 210 101 101 190 18r. lRl IhO 145 131 131 145 160 171 233 225 205 1 gO 175 161 135 125 147 175 zoo 235 26 1 285 305 103 295 295 295 287 28 ti 276 27S 2Ch 25(l 22R 210 207 147 140 164 175 I g5 205 21") 22 5 237 245 lAS Z73 265 265 25C 241 231) 22') 215 ?In 194 175 156 147 IbO 175 IPS 23(J 215 "' 261 25C 24C 226 215 201 1 gO 1 ec 170 lOP 140 lZr:" 112 135 160 1>1;5 21C 23'1 2 'Sf) 265 260 25) 253 250 24C 23CJ 2 ::! ~ 230 2?7 210 19':J 1 PC 15C 128 130 14') 152 165 17C 1 Be 18'5 1 gO 2ee 2C 1 21C 2C5 20') 1 gq I92 IP.S 1 "C 172 1<',1; 155 140 11C 100 145 16e 170 2C Ie -1 -4 -11 -1 : - 2C -2'5 - 22 1q -49') 2E 25 20 15 ~q lP ?40 2'0 Ie 15 2e 2P 30 : ~~ 120 145 17 5 205 2'55 260 -240 -1 ?C 100 12fJ 2CO Z€ -?ElC - 3 PC 17 110 C II ~f 105 IPS 225 2?7 - 35 5 253 245 234 215 2C5 I gO 175 If':: 145 1:35 liB g) 123 147 175 " 2C3 2"': 25C US 25fl 25D 25c 244 nc ,i2t 22l! 217 21 C 1'15 177 It] 1·l5 le7 In 124 1~ 5 1 '5C 1'5 it5 170 177 IP5 1'5 2C5 196 1 S6 lS5 12'1 175 1£7 ltr: 1'55 145 ! 26 115 \14 liS l35 150 -g is -\ '5 -Ie -I 0 15 25 4C 5C tC )C CO 51 1~ Ie 10 15 2e J~ 4C 40 ~~ ~c 2C 15 10 P 15 25 3C 4e 42 21 53 tC 7C 8C 1 C5 Ie ~ -380 llC Ie':: 100 9C 85 PC 75 7C tC 5C 4t 32 30 40 58 7C 80 S2 1e2 11C ICC P.3 " 7C 52 ~~ 2§ 15 17 2C 2C 21 25 21 "e -~ -lC -15 -20 - 3C -3C -37 - 3e - 3~ -3C - 2C -29 - 2C -15 -10 0 IC 2C 21 5C 7C so 2~ 22 -~o -10 -lC e 3C " 5E -25C -25C 50 3e -I -I e 2 Ie -4 -, -2 -41 ~~ -t 4 II 15 32 3S 't:: ',c " 35 " -22 -21 :~ 25 35 -3C - 20 -12 -15 -lC -Ie -5 C 10 -~t -3'1 -?G -I - 1 -I -I =~ -2 -I -I -I -I PC - It -II -II -t -I -1 e ISS 74 P', 74 " 50 11 2C C -5 2 IC 20 30 42 50 45 35 30 20 IC C I 13 IS 4S 3S < 5 14 15 34 44 57 tl 57 4S " 25 15 9 E 25 25 " 32 44 50 t4 1,1 22 54 23 t2 73 88 1 C2 121 12E - 25C 14C 13C 130 120 112 IC5 93 81 H t5 50 33 3S 50 t3 gO 105 123 1~ e 147 132 118 112 gS 79 7 8 9 1C 104 115 -jS II 10 10 9 9 8 7 7 6 ~ ~ § t 7 8 1e 10 11 lC 9 9 " 6 5 ~c 5 3C 3C 4 3 l I~ 2 j 4 4 4 , 3 2 I 0 :§ -15 -18 -II -II -15 -2C -1 9 -I e -) -I :1 -I i 15 25 28 59 82 110 " 134 144 -61 15 f t 14S 139 131 124 II 9 104 55 B, Pt 6< 49 44 5S 74 9, I C9 129 I fig 169 14 e 129 IZS 110 92 7 /, 64 4S 39 39 39 3S 39 3S 39 3S 29 22 19 IS IC 9 4 0 -I -I -) -I -I -1 C I 2 3 8 5 5 19 28 31 3S 61 A9 114 4 - ~£ I, 6 E Ie 3e 5 6 2e 35 55 t5 "5 10e p, 7J 50 45 25 5 c C C -2 -3 -3 -5 -5 e -2 -5 -5 a 15 2S -30 -IC Ie 3e so )0 S1 -43C -43C )0 39 -10 -E 15 38 55 70 P2 leo 25 71 "2 II 13 3C 41 60 7C 85 10e 85 70 55 4e 20 1e 0 I 0 -2 -2 -2 :~ 0 -I C 0 0 15 3D 45 45 "'" te )0 gO 75 55 75 45 35 16 0 3 33 45 to 73 85 25 77 ~~ 32 12 35 32 31 22 IE 24 4 t 33 -15 0 h 27 45 H 7, 9C 65 IS to 73 -24') te 3S 44 5( -'15 -3C -Ie Ie 30 ,4 7e --245 Lj ~ Ie -1 -1 -11 -II -11 ,·11 -H -21 2(; ~~ 26 ;H) -5 5 24 -I'll -H - 1 2C e -5 -12 -17 -2e -IS 24 -01 -51 105 125 144 165 1 P.5 185 -245 205 2C5 le3 165 155 145 130 115 105 87 75 ',5 35 6C 90 117 145 175 187 ZC5 18C 155 p5 2) 102 P6 75 55 40 40 41 " 41 41 45 75 105 135 154 166 18t 2CC 215 235 25C 238 245 230 215 2C3 186 175 160 128 ICC 65 46 46 ;s 45 55 to 48 30 15 -2 C 38 52 61 75 gO 2t loe 13C 150 170 19C 19C -43C 210 2CO 187 175 160 150 133 121 110 98 80 5C 5C 75 gO 13C 155 186 200 219 192 166 165 12~ 10:; 93 80 62 48 48 50 50 5C 50 55 g) 1 Z2 151 170 182 2CO 218 232 25C 268 251 259 2/15 230 215 20e 186 170 14C lC4 73 52 55 52 5C 318 Ti:!. rR S T ACE eNT!:! ·~c 137. a 13 7. 1 2'JC. 1 ~p • (J 70. lre, Z(;O. I v'.n 700. 140. !J 2CC. 141. n 200. 1',2.'1 2ec. 142.1 200. 142.2 175. 142.1 1')0. 143. a 150. 144.0 1 'jOe 14'i. () 1 SC. 14(;-.0 lSD. 147. f) 1 'jo. 147.1 75. 14 R. C 75. 149.0 75. 150. n ISI.0 1 'l2. 0 75. 1 ')? 1 12 • 125. 22,. 22'5. 22'5. 22'5. 22 OJ. 22'5. 22'5. 22 'i. 225. 27'). 225. 225. 22'1. 22') • 22'1. 27'), 225. 225. 225. 22S. 2 2'i. 250. 250. 27S. 275. 170.n 171. r; 171 01 172.0 In.O 17'," 0 17 S.r. 1 7t.. 0 177. r) 17°.fJ 17S.r) 1, I'. r~ (J " 70 so 06 40 '.0 18 30 44 4I 70 P5 15 If'':i ItO II', II" 1'1 14'3 1"i'i 154 14S 1111. 142 140 14 S 147 147 143 11h 1?'1 110 '15 "2 " 82 'IS I Cl llO 1 Ch lC7 tr~ 7 187 le7 ICo 1(;6 lCh 110 Ie R 110 113 -'}') 117 125 14 134 107 1I~4 1 ')2 155 1'5 155 lOS 103 15" 159 151 16n 166 17') lA1 118 150 176 186 1 'H) 2"7 215 275 357 -'5'i 30 I 340 26') 262 2'H BO 77 82 p 3 74 " ". 1,2 4'. " 17 17 , 1 04 7<'; ',? 101 lDR lIlt 12 ? 132 1~ 2 144 1 '14 1'1 142 117 117 1~e 142 143 1';3 117 ')55 1127, 14r)5 17'1'i 16'1') 17 25 IP45 I'HI) -.:::~ 2"'4 I) -'j 'j 2P8 ') 2P>'!'J 2'1i)S ~94 ') 2 gA 1 H 35 32')'1 J'l~'5 let ') IdAO Rl 11 1(11 1 (;3 12j 102 100 leo 93 n 77 64 7S gz 108 lr:t. 107 les III III 112 -118 Ie 7 I? 2 'lb 93 17 98 ge lCO 10 I -129 III 122 17 18 19 20 21 22 1130 210 220 190 225 171 20 J ZlC 220 155 IIC e2 95 102 III 122 IC2 115 125 no 235 240 25C 250 245 240 2:2 221j 220 213 210 185 IBf'J 165 15C 1'10 140 Ib9 In 110 250 261 2f.l.O 300 310 3)9 360 3R2 550 '32 520 5QfJ 50'] 50g 519 519 519 505 491 4AO 439 190 359 31 q 150 ]80 410 41" 425 433 440 450 460 470 460 458 449 439 42'J 420 41'l 430 445 244 245 247 255 285 285 265 257 255 255 244 234 220 205 195 183 166 ISS 146 175 200 225 265 270 286 301 315 363 380 405 409 535 511 495 495 499 50 I 475 475 465 453 430 4CO 360 320 280 305 335 370 370 405 413 430 440 453 465 45'5 425 415 405 165 365 364 375 386 195 107 205 225 215 22e 225 225 225 225 215 Ice ItS ISO 155 135 125 110 97 230 240 242 240 231 228 22C 213 nc 200 1 I!: 5 190 165 151 140 Il,O 160 Ige 211 240 250 260 el5 45 114 1 :'5 165 )95 15 235 257 174 296 25 ~ 285 435 427 415 404 4C5 4CB 414 4C I 4C I 3£:7 375 345 310 175 212 2ge ~OC ~ 3C 3'55 540 495 480 47C 469 471 48C 490 49C <78 461 435 401! 31c 345 311 ?11 360 39C 392 4C3 411 410 428 435 445 43B 430 42C 410 410 400 400 412 . 42q 238 235 245 175 3CS :C 5 318 330 340 345 ~~ 5 365 356 35C 345 334 315 3CS 3C4 31e 335 I' 16 17 In 19 10 129 134 142 151 147 144 146 ·146 l'll"'. 152 1'2 153 161 167 174 1"2 194 151 174 192 2(:3 ?l4 119 231 237 -8e 109 2f:1 2C7 202 120 126 131 141 147 139 139 140 141 145 149 149 140 t52 156 168 191 141 161 IRI 183 196 196 207 226 -12q 271 228 171 169 193 221 206 263 271 281 251 241 271 2n 2q3 3le -129 443 523 460 475 491 510 520 526 5)0 532 40' 415 415 44' 4'6 457 465 468 457 464 46' 443 475 494 510 540 555 464 456 530 50S 615 635 665 688 -495 765 665 525 B85 51' 5e5 665 690 717 754 640 635 715 751 785 861 -495 873 965 1055 440 455 470 490 490 496 501 3:4 365 3B6 405 4C5 415 419 42C 424 415 425 425 445 470 454 515 '5'35 455 455 '325 565 '03 195 197 2CC 2C3 2CC 2CO 2CC 197 197 198 2CC 2C5 2C5 2C5 2C5 215 23C ',2 72 lC2 13C 16C 160 17e In 11 C 23e 239 159 201 lBl 27C 258 258 26C 27C 3Ce lOC 282 270 241 215 183 15C II' 130 160 19C 195 192 Iq 2 205 189 1ge 1<}3 195 196 1S9 205 2CB 2C9 21C 22C 215 11 22 23 24 25 26 27C 2B I 19C 3CC )01 3C:? 3H; 291 3e7 315 345 345 342 352 351 353 352 35C 35C 360 37e 14 338 354 :H:q 3e4 3e4 39C 397 "e 4C5 404 I,C4 4C7 41e 41, 439 459 479 4C 8 44> 464 4e9 519 529 56 e 619 -61 62\ 5e9 4ae 45q 5C4 SSC 609 t':2C I!: 59 711 639 629 68C 7C5 724 761 -61 e 12 el4 e99 q69 lC2-4 lC79 1139 eC4 955 1091 1144 -61 12 C'~ -6\ 1014 I CCg 10el Ilec 123 r; 135'; 142e 1519 2 115 250 260 280 296 313 3Ct; 3Cc; 309 31C ~ 2C Be 34C :'54 311 318 341 36C 375 395 ~Ii'l IJ 2 ~ ',3C -380 460 41e :28 32C }5C 3 e~ 43~ 45C 1Jl: ~ 48C 415 41C 44q 47C 4ec 491 - :EC 41!:; 471 52e sec 57C 562 5.f:2 3CC -4C~ 501 5C9 - 38e 425 -38C 211 2C5 25e 31C 34S 43e 47C 47C -4 ~c 19C 392 41C 435 255 395 415 44C 4<3 456 515 525 -250 see 515 41C 4CI 45C 5CC 560 575 592 625 5itC 54C SIC 615 640 73e -25C BCC a7e 945 ICC7 107C 1151 122e ee5 1045 1178 1199 -25C 154C -25C 152C 15CC 1571 16 7C 1729 18t:5 1925 1991 20el 2260 15 If 17 Ie 18 19 19 19 2C 19 19 2C 21 22 24 26 10 23 ;S 27 29 3C ,I 3 1, -39 )4 29 21 21 24 28 )2 33 35 31 3C 3C 33 35 H 3E -39 41 4t 47 48 44 4C 29 4 14 23 23 -39 14 -39 7 f I 7 2 0 4 7 2 3 115" lOtS 165 275 2g~ 295 2e6 2B8 29C 159 308 311 314 325 345 358 375 4Ce 295 347 375 405 426 430 455 455 -245 7',5 645 478 lt6~ 5)5 615 69a 725 754 e20 669 667 756 7~6 e25 E 86 - 245 113C I ~ CC 1<75 I ~75 2564 3C95 450C 4C04 4160 4593 scze -245 6EeC -245 7645 7l;26 1686 7755 7E 36 0117 8353 eS65 gS5C 117t:S 29 1t 285 28e 288 30C 307 310 311 325 342 359 375 4CO 292 350 379 410 432 4<0 485 670 -430 740 135 't75 459 53C 605 l:9C 711 745 895 770 77C B62 ge8 960 1230 -430 13QC 1556 1930 2405 328C 4230 4342 4765 5C7I 5',5C Sg4C -430 813C -43C 884C e812 8B as a9" 905C 9365 9650 I C IQC IIC62 12010 319 ST .... GF: CNTR RC TR CR~IR 70. ICC. 120. 150. 17'5. 75. ICr, • 70. ICO. 125. 1.0 2.0 3.0 4.0 5.0 c. Q 200. 7.0 225. 7.1 225. 7.2 225. 12~. 15C. 17'}. zon. 21. a 175. 22. ,J 125. 23.0 75. 26.0 75. 21. a 100. 17'5. 2eo. zen. 225. 22'}. 225. A.O zoo. 280,. 9.0 100. 15(;. 1 Q.O 70. 70. 11.0 70. 75. 14. r; 100. ICC. 15.0 125. l2S. If. r: 15C. 15(;. 17 .0 175. 17,. 1 RoO 2eo. 2Qn, 19.0 220. ns, 2G.f1 1 'SO. 22'1. 225. ?25. zeo. 150. 75. 7'5. teo. -4 12 30 40 61 -720 -720 42 15 -15 10 "16 62 22 S ~ 1\'1 2CO. 17'1. 17'i. 12S. 12S. 7S~ 75. 70. 75. 75. 1 co. 7' • 12'). 75. 150. 70. t 75. 75. 2eo. 75. 22<) • 75. 2en. 7<) • 171j. 75. 150. 75. 125. 75. leo. 7'i. 7'. 70. 70. laC. 70. 75. 125. 150. 75. 175. 75. 200. 75. 7'). 22':i • 7" 09 2eo. 2Cr. • 75. 70. LOCo lCO. 12'5. 125. 150. 150. 17'1. 175. 2OC. zeo. 225. 22'5. ZOC. 2eD. 175. 175. 15C. 150. 125. 125. 10C. 100. 70. 75. 75. 75. l2<":i. 125. llle. 150. 17'1. 170. 200. 2CO. 22"1. 225. c'nq RC TR CRIIJR S T ll.GF 2A -41 -11 -11 q 19 45 69 -':141 -541 5'. 29 -15 C 17 19 '.1 39 69 7S 70, 59 37 9 9 22 -n 125. 150. 175. 2r .0 l?':i. 29.f) 15C. 30.0 115. 31.0 2eo. 12.n 22'1. 3:'.0 200. )4.n 1715. n 150. 36.0 12'5. 31.0 leo. 7,. 3P .0 51.0 75. 02.0 75. 7,. 51.0 54. a 70. 55.0 70. ':i~. 0 75. 57.0 75. 58.0 70. 5q .0 75. 60.0 75. 61.0 75. 75. 63.0 70. 1.4 2.4. lCO. 1.4 12':i. 4.4 I,D. , .4 17'. 6.4 1.00. 7.4 22'). 8.4 200. Q.4 175. IC.4 150. 11.4 125. 12.4 100. 1'3.4 75. 76.0 75. 71.0 125. 71.1 150. 18.0 17 o. 18.1 200. 79. n 225. 1". 27 -15 zoe. 1 7':i. 10e. 125. 70. 75. 75. 70. 75. 75. 25C. 250. 275. 275. 3eo. 3CO. H3.0 325. 3?5. 325. 84.n 3'50. 150. 350. F!4.1 3,e. 350. 31j0. 84.2 150. 350. 350. 85.0 375. 37'). 375. 8 f:.0 )5C. 350. 1'30. R7.0 j25. 325. 325. SfI.O 300. 'iOD. 300. 89.0 275. 27"5. 275. 9C .n 250. 200. 25C. Q1.n 225. 225. 22'5. 11.1 200. 2en. 2CC. 92. a 175. 175. 175. 92.1 15C. 15e. 1 <":iC. 125. 125. 120. 'n.o 94.0 70. 75. 70. 95.0 75. 70. 75. 'lS.1 125. 125. 125. 96.0 175. 17'5. 96.1 225. 2?'i • 225. 97.n 27S. 275. 275. 'l7 .1 325. 320. 325. 97.2 350. 350. 350. 98.0 375. 375. 375. 99.0 375. 325. 315. 100.0 375. 275. 270. leo .1 375. 275. 275. 101.0 175. 220. 225. 102.0 375. 1 75 ~ 175. 102.1 375. 150. 150. 103.0 375. 125. 125. 103.1 375. 100. lCO. 75. 75G lC4.0 175. 75. 105.0 325. 75. 75. 10f, .0 275. 75. 75. 75. 107.0 220. 108.0 150. 75. 75. 75. 109.0 75. 75. 114.0 75. 75. 75. 75. 125. 115.0 125. 116.0 175. 75. 170. 117.0 220. 75. 225. 7,. 250. 118.0 250. 119.0 275. 75. 275. 75. 3CO. 120.0 300. 121.0 325. 75. 325. 75. 350. 122.0 350. 375. 123.0 37'). 75. 4CO. 123.1 4CO. 75. 375. 123.2 375. 7,. 375. 123.3 375. 124.0 350. 75. 350. 125.0 125. 75. 325. lU. a 300. 75. 3CO. 127.0 275. 75. 27 'j ~ 128.0 250. 75. 25fJ. 129.0 225. 75. 225. 75. 175. 130.0 175. 13 1. 0 125. 75. 125. 132. n 75. 70. 75. 75. 75. 13 3. 0 75. 75. 125. 75. 134.0 13').{J 75. 175. 75. 75. 70. I1f:.0 225. An .0 250. Bl.0 271). F!2.0 300. 17,. 7,. 40 00 " I,") 21 20 lS 48 00 70 85 11;0 AA 75 60 00 17 20 0 10 10 10 10 H 5 0 10 10 -u 12 I) 20 15 50 60 70 82 75 62 55 40 10 15 10 20 50 62 75 " 27 I CO 115 131 150 l/:J9 170 -720 190 ' 170 169 155 145 110 120 110 89 80 75 50 42 70 10 111 135 11,2 175 188 169 143 143 11') 96 81 70 60 42 45 45 49 50 51 50 72 10' 135 150 162 lBO 192 20R 220 239 226 230 21 9 2C7 19) lBO 170 105 130 1~2 71 ')2 ,3 50 49 J8 49 64 79 qz 79 09 " 44 28 1'. 0 0 0 C -1 -1 -I -1 -I -1 -I 4 4 17 28 19 n 30 31 32 5 3 110 61 95 128 162 -40 -20 10 40 60 90 123 -65 -40 -10 21 50 80 115 -65 -17 -PIJO -880 120 70 20 2Z 33 58 75 lCO 120 146 12'l 102 60 30 30 30 10 a 20 20 20 19 0 a a a 0 a 20 42 70 105 120 122 122 100 78 55 9 5 30 50 70 9B 120 122 120 100 7B 52 30 9 -290 -290 100 60 -2 -8 23 '.5 60 85 105 125 110 90 52 U 5 -2 -10 -1 -5 -65 100 50 -7 5 15 '.0 67 90 115 140 110 100 58 15 10 A 5 5 5 5 5 0 5 5 5 5 -9 -10 -2 -2 a 0 a 1 0 25 45 7e 90 112 103 115 95 n a 25 '.5 70 90 116 145 125 100 76 55 8 7 30 50 75 90 115 -SQ5 -'95 110 75 " 15 75 4e 65 87 115 128 117 117 127 gO 90 90 90 80 75 75 75 67 '3 63 65 ,5 6, 0 25 47 67 95 115 135 115 95 73 00 71 100 120 122 65 AS 105 122 100 90 70 50 29 B 5 52 70 8B 105 125 75 55 35 5 5 58 76 95 110 140 50 5 5. 25 45 65 90 115 135 115 90 75 50 27 5 5 50 7e 95 115 136 2P 29 30 31 32 94 llC 129 l47 11>4 169 -541 lA4 172 159 149 139 129 114 H14 89 79 67 19 31 56 79 1C8 133 1 '>4 169 179 109 137 117 109 B4 172 203 240 275 320 330 -REIO 365 34' 320 305 280 260 235 212 190 170 145 100 eA 135 lA2 230 278 320 350 150 190 220 200 295 303 -2qa 335 319 300 280 260 240 223 205 IB5 163 1't2 105 ,4 67 79 69 59 47 29 19 4 -1 24 39 54 67 ?g 73 59 48 31 31 31 30 39 39 ,9 67 95 119 137 151 169 I Al 199 216 U9 219 219 209 199 182 169 159 144 117 "9 59 39 19 " 31 9 3flO 340 292 292 240 200 178 155 130 105 IDS 103 103 100 100 100 100 98 99 98 9B 98 95 91 91 90 90 90 90 90 90 9, 92 9[ 98 99 103 96 122 192 242 52 10 , 25 15 47 AO 105 133 " 28 45 AS 135 lA7 227 262 308 330 302 320 2BO 2BO 242 202 IB3 162 141 121 121 120 120 120 120 120 120 IlB 112 llC lOB 108 101 100 9A 96 99 100 9B 100 100 103 105 100 110 113 120 113 158 200 253 138 liB 97 170 200 225 265 305 315 -65 345 ]30 307 285 260 237 21B 196 175 155 130 85 74 117 164 207 250 29B 320 345 310 267 266 225 185 164 l't'3 124 95 95 95 94 87 e5 85 86 85 85 84 84 84 80 77 76 75 75 80 75 78 77 BO 80 81 e5 B5 90 84 130 175 225 165 196 245 270 335 325 -595 403 3qa 315 295 275 255 230 210 185 165 143 95 90 135 175 225 265 313 335 360 325 2B5 285 245 201 177 156 135 114 110 107 105 102 95 100 leo ICC 00 97 102 97 95 95 95 95 96 96 95 96 9, 9B n 96 100 101 104 97 143 187 235 3{, " -B9 -01 1 51 98 152 2C6 - 234 - 234 1C5 136 26 6 37 51 B6 124 155 196 Itt 131 64 -9 -11 24 ,9 96 n6l l1 i 211 176 144 106 71 36 -4 a 2 C -1 -4 -,-6 -4 -,-'. -6 -5 -4 27 65 116 136 l1t, 214 181 146 111 76 38 6 6 81 116 147 186 221 33 ,,02 2 ~ 39 I 456 541 ~5 '5 - 234 616 596 559 526 489 481 471 444 396 3t6 326 255 184 256 326 - 234 479 562 606 686 771 769 814 826 838 846 e 5~ PH 871 79B 716 E33 496 356 3~ S 42't 506 5B7 629 675 711 765 -234 B66 921 887 896 B61 e 21 HI 742 690 659 511:: l.e7 306 391 3Ql. 391 le9 35 68 ~ 2~ t 3C 4C 3C Ie -IC te 52 111 395 29C -3C - 3e6C -'.Sete le9C -15 - 306C osc -1 e '5 -182 -173 -13C 92 16C 382 382 3(1'5 361 2 6~ -6e - 37 3t -7C :~~ -II - SC - 5( -4e -4< ~CtC - EO ( - 8eC - 2'5 -4E Ie 11 17 1 J i -IC -}3 -15 -Ie -15 -15 - 1~ -B 15 -11 -I ( -IC -< -40 -IC c 0 5 -1 C5 C 0 10 10 IC ~~ 55 50 -7r:: -8e -ec -15 -7C -3C 105 115 259 17C 271 270 245 129 -10 -10 -20 - 25 75 295 317 -IC -IC C 0 e 0 C C 34 35 -25 - 2C -5 43e 619 140 le3e 1337 1415 -3C6O 14BO 1485 1485 1485 1280 q80 1 tBO 1195 lC9C 939 7B9 191 e -20 -2C -40 -95 -10C -110 -ICO -ICO :188 -ICC -leO -ICC -10C -ICC - Be -3C -3C 22 5 -2C -5C -61 -75 2010 2C2C 2C 15 2eOO -110 -110 C. 1 (t? C 1'11';, 1'14.r 1 'J~. 1 ,tS. ('\ lsn. 1 /,1.(; 1 'i7.r 1'17.1 1 '-t ~,o 1 '.1. r: l.,r. r, 1') 1.0 I' 2. r 1 'i? 1 1 '; ~ , f] 1';'.1 1 'JL,. n t":lL,.1 3~r: • 37"). _~ 7 Ii • 17'-,. 17"> • ? ((~ • 2CC. ?Cf • 1.,f-.1 ?rr:. 2r.r. 1 Co lr.l l(a 'lC 1';( • I ~l/•• '1 lI'<;. C () ,0 'I 32 2/)-< 257 ';'1 20e 240 245 '=IS ,g 1/0 3';"1 37C 300, Dr: 294 316 4in 402 107 37' ]FF 31-14 ~ f14 41 ':i )(W ~P'5 01 -;I; 1'. 1, ,0 q 4q " Ic1C 74 4CC 41L' 1(':0. '31~ 1; • 4r.C, L. 5e. 40C. 47<=; , 'i'11":. 4C r, • 42",. "71 '";~ Ib Ie 21C 3<; ,1') /~n 0::;'1 711 :'('l 1 '0 1 '1/) I?l Iq 1I-;'l lll} I II) 0" 1S 2e '14 1-;'1 2'1 S t~ 121 11' 171 17'::j 1 1 1'~ 17S :'(:0 IPC 111 17B 11P 179 17'; 17'1 1 'J? i'1") I" 1 '";t> 1,'J 17r, tee .4 ~ '50. ?(:c. ') 'i'iG. ?D 1. r, 400. ?(;? r, 2CD. ?O2.1 ZCo. 2C3. C 100. 7.04.0 20S.0 20'" .0 2C7.0 ?n'jr;. '-JeCt. Slt4 VIS ,cr, • 2'!6 1'l3 211.1 hcn. 714.0 e,2'3. 2\"i.fJ 216.8 ? 11.n ? 1 ~ • (~ 21 Q.r. ?2r .n 221.C 727. ') 1)1)0. 600. ~2 ~. {:,:,...). 400. I,OC. 273. C 75C. 224.r: 115. 7 ') I~ • 77'1. 6Cr,. f:cr;. 22'1,r. er,r,. 72t. C '12 '5. ? 27. a Q,5~. 22(>.11 o,'j 7, ?2S. (J '14,. 7?C .r; hOfl. 'lee. 231.0 f-.,'j'l. 5CO. ;'>'3 21? .0 71 c. 'l. I) hrl". ? ~4. ? ~ '1 I) r) lICC. & .? ~6. n heC. hen • bet: • 625. f,I)C. 67? • 7eO. 72'i • 7'10. 775. 4C0. Ace. 75(; • 77'i • 8GO. ::5. Q fl5C. fOO. 71e. >-!?'J. (i~) ':j c• 7"). '5')1. 541. 61':1; • b>;g. 71 0. P2". P'J r • 87". cCo. '1cn • gee. ? 3 7. r: 6CC. 'J2? 1~q ~ q '~ nc '. f) f) 1.?0 4?8 4,,5 771 -720 peD '15 '1?,) • f:'i'l. n ?rr:. f"iC. ';'11. '141. \I 700 '1')C. 550. b 75. r.7'). 70C'. 7r:C. 72 5. 72" • 7Sn. 7?O. 77'1. 7715. lOO ',CC. 17.n '17'1. 575. ')7'). ...,0'1. 4 3hr} 1CO. lCO. 'te0. 4Cr. • 5nn. 5(~ • 'i2'l. 'j2"'. '12'i. 55(;. ')'1c. 55r. • 57'i • '.>75. 'i?'" ~7'5. 37'1, 17'" • HS. 37'i. .H'i. 213.0 1')00. ~ fl '\1'3. ~O(]. '12"1. 5» 'i 3 S '" 3qq 14~ ,R2 432 411.1 4~3 41~ 440 li4 C 44n 440 440 44n '55'3 ',g6 44' 3P.5 4J5 'iFl3 '13"i ')15 54' 545 54" '" '540') 546 <;45 545 545 'i45 545 ~ ~ 311 420 437 414 12S PC l;g5 <14 <14 t7'] '92 t.'n ,97 675 f:5'i 604 55C 495 470 3RC 42! 474 ~ 112 ('f:1 ~ l 9 44't ~ 119 );') P?2 -120 141(') 11)30 22 ')1') 27?r) 311A 3140 5230 ',I-')1.'J 413'3 41'11 '1751 -770 7f. 'in· -728 PCgl 9870 e 110 >l,")r:l I! ?'}I) "f·ln f; -2'10 F:!AR2 -29C C)7'JC 9120 g2QO g'5'H 9R7l lOS 2") lQ. 362 jR I nt' ~5P 4CC 29 '3I;C. 'i2". ~VI 5St: 5St SSt I:: '5 ,1> 2:'1 Jcn. 17'5. 101 ~ Jr,q ~ .'7 qs. 27'1 55 fl') 217 2C') 214 37<;. ?8C SSe 5Sh ~G f.: ~7 ~ 54C '::40 54C "i 36 53t 51'5 ~ 55 :84 ;8 1 '14.6 1»'1.7 2~~ ~ 5CO '30n 'lon 50C <;70 541 1~ 1 17<'i. 7 <; • III IC3 140 104 1" 7 ~e6 2f!5 ?OS 32g 512 '31 "I 2r,1 17"> • ~ ll':~ " 25t: IRl 1°7 1 fl ~ l'H; 1-:;" .,cc (r)'10 17'1. 25(;'1 35' 420 2f;6 720 47, C9 1y ?,")1 261 2A I 30'1 33'3 356 3P5 -'12'5 444 470 721 715 1ec 616 010 l4 C \1C .?H u:p :!7'J .. 12'J 22C ?11} ;:':12 2 5 • 12") • 'l,<)f: • 'PO ?95 A4 "J(: ':n..., • ~ 115 14 oq lFi. ,sr:. 3h I 140 24., 100 14C ?q <:;s 4?"i • 'ion. I.r.n. ,0, n9 1 hn 4/'1. 22". 1(1'). "'2 ;il? ?f.r) '.'Jr]. H":. )7'j. 170, , ~ 7 'J. 17S • .n'J. 371). 175. n')~ 37'). :')f:. 1'i0. 32'1. '32'), 27'1. 27'1. ,-~ 7 'i • 2:". 11, • 17" • I?<='. \2', • 75. 7'. 12'). 12',. 17 '). 17'1. 2?'-l. 2{''''. 2? 'i. ?l". 2 ~ '1. ('5('. 22"· • .72". 27 'J. ?2". 2 2",. "co. l? 'i. 22' • 12'J, 21',. 22"). 15r:. ??c,. 77",. 220,. 37",. 3')1':. 72S. 22 r" 32'). 22 'i. 27"). 1r,Q. 22"J. 22'i. ?1'i • 22"'. 7"::' ~" 25(,;. V'J. 22S. 22"1. 22'1. ?25. 2 2 ~. 22"'. ;':.2 'i. 2'i8. 2'il;, {sc. 27 'i. 27". 27". I, PC '37'J. "l75. }1P .3<15 l'lU 1';2 O. 1 "7. (] ~? S. lr:P.1l 3S0. I ~ C;. r; 17'1. 11.1 q.t 375. 1 ~CJ. 2 37'5. 1;;'].3 IPr; ./t 1 P'1. '5 4r.O 410 41 > 417 ~c: S TflGf (: "-iT l"~. 2'1 770 2/:.rJ 3?O 161.8 '17'1. 1 ~ 1.1 17"i • Itl.? '37'1, 1"1,1 \75. l<:l./t 37 'S. 1 f- 1. <; q'). In(. r; 3')r.. 16? .e 3;:>5. 1 hl-t. r, 27S. 111".(: 22 'j. tH.r: 17,). In 7.f: 12~. lfd<.f' 7'. the;.o 12 ". 1 70.n 17'" • 2 ZS. 17l.(' " 1'1 'C °C O ,0 40 '. C 42 5r 46 71] 00 11S 1'. C 1'" s. r 4t 'i. If-r..c 401). 17'. C 17',. S 17':>. r. 1 ,C.I") 177 .n 17P.rJ 1 7e:;. c 1 "(]. n 1 f-ll. n 182. C 1 g'3.n 1l--t3.1 If)l:l i 1St:. 1'11":. P'i. 1 '1('. lee; • I'C. 15[,;. n"i. 1 'ie. 1 ')0. ?'SO. I ~C. 70. 2'-1';. 7'. )S. 2,~ r, • 75. 7<:;, 17.." 70. 7'1. I?') • 75. 75. 75. l' • 7 ~, • 75. 7S. 12':.> • 12~ • 12 .... 175. 17'1. 17'1, 2? '5. 22<). 22">. ? 7 '). 27'), ? 7<;, 1 '17. C 42 'i. In.o 111. t 4, lr;'J IIJ) lln 17'"1, zr:n. I",',.? 12'). 32"'. 320, • 1 '; I, • ~ '\<)r. ~ "l r • 1'1t::. 1':'1.(' ,7'1. ~ , 'J • 37'1, I ~ .... () 'iCD. 'inc. ',cc. lC,p.f' n 7". ,o7 t35 t~? >94 7Cl 7C3 712 715 124 727 13C 135 76C 790 E23 851 9C 7 11I E IC Pt:3 92C <;67 916 1027 lC65 -5g,:: 1125 975 135 72C R2l:: 943 lC 65 1103 1140 1195 985 SP,4 1119 lIAS 1205 12R7 -5q5 I 9 I' 970 cet 11{:;5 12')1 Ziti: 21S5 C 14 5 2cG 1 ;:: CG5 21C5 212f; 2Cift 2 esC) 2C5'i 2CCC IPflt l1ee H 37 15C6 13t 1 14e 7 ltC6 1736 1141 leu, lee I 1937 1 GGf 2cu ~ 137 2 ce <; ~ 0 36 19H 1016 1P35 1776 1776 1~26 IPBl J3 <;~g CCI C6P 1 ~9 Itt I e4 2C5 217 225 231 235 247 31 ;;: P 4eo Sli6 746 ~g ~C1 540 >66 e 17 ,,6 055 206 en 23-4 3S6 976 261 236 527 F79 216 4I1 58t '49 1C 1 297 tes et8 C2t 586 234 31 f. C'56 IPIS 2e73 Pel 2540 931 3C54 3775 I C16 4406 I 5(:51) I 4712 I 19 t 45 '52C1 I 5155 I 716 6}70 I t46 -.'595 I 23q 1115 I 719 -595 -2 797 1<;95 -I 11C 7t;t,6 -I nc B 14C -I 270 2 ~ 8'5 - 21c 8t5, - "40 9 t 3"5 34C - C4C lC 125 Ieg05 - C4C 11 S28 C4C 12C3, - C4C m J4 35 12 2C 1 :CJC 1 ~Lj 5 It5C H15 l1C5 172C - 2C :~~ -tC -tC I?tC Ute -ee -te -4 '5 -4C -'59 -2: -5C -5C -eC -15 -'1e -1 C 5 -lie -lZC -I6C -H'C - 2~C -245 -245 19 ~C 1945 1~ t c IC 17 2 (5C 24'55 3115 -24~ -14C -He -HP -HI -165 -165 -17.? -teC -I PC -Iec -1 ec -leC -HC -'Jete 315E '!2e7 ~ 29 t 333C 3.33C 3345 334: 3455 3525 3f:3C 3€4 C ~~j6 '5'12C t54C - -j :~ -j d =~ -,-, -2 -2 -I -I -2 -I -I -2 -/ ll~ 125 II ~ 125 125 12'5 -, -2 DC -2 13C 13C 13C -2 -I - 2 m 31 -I ec -I e5 -l,C -1<;'5 -123 -221 - 2JC -24€ -251 -25C -257 -251 -25C; -159 -26C -It5 - ~1~ -215 - 215 -215 -275 -2n -zec -295 -315 -2C -IC -4f:C -4tC C tC 22 ~ liS 125 125 12 ~ 125 II, 12' 125 12 ~ 12 ~ 115 12~ 12'3 12'.; 12 ~ 3t -2tC bC25 636C t 5 ~C 612C 6125 -I -, -27C -)CC -JJ I -,55 - 355 -313 - lec -375 -3eC -leC -leC -41C -4IC 4g05 1J!3C -JC6C 62 " J5 -ltC -3<0 -345 lj 7'55 48~C i2 U 'C -1 P3 -183 - setc 4BCC 52CC '5C9C 5C 6C '5C~ 1 51 C.2 5142 5142 SIlt; 4>H 4tflC = -,~ -155 '312C 651C -245 -245 -245 -24'5 -25C -150 "12~ " -3ete -86 -1 <1'3 -He -13'5 -115 -135 -01 -~l -,-,:~ -245 -24f: 119C 2eC5 2'i4C 795C JIll -3CtC t.t "· G FIGURE D.2. H J REACTION POINT LOCATION". 322 S TIIGE CNTR [,0 7.0 ? .0 4. a 5.0 6.0 7.0 7.1 7.2 P. .0 9.0 1 c.c 13 .0 14.0 15.11 16.0 17.0 18.0 1 g.O 20.0 21.0 22. a 23.0 2t .0 27.0 2R .0 29.0 3C. C 31.i'J 32.0 11.0 34.0 35.0 ~I': .0 17. () 3fl.r, 51.0 '52.0 ') 3.0 '54.0 'j '5.0 56.0 57.C '3P. C 5S .0 60.e 61.n t 3.0 1./t ?4 3.4 4.4 5.4 f: .4 7.4 R.4 9 .4 10.4 11.4 12.4 13.4 7f .0 77.0 77. I 78.0 78.1 79.0 75. 100. 125. 15D. t7'5. 200. RC TR C R ~lR 75. 1CO. 125. 150. 175. zoe. 8'" .0 fJ4.1 84.2 85.0 86.0 87.C E p.C A~ .0 '10.0 'H.O >1.[ 92.C 92.[ 'J ~. 0 94.0 95.0 '15.1 <]6.0 (16 .1 'H.O 97.1 17.2 98.0 gg.o 100.0 100.1 10 1.0 102.0 102.[ 103.0 103. I 104.0 105.0 10(-, .0 107.0 108.0 109.0 114. C 115.0 1H:.0 117.0 lIB. a 119.0 120.0 121.0 122.0 123.C 123.! 123.2 123,J 124.0 125.0 IU.O 127.0 12P.. r. 129.0 130.0 131.0 13". a 133.0 134. a 1315 .0 136.0 1 Sf;. 171). 2CO. 22'1. 225. 225. 225. 225. 225. 225. 225. 225. 200. 2eo. 2eo. 150. 150. 1 '10. 7;. 75. 75. 75. 75. 15. 100. 100. 100. 125. 125. 125. l')(]. 1 ')0. 15C. 115. 17'i. 175. 200. 200. ;:>00. 225. 225. 275. 2CO. 20fJ. 2Ce. 175. 17'). 115. 125. 125. t, s. 1,. 1'5. ?:i • 7,. 7'5. 75. 75. 100. lCO. 125. 75. 12') • 75. 1 5C. 1 5C. 75. 175. 175. 70C. 75. 2CC. 225. 75. 225. 75. 2CO. 2CO. 75. 17'i. 175. 75. lSI'] • 15C. 7S. 12'1. 125. 75. ICC. 10C. 7",. 7:' • 75. 75. 75. 75. 75. 7'5. 100. 75. 75. 125. 75. 150. 75. 75. 75. 175. 75. 2eO. 75. 75. 75. 225. 75. 75. 20r, • 75. 17'S. 75. 75. 75. 15C. 75. 75. 12') • 75. 75. 75. 75. 75. 75. ICO. lCO. ICO. 125. 125. 12'i. 150. 1St: • 15C. 17,). 175. 175. 2r,O, 20e. 2ec. 225. 225. 22'5. 200. 200. 2er). 17'5. 175. 17') • 150. 1 SC. 150. 125. 125. 12') • leo. 100. 1 ce. 7"5. 75. 75. 75. 75. 75. 125. 125. 125. 150. 1 sa. 150. 17 'l. 175. 175. 2ec. 200. 2CC. 225. 22'5. 225. S T AGF CNTR RCTR AD. n 81.n P2.C 83.0 7' • leo. 125. 250. 275. 3CO. 125. 15C. 150. 150. 315. 350. 125. 'CC. 275. 250. 225. 2eo. 175. 1 '50. 125. 75. 75. 125. 175. 225. 275. 32 'i. 350. 375. 375. 375. 175. 375. 375. 315. 37S. 375. 375. 125. 275. 225. 150. 7,. 75. 125. 175. 225. 250. 275. JCO. 325. 15'1. 375. 400. 375. 37'). 3 50 ~ 325. 30G. 215. 25C. 225. 175. 125. 75. 75. 75. 15. 75. 25G. 275. 300. 325. )5e. 35C. ,'30. 375. 35C. 32!). 3CC. 271) • 250. 22'). 200. 175. 15C. 125. 75. 75. 125. 175. 225. 275. 325. 35C. 375. 32'5. 275. 275. 225. 175. 150. 125. ICC. 75. 75. 75. 782C 3101 3 r "d 5 3933 417C 44t-8 4?2C 3.1"8? :0.574 1227 2<;31 ?621 2492 2 P.2C 1130-1 346') 3763 4C71 '138'; 4C91 3BC3 l47'i 3187 258 I 2 5A 1 121 7 3 ~"3 3 <)771 5173 4S4A jQ2? 1217 2h61 2601 1872 4')0'3 5143 '3779 cl,C'i 44'),il 5104 S 72') 636:3 'j 72q 5124 '-1489 187? 1237 2021 2552 3781 442f:l 5C84 571 '] 637') CR~!R C3 C2 750. 27'1. 7000 7626 3CC. 82102 7Cee 7636 8BI 8967 S(;62 9A52 9672 1 C297 9682 325. 35C. 35C. 35C. 375. 3'i0. 325. 3CC. 275. 250. 225. 2C 0 ~ 175. 150. 125. 15. 75. 12S. 17,). 225. 275. 32') • 150. 375. 325. 275. 21'). 22'). 175. 150. 125. ICC. 75. 75. 75. 75. 75. 7'. 75. 125. 175. 225. 2<)0. 275. 3CC. 325. 517""3 57 Pg t4C'5 ~ B '11 9543 g'i 53 9'i 51 lC17Q 9')63 8'111 E411 7915 7229 eo3J el'Jl 7 5412 -479h 4111 282r. 25t;2 3821 ')084 t:34'l 7537 883 P 9463 10109 93C'1 fl4RO 84ljQ 7(-'7(-' 68n 64B4 61")97 57CO 53G2 49C5 44411 4041 33c6 2740 2671 ; 326 ;'J72 4641 4Q7S 5312 5651; 546A -1CO. 63C '3 '653 6g91 l:f 1:3 677? 6375 60'17 56 'in 275. 25C. 22'1. 175. 125. 75. 75. 75. 75. 75. 5fJ44 11 697 407l 34 If, 2810 2671 Beh 390? 4'JlB 350. 175. 4CD. 375. 375. 150. 325. 5182 QC4t R4C I 7745 713C 6504 5 A78 524 j -4607 4COl 275C 2651 3'142 ') 191 6464 7696 8987 930 53th 41?FI 243"l 2732 333A 39CO 4415 5r;7q ')t-53 A201 5623 5C 1 'J 3tl31 2702 269, 2900 3 Zl, 7 1524 3HZ1 412Fl ',41 '1 td78 V}71 J 5e4 :167 2990 21193 2603 2920 1227 3504 3792 4C79 4356 4079 380 1 3504 -1?27 2663 2653 1237 j8C 1 '.186 4980 5,84 r.17g 55R4 5CCO '1396 3811 3221 2663 2643 1801 4396 5C 1 q 'it 1 3 h lAA [! 2 t,732 1287 7871 8445 '1C59 '1059 9059 ')611 9COg 8415 7801 1lEB 6594 60CO 5405 4821 4207 3643 2514 2-4e ') 1623 4A 11 heOI) 715A 11 396 <;CCO 9603 8801 7990 7970 717R 6405 !'lOO9 ')633 "237 4861 4485 ',07,) '112 3C,)Q 2534 2f-,11 3217 )80 1 '-ILt 15 4702 5C3g 5136 5613 ')'120 6217 6544 6237 6U7 'iS21) Sh21 'j 306 'iCl '} 4702 '!3221 386 3227 2h 71 2514 1158 ') 712 4277 [;3 " " (4 "4 CI BI 2646 32g0 10i8 I C03 1192 1391 lC2C 1D 11 1211 1421 994 12C2 1831 2C37 2242 2242 2232 2C22 leal 18e8 2C7C 2267 2261 2257 "3 1215 1442 Ie 74 1911 213 E 237C 237C 233<; 3134 4558 5211 5817 6461 6491 6.01 5R77 4038 275') 2 -576 3211 3925 4440 5074 5698 h .133 5748 5123 3r~ 14 2615 2705 2·123 3300 1·'111 3/24 4211 4 'lAB 4321 39'14 36A6 3130 3()42 2725 25'i6 2R~3 1258 1508 17 28 !J1B 2197 2407 2417 2407 2207 1198 1178 1018 1218 1418 165A 1868 20b7 2277 ?011 lA7a 1458 1038 1048 1088 120(l 1278 11SR 1458 1538 1478 1378 1298 12lA 1128 104.'1 1048 11118 3280 2666 2h 26 3H15 4509 5133 ')758 63f.l2 1,18 1458 1598 1718 183e l"OE 1588 1458 131H 1068 1068 127A 14R8 16'1A 1 P98 2207 2297 2107 1898 1688 148B 1'68 058 1038 1468 1698 1908 2107 n07 '1 6 )87 3230 3'51 A 3715 4112 441C 4122 3H45 3:)28 1221 2646 2~26 3260 3!-!75 44'19 5123 5738 6 ~6 2 5758 51'53 4539 3'} 14 7'191 A275 e889 9'-Jfn 9593 9623 lC208 ')593 PCj89 P.354 7710 7106 6':)0 1 51377 5262 4b48 4023 27'J4 2705 ,9A4 1)213 6'142 7021 EI18g 9524 10158 9365 8Sg2 8')72 7789 7006 61120 6243 5'137 5'.41 '5044 4598 41 g2 3S0P 2P.54 ? 775 3448 4093 47(-'1 5064 53'H 5728 6035 6362 66f19 7016 tl)99 6689 6362 6075 573 q 5 l !50 5123 4 "'06 {II ~2 3_'i1~ 2?l3 2765 3 ]99 3'J84 4')9q 1'3 ec 17t:9 1 q5P. 2127 2107 2e97 18ge 1530 964 964 1153 1351 1540 173~ 1938 2121 1 q4A 11-49 1311 ,74 984 1023 112? 1192 1272 1351 1421 1381 1292 1212 1133 1073 9'4 994 1123 1222 1351 14'1 HCC 17 2~ leIO 1491 I J71 1252 ICO :3 Ie 13 1212 1411 lUC 1799 1 '1t; P. 21At; 198 e 17r,g 1237 145<; 101 19Cft 211t Z33E 2343 234 e 21lt 1102 1050 1025 1227 1444 1651 181? 2075 2281 2C 7 5 IBc? 142q \015 10lC lose 11'1 12 27 130: 13ge 14tC; 1419 1333 1257 lie> ICC; !: Ie 1 ~ 10415 118 I 1308 1434 15t 5 It:Sf: Ie 18 It'Jf: 157C 142> 130~ 105C l05C 262 14t~ leU: 18g~ 21Ce 231 a 21Ce 1898 Ic8 I 14t:'1 1257 104C 10 3 ~ le21 ~~5 lC26 12H 1,,41 16(t6 1861 2072 2272 2(;51 le'!e 1426 10 II lOll IC" 1156 1226 13C 1 pel 1456 140 I 1; 16 1246 1156 lOA!: Icoe Ie 36 IIH 1301 1431 1561 170 I I eze It96 1566 1431 1296 10lC IC3e 12lt6 145t: lUI 1816 2C82 2287 2e77 1871 1'-134 It56 2C45 H~(: le?5 974 1171 13S3 158C 1787 1994 22C? 2C 15 18ce 4C9 CCO 101C lC 5C 1151 1 1t22 13C3 1 ~ 93 14 t4 1414 132e 1257 !lU: ICgC Ie IS 10 IS Ill,} 1282 llse 1525 H:5t: 1772 It:6 1525 1 ~'; e 1267 IC IS IC 2C 1221 1434 It:3t Ie 38 ;87] cec 2?E1 A2 A3 (4 e4 C1 2517 2531 2'B 7 31"'6 33U 2326 2544 2733 29~ 2 3091 3C91 3091 2!: 15 2127 209E 309C 3277 327.2 3277 3484 3271 248i. le92 2E 52 3C68 324 ~ 3218 32.33 3453 3248 3043 2434 2l:l16 28C 3 2994 3191 311e 3316 3516 3326 3116 2927 2737 2527 2327 2127 1928 lH8 1508 1088 1118 1518 1168 2377 2751 3166 33St3516 3086 2641 ze27 2187 1758 15CA 1288 105P 819 879 909 939 999 1048 10Of3 119a 1358 1548 1638 1718 17g8 1 R68 1938 2017 2107 2011 2e07 19 HI 1 RLt8 1748 1688 160P. 1508 1358 llAB 1028 1048 12'1~ 1558 17gA 33ce 3101 2912 2733 2544 2355 2166 1968 1780:; 159C 1391 994 984 1351 172S 2107 2485 2A82 3C71 329C 2862 2435 2445 2007 1500 1371 114 ; 934 115 755 B05 854 924 984 954 11 C3 1232 138 I 1451 1540 IUC it 8<; IH~ IE38 1928 le4P le1 E 179~ 172S it 5C 1~ eo 15CC 1431 1302 114 3 1003 1013 1252 149 I 1739 144~ 3C6~ 284 E 2631 2414 21ge 198~ 1H2 1St ~ 13 7 ~ 964 10lC 141 S 1833 2252 2661 308C 32e 2 3~8'1 253C 25SC 257~ 211e l424 '" II ~ 1 95~ 731 717 818 851 ~ 14 969 964 III~ 12<7 1424 15CC 1585 1'61 1721 18e3 1873 196~ 188, lesE 1777 L12;:: i t ?t 1575 He'1 1414 1217 IIH 96S n4 1247 149 f , 17S2 .2 E~2 le27 2422 2202 1~9t 119c lsel 1316 '16C '19 ~ 140 I IEll 2232 U42 3e6.3 3273 3413 3C23 2567 2562 2102 Ie3e 1411 liE 1 >sC 125 765 BC5 84e 91C 970 965 1121 12" 1426 150 I 1581 le61 17 2e leG 1 Ielt 1<;(';6 lBee 1891 1801 173!: 1641 1'521 1491 141e 127t: 1121 ~ 8C lCO 1 126 I 1516 177< lC~~ 121C 12!?5 31 S6 31 9 I 33 Ii 8 3202 lCCC 2eC3 UOt 24C4 2 2C2 2cce tee3 1 ~q 5 13'73 979 979 1383 1771 2176 2'565 2984 3116 3 ~ 7e 2909 24 ~g 2 114', 1~>4 155C 1::1€ lIH 9C4 6ee 722 167 E 13 Ele 929 9"!!j lC9C 1232 1393 14t4 1545 le2l Ie Ee 1112 1€38 1 9 19 1 E 3€ le53 17 ~ 2 1eH 1 ~9C 1 ~ 2C 14 :9 1 ~ 58 1222 ICte "Q 11 59 U22 14t:q 1717 '765 1151 1341 152e IHe gC I lcn 2C87 2C77 \ese ISle SOC go( 1131 1321 115C 1 It 8t: 187l 2C62 1 E et It91 1321 94C ,H <";9!: 10ge C3 leoe 120e 1424 173C 1e45 2e t t!: 223t 2211 2206 2CO I 1 ~9'1 972 ~97 11 93 1391:1 159 11 1293 ~92 2191 1S9C 179C 138<; 981 982 lC18 IllJ 171t 19ce 11 8e 12se 1: 44 14CC; 1364 121' 1213 112" IC 5 P ~8 ( lC38 IHP. 12g3 1414 1'529 ll: 5<.l l1Eo; Its4 1534 14e4 121 ~ 1C23 lC23 12 28 1424 1124 Ie 25 2e21 2211 2eH 1825 H24 1424 1223 1CI e 1C 23 1429 lei4 18lC 2COe B1 02 C3 2531 214€ 2929 3151 3 3C E 33C.3 ]3C; 351 <; 3323 3121 291 S 2113 251C 23C4 2C97 l8~ I It: 1<; 1461 10lE le2e 1447 IPt:5 22E', 2. 267 24 !l7 2641 2e!( 2<;12 2<;1( 2972 315E 2401 2/Cl 28er. 3C 14 31 '14 318<; 3189 339C 31 ~9 2<;93 21 e 3 2:77 2372 2171 l'it5 17tS 1 ~5G 1369 972 lC-43 136t 1457 1527 1477 13'16 1311 IIIC 114', lC5 '1 1C64 12C( 1321 1451 1583 1714 le40; 171 S 15'13 14'2 1321 IC64 lCt'j 1285 1497 17C~ 1G11 21H 2334 2123 1921 1497 1275 IC64 la4: 1412 lt6S 188C 2C97 2304 1451 1241 IC31 le31 1441 H36 Ie 51 2e62 2272 lese 103.3 1235 1447 1654 187C 20n 23 C ~I 21 C2 I ~C 1 1'.17 lC33 IC53 2C45 2247 2C4C 1838 l{:3e 1434 1222 lC 15 lCC5 1424 lUI lel8 2C3C 2227 Ii:: Ie 1411 1212 Ion lC 13 140 I 1590 1759 1958 2147 It61 fW 105<; 02 17C~ ze71 31C 1 31SE 35C4 3Cel 207 Ue? 2158 lt~~ 1,17 125C lC23 EC 1 832 8t? gC2 95E 99E 973 1134 12EC 1452 1521 Ie 13 1HS IH5 I E4 C 1nl 2e12 1~2t 1111 1236 Hit 13el 1331 12St 1191 I11I Ie 4t S7C 9 64 253 30 I 34~ 403 459 512 56 1, 564 564 526 445 289 303 337 31~ 423 1>1 C4 2<2 254 3C8 352 4CO 448 't94 5't9 547 547 496 4C4 2h2 274 314 J58 4CO 1,65 '!1,6 510 490 515 484 '134 J32 2 J8 230 J 16 396 478 563 641 727 633 551 '60 ~ 86 302 224 298 254 214 174 130 96 55lt 514 ',71 381 277 263 335 411 493 576 658 74G 664 636 514 425 335 253 109 27~ 298 342 396 446 5C I 557 555 561 5]1 'd4 272 2,2 338 380 424 468 511 55'1 5C7 -456 354 208 24e 318 416 4" 505 U5 747 e57 573 49C i l C8 322 242 318 2P.6 30 393 429 469 512 56C 248 214 371 12'1 8e LlO 146 18C 2eO 273 269 313 357 405 451 497 546 50' 463 421 371 52C 277 3C I 317 415 467 514 562 CI A4 t! C4 6CO 644 61C 654 700 744 78> 189 791 841 797 759 716 680 587 637 689 139 193 791 797 853 E05 755 lC7 e59 588 536 485 435 383 219 317 405 504 598 688 101 827 873 5tl 513 '16e 416 168 272 310 402 488 583 679 177 823 889 789 (;89 '85 SE3 418 430 376 523 310 274 278 282 290 298 314 458 et3 (;57 701 745 7 B9 7E5 785 835 783 735 eel 639 5q 1 l ,3 494 257 6~C 736 7e3 HI 179 e29 785 736 esc 642 5~4 548 5CO 451 401 349 24E 331 419 5e8 5S6 6a8 7el 825 877 777 08 H8 57C 465 4C9 355 3C 1 248 253 251 261 269 215 2 E~ 441 6C6 765 845 925 ,95 IC7£! 1152 1228 13e9 1218 11 ~ 8 Ill6 lC28 947 8U 775 672 518 151 12't 277 2CB 1 J4 64 6le Hl co ge 124 1504 180 252 254 300 34P. 394 442 4a8 539 488 442 394 346 298 25e 100 316 406 448 494 543 ell 240 20e I c6 126 e6 118 148 180 202 272 26 a 318 3<4 41C 456 5C 3 551 5C3 45C 4C4 358 30e 2<6 3CC J 92 434 478 523 571 ,46 396 348 254 316 408 498 589 675 775 821 861 165 <59 651 5'19 446 ::94 3'12 228 236 240 242 248 252 260 280 404', 495 b84 584 479 419 363 508 248 253 255 257 263 269 287 435 60e e23 ell 171 779 173 855 e63 857 935 945 935 IC08 1020 ICCE 1088 l1C4 1088 1168 1184 lle8 1248 1262 1246 1325 1342 1324 1251 1258 1236 1240 12-'14 1216 ll52 ll62 1132 1062 lC56 10"''' 973 993 9ct 885 907 871 ,1 ~ 795 U5 706 735 659 526 563 ~ 25 353 396 ~56 174 2lt 188 280 279 312 204 244 212 124 138 17C SC 98 68 R /IT Ie C.96'; C.95C C.94ti C.939 C.935 C.929 C .926 0.928 0.927 C.918 C. 9?8 O.969 C .458 0.946 o ~ q 4C 0&932 o ~ 919 O. ge5 C .925 C ~ 9 30 C~9B C o 943 C ~ 964 o. <;66 C.9Zg C ~ 942 C. 9; ~ o~ 9 J2 a e(}34 0.928 C .944 0.946 o ~ 951 o .'J49 C. Sf-G o~ lit B o~ 95 8 a ~g 61 C ~ 958 C og53 C ~ 95 3 0.10145 C.941 o ~ 9 i .5 0.951 C 0951 0.953 C.961 C.965 0.956 C ~ 946 C.9/t O 0.936 0.93; C .92'1 C.932 C ,930 C.942 C.949 0.963 0.969 C .. 9t:5 C .944 0.937 0.934 0,931 C.927 R/! T [C 0.924 C.91<; 0.920 C ~919 0.911 0.916 0.917 0.916 C .9i8 o.nc C .g22 o ~ 9 23 0.926 0.933 a ~ 9 32 0.938 o. g40 o ~ 94 7 C 0968 C .964 o ~g 404 o bCJ20 0.926 0.917 0.917 C.916 009H: 0.911 0.919 0.920 o ~923 0.928 c ~ 930 00934 o • <.l'.8 C .945 C.951 0.952 c ~ 959 0.962 0.969 C. !j60 0.949 0.937 0.937 0.933 0.934 0.931 C .921 e .925 0.924 0.925 O.92t.. 0.927 C .924 00920 C ,,927 C 0933 0.932 0.932 C.944 c. ssc 0.972 0.969 C .962 C.949 a e943 323 S T!lGE CNT~ 131.0 15. zee. 13<;. a zco. 137.1 l1e .0 2CC. 140.0 141.0 142.0 141.1 142.1 142 • .3 143.0 144.C 145.0 146.0 147.0 141.\ 148.0 149.0 150.0 1') 1.0 152.0 152.\ 153.0 1')1.1 154.0 154.1 154.2 154. '3 15 'l.O 1 ')6.0 156.1 157.0 15 P.O 1 SIj.O 160.0 Ih] .0 161.1 161.2 Ih 1. '3 161.4 161. S 162.0 163.11 164.C 165.0 1H.0 167.0 168.f) 169.f) 110.0 171.0 111 .1 172.C 173.0 1/4.0 115.0 1 H:. a 117 .0 1 7P.O 17C; ,a 190. a 181.0 181.0 183.0 181.1 IB4.0 185.0 200. 2CO. 2CC. zeD. 175. 150. 150. 150. 150. 150. 150. 75. 15. 75. 75. 15. 75. 125. 115. 22'). 275. ,C O. 325. 35C. 375. (;00. 4CO. 42'5. 45C. 425. 4CO. 375. 375. H5. 37 S. 115. 371i. 150. 31S. 275. 225. t7S. 125. 15. 125. 115. 225. 225. 250. 215. 3CO. 325. 35C. 315. 350. 325. 300. 215. 250. 215. 125. 25C. 275. RCTR CR.NR 25C. 25C. 271), 1CO .. 325. 35C. 371) .. 375. 375. 375. 35C. 325. :::WC. 21S. 150. 250. 225. 115. 12'). 75. 75. 125. 115. 215. 21S. 100. 32<;. 35C. 31, • 40r, • 'iCC. 42<; • 4'50. 42'). 40C. 37'). 375. 37'J • 375. 315. 315. 35C. 315. 275. 225. 175. 11,. 75. 125. 17'5. 115. 12,. 225. 22'J • 225. 225. 225. 125. 225. 22'1. 225. 225. 225. 22~ • 225. 25C. 275. 15. 2C C. 2CC. 2eo .. 2CO. 2CC. 2ce. 2CC. 175. 15C. L 50. 15C. 15C. 150. ISO. 75. 15. 15. 1'. 75. 75. 12'). 175. 225. 215. 3eC. 3?5. 3'lC. 315. 4CC. 400. 425. 450. 425. 4CO. 375. 175. 175. 375. 375. 31') • 35C. 325. 215. 225. 115. 12'. 1" 125. 175. 225. 27.5. (21) • 225. 215. 22S. 21S. 225. 22S. 225. 225. 225. 225. 12S. 225. 250. 275. 5 TAGE CNTQ >{C TR CRtJR 186.0 3eo. 1 Fl7.0 325. Ie p.o 3'50. 189.0 375. IP9.1 375. 189.2 315. 189.3 115. 189.4 315. IS9.5 375. 189.6 375. 1139.7 315. 189.8 375. 190.0 400. 191.0 425. 191.0 450. 193.0 -'175. 11)4. a 500. 1':15.0 300. l'H.O 400. 191.0 450. 198.0 500. 199.0 525. 199.L 525. 200.0 55C. 2CO .L 550. 200.4 55C. 200.2 550. 2C 1.0 400. 201.0 2CC. 202.1 2CO. 203.0 1CO. 204.0 40G. 105.0 5C C. 2Ct: .0 525. 2C7.0 55C. 2C8.0 575. 209.0 375. 209.1 375. 21e.o 5CO. 211.0 550. 211.0 575. 213.0 600. 213.1 60C. 214.0 625. 215.0 65C. 116.0 615. 211.0 700. 218.0 725. 21 <;.C 15C. 220.0 775. 221.c 40e. 121.0 600. 223.0 15C. 224. C 115. 725.0 POCo 22t .0 821). 221. C 85e. 12A.0 551. 229.0 543. 230. a 6CO. 231.0 b59. 232.0 710. 233.0 6CO. 234.0 6C O. 235.0 6CC. 236.0 fleD. 217.C 600. 3CO. 32<;. 350. 375. 375. 37'5. 31'). 375. 175. 375. 375. 315. 4CC. 425. "'5C. 47'J. 500. 300. 400. 450. sao. 525. 525. 550. 55C. ,)'Jc. 550. 400. 200. 200. 3CO. 4Cr. • 5CO. ')25. 55C. 575. '375. 315. 500. 55C. 515. bOO. 600. 1':25. 65C. f:71:l. 100. 725. 15C. 175. 4CO. 60r;. • 75C. 115. 8CC. A25. esc. 557. 54 "3 ~ bce. 65g. 710. 825. 85C. 875. !JCO. 9?5. 300. 325. 15C. 315. 375. 315. 375. 375. 315. 315. 315. 375. 4CO. 425. 450. 47'5 ;. 5CO. 3CO. 4CO. 450. 500. 525. 525. 550. 55C. 550. 55C. 4CO. 2CO. 200. 3CO. 4eo. 5CO. 525. 5'5C. 575. 375. 315. SCO. 550. 515. 6CO. 600. 62'J • 650. 675. 7CO. 115. 75C. 115. 4CO. 6CO. 75C. 775. ACC A2'). 85C. 551. 54~ • 6CO. Ii 5q. 71C. 82S. 850. P15. 0 gee. Q2'). cl 4826 6195 6752 104(: 13',R 1145 8093 8123 7A15 7497 71 S9 t911 t:5 cn 629~ S'}7A 49Q') 47C7 4061 347'5 28i=jq 1120 4021 5122 t571 7~ 1, P3'H 9041J 96'"17 lorn lC84 /1 1(7l" 11160 12C05 11370 lC7'54 10129 10148 10119 lC218 1C 1613 lCl,A 5'553 8') 3 7 767t 6434 S 1 'J3 1q42 26'J 1 3912 5221 t4?4 6't54 l;643 6A17? 1010 72'JCJ 7457 77C6 1527 1B·Q 1110 6901 C2 e2 4925 4544 6C 19 6366 65C4 6e., 1 1199 7487 1765 8C63 Be 13 17Qt 7398 l1CC be02 elj84 blH 5858 4S?') 't577 3952 3346 277C 279C 3992 5253 6484 1165 8391 QC3tJ GA42 lC25e lC<)23 10S3 :i 1158'1 12C25 1141C 100924 lC20P lC218 1CIM 1 C 15P 10188 10118 '1563 P941 77Ct6454 5211 ,1752 2101 3992 515) 6514 1.:544 6 72 ~ f-g81 720') 142' 7t36 f474 71)9C 1715 7814 7646 1461 725'-1 106C 6832 0633 6683 7288 7924 C3 C2 t663 t454 8161 a967 9,)"J? lC 1 98 1C281 1011g lCOg'1 1 CO'19 10129 10178 1C 118 1C 1 78 1e784 113<:;0 11996 12/)01 13171 82V lC134 11 936 13167 1:H43 13133 14329 14289 14250 14369 lC675 5110 5719 e 282 10AC/-j 1 ~ 111 13713 14359 14'}5') l(eCC lCCr;r 1108 p 1411'] 148'15 15491 15471 16226 16141 1741R 178t:4 1856C 1924: 2(039 lC675 156AO 19641 2C"B1 210'-12 21618 220(:') 15223 1')034 C 1709!Jlf 1 9 I") ') 2C"'iCf: 2C784 21479 22035 22671 854C 912t 9151 10436 1 C4C7 1 C lSB Ie Pi P, lC 1613 lC198 lC22 .. 10258 1C26J:t 10913 lJ 509 I1C95 12691 13151 8282 10804 12015 131g? 11 ~ 13 13193 14409 14409 14458 1454P lC824 5858 5e58 P361 lCB54 1332(: 13912 14587 151Cl, lC 129 1 CC,," 1312e 143M 149115 15402 154) 1 16136 16162 17368 18C51 18n8 19125 2C278 lC24f:! 16156 2C cce 2C764 2145') ;;> 2CB5 22363 15938 15660 C IR 391 19523 2C269 20983 21'51 ~ ?21C5 225l;7? 6663 6950 1231 1544 1514 7211 6910 t631 6346 6C39 5752 S455 4524 4251 3673 311A 26e3 26C1 1742 4930 610B 7326 8CCQ 8514 91SR ~}73 ? 10106 Ie ?77 lC861 11425 10811 10217 11ft 3 ';633 9623 'H:63 ')831 '}A51 1257 8651 7435 1.:237 S(59 3871 2712 3732 4+:l9f) 6158 tC59 6237 645 I) t673 6861 61160 7267 7099 b910 6112 6495 6211 60eQ 6089 6693 7291 82 19CO 8504 9C99 'H:93 9762 9643 '1643 96'43 9101 9742 9752 9751 lC346 10950 11524 12089 12623 1112 10207 lJ 316 12544 13 '3 16 11350 1 J940 13811 13653 13742 lC128 5326 5291 71;73 10CeIJ 11435 13C39 13643 14316 9514 9613 12"3 13A51 14455 15C3Q 15C69 1 "i653 1615A 11159 11102 lF~152 1 S4C'5 19910 Ie A41 15142 1')5:4 2C217 nC29 217Cl 11732 1552ii 15366 0 IBC6g 19251 20287 IOB31 21366 21CC7 2?621 <:3 A2 '3 4905 1928 2311 2441 1561 185f 12C6 2345 2 1,65 2495 1123 2811 b',51 61g8 1086 7383 1651 lfJ68 7J28 7621 1324 1016 2691 C4 84 C1 e\ C2 C3 L873 1896 2111 1411 180 2212 19(6 1294 144C 2CCjZ ;(ZC7 I1Sf. 2681 2811 2951 2'152 2e17 1191 2611 lm 2681 180e 1441 2551 IBn 1131 2312 1491 1HZ 2118 228 14132 14727 9990 (j96C 13042 14261 14165 1548C 15;69 16015 16580 L6'J67 1]E59 18215 18959 19583 10485 15361 19111 19781 20'155 21317 21 ':It5 15232 14'j85 0 17140 laQ39 19950 20445 210)0 21144 21190 382t 4635 4825 5034 511 t l 3616 359t -41595 4995 51-44 5244 5254 5514 5104 5844 6053 6033 6113 6223 3346 499'; ~l'B 633~ 65D 6593 614) 4235 -414'5 0 ')094 5564 6613 6743 6833 7002 7132 2872. 2803 2723 ze04 21j 8; 23~ ~ 1246 1117 819 1119 1471 1232 lCO :3 984 1381 177~ 216e 1564 215 ~ 2942 3151 314, 3558 3558 3111 40 1 "i 3821 311 38 34" 3439 3449 342~ 3419 3419 ,130 3031 2e44 115< 1868 1411 lOt 3 1461 1~58 2246 2246 2116 2121 lC87 2041 1998 1918 2051 2097 2141 2151 2196 1126 2146 2455 21::44 398t 41 B4 4403 2e 52 362e 4CC5 4413 4f: 22 4622 4840 4151 4831 48 lJ 3658 1081 1081 2982 3l:5E 4413 4f: 12 4!! 31 41)5C 3389 33eC; 4343 4111 490C 5118 5198 5431 558t 5185 583', 6003 f 182 l:441 351)e 513> 6302 6" 8 1 6c;4C tl; 19 609 1 S 436 ? 4304 C 5248 5705 6769 6898 6971? 1051 7CC 7 95~ 1CCC 1393 1101 2257 2641 2e 53 3C4( 324 ;: 3444 365t: 3f:€ 1 388e 4111 39C4 31Cl 35CC 3489 35CC 3464 3474 3419 3111 3075 lUI 22 ... 2 1828 14C, g84 1398 1813 2221 2231 llC 1 2186 21'H 2141 2116 20e 5 2116 2136 11ll 2186 21Cl 2231 2231 244 " 2651 474~ 4'154 5126 341~ 34e4 448~ 46S 3 5C9C 5282 5161 5484 5t:2f: sEe3 6085 6318 6393 (:575 363l; 5232: 645~ 664f bale 69g 7222 461/ -'I:4C C 5414 5898 694'i 7C65 1181 723.1 12C1 2 ~ Ij 7 1412 1217 21~2 lE36 1121 1451 12C6 955 96C U71 1786 1201 U31 2841 3058 32t:E 1418 3(:93 3tee 3 El(~ e 4134 3928 3723 3523 3~11 3518 3523 3528 3523 3323 3118 l1Cl 2282 1861 1446 lCll 1"1 1 "46 2262 1141 1161 2132 1102 2C71 2C37 2012 1081 n~8 2414 2868 2e? 8 1808 1616 Zit E4 2;58 1211 2CI15 1863 17 ~ 2 14e9 121,2 ,89 974 De3 17el 2191 16C 1 1181 2!)F4 31 I) 1 33c;e 3590 3~ e 5 3813 3G7G 3112 3510 3H8 33t:3 337e 3:.13 3363 :nf:8 25t6 zc; 55 2: ~ f Zlj25 21~S 1168 Je15 1115 15C2 lUC 9S8 993 1411 1835 1149 H61 2e3S 3C55 32f;7 3414 3f:: 86 3691 3eet! 411 C 4CC4 3191 351)( 3585 3S€5 3~f: S 1677 C;39 1343 1741 1146 1146 2121 lC90 2C f 5 lC50 lC15 lCC5 2C 10 2C35 lCt5 208( 1111 2136 2116 2328 254C 3524 3524 3318 3116 27CE 1184 let': 5 1441 SI) 3 1442 1810 228, 2314 2314 2194 1264 2244 222e 22C3 2213 2:228 1154 2164 2294 2:n4 23C4 2,21 2123 C1 81 ~m 2111 1101 2232 2252 2461 351~ 352~ 3518 3518 37:n 3938 it 144 4359 4574 2nl 3738 4134 4514 47QC; 4804 5045 479<1 4819 419~ 3583 1951 19" 2192 36C8 -4-41-4 4fC9 4824 5C9C 3493 34<13 3S'8 4E99 5135 5~9C 53QS 5 585 573'3" 597C 6e31 t 161 f:2U 6231 3~4e 4S 34 614\ tUI t271 t366 t371 3908 309309 C 4769 '52 t fC 6351 6471 l::-tOI t 10l::(:E'41 3166 2(n4 25t5 ll5t 1151 13~8 1141 2934 1944 3141 3146 334 F 3?3e 35tC 3328 3535 3358 35 e C 33t8 3515 33Hl 351C :3 358 3~t:5 3358 355C 3353 355C 3353 '3545 3555 3151 3752 395 '3 3954 416C 4116 4311 ',3<:;3 4(:C4 2191 1~9C 3fC 1 3Ell 3S89 4215 44C4 4tC4 4616 4815 4t11 4t~ 9 4li36 " ee) 4898 4~t1 l,836 4828 48C8 4841 3601 3t71 1ge4 2C62 1qH lC42 1182 2E 59 3 :ec 3661 43e~ 44t 7 4+::€C 4ft" 4182 4856 49t:4 5C27 34C4 34J4 3ii24 3419 341~ "412 4828 '-tBC5 5C25 5Cl1 5L52 521::S 5257 5164 53(:C 5454 5 tEl E: 5612 5818 55; 2 5<;44 5148 516, 5S E4 l: }31 SEes S€21) 6H2 32li1 3C2C 4el)3 45!5 e e 1 ~ 1 !!H3 t2lt? 5849 (: 3 1!P 5S7C 6424 6152 c ~ t:= 626:8 l8ge 4C30 3ljf9 3€ 12 C C "<;:9 4725 St..-4S 5153 l;595 6118 6732 l::3<14 6858 6525 6919 l::-e2f. '1C3: 6l:H: 2327 H~2 1431 2~ 2 L 2197 lC81 1906 1131 1641 14C 1 1181 sse 98C 1381 1166 21117 2';32 27C7 2Ef!2 3(3 E 32CE 3343 334 E ~ ~ ~~ HH 3453 325E 3253 3273 32t?: 3L33 32.3E 3C52 Hf:7 l4Ci 2 21(7 H~~ 9 19CC 229f: 1276 2291 1116 1256 2141 2221 218t 2196 1111 11" 1156 228t 2:!1l 01 28 (115 393 353 315 173 13C 211 134 52 86 12 l , ItC 198 232 1C 30 84 ." 14 417 395 pi lJ 9U 969 933 £189 843 843 831 835 821 811 Hq 72C 626 53C 433 339 244 331 433 528 522 52C 516 512 506 5C4 5C4 5C6 5C4 5(4 5C2 SCI 5C2 493 544 592 263 17'1 172 88 11 36 78 116 158 194 12 46 104 182 263 269 363 469 552 646 696 144 795 849 909 91 , 913 957 9Cg 859 8C9 801 All 805 185 719 128 618 58C 481 385 291 194 191 395 483 411 413 469 411 413 415 413 467 463 463 461 459 459 449 497 546 ltD 236 238 315 4Cl SCC 596 f52 lC6 11~ at! 3 9C9 91~ Al C'• 62 458 432 394 356 314 208 200 \20 42 14 112 15C 186 222 24 40 90 166 244 256 352 444 539 637 693 743 199 851 919 935 991 919 939 eg3 845 847 843 839 821 817 169 121 621 533 32 416 392 352 31 1, 210 218 226 148 68 1e2 436 344 252 344 438 533 533 513 498 492 490 496 498 498 498 5Cl 498 498 498 498 545 595 138 116 210 244 20 46 9R 172 246 254 354 451 549 641 ,,5 143 197 e49 ~C9 915 967 '131 891 845 797 195 7q5 7,1 751 745 6q5 6 t ,7 549 454 HO 270 182 21C 364 458 464 454 450 L,46 440 438 436 436 436 436 434 434 434 43C 418 521 2111 2411 23Ct 25C1 210 C2 C3 01 A4 '1 C4 HCl n97 211)2 31bE :320E 316E 32tE 320 325E ~ 24 8 3243 3238 3423 35liE 2903 3Cl)li 3299 3505 642 691 14C 191 779 eo9 851 853 831 8Cl 199 197 851 901 953 1CC2 1050 6<4 853 947 1 C48 1C68 lC68 1122 1114 5% 646 698 151 751 823 811 821 199 111 769 169 819 873 911 967 1016 614 all 91l 1012 106C 1058 C98 311 1291 1291 981 510 60C 801 ICC 8 lilt 1161 1311 1339 931 935 981 1193 1319 l3C3 1313 1311 1500 1574 17(2 815 88 I 9J 5 146 154C 1863 1931 IOU lC16 1963 1401 1371 0 1495 1598 1865 1951 1985 1985 1098 643 575 625 ~ 15 717 745 819 811 8D 193 763 759 159 8C1 1056 8~ 9 941 1COl 611 E13 '37 e ~ '3 ';93 419> 21U 'l4H ~ e 3 '3 4221':0 441 Ii 4414 46 lJ.t 461' .Ii ::91. 4584 346 e 1951 941 1 ('t:al 3433 4184 4314 45et; 4819 3 ~ 41 311E 4814 .684 4 81~ 5ICe 5C8C 5125 5315 :se 5 sag 5945 6151 6C61 !33E 332: ~'i6C ,IC6 6171 f38e e46} 42C4 413 ~ C ~C2: 54l;:: f:5C I H41 (:t51 l::-721 616\ 343C 347C 341C 3465 346C 3~ I; I) 341j 5 3"'55 3H:5 3816 4C81 4282 4493 1903 37el 4cel 3981 4f94 4194 491 9 4919 4119 4764 3fC5 2Cl1 lC;95 277 '3 =~ it +:: 4343 4SLt3 47',(j 4q39 3425 3435 4398 4189 5CCC 5245 525+; 5225 5536 5.37 6C 18 6J 18 l:283 l: ~ 7:3 31i 35 4984 H13 631i4 (;3"'; 1,,22 1230 943 550 516 57C %1 lJ 61 l11C 1261 12 83 9C3 9 15 1132 1228 1211 1339 1343 1419 1481 1510 151::6 16H 11C4 1193 11CC 1463 1151 1821 le 55 19C9 E549 t; 74 4157 4\ 81 C 5C 15 :49f- 1m 6.,es 1~46 t634 6<;25 lCU 1156 11 ~ 8 C 1251 1333 1584 ll1C 1138 10969 I ! ! ~93 143 195 193 8U 851 853 e19 eo 8C1 199 855 901 953 1002 1C 56 113 8<9 959 1C66 1114 1116 168 14C 1282 1180 911 511 105 191 991 11CO 1250 FCO 348 %5 965 1116 1318 14C6 145t: 1451 1496 1511 H95 1161 1893 lCC4 2112 ! IHe l1C9 2C32 1111 2C64 1111 1943 1410 139C 0 1509 1601 1859 1939 2CCC 1975 2C 18 ~05 1(04 1056 1C60 1 cga 1126 1162 1264 961 557 587 783 189 1194 1244 \"1 53= 931 931 1194 1284 1330 136C 136C 1458 1531 1507 1511 15 lCl 1111 108C 1448 1131 1115 1181 \837 le21 1166 1\41 0 1268 1310 109 1681 ItE? 1699 1E'25 1/ R~ rrc o e939 oQ92:2 C .929 0.021 0.924 0.923 0.(124 C.921 0.924 0.925 0.911 C 09'34 Cog 30 C ~ 93 2 C. q31 C .934 C .9lj4 O. S4C 0.952 C ~ 97 4 0.912 Co g46 0.931 0.929 0.n6 C. 92~ 0.911 C ~ oj 20 c. 91 q C ~ 916 C.916 C.915 C.9C9 o. q 15 C .917 C.918 c. g 18 0.911 0.911 oG911 C .911 0.919 0.921 C ~ 925 C.910 o .g3] C.948 C.11$ ** $$ **-I!l *'** ~* '" **'<'1 lit *** . . 'Il1 ,*.:11 * $ ** '" **** *$-** '" *** *' t· >,\: CHf,~j CHll'~ CHM~ CH,',\J $ (I: CHAN CHAr~ CHJ\/\,j CHAN CHAN CH~N CHA!\J 10 Ct;AII4 11 CHAN 12 CHAN 13 CHAN H CHAN 15 CHAN 16 .CHAN 11 CHAN lA CH./'!!\j 19 20 * *1 * **70707 *** * ** t ** *0~,* *** **0 *~. *** IJ* *>::-*** a* *** ***0 ***** 0** ** ***** *"" **0 * '" ***** **.;. ** *O ** I\t ** *** ...... »»0**.:- ** 0** *. "" **0 0 0 *$* '" 0'" *** ** 0 ***** *** a .. ,,* 0oil **.;. ****;¢:; C O 0 >,\: >(I >,\: II'< ? 24 70707 l(JIOIO lOlOln -2 -t 0 -1 3 2 I, I? 1 51 .:, 1'11'11') 171117 2 () 13 13 11'1 ~A gt~t ~ ld,', '1 ~fI },A~6~6 ~ 2n2()21) 7 !22221 7t, 22222: 7M 2.22.?i2 hlJ, 151'11"3 1~~'1 1~~ir; 11)1\ 707['17 13 70707 1',\ 70707 14 101010 l4 In10Ul I~ if> If, 17 17 gtH~ 22 121;12 2t 70707 ~i i~ t:7 2P (:1 2'1 ;') 3f') \0 tt 11 ~g §j 52 ~9 j~ 3, II) 11 t{ 13 19 11 tg~gi 16gj(i~ l~ l~ lon71r) 110712 1?n711 I'J071':; lsn71"1 170117 170717 20 21 ~~ CHo\01 ')3 '>3 "d ') 6 5'> 'd ') 7 '1'> ~jUMhb ~i '» 5:3 ')7 ~~ ~~ ~~ ~~ ~6 Z·i ~d =~ ~~ 2~ "1 ~i j(~ 2.'l ;:'f) 1'1 11 1', "d 42 if io ~~ 24 2'1 22 23 22 20 20 ij l;~ ~5 l~ l~ l~ 11 U q USF[l "·S lERr CHA'I ~i ~i §7 lq 11 20 14 THF lO,\O STAGE: 'J'j ~j U' U 23 170717 S1 '1", 111 21 1~ I:) 23 22 71 22 ~6 ~j 51 49 '10 51 ~{ ~~ ~i t6 I) ~l 23 ~~ Sh ')3 54 52 1)1) 2'3 2h lq mm 15 3·} "200720 ~~ 11 Ifl 2U 1~ ~~ 2,~ {r 11 ? B 10 13 25 30 2R 2'1 43 0..:,0 ~~ a 24 10 21 ?6 61 1,17 '10 q 11 -1 -1 2] 32 2f-1 21 40 3H '.2 41 ~i l~ ~R8Hri ~~ ~~g~~~ H ~~ tl ?f1?ri,'!) ~~ ~~ 22. I" t'i 16 ~~ 1919Ii ~~ tH~i~ 11 ig8 1413 l'll'}I') 1,1"11:) L71 71 '7 171717 l~ t1 2b -1 -1 -1 -1n -110 30 30 30 12 13 13 13 I~ 1~~g~8 t~ ~g~~~ ,:'0 ~~ <' 0 2 3 1 i2 ~A~~~g~8 ./ ~ -i2 (I -2 C.H,,'j CHAN 19 18 Fn~ CHA~~ 5S 3 2 -2 0 0 1 -1 -2 -1 2 -1 0 3 0 1 -1 -4 16 20 24 -1 -4 -'~ 0 0 -2 4 q ., ? 2 - 12 -11 -15 46 41 45 47 0 0 1 -3 0 -2 -4 ') ~ ~~ :g 30 r~ :~ -~ :~ -1 ~ 15 SA 50 1':17 54 0 32 30 28 2B 60 ,1 64 61) 24 28 24 24 ~~ ~~ ~~ 65 ~~ ~1 ~g 21 i8 lR 28 24 24 ~l ~~ q 7 ~ -y -2 2 19 20 19 22 ~j 24 23 28 26 ~~ ~~ is 0 -g 6 21 ~o 35 31 47 40 44 4S 15 18 IS 11 18 15 24 26 24 21 23 21 20 24 24 24 24 24 24 24 20 20 20 20 20 11 19 50 g15 lj 15 ~5 ~i ~~ 45 l~ ~j ~! 23 g21 ~Z ~2 21 ~~ i~ 18 ~g ~j -~ 11 14 II 12 A q 5 5 2. 1 l~ ~g :z ~5 -62 29 20 28 20 ~~ :~ :~ -5 .3 ~j t~ l~ ~j 21 i~ lR 17 17 18 17 15 18 l~ tZ 16 H 18 - fI -8 -6 i C 0 4 8 1 5 4 3 -8 -1 -12 a 1 8 7 4 3 5 -20 -18 1 -1 0 ~ 3 ~ 0 -11 1 11 9 14 0 C 8a ~~ g ~~ ~~ 18 19 22 31 31 2A 30 C 0 0 ~2 ~~ 23 g C g g a 25 ~~ f~ ~~ ~~ li 19 1918 ~~ 18 23 11 20 18 20 18 19 20 U 13 80 gC 16 14 13 11 11 14 C 0 0 a 0 0 HUg ii 8a 23 10 H II g0 21 11 ~t CHM~ CHAN CHAN CHAN CHAN CHAN CHAN 11 CHAN 12 Ct-IAr-. 13 CHAl\ 14 jf, 37 17 19 :;B '11 r>I ':02 "2 ., '3 '11 ~4 "4 ,:>c, ,:>1) ,6 '16 0:-7 "17 'l~ ')8 ,:>q ')1 1)0 60 I b hI h"\ 1>3 IA 211. 3A 44 5A bA 74 FA 'J/\ 1 (It. lIn 1211 1 '3':' 7(:' 17 77" 7P H.:. 7'1 1")0715 120712 120712 10(71 1) 100710 70707 707('17 70707 70707 710()7 71007 71 ?07 71207 7lSn7 71 ~07 71 70 7 71707 72007 72007 12?() 7 7?7.0 7 72007 72007 717tH 71 707 711)07 71Sn 7 71207 712n7 7n7()7 70707 70707 10101!} 121212 1'J 151 'i 17171 7 20202,) 222222 20202n 111717 1'j 151 ') 121212 101010 7070 7 70707 12121 '? 1 'J151 'l 171717 Z020Zf1 22222? ,,0) 2')252'" -'I)A 252'12') ~l 272727 ~LA 272727 EZ w,2f1 P1 'n!\ JCt4 F< 4t, ~03030 3030 iil 3232'32 3232,? 1':>3')3;':; 353')3 'i 18 1'-:l 20 1'1 20 24 20 1'1 1'1 11 14 1R If> 17 17 1q 18 1e 1 <.1 17 1~ 21 1q 18 IH 17 19 IP 20 '3 11 20 20 lA 1'1 1H 2 rJ 21 Ib lR 1q 19 13 17 1q 17 16 17 IS 18 13 IS 15 17 16 11'3 22 1q 1A 7 '.3 l,h '"40 48 41 46 'l. ,s '3 '3 40 36 4 ,~ 4? 3" 4') 4() 4j 31 3, 4'1 It} It 48 47 40 41 42 31 38 32 33 30 24 2) ~g 40 37 38 32 33 27 202M 19 1p 13 1) 10 13 16 33 31 4' 21 19 19 20 33 32 4S 46 46 22 ?3 23 2, 32 2'1 -/t 44 32 10 20 1S IH 2 '3 23 3'J 31 ,6 j '3 10 23 20 15 13 22 33 ~ 5 16 3g 42 43 43 S1 ";1 53 "'0 ')1 ')5 59 ':>9 2 2J 17 17 11 L, D 1" 17 21 22 20 Ie 13 1" 11 11 30 4<1 '.2 37 41 4h 43 41. 47 41 4' 43 41 46 52 50 4') ',2 43 41 43 "3 4h 45 40 40 38 33 31 32 24 26 18 16 11 13 16 16 20 24 25 23 18 15 9 11 13 35 3R '.2 38 39 43 41 43 '" 'd 42 41 45 41 53 '0 2 25 21 2 :~ 21 -2 q 10 10 10 30 30 3a 32 13 15 16 15 21 34 i~ ~~ l~ :l~ -!? -2 15 15 14 14 tg5 7 5 5 ~ ~ l} l~ 18 l~ 4 ~ 0 -4 -5 -5 -8 -2 0 -3 -8 6 :2 -~ :~ a -3 -2 13 12 12 14 38 3q 36 36 B t~ B l3 t8 H 14 24 22 16 17 11 18 18 15 11 18 14 14 12 13 5 5 ~g 27 27 28 26 26 26 25 ~~ ~~ 26 g26 l~ U ~~ ~ ~ l~ ~j ~i 34 ~g ~~ 32 ~6 H 22 g21 20 22 22 20 17 16 18 20 1'1 20 15 41 19 16 ~g ~8 4 21 20 9 22 ~ ~t ~g 19 l~ b 8 18 10 55 51 4fl 47 18 Ii 12 ~~ fl ') 4 12 13 13 13 28 l~ -~ -15 -5 II17 ~Z :~ -10 -10 30 CHAN 15 15 18 11 lA 21 35 34 44 43 44 40 45 43 ""44 43 4> 4" 49 49 43 44 40 38 32 33 30 29 20 11 14 15 18 18 24 29 32 28 24 20 14 15 15 34 18 41 35 % 43 4' 45 43 45 ,0 4P 47 50 "5 55 40 3" 40 30 31 43 40 54 49 41 41 40 39 31 35 27 26 21 25 25 24 26 24 23 20 20 22 9 24 24 24 lR 20 23 24 30 31 '.0 30 35 28 23 23 25 42 49 49 47 '0 11 14 11 13 13 25 25 25 23 21 20 20 18 14 13 9 8 5 5 5 5 5 5 4 5 7 5 5 q 12 12 H 4 3 2 11 8 8 6 6 4 3 5 0; 6 4 5 6 -1 4 10 8 4 4 2 o 1 -2 -0 -6 -3 -2 -1 -1 -1 2 5 16 13 14 8 5 3 56 60 60 59 60 61 61 11 -1 -5 130 133 -5 AS 20 18 21 18 20 25 24 31 23 21 19 20 16 16 3 1 -0 -7 -8 -" -8 -3 -6 -2 -2 o o 4 18 14 11 10 4 1 -2 o -9 -6 -6 -4 -9 -9 -6 -9 29 29 30 28 31 34 34 31 31 33 32 34 36 39 34 38 31 40 43 44 44 43 41 42 40 41 40 36 39 31 37 31 38 42 43 44 50 49 50 48 44 45 42 41 48 51 54 51 58 60 62 61 59 60 61 60 60 61 64 64 20 25 25 24 25 30 30 22 24 21 28 28 28 30 21 30 28 33 34 37 36 35 31 30 33 30 33 30 30 28 28 30 30 33 33 35 35 36 33 37 33 34 34 30 34 36 36 38 38 39 38 40 37 40 40 40 38 40 45 44 5 5 10 12 16 16 11 15 23 19 12 12 14 14 14 14 14 13 23 23 18 18 19 15 14 12 12 8 14 14 18 14 13 16 6 11 11 11 17 18 20 11 28 19 21 20 19 17 11 8 4 1 -4 1 5 8 14 18 22 22 14 14 It 7 2 -5 -1 -10 -9 11 6 3 4 o 1 1 2 o 3 3 5 6 9 7 7 3 -1 -3 -5 -4 -9 -2 -2 -2 3 3 1 18 12 12 5 5 3 ~ -1 -1 -16 -8 -24 -26 -32 -35 -14 -20 -7 -11 -13 -13 21 21 21 23 23 25 23 13 13 18 18 20 20 23 22 23 23 26 28 30 29 ~~ 28 27 23 26 23 23 23 24 23 25 28 21 31 32 B 33 30 32 30 28 26 30 31 35 33 35 38 41 34 36 41 '.2 41 41 " 42 CHAN 16 l~ 25 n l~ 14 CHAN 17 CHAN 16 CHAN 19 20 .*.* '" ** co** *** **Ii *' ..... $'" $'' "' .. '" '" *'* ... ** "' .. '* ** '* t:** ******* ** ~,**>I>'1 g *>1>' *** * ** ** ~ 13 **>:< *>:< * *** ***** ** ***40******* ** ** 19 ** **'** ** ** ***20** III. *111*4 •• ***** $. ***".$ ** 10 ig j5 1 "l071 ') 13 11 14 29 17 20 3fJ ~ -18 -1 -2 -2 THI S RUN IS 10 V5 1~ 8 :~ !2 :11 -18 10 j~ 0 C 0 C ~ ~ gC gC l~ ~~ ~1 ~ -60 9 4 44 50 40 38 tl 1'3 4 gC -60 5 10 8 11 2 -~ 16 18 1i 1&lR ~i :~ :15 -6 ~~ ~~ =t -7 -6 -5 -3 20 ?0 26 ~~ ~8 a g 21 21 21 21 ~ 0 -2 -2 ~:H ? '3 0 0 -I) 162C 20 ~~ -!l 5 1 2 8 q 1 28 30 21 27 24 30 ~~ ~t ~l :~~ -16 -4 - 5 -5 -1 8 9 5 5 2'" 48 ~~ ~~ -26 -28 -28 a 1 3 2 -~g -4 -8 -12 C 0 0 -2 -2 -5 17 17 11 19 22 ~~ l§15 35 34 29 31 4 7 10 g3 :~ 6 :12 -28 9 8 "} 24 ~~ 15 23 ~ 26 ~~ I~ l~ -~ -2 j 24 {~ 23 23 22 21 21 21 20 -50 f 5 30 ~g ~~ 2f) :~ 23 ~g ~2 40 11\1 11 II 10 10 24 21 33 29 29 26 25 21 16 15 10 10 4 2 o o -1 o o 1 o o 1 1 6 2 C -6 -6 -12 -14 -13 :U -14 -12 -12 -6 1 20 14 11 6 5 o -1 -3 -9 -9 -9 -12 -14 -15 -14 -16 o o o o c c o c o c c 24 28 25 26 21 28 30 21 !8 26 24 25 8o H 21 o o c o o o 8o c o o c o 8c o c o o o o o o o c o o o c o o o o c c a c ao o o c o 28 29 30 30 34 33 30 33 28 30 28 28 29 21 24 26 23 26 21 28 30 30 30 30 30 28 28 24 22 28 30 35 38 39 40 40 40 40 39 45 45 45 46 41 41 18 19 20 20 20 24 26 27 19 19 25 22 ~~ 29 26 29 30 32 33 34 32 30 34 30 32 30 30 30 29 39 28 30 30 32 34 35 36 31 38 37 35 33 34 30 28 33 35 31 35 31 37 31 37 39 40 40 39 39 39 40 14 11 14 12 11 18 22 20 10 10 14 14 U 16 20 20 22 24 22 24 23 24 24 24 22 22 22 30 23 21 20 20 11 15 11 10 4 ~ 10 13 15 11 11 22 18 15 12 10 5 5 8 -1 o -3 -3 -8 -8 -8 -8 20 22 22 22 22 22 23 21 12 11 13 11 13 13 15 13 13 13 13 13 14 17 18 15 19 18 18 20 21 21 20 22 H 20 11 15 16 1A 13 16 2A 27 41 40 38 36 32 29 26 26 17 14 11 II 9 11 9 11 10 10 10 9 10 II14 ! -1 16 19 -2 -4 19 -9 -6 20 20 22 18 22 24 23 22 22 23 22 20 20 20 20 17 11 12 11 12 10 10 10 -6 -6 -7 -7 6 5 29 26 20 16 14 15 14 12 1 1 -2 -1 -2 -2 -2 -1 326 TId: Ll1AC '~UHH:~ sr.'\:'j:- USt=tJ \5 ZERn F·l>\ THIS RUN IS *" '* ** *** ** *' '* *" *** ** * *' *t. *' *** **,.. *** '* * . . *** * ** *** *' ***** ** ***1(0 ** *. . *** ***'1) *** **#*$ ** . . * >!< CII"'I rH"~~ rHV~ CH\;j lERI~ Tcj[ LllAD STi\\.:';::: 'HWPI7R IJSF,) ",·s CHr,N CHi%N CH1.N CHAr~ CHA"I CHAN >1> ............ CHII.~ CHAr..j *.$ '" "' .. »*" *4o:!(t>lo ** . . ***- .... 0)"" '* . . -* **** CHAN CHAN CHAt\ CHAN (I .... CH'&,\' *., 1,< ........ *. . ~ . . * ** ** (' ** . . CHAN >I> CHA~ CrAN F[1!; THIS RIJN L, *' ** **;.-* ***" * . . *** '* *. . *' . . ** * ** '* *,.,. ** . . **::- ........ ;let" *'* '* *. . **~., **"'' ' ' ' ' ' '* *. . . . . . . . *' * *** *** I\< *. . ** ***** . . **** *** 1/1* . . *'" >1\ II< ** **** ** *>\I *** «$ *' **«** >II ........ »" * «.q » ........ J\I .... "' ........ ** >I< Cf-'A~l r:HA~! CHt'I'l CHAN r:Hl\t~ CH'\fI,j CHAt\' CHMJ (HllN CHAN CHAN LO CHAN LL 1) CHAN L2 CHAN 13 CHAN L4 CHA"'J L5 CHAN LO CHAN L7 CHAN L8 CHAN L9 20 *127 *. . **"*270727 ** **'* *" . . ** '" 'lA * >!- ........ *~~ -'1 . . ** . . >:- .... * '* * ***' -~ * *** *. . -fJ ** ****IIOB *' *. . ** -24 *. . **** -36 >:< ** ** *7~* **!II *** **.* **.,. **$:*o$ .. et"" *., *.. .,. -19 .. ** 6B *** *** 27 **** -27 32 *.** -3q C **** 50** ***** 49 * ***:(J)I)I 13 * 52 12f'l 129 1.10 1q 132 l-q 134 13C, 136 2')072'i 2.20722 170717 120712 70707 70707 712!)7 71707 72207 72'i07 2()2520 202720 203020 203220 2D152n 20372'1 173717 1'1171'i 1537l'J 1'13")1'5 15321'1 1'5301'5 152715 152515 4')13 19 71707 71207 707r)7 1)2 707n7 1"'26. lZ0()(JO 1':13 170()(V) 1..,,11 ?20C0(1 1'-;4 270000 1:'46. 100000 1':l4b 3.::0001) 1C,4C ]50000 1'5'" 3700r)0 1-:'6 40(1001) 1')t>A 40UOOO 19 22 21 19 20 22 20 22 11 19 71 20 20 1-~7 1 i7,o", I.jP 1 ~'] 1",0 141 142 1'.. 21\ 1't211 i42e 141 144 l(i') 14f. 147 t~~A 14~ ~~~g~ ISO l'i} I1j7470000 liP 4')000r) 1<)8 l r lP I"') 1.,0 If.J 11111\ 11,lr' 1t,lC Ihlr Iblt 162 lfd Ih4 1n5 16/' 1'")7 Ihll In'} li5DOOO 450CUl) 4200Qn 4noon!) "'70000 370()OO 17000{) 171)000 370con 371)000 '15(01)0 32000'1 270/JOn 22nooo 17DCOn 1200fJr) 70001') 120CD!) 15 l~ 17 15 13 17 1q If! 17 17 16 l~ 11 20 13 1') 19 20 20 19 14 1'1 ~g 1~ 19 It} 19 11 21) 20 11 lq 1~ Itl 17 15 l' lh 14 1') 17 17 18 Ie.. f) -7 -5 -3 -3 _'1 -q -i f) ") f{ , 14 21 13 21 27 24 17 21 48 44 "iC 49 1/ 23 -~ 18 ~6 -3 -7 -II' -11 -12 -10 -1 -3 3 10 12 9 13 17 20 27 11 27 32 29 27 21 20 13 10 -10 -10 -12 -12 -15 -11 -1'1 -20 -2? -14 -1 -2 -4 -1.3 -20 -28 -18 -If) -4 P (-, 1J 11 1';1 2'-' 31') 33 l} 101 len 104 101 Inl 91 92 104 17.1 lIn 113 111 lOH 101 '1.' W 7:::'. ok 12 13 20 7.8 32 37 _4 -7 -7 1~ 11 2~ 2,4 2.7 41 18 10 21 21:> 21 FI 13 In '. 11 2 _1 -17 -6 -24 't3 ~~ -10 -7 6 15 22 77 iO 37 4'2 "i0 '51 61 <;2 "'3 53 G2 4') 42 4\ 4J 1)1 ')1) ;id "i) 47 40 H 21 13 1 g >:0 >I< 1 7~ 1~ 110 -19 -17 -13 -17 -17 -22 -24 -16 H -3 -2 -2 -'1 -11 -21 -27 -"11 -17 -13 _ "'86 563 'J18 473 ~27 ',45 437 7430 11 427 13 418 p '-;18 12 ')20 15 514 21 ':112 2P. "dO 34 i09 22 '>03 28 't87 28 468 20 '16R 19 474 12 477 8 479 4 'IRO -I) ~ ~l~ -Zf: li30 -32 -2" -17 -10 -'1 ') 8 12 19 2S 25 31 '] n 15 ',17 !,2'5 435 Ii 6') ';]04 53<:) "flO tJ05 1-)20 '">30 hf.q 7lq 7813 "10 InS7 170n 171" <.:J Iht\R 11 11J58 4 1""20 3 11)17 1'') loS7 11 1h7h 24 Ih60 22 16h7 2',lt13A 15 1')97 12 1':>19 3 l424 -., 1)25 -10 1~36 -17 113~ -11 1206 -23 -27 -25 -26 -27 -30 -31) -37 -43 -46 -46 -45 -47 -47 -50 -47 -')9 -55 -56 -55 -55 -55 -52 -50 -39 -40 -3'1 -40 -42 -46 -52 -55 -59 -6t -'51 -45 -43 -42 -45 -47 -50 -55 -bg :~~ -4l -55 -52 -52 -46 -41 -40 -41 -40 -40 -40 -40 -)9 -41 -10 -26 -35 -12 -28 -27 -26 -23 -22 -lH -17 -1~ -foo2 -66 -66 -68 -69 -69 -71 -76 -77 -74 -74 -7') -72 -14 :j~ -h5 -61 -62 -65 -6') -72 -78 -82 -84 -93 -B,) -92 -92 -93 -Lt2 -113 -Lt6 -Lt~ -Ill -112 -115 -102 -90 -90 -91 -8'5 -87 -82 -77 -11 -67 -62 -h6 (t 79 82 82 90 94 97 102 102 97 100 103 104 104 110 109 112 114 114 113 117 110 109 74 69 68 72 75 12 74 75 78 84 85 84 85 88 89 91 95 92 95 9fj 94 94 90 93 88 31 37 46 52 61 61 62 60 61 61 39 41 42 40 43 41 40 45 51 52 54 52 53 54 -29 -29 -27 -35 -31 -42 -43 -50 -51 -'j5 -55 -51 -59 -62 -62 -63 -69 -61 -67 -61 -65 -64 -63 -63 109 106 104 ltD 112 114 116 116 115 116 104 101 93 84 84 107 104 104 107 104 109 109 lOA 104 109 106 111 107 101 106 110 III 114 113 87 e5 82 89 Ae 90 90 96 96 95 98 97 q2 90 87 115 117 120 118 118 116 115 115 115 115 117 118 117 114 110 115 112 113 tt2 69 79 71 7') 71 61 52 42 35 29 26 22 15 14 9 -16 -18 -18 -12 -8 -3 -2 -4 -6 -2 -2 11 10 22 32 44 56 69 SB -59 -56 -53 -51 -55 -57 -59 -64 -61 -68 -70 -65 -64 -62 -62 -65 1~ tit ~~ ~J :~~ -6q -69 -68 -67 -bq -67 -62 -53 -57 -53 -49 -51 -45 -43 -39 -37 -34 -35 110 31 31 36 36 :33 34 40 40 43 ~3 41 42 50 48 51 53 53 53 56 57 53 55 53 53 §j 51 50 4<) 51 50 54 53 55 53 52 46 43 38 46 32 53 52 53 53 52 53 51 53 43 43 43 47 47 43 43 43 47 4<1 48 -3q -42 -43 -44 -41 -42 -46 -41:1 -52 -51 -6e -60 -62 -65 -64 -(:'7 -12 -13 -76 -74 -71 -69 -70 -70 :~5 -69 -66 -64 -61 -~5 -66 -72 -70 -69 -73 -72 -b9 -62 -5q -59 -6q -70 -69 -64 -67 -69 -10 -60 -42 -5C -50 -46 -4~ -47 -44 -42 -37 -37 -3q C 1(t .. C C C C C C C C C a C C C C C C C C 0 C C C 50 52 54 55 55 50 56 57 60 65 58 60 65 65 69 70 68 68 70 70 70 69 66 67 50 49 53 54 50 51 60 63 66 66 65 68 70 73 70 74 72 17 17 71 76 14 75 74 14 22 32 39 45 39 45 45 47 50 28 30 32 31 33 34 32 36 42 40 '12 41 41 37 52 52 55 56 57 50 52 48 48 C C a C C C C C C C C C C C C 0 a C 0 0 0 C C C C C C C c C C C C 67 60 60 65 68 70 69 70 70 70 60 57 54 48 49 70 70 70 74 70 70 70 78 79 84 BO 85 80 B6 85 85 88 B7 86 12 72 69 70 74 75 15 78 78 78 74 76 70 61 58 78 77 77 18 80 78 76 70 65 66 66 69 67 67 64 65 66 64 64 52 51 50 55 51 45 35 28 20 IB 10 2 -6 -9 -14 -46 -46 -46 -41 -)7 -32 -35 -32 -32 -28 -26 -22 -19 -8 -2 12 22 34 24 56 59 60 65 61 62 60 58 52 52 55 53 50 43 44 40 39 39 40 41 45 42 43 a 8C ~~ ~~ ~~ ~9 45 47 45 45 45 46 45 47 48 50 51 50 50 50 §~ 1~2 52 51 56 53 60 60 68 68 13 69 -20 -26 -23 -26 -30 -22 -2R -32 -33 -35 -36 -40 -41 -ld -ttl -lt2 -52 -50 -50 -49 -50 -51 -49 -4'1 :~t -4q -50 -46 -44 -45 -44 -46 -4!) -43 -48 -54 -41) -37 -31 -32 -51 -50 -51 -51 -52 -51 -56 -44 -25 -35 -36 -31 -31 -32 -27 -30 -25 -24 -26 327 'JU"~rI[q THE u).\[) STAC:: ~¢ ***' '* ** (t.1!< lJ<'~LJ ~ **~* **** ~,** CHi"'j ·\5 lEt:.'} Fll,{ THIS RU'j IS ***** . . *~. *** **v ** **'*.(> ** *'* .. ** '* .. C HAf'\.1 CHh'l (I. *- (t.* *** *,. ***'* .. ** '$:(1"""" ~ *' .. '" ***** **** '" -* ** .. *.. '" (I: CHAN CHAII! CHA"I 10 >I< CHA/I./ II CHA"l \2 13 I!t$ »: *~ '$;:' CHA.~ CHAN I' * '* ** .. * ** '$ >jI 16 15 *"',;. ** *"* '* y CHAN Q I) CHAII; CHAN 11 $: >lo >I> CHAN 18 >(I $. '" *:$ * CrAN 19 c{) * ** .. ~:~, *** '* * *' ** >( .:::* *' *'* '*P<*.:- * ***11*****'*HI* ***-78 *0) ** ** '* -6 ** ***"* * ** **-17 ** -* ***»-66 ** *'$ -* *tt7 »**115 *... **:4<",62*t '" -29 ** *** 1/1$$" <) 4 '* .... >1'<. (I >(:. ... >\I ** $* '* *'* *.. ** ».. '" 'II 4< «>l< t .. '* '" * ** .. *' *" (1.-** 11,'1.'\ UD('Oi) 1201) 5C -)q C 89 61 25 72 -23 170 IrOCOI} 171 220non I7lt:. 2Z00Qr) 112 22U2 17P 322277 171 W2?O:::2 1!-J0 272221". 1:,1 25222? 1~? 227.222 lrl~ ,1 30 17 16 17 20 11 17 I'> 12 1') Ij513 16 13 '27 31 B -;q 42 4j {~222c.2 l:;~.\ ~~~g6(~ };35210r.OO 1"'1'3()Qf)()n 1'<7 }~OO~() ll'P .:350ilOf) 1f''1 HOflon }>-l'1f\ nOCf)O 1'1'11) qnonn l'l!lC 37000n 11'H, 17001() lllCJL 17()OI)n IW-lt= HOcon 1"lf nnO(lr) t';~~ gg6g~ lrl'.j~1 17 1>1 13 16 11 17 16 13 14 11 20 lil 1>l 19 17 17 1)0 111 11(J -nnOOfl II{JOOOn 42000n 4'5fJron 1')4 114 '1Coonn i~ ~}oooon 1") 11 11 13 13 13 12 13 12 10 1':1 lr}n).\ 520()i')n ~~ggg{~ -1 -12 -17 -lq -23 -?1 -23 -2'5 -27 -11 -,1 -31 -?oO 77 :~Z 7i 73 7" Ri AI, 17(' l~~ '17 lri~ lR~, IS') II}, 16') 171 1 Ii.' }~? ~g: In <)3 "6 12 41 44 1}1 HI 202A 81 2040 54 Ih7rJ 70 I-J67 72 1159 75 21)66 RO 2173 H' 2..:.29 A12300 -2 a 3 3 0 -3 -1 -5 -8 j~ 7'2 73 82 ?5,) ?83 H~~ ~~ ~~il R'1 7S B3 <:)7 2h2 ":}') 6/5') 72 \ hlt 2"9 217 ,;41 ).1)3 273 77 6('38 516080 6'"-1 bi07 800 6'H30 93 61187 f">31 h81 7]'1 It:~fJ USEI) ".5 FI1f!, nIlS RIJN 114 114 114 LlO 110 110 112 104 104 10'1 109 109 112 113 113 131 109 112 110 110 11t. 115 115 H~ 114 111:. 116 117 114 117 118 119 122 A908 120 122 ~j ~ UJ 115 121 121 t19 114 117 115 110 0 -5 -10 -11 -71] -14 -14 -76 110 110 112 112 112 111 111 109 110 108 105 106 107 104 105 104 105 -11 -A2 -15 -81 -11 -80 -8 -76 -10 -7q -13 -AO -5 -66 1 -45 7 -45 2 30700 4 -62 114 121 lU 11<1 120 119 114 122 124 123 124 11C 115 115 112 114 112 103 100 100 104 H~ :r8 -72 -72 -51 -59 -(,1) :~6 :! ellA ~ C\-I1\'1 (.IIAN CI-II\"" CHAN :~~ l~2 ig~ _LII:} -51 -51 -54 -54 :~~ 2ri 43 -65 -10 -12 -74 -74 43 43 46 43 43 40 31l 37 33 33 32 -6q -28 -29 -27 -~ -6 -11 ~g -~g B6 86 fl8 87 86 elf 86 80 82 80 83 84 84 84 81 81 68 67 60 60 60 60 62 60 60 61 65 62 64 66 65 6'5 C C C C C C C C C C C C 81 85 87 88 84 85 19 80 80 84 85 85 69 69 10 70 69 75 64 64 65 57 59 56 -20 -23 -26 -26 -38 -45 -45 -42 -40 -41 0 C C C 80 19 18 75 56 55 54 50 -45 -41 -56 -65 4.(, 45 42 43 44 40 39 38 35 -BO -qQ -40 -59 -69 -82 -90 -91 '-qq 41 41 36 30 2!:! 23 38 41 38 39 36 35 29 30 24 28 27 -li2 -120 -120 -Ill -110 -111 -86 -38 -41 -62 -85 23 23 9 12 10 3 16 33 28 20 12 ~ ~~ ~ 23 19 21 20 2C 18 18 1H 17 -19 -10 -14 -lq -22 -24 -26 -Zt: C C C C C C C C 70 73 70 10 70 68 67 68 66 -67 -74 -67 -66 -72 -40 9 9 -g -35 -45 -48 -lIS -42 -42 -44 -35 -23 -22 -29 -35 22 28 26 26 23 23 19 23 28 23 21 -35 -39 -32 -33 -33 -36 -28 -21 -q -12 -15 C C C C C C 0 C 0 C C 68 71 76 16 75 74 70 78 7', 77 74 :~~ -q -12 -16 ~g =12 -1~ ~~ :~~ ~ CHAN CHAN CHM>J (I >1< >(t ¢'$* CH~'J CHA'J CHAN 0:.- 12 11 13 13 15 11 12 13 12 13 I:oOOOO() 6000'10 620000 670000 67001'}f} 21h 61001)0 217700000 217 7000 1)0 11 I'J 18 17 20 2() 19 20 20 22 21 21'] 75QOOO ?20 7700'1() 72071000n ?21 4000(1) 222600000 22~ 7"30Cfll) ?24 770000 22<; Roooon 226 ~200(1) 2"Lh i-l20r.Uil 22(:> "1£10000 ?2l. '1200011 22.7 Rsooon 60 2415 'Igl1 18 2470 3171 11 2'i1)4 JAO"; 23 1863 J016 2222533451 25 2542 176.3 22 2. ..... 115 377') 20 263e 1('1(, 53 26'54 -'557 21 2615 3472 21. 2t->73 14l);-: 21 2Vl2 )4'13 20 ?t1S0 nR3 2031 21.26 2141 1"42 1:n2 216(, 21f1'1 2216 2jn4 23th 2 '123 2H'J 777 13<)00:)') 20 2412 ;n6b 22') ,>lIOnnf} ')40000 hOGO!)!) h(,OOOIl 7lCOUfJ hor2:l? to'l5fl'i lA 19 20 21 20 22 2;::: 21 1') 11 I") 14394 17 17 1'1 24 ?2 20 Q 7 2010 2-112 2'511 2'182 2'1-)0 n~ 211 ?13 214 214 ?I' 211} 21f, zggggg b2000n e,eOoo h':oOCOO 211', ~l~ ~lt ~~~ ??.~A 210 ?1} 232 2n 214 2J') ?ll'237 711'1 2~'1 73rJ 23'1 l ~1 2J} ?~'1 ~~ggg8 ~~gggg ~~g8~g f:Ofl7~7 1':0')0'-10 60929? 6ng5'1·j I;O'16QIJ fj '1q6q6 () () 0 n $' *,:0: '120'JOr) ssoooo 570000 S70COO ,70COO HI)O()O 370000 '>(lOOOO 5')0000 '1700f}i) 20e 2(l1-< 209 20 Q 210 ?11 212 u ~~ ~i ~~ 127 l"n ]'t5 1'->0 217 1H2 1 71 20>3 2UI 229 Fl3i) '111 ...,~~ 1,,)01 lIH-1 'HZ 'lO~ '171) lOll 1050 t~~~ ~~~j DOr) 2S0'l 2'>8') 2613 jl51 H71 :-\?fl1 1242 ?'tq;~ lt3 }2A 3'11 ~1C 37g 342 337 36C 313 3'10 ~r6 330-1 1-'25 WHl 9QO 1010 111e ll'n 1441 1'>41 l',aq ~~~~ ~i~] ~Jrii 13l)tl 1442 16'3 1t;59 1144 17R2 17R8 1~'13 2')23 ~~i~j iG~~ 25:~lj 25H'~ 2':>AO 25hl 2723 -4':'7 2'131 lk41 ?P">5 7:H14 7~"1:" 12'Jh 37111 1773 If)?1 172l 7f}20 l'J/;!6 6'1r. b'ni h'J3\ 1)11) 1~66 21 to, a 22'A1 2427 24q7 2472 21.fl3 24')3 2163 2410 1033 2'1"'C 20,0 28Al 7033 7 ' )3, 2:23.':0 jg~g 2145 2h3,l Hl'-j 323,: :2R7 B7'\ ,41'1 \'10" 34')\1 ~47n 112~ 2:03 t~.;~1 222~ jg~g 7020 7020 7020 780 7u20 1000 7020 10237020 1321 7020 1359 1f'J20 13AR 7020 1491 1020 1635 1020 231~ ~lJ.~ 36B t~~ 135 144 7'1~ 2376 2177 2410 2125 2321 2314 2334 ~~?2 1-,Y-H AP '18 un 110 114 7020 '1020 7')20 7')20 7J20 7020 702n 1020 7020 702n 7u20 1'120 7020 7020 71)20 7()20 71120 7020 6111 7020 7(120 7020 1020 Uj\ ,"f)l~ In., 107 111 114 llP 23~n 2350 17td 2108 ?3~4 ~~~~ fg~~ 1967 F)67 7145 2.304 2343 2322 2.316 235'1 "386 23M 2432 214? 24fl3 248.'1 24')1 f-73'1 611<; -8 :~~ 65 65 62 62 60 60 46 42 43 4il 45 51 =~~ -53 -59 -59 -60 -61 -Sf> -10 -I? -! 14 1<) 11 ~~ l~ "i0 50 45 16 14 10 ttl :~1 ':J §~ 92 34 34 5 11 8 3 1 1 -4 -4 41:} ~~ :i6~ ~~ -iI -12 -20 -15 -13 -11 -15 -9 1 16 '5 R **.;. ** *'" '* **' »1i' * .. »: ** >1< .. '*" 1;0" ~*"" $- '* *** ** >I> >1>* »'" «'* *'* '(I *' 1\1 '* **' * * CHAN CHM.. CHAr-- CHAN 15 I', '2(),) * '* * ¢~, *''ltI)Olj(J ** ** '** ** **611** '* *** -1:* *n*1121 *' *' ** '* *3f'J7 **'** '* ** *' ***701h *** *-*:0: ** 2** ** -70 *' ** * *124 ** **115 ** **# -60 ****,. **:0: ***** ..22:0: *., -19 **$ ** ** **C* 138 1r)R -36 ?r)p -3 f t -39 -t,O -3'} -42 Is 10 2nt; ?,(]7 -2fl -29 -11 -12 -IS -16 -17 -25 -33 -31 -21 r~ -j 2~ g~ 6<) 63 62 62 61 61 nO 5tl 58 56 60 61 63 62 66 66 -1) §~ j6 g C 11 7 2 -5 -6 -10 -15 -21 -28 -33 -28 -22 -HI -7 -5 2 ~6 g: -34 -35 -20 -26 -31 -34 -35 -31 -37 :j~ -9 C C C C C C C C C C C C C C C C -36 -31 9 -13 -lg -33 -42 -46 -51} :i3 -63 10~ -43 -43 -32 -31 -3q -42 -42 -46 -47 -45 -L,4 23 28 23 21 :~~ 118 109 :~~ 49 45 41 3q 40 3'1 36 313 38 3H 39 4C 3fi 42 1j2 43 -25 -25 -29 -33 '* **;. '** ** ~ *,**:0: '* ** ~ * *'* ** *~, ** ,~~.'" ** *'* '** I« **** *' * *** *' ***' ** *'* **"1< *»*11 * ** * >II '* $' * '* **".v * ":H~'~ -32 -37 -32 -33 -33 -13 -35 -42 -45 -3q -43 -46 -ItS -45 -46 -45 118 32 -53 t20 26 -51 120 22 -5') 120 14 -57 119 10 -62 120 9 -59 120 2 -43 120 -2 -47 119 -4 -43 -42 -IS31 -1404 118 2 -28 llA 0 -21 l~~ -S9 -S9 -64 -69 51 38 34 32 29 2'3 24 18 12 6 16 17 22 29 34 3'1 lt~ ll~ =~9 :~ 2"O'~ tib 7BI) '1'j :~~ ~ 1;~~6 377R '>h'>O bH1 6'123 76h un 3 3 -3 -1 ;~ h4l h1:1 7"il 1-::0 12? l?:i 123 122 '17 83 7'? RR 1771} 1/100 1,,40 1HA4 9~ 53 70 18} 17S~ 114 114 116 114 ll2 lit 111 10'J -32 -92 -35 -q4 -31 -100 -3'-J -toO -40 -102 -36 -102 -15 -A2 -15 36f! -11 -7q 4')26 14')43 -2 -61 2 -60 7, 7t) 11< 7f'. Cd lr2 :~~ 1}3 61 1)'1 ')3 ~~ lAl l~~~ 75 70 ~~ H(: t03 U13 71 'Jl 'Vi 102 110 111 III -15 -1\1 -21 -24 -26 -23 Iltl <)1 -f:d -71 -67 -61 -72 -73 -71 -76 -79 -AO -82 -81 -82 -80 -82 -AZ -If) 1780 5!l48 1700 1770 -lh? -1214 161-. 173 11' 173 -20 -20 -\1 -11 -10 -15 -1':1 -17 -16 -R 1472 -h b12 -21)58 u Hal 2 16'10 .:3 l6S6 4R 1740 ?'1 -14P't 13 'l'" If,P '13 :j -11 -34 -,3 -30 -?7 -18 ?fJ ')1) 14) 141 l<;h ..?qYt 89 12 '~IJ.~kr:~ ~5 ~} ~J n TI,F llll'lD ST!\GE >!".):- 10 76 2':'04 '"l4 Afl -11'117 "suCOC) ?q[J,\ ,,'lOCOO (JIHl':" ';i':'OO[}f) "'lOll '1':ooonl) ?IJOlI '1-jOorlfJ 2f)nil 5500Q() ?'n ',r,f}Of)O 2'J21()00un ?112i, 21)01J()'1 21)':\ 1000l)n ?(Jt.. 40nC'1r1 ~~g '1;.~nOf)n f..-J -112ql I) H84 17 13gp 14 144t-. 12 l't45 10 1'184 ') 1'132 -21')74 -5 If,2(1 -3 1670 a 103'1 -2 1")93 -'1 1>1') -b 1490 -7 1'+40 -'5 1-j95 -lH 7f, ~~ 1~ ,"iOOOr} 3000'10 4()OfJOIJ 4'Jnr.on ')DOOOI) 11 26 23 22 ?3 23 22 12 12 13 14 13 11 304fO 1l27U 13 1\ 1'1fl'n 1 F1 FJ IJrJ 2JCl \7 12 l~~ ~tgggg 11'1 ~7 40 11 23 23 ,i~ -2~ AT '17 107 101 101 'IS J! Ro:: Al R\ Rq rll 71 7" ttl tg~8 ~:;~g 7(120 7r:l20 1D20 1il20 71120 7(}20 71)20 7020 7020 7u20 7020 2737 7u20 1')?0 7020 71)20 7020 II 12 13 4: I) 1(1 124 123 123 124 124 123 122 124 123 122 11q 114 110 110 109 100 98 105 lC7 107 -70 -80 -88 -87 -86 -40 -40 -66 -82 -B8 -42 -45 -50 -47 -46 -37 -40 -45 -49 -45 22 2C 21 23 23 23 21 lq 21 21 -24 -21 -32 -29 -28 -20 -21 -2') -31 -40 C C C 0 C C C C C C -9q 134 131 130 13Q 132 132 134 135 138 143 142 113 112 II'> 115 12C 119 127 128 130 140 143 -9A -100 -113 -115 -IU -128 -137 -13S -137 -lSC -156 -49 -50 -47 -49 -Sq -62 -71 -71 -17 -82 -82 31 33 29 28 30 :31 36 35 31 39 41 -37 -3t:: -38 -)6 -43 -4ll -52 -50 -51 -54 -59 C C a C C C C C C C C -6 -101 -8 -109 21 -48 11 -12 13 -<10 10 -99 h -110 2'16 30865 1'1 -lOg I) -113 A-Ill 23 -12'i 158 161 160 164 110 178 180 1A4 184 194 191 192 196 114 187 19S 157 185 -89 -90 -A1 -43 -57 -62 -63 -1q -77 -16 -74 -75 -71 55 bO 337 -19A -2113 -221 -118 -170 -229 -249 -266 -285 -291 -286 -288 -316 C C C C a C C C C C c C C 238 -65 :6i -56 -62 -62 -66 -11 -24 -36 -42 -S2 -S9 -54 -59 -59 -54 6 C IF15 185 173 142 163 17H 178 118 176 166 161 267 169 16R 170 178 114 74 1B 62 12 13 7q 82 82 87 86 88 100 97 97 97 104 <;9 1 -2 -4S -35 -17 -32 -33 -37 -35 -42 -37 -29 -34 -37 -33 -2q -34 -5 -7 -8 -7 -7 1 -3 -'10 -R -11 B 15 17 17 16 12 9 0 0 0 -3 -5. -!~ -'1 ~~ 32 16~ III 112 1229 11q2 l'572 15R1 11)83 1513) 1584 1519 1623 5g0S If,31 1610 1638 1hS9 Ih('O -74 -1g -81 -80 -80 -6b -64 -75 -80 -84 :~~ -75 -13 -77 -75 -83 -89 -93 -'11 -93 -'19 :igg -laO :li1 -84 :~~ -26 -25 20 -276 51 36 33 31 32 2R 28 3A66 45 47 413 56 54 lj~ l~~ l~i 189 i~ti 148 147 204 196 1I< >l'li':O: *' * *1 -110 75 74 74 73 15 75 50 10 74 70 12 ~& 82 84 78 77 78 80 80 82 80 30 30 30 29 29 17 19 25 27 27 ~g 88 30 30 30 30 37 38 40 40 43 50 50 110 110 81 qs 108 110 126 139 156 157 159 157 73 85 89 46 68 96 102 128 150 1S!! 156 160 190 1~~ l~2 qO 1Zg lab g 129 HZ ~ CHAN 17 210 210 7930 1930 7930 19)0 7Q)0 1930 7'130 7930 7930 7930 7930 7':130 7930 7930 7~30 -1l5 -121 -132 -126 -128 -87 -87 -113 -126 -131 2 1 0 -3 -4 7 B 1 -1 -4 0 -7 -10 -9 -6 -1 -1 -7 -1 -4 -210 -5 -4 -10 -10 -12 -12 -18 -17 -18 -22 -27 -15 -12 -9 -12 -23 -24 -30 -25 -27 -34 -35 -241 -263 -215 -161 -220 -278 -302 -322 -337 -349 -343 -349 -405 -69 -fl9 -qg -16 -B8 -112 -121 -128 -152 -160 -160 -162 -178 -7 1 4 45 38 41 38 26 38 117 146 154 28A -151 -102 313 140 140 137 102 -20 -51 -50 -45 -'-+2 -33 -22 -16 -16 -18 -20 -16 -29 210 212 389 351 332 326 327 332 337 335 339 341 346 347 347 352 342 384 3A, 841 1487 1829 IBll 1805 1801 1796 1781 176g 1782 1786 1785 1786 :1:2 -143 -143 -155 -154 -173 -173 -186 -189 -lg1 -206 ~~ :~~~ llg 116 120 124 1,,9 7930 1930 19)0 7930 7930 7930 7930 1930 1930 1930 19)0 7930 1930 7930 :~ :g~ :~r~ :16~ 11~ i~~ -l~ :~~ jg~ j19 171:}4 1787 328 0,(.'1 rllf.'j 1'--:- *~ 1 t ~~"'*~ () 70707 In 1 011) l\1lfl1 n 121712 3 ~ l? 1217 4 1'l15\') I.;'" hl"1,) 1 7t7l r 171717 '::\)21120 n,\ £'02020 7 222222 7t, :'1?7·2 ? 7" ?1..2.2? 2 P ", , 10 11 "" 11, 13 "t, 1 '," In Ie lh l' 17 17 l' l' 1n 1'1 ~ (I ?O 21 n ;.>? ~~ ,)3 ;, 2. q '1 1n ,0 ~Il , \2 "" II ~, 14 ,4 F)7() 7 if) 1nl n ~3 5" 1'11')1') "51 "'51"5"; "515 I 1"1')1'J 171717 17171 7 ?{]2MI1 2 n;; () -'.222.!.2 ,~O n22?{. 7()2IJ.!.i) ;'(2021) 171717 171717 121212 It'l212 70707 707l'7 ll)O71() lO()71fJ L'o71 ? "-rI, 1 7D7l 7 '10 1,1 7070 , 70 7() 7 170717 210720 70'")7/0 hi 4'1 41 <>1 70 ?L)On(, lUI) 1?u 17(171 7 rn 7l 7 T·:'J, \j ")3 'lll ) /t ->S '.," '16 )10 ',7 ')7 71207 71'j07 71'107 717'17 717()7 72r')() 7 72r,07 72207 72207 12--} 13"> 137 112 131 IhO IO'} 141 116 13'2 12<1 112 109 103 In7 113 125 1JS 101 II'S 10':1 11() 72007 'JI-! ')'1 ')1 hO 7?007 7t7()7 71701 h(] n'}('-7 71287 712C'7 7(]707 10707 101 /,1 t,3 61 ill ?4 1A 71507 70107 101:)1'1 li1212 /~,\1')151"i ,'I 7") 1" 2~ ?Lj (I;,F-II CHMl tI~ ')Q 2 ;: 121 12h (:1, LEPt; 1-'11' I.S 2', 2b 2':; 2A :?'5 27 ?1 27 17 53 2(] 21 71) 24 ,..,;;. '£''1 22. 30 2'1 2q 11 '10 29 '27 (3 ':If. 26 27 2~ 24 25 ?4 ?A <'.J ?_, 2,1 11 21' 2,') 21 2' ")'1 ~~) H 2 7' 2 /t 7'1 l' 17 1'-' 1', 14 1'1 1':, 1" l'i 1'-+ 110 I lf U~ l~J It 17 1~ 11 ~ 11n (JR 30 12 18~ 1~ r; n 1 -, 2()Z0ll) n~' lflHj 7::;::" 2r)?0~·I) 7'1 2?2?22 '3'H"i ~":I351'-> 101 ~1 III 11 10g:H 421 2g l;'h 2g 126 23 5')3 27 93 73 8'1 ?H ')0 76 7n 71 74 75 ?IJ ql ht, 9Il 80 fl.l CHAN CH~r. CHAN CHAN 31 30 32 35 CHAN CHAr.. CHAN CHAN 34 33 37 36 CHAr<1 O~,~r-.: 40 39 38 36 17 14 " '" l? 14 31 1 1 L -1 ] 20 20 21 22 21 24 23 24 2', 25 24 24 2h 24 24 24 26 23 21 22 24 24 20 22 24 24 24 9 -? 7 4 I 3 5 -2 1 5 -3 -3 -0 -5 -3 -2 0 3 S " 14 17 17 16 11 14 3 1~ j -3 24 24 24 zq 26 29 27 29 27 24 21, j} 31 .\4 3' 11 l', " 30 0 -4 -1 -7 -9 1 -3 -2 -2 6 5 6 7 3 3 0 0 -1 1" 19 17 19 20 20 21 25 20 25 24 25 " 27 40 22 24 24 20 20 20 20 22 19 22 23 24 26 25 25 27 26 30 30 34 33 30 31 10 2" } -2 -3 4 -2 -2 -2 -2 -2 2 1 1 3 0 28 29 28 2B 26 2b 25 25 24 25 25 21 2', 21 25 24 25 26 25 23 24 24 21 20 23 21 19 21 22 18 17 18 20 20 18 18 17 18 17 19 -2 -1 -2 -} -2 -2 -2 -1 -2 -1 -2 -1 -1 -1 -2 -2 -1 -1 3 -1 29 29 29 27 27 27 27 " 23 25 22 22 22 25 25 25 25 25 25 25 26 25 25 21 21 20 20 19 20 19 19 19 20 20 18 17 19 19 20 Ig 0 -1 0 5 0 5 4 6 , g e 10 10 10 10 9 10 B 7 5 25 26 29 27 29 27 32 29 30 30 32 32 3, 35 33 31 30 33 29 28 26 25 23 20 21 20 2n 23 24 23 25 20 25 25 25 25 24 24 19 20 0 -1 -1 -5 -3 -2 2 1 1 -3 -2 2 c -} 3 -4 -6 -4 -9 -9 -', -5 -7 -3 -4 -1 -2 17 1q 16 16 15 16 17 17 16 16 14 17 15 14 13 15 15 16 17 17 21 21 19 19 18 17 13 16 14 14 11 11 II 11 11 14 11 11 11 -1 -1 6 1 1 -2 2 -1 C 1 -1 2 2 3C 32 29 3e 29 32 29 32 29 29 29 26 28 28 2t 2>1 27 27 26 27 26 25 23 19 17 16 [5 14 15 [3 12 12 9 9 9 8 8 8 11 9 0 2 0 9 1 1 2 1 1 1 0 -3 -1 2 2 1 -1 1 2 2 1 2 6 0 4 3 -1 0 -1 C 4 3 22 23 2e 22 21 24 23 2 /t 23 25 24 23 20 24 26 22 25 24 25 23 28 28 29 29 33 30 35 35 37 38 40 43 43 45 48 47 45 47 44 42 } 3 4 b 0 0 0 -1 0 2 0 0 1 2 -1 -2 -2 0 0 -1 35 37 34 37 35 33 35 35 32 -2 0 0 1 17 20 20 20 19 20 21 19 21 22 20 33 35 33 32 32 33 33 3C 29 31 27 25 24 23 2e 22 22 21 19 2C 19 19 2C 17 19 l' 18 17 20 22 22 20 20 20 22 21 26 27 26 22 26 27 27 29 31 32 32 35 38 35 41 38 35 36 32 34 3 2 3 1 Je 38 JJ 20 1 -4 1 -4 -4 -5 -6 -9 -9 -9 -12 -12 -IS -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -12 =l~ -8 -8 1 0 24 " 2', 23 23 22 20 22 16 19 16 16 16 13 16 15 16 16 24 24 29 31 32 29 31 32 31 28 31 28 31 29 33 33 31 32 34 31 31 33 1 2 2 4 } 1 2 1 3 0 2 1 -1 -2 1 2 0 -1 -2 -1 1 0 ,B 37 35 35 35 32 11 31 31 30 32 31 30 30 32 29 31 Jl 30 36 31 30 28 25 25 23 24 23 22 22 22 23 23 21 19 21 23 20 20 20 ) 1 -1 0 3 1 26 28 31 30 29 31 28 31 29 30 3l 31 32 30 31 3 "3 30 31 35 32 35 34 35 37 39 39 36 39 40 38 41 43 ',2 44 43 41 44 43 42 42 3 1 0 -1 0 -1 -2 -3 -4 0 -3 -4 -5 -4 -2 -2 -1 -1 0 0 32 31 32 Jl 29 29 30 29 2,1 2" 29 28 27 27 28 " 25 24 27 25 28 28 25 23 23 20 20 20 20 20 18 20 19 19 19 16 16 17 '" 15 L, RI)'j rldl"", 2'1 -4 n 1\ 31 12 Till::::. -1 " -13 t, 4 0 0 4 6 2 -2 -2 -1 -2 -1 r:HA~ CH.\N 'h 27 CHAN 28 CHAN 29 CI-·M~ CHA"l 1(l 11 CHAN 32 CHAN 33 CHAN 34 CHAN 35 CHA~' CHAr-.; 36 31 C~AN 38 C,..AN 19 40 *** 21+ ***.;~. **7 ****-* ******"-** *-:<* ******** 1;1:**** ¢** *******.;. ****************>1' ***'" **>11 *** » *'" » ************* *' **-.:> iii '" *** *** *** **' 1 lA ,.. 24 3 27 17 17 19 14 g ,9 1'1 32 31 21 42 18 20?OLO 7,\ 22222? 17 " -17 17 17 11, Ch'\'J :"II!\rJ 23 <',\171717 ;1" 1(; 15 14 '1"1 21' 'lA1717l7 \(1,\1':1151':1 11'\ 121?12 t2fl,101()1() ~3A 70707 7f70707 77 12121,) 11 lP 17 16 18 2') 21; it 2,1 '1] f ..\ 1~ 2\ 2(1 ,;1) OHI'. 2? '0 17 -19 7 3 4 1 37 17 3J -23 t, 30 v} 30 n n 11 17 19 'I 12 10 In 30 1(1 10 30 17 31 3' 24 -/ -y -'l -13 -14 -17 -17 -1 '~ 4 6 11 OJ 34 ?? lr n CHllN 29 0 3 3 4 3 -, 4 'I V, -4 -5 -3 4 11 1~ 12 11 12 13 2/; 22 2n 4 t, " ?2 2" 2 ' 'l 10 1 ,) 7 '1 23 IS n ?2 ?5 2; U,\; ~', [k i?~g~ 71007 112'J7 2:' Z2 '1 22 2? ?.It ,~, 21 ;:'S n ;:7 72 "??26 59 , -3 24 2 I h U ?7 :: :' ;:;q 21' 27 22 22 ' ? 2? l't -2 -3 2S 2t '4 1", 7 7 R -1 -1 0 2 I 1 4 7 I' -1 ,8 ? ' I', 2/· J'i ,U 'j6 n()7'?;:? ?2rl7L? l', " 23 21 P(1 ), CH/J.~I 28 $ -1 -1 -1 l 3', 77 () 11 \l 27 28 ?1 3" 3, CHM~ (,Hll~,' .:0 * ** *" -* *' *()*" * * ** *::.n * *;'< **0-* ***-* -* 0*-*;'< -* ** 0-* -* *-* -* **0 *** * *-*C -* -* ** \~** *\'0 -* *C-* *-*"* *>I<"¢C -* *" '" ** C* ***>Ii 0*-* '* . . *1\< 0**" -* *.\>.; 0-* *i: **-* 0-* .. .,.,. -*"* -* 0* 0 -1 1'-) 7' 2 2' 21 12 26 24 "93 l2071 ? 1,071 ') 1':'071, ~;- t.<.tt" '" *">!'** « >!- *~*1'~' ¢o~ 1'1 1:.n71; 21 1'1 15 10 18 20 1'1 26 21 18 24 20 't6 16 'I 1'1 1'1. 20 15 10 1~ 20 18 21 21 21 26 19 4-:; 15 q 4D 211 If: 11 10 113 29 19 25 23 19 26 17 51 17 12 3~ lA 2-3 13 ] 10:; 20 16 3C 2C 22 29 19 52 17 12 34 16 25 16 12 LR 21 15 36 21 24 33 15 53 15 11 37 17 20 18 13 19 19 14 36 Ie 21 34 15 '53 12 A "14 15 23 13 6 16 18 q 35 lC 26 33 13 '54 10 7 17 ?H 16 27 11 6 20 20 9 31 13 28 31 10 56 10 " -3"/ 32 11 26 11 6 1e 20 7 37 13 30 30 8 56 10 4 31) 32 128 8 5 19 1983111212810 55 9 24016 tl 297319197 3f? 122826 q 567 C 4(\ B ':l 30 1 2 23 19 q 38 12 31 23 8 56 7 -1 4·~ 34 1 34 '5 3 20 15 1 38 11 29 21 7 59 1 -1 40 H '} 31 1 1 20 17 7 38 11 29 24 9 59 0 J 4234'1306020185 4C 11 32 26 10 62 '5 0 1P 32 'J 21:1 521817638827295597 -1 1'1 32 12 28 I) 1 17 18 4 31 8 30 29 9 60 6 7 3f-. 2'1 16 25501020639 e: 31 3210596 i 37 31 17 25 12 7 10 21 5 39 11 29 33 12 56 8 14 45 31 15 27 15 15 19 24 15 43 22 31 36 20 66 16 1\ 47 34 fl 31 15 11 25 22 15 43 22 32 36 18 71 11 ?_? 70 III In l't 11 1'3 1~ )£0 13 ~g 7 S-2 6 "'t) ':0 1; 'i') '5 4 n 0 3 -3 -\ "7 "'7 "6 'ih "i ~ 1 "14 -1 "9 -1,9 21 22 21 24 24 2'1 2R 2Y 11 32 31 11 .31 29 21'} 10 27 31 28 21 27 24 7 12 11 13 14 ~~ ~ 19 40 40 1,0 42 44 44 b 3 2 2 -3 --1 't4 -2 -2 1t4 -5 4b -6 -10 47 49 -} 18 1'1 lR 17 lR 17 In 19 lA 17 i~ 35 39 40 4D 40 40 4n l,2 44 46 50 4q ljB A 8 g 1 3 3 3 3 4 to 3 i8In 8 7 1 5 3 5 2 '3 1 5 5 j3 30 30 30 30 35 35 35 31 38 30.) 43 4~ ~~ 23 25 21 21 21 23 24 24 25 24 24 25 g 14 14 9 q 9 9 S q ~l 45 41 48 47 116 1: f1 45 't5 45 44 47 8 44 1 47 ~r 2C 22 19 21 18 17 Ie 13 Ie 1<) 21 2C j~ 35 3B 36 37 38 37 37 35 36 36 40 38 ~~ 29 29 26 26 26 24 26 26 23 23 23 21 t~ 14 14 14 15 10 9 10 10 9 10 12 13 ~5 71 72 75 75 ?l, 74 76 7', 76 16 80 78 15 10 9 '-J 7 6 p; 10 P; !-) 7 10 B 329 TH:- Lfl4[) <:,Tf\--:,r ,'I\JHf'F~ U:1I"I) '$ LfR' FW: THI~ RJ'j J5 * *"'i' t~;';** *':--* **~,~,***",****** ,:,~.,:<*~_* ~ * ~"~ ** ***** ~**-* *** ~* ************ -* .;.*** ***** ** ***** * ******>l1 *** *** »** ** Cilt,r,j I H I\~! eli \~' CH 1\:'>1 CIHl~ CH/:.~J CI-'M' Cf-ItJ"J C!-'~N Ct-·'\ C~AN ':11:\ J CHA' ~ 21 *"':("*>7 ~,~, "}f,\ 150707 l(VI 70107 114,\ 70107 lZ0712 11' 17071 7 116 22()1,U 1 17 2')n72 ') 1" ?70727 11" 1111 10j!, 1,;31\ 1 Ln In '1flf)73f) 32073::- 3'1013, 122 37117 J 7 12 ~ 12 ~4 'iD074f) 12,l' 1707Q 12'JC 1/4 125 121) 9h 1U10ifj '" 17 103 116 102 10 \ 272727 L~)2 '52 J II ?L222? ill'. 'n?o? r) 1 71 71 7 Ii' ,~ 1'11')1"1 12121 ? 14 7f)707 iC 7r)707 15 , 1212P Ih 171717 ')E,,\ 22222-: n07q 3')(171'1 ~?O732 JU07 ifJ ~' ?3 1'.':' 25 4 27 /6 "n 2'j 25 25 25 2P 47 31 15 51 55 15 15 15 2(! n n 1j 12 10 15 14 16 20 2 77 7, 54 '3 5H 58 17 ",8 76 10 61 n 73 H "7'77 17 30 31 33 3? 34 35 37 36 4() 39 38 *** ********** **** -* -* >Io**I(l:******** *****(1 **** ** ***>1037>t.v* *-* 24 t .. *"' .. -* *9*** *** 80 ** -* ***7 44 41 e -* ********* 48 4 3 23 17 46 , 1 51 51 54 57 -4 p} .\9 -6 -.I - 1 32 12 16 5>i 56 5A 6.0 5'. 51 .l'J ?7 I', 49 51 <;5 -7 -4 ~' I} ~ ) '.\') i •.", -t, l"} 3' ')() 50 50 -4 I' ~2 -" 50 0 ?A 37 35 "I 16 -1 -1 50 ""50')2 " -1 -I 2') 21 16 i2 20 22 11 11 12 1] 11 13 1, 30 7 55 "', 50 q Jl ;") !l , -7 -11 -11 -11 -11 31 17 1, \e '1 6 -5 I? ? -1 1'. 1', "" 56 29 2R **.:' *'* ~*,*~,:;" -::.** *.~ . :<,~* :'* -* *"'** ******** *~ **** -1 -12 56 47 116 57 59 59 60 61 61 64 64 -11 -IA -15 -13 -12 -8 -5 -3 -2 2 q 11 14 21 IS 11 rl 0 -5 -11 -1', -20 -22 -2~ -22 -2] -20 -;'5 -?7 - 30 -?() -28 -27 -30 -2') -32 -31 -)5 -32 -12 -l't -5 13 25 28 19 11 4 -2 -7 -12 t 49 53 50 '.9 50 47 47 45 "',6 55 56 56 58 q 57 59 58 " Sil 58 59 58 58 58 53 52 46 40 50 54 57 60 64 64 6R -16 -22 -25 -2'l 7\ 75 78 -25 -22 -17 76 78 80 H 74 -27 -12 79 8 7 2 4 5 " '. 8 ',0 50 54 55 54 5 3 5 44 42 48 7 41 42 43 40 39 39 37 34 5 42 3R 37 36 J7 40 45 2 3 1 2 1 2 4 4 ,5 3 3 7 b 7 17 15 15 13 7 15 13 10 '1 9 9 5 12 7 5 6 -2 -2 -4 -9 -7 -6 -7 -5 -5 -7 -4 -4 -6 -c -3 -3 -5 -4 -0 -2 0 1 12 11 15 8 7 7 5 4 6 7 1 1 -5 4 -3 -1 G -7 -5 -7 -5 -2 -1 -3 -3 -3 1 0 3 -3 -1 2 0 2 3 2 20 21 19 11 16 14 10 15 11. 13 8 10 4 i -0 -7 -12 ~3 )5 31 34 30 28 2J zq 28 )6 39 )5 39 43 45 42 44 45 45 45 4'. 40 40 ., 43 41 40 40 40 37 '" 38 38 38 35 36 '.7 49 50 50 54 50 57 54 50 50 50 '0 50 50 50 5e 26 25 24 24 25 27 20 28 28 30 30 31 31 35 31 29 3C 33 28 27 28 28 21 2'. 24 21 24 23 21 19 19 20 20 21 20 17 20 18 16 24 23 28 36 41 56 54 51 50 50 47 45 41 42 40 37 36 41 43 48 45 8 8 7 4 4 3 5 J 4 4 4 6 4 2 9 10 9 9 7 5 4 5 -4 -ll -11 14 -16 -19 - l'~ -2) -25 -26 -27 -:n -29 -31 -31 -J< -33 -29 -26 - 21 -14 -9 7 3 -1 -5 -6 -9 -13 -14 -18 -21 -25 - 24 -27 -2f! -28 -26 45 45 43 44 44 '.7 1C 19 2e 19 ,.8 13 12 13 13 15 1C 11 18 21 15 16 18 2C 19 17 1C 3 3 -1 -3 -4 -3 -4 -6 4~ 49 50 52 55 55 55 55 52 55 50 50 50 50 40 53 60 60 n 60 6e 09 15 76 79 80 83 83 89 89 90 92 88 84 78 73 66 81 86 90 95 98 103 105 109 110 116 118 113 111 116 113 lie Ie 17 10 -8 -7 -Ie -, -11 -9 -13 -12 -9 -Ie -7 -2 1 13 11 9 e 3 3 -1 2 3 2 -2 -3 -7 -10 -11 -ll 38 37 37 36 39 40 38 38 36 39 39 41 41 42 34 34 34 34 32 37 37 38 41 42 45 47 45 52 50 54 58 61 61 65 64 67 65 70 70 65 62 60 51 48 57 61 67 72 72 75 77 83 83 88 88 87 91 90 89 . 87 22 21 19 24 25 26 30 )J 34 36 3R 41 45 47 44 39 36 36 34 26 28 25 31 34 34 34 34 36 36 42 4', 44 46 47 50 51 50 51 5) 53 51 54 56 56 69 71 71 73 74 74 75 76 76 81 B1 81 83 83 86 85 11 9 13 12 7 11 11 10 8 10 11 13 13 11 21 20 20 15 15 15 15 15 13 11 13 10 5 7 8 10 11 12 11 12 12 14 13 11 13 9 9 11 12 12 24 23 20 17 19 15 14 15 15 18 13 9 5 5 8 5 80 80 79 81 81 79 84 79 80 81 83 8J BJ 83 7 5 7 6 R " 7 7 7 10 1 q 86 86 10 10 17 15 86 l' 91 90 91 91 93 10 'J 8 9 6 1 ~'l 90 90 H 93 93 93 94 94 95 95 90 94 95 9, 96 95 97 98 101 103 100 136 140 142 141 Ilt4 146 146 146 152 151 15) 153 156 157 159 159 8 8 5 J 7 7 8 6 9 1 8 'I 7 IJ 'J 7 'J 8 8 10 ) 20 20 18 14 14 10 10 8 8 7 7 5 0 1 0 5 ~,.~ *:;\: ~ "" ** **:;\:,,~ -*,;: * *** ** *~ *** t. 0:< '« *~, *". :;\: .~* '* ** *"* ** ** '* 7. ** '* * *'* * '* '* **'* ** ****** *** 01< *** ***"* ***' ** '* '" '* ** *. . *-* »'" ***.:. *1\0 >(I. ***>1< *>Ii *' ¢ ****»I/< 1):(0 ** ****:« *. . * ***** * CHA'J CHAN 21 ~h 2:' CHAN 28 27 C!-AN 29 CHAN CHAN 30 31 32 CHAN 33 CHAN 34 CHAN CHAII; CHAN 36 35 37 39 CrAN 39 itO '* >:< ~ -* '* *-* * .:. ~ *' *'$; ~ {. '* **,:' *' * f-* **~. ~,* *' *' e. "'" '*~' *'* *'¢ '* * '" *" >i-** ':: ***,.. *»* **** *** ** '" *** *" »*'* '* ** ** ** *;'1 *** **., **.. ** '* .. ** '" >It*'* "'* *' *' ** ** ** »*>II» ...... '* ** »***:t< '* *-* ** 0) '" ** 1~7, ~,~gj~~ 16 ~:A -7 -11 j~ ~~ =~ i6 -lj :l ~~ ~1 :~~ Hg :16 84 ~~ ~ i~~ § 0) 1.. 6 41 45 45 -in -11 -In 71707 722()7 117 72507 LI7A 2lJ2')2J) 1') 19 42 42 ')6 41 q ';2 ,5 'il -lff -2'1 -2e..' -24 -2(1 11; 1 ... 0 41 5<:) 'jR -22 llq 13n 131 220772 170717 L!0712 t11471207 g ~rijgi 1~5 ! ~6 ~~~0~~ 2032/fl l~~ ~ii~~~~ t~>r i;{~H~ 1~~C [~~Hs 14't l'i321S 14'5 l'ilOl'i 146 1':>2710.., 147 1'5251') 1:..7£\ 72<)'17 14q 72207 14') 71707 ~~i l':l? 1'l?~ h·" h3t, 1'14 1':141\ J')41' 1'"l4C l~;, J'H',t\ 1'-)7 I,R j~j8j 7(]7f)7 120Cf)fI 17000f) ?20CQf) 270 [)()I) ·-lOUQO') 120r,()n ~5f)C(1() lhgggri 4UCI)f)r1 4~OOOO 4':lnrf'f) l::~ ~:~3g~~; 1';'1 !'Lef10n In(' 40')00(\ 1111 1,,] 1111 Ih1 Id ll,l 11·,2 11,1. nllC]!) j70r;I)n 170l)IJn QOI)0f) 170f)f)n 17nnrlf) hw:on ~?O(]Oil 1'>') nooon 2 ... Cr.!)(l hR 7n,)o(] 120(1fJ() 11.4 ~~:~ 1h'1 tjrigg~; 34 'ii ~~ §i, ~;~ ~~ 36 "i1 33 --;2 v:; 36 3') ~t 2H 30 ~l 32 2fJ 33 41 "2 ~2 52 ')1 41 ~(\ 14 "3 S 1'1 11 ,4 H1 3') 31 ,"} 32 34 ~Z ~; ~{ ~~ h~ /,2 A2 hZ =i~ =~~ =~(l =r; =fi -2;:' ~9 -2'" -2 7 -2\ hO -2.7 h2 1-,2 ~9 ,.,2 f..,-:' ,,4 h4 1-,7 -'11 f,r 57 zj 42 46 6~ -"W -77 :~~ -2(. -2) -2 1 , -2h -30 -2ft -21. -3r' :1'; -13 hit /\t., -':I, -4 7 -J7 -4' -4·, -4. -4'\ -411 1(; E,7 32 7(1 -:'7 7] -JIJ ~1 'l,~ j~ -4(. :,:A 64 64 64 4 17 23 611 67 62 p2 80 1:J7 86 R4 61 64 60 64 64 35 43 42 20 53 50 50 49 5B ~~ ~9 ~$ ~~ j6 )'1 ~~ ~~ ~6 -15 -13 -13 :i~ -2f1 -21 -22 -24 -22 :~~ -6 -5 -5 -Ii -11 -13 -13 -It, -15 :~ci -17 42 72 26 60 -26 -711 -26 -,0 -2t' -?R -?A -26 9IJ 76 74 7) 12 72 72 70 37 17 34 31 413 46 44 5~ 59 58 60 54 55 57 -25 -24 -25 -23 -26 -76 -24 -23 -21 -21 -22 -23 -21 -20 76 78 PI 90 R2 83 47 38 31 0 65 70 74 7:1 77 7'1 84 -25 -28 -30 -29 -27 -25 -32 -37 72 72 09 -22 -29 -<)7 87 10 07 -25 -22 33 64 64 04 (,4 64 64 Ai -59 -52 -4l -50 -"11 -53 -52 -4'-} -43 -44 -3) -73 64 64 60 lOll 60 liD 60 60 S7 Sq 52 112 114 114 132 153 147 151 153 1<)3 155 156 12 3 46 48 161 162 :~~ :~i :~~ :~~ -?h -29 -28 -31 -11 -ZR -14 -41 :1~ -'In _<'it f:J~ =~~ 70 qO flO -24 -<) -'j4 t.7 /,:; hI} .1,7 -17 -lA -?2 -23 -74 -11 -?8 -46 :~:~ f.,H ... 2 =i~ -11 -41 ~~ h7 f,'l -12 -t2 -13 :~~ -4Q -')1 -51 -41 -~"i -44 -'11 -~R -41 -':I,I; -lh :jj -11 -:.l ~j i~ ~~ 'l'J '10 '10 q'} .)2 ')fJ ~;{ q~ 9P 100 101 If)~ 100 l()4 97 ~~ ')1 WI 131 I111~~ 1 'l,1 11ft 13S 11'5 14(l 13" 14() l'1j tv 11'} 137 t~j 11, 13 c , ~~ ~~ ~Z U ~4 84 ;,j ~i h'~ 74 71 70 fl') rf 72 72 ~~ ~~ ~~ ~~ ?h 20 11 » -l~ :~~ -:.~ ~g ~~ ~~ %8 6'5 ~~ ~~ nO 5? ~~ :~~ :~~ :~j :~~ :~~ ~~ l~~ :iq :~j =~~ 48 47 48 50 56 60 -26 -23 -lA 107 104 101 -13 -13 -Ie 50 63 n4 66 66 61 -16 -14 -11 -21 88 82 78 75 86 56 64 -16 j~ 42 46 48 48 §~ ~~ §~ §N 56 ~i ~j ~~ ~§ ~6 51 56 51 50 48 47 71 69 69 66 71 69 70 -25 -30 -25 -2A -29 -30 -2'1 -31 50 54 59 be 60 63 63 63 79 79 76 75 73 70 71 68 -2, -27 R37 61 65 146 59 57 -19 879 869 85'1 81)9 148 145 145 146 /:3P9 Be5 :~g :~~ ~~6 1373 !;IRe Rf13 876 R57 li33 1~~ 74<.J 7f.~ 4~ ~~ ~~ ~r :1i -21 :~i :t~ :i1 :t~ -17 -21 -21 -25 -21 -23 -31 :jj -33 -33 -33 -31 -34 -34 -35 -]3 :j~ -3'1 ~~ gi 79 i~ ~~ ~§ 82 80 17 85 83 85 -le -9 -Ie -7 -12 65 60 59 57 67 73 66 62 61 61 -1 64 59 -i2 :l~ :Z -~1 :~ 80 80 87 86 80 85 90 -8 -11 -14 -13 -12 -14 -18 114 112 110 108 106 104 98 ~~ ~f §~ §~ 60 64 67 67 62 ~~ ~f ~l §~ §~ 156 159 15q -5 -7 -6 -9 156 157 156 161 -; H~ -515'] :i -6 :l -~Z :j 4 0 1 -~ -') -'5 0 -4 -10 t~~ -~~ t~6 H~ l~~ :~ 161 -6 :H -1:5 65 69 60 62 64 65 64 69 14 -27 -25 -23 -22 -19 -23 -19 86 87 85 84 85 82 81 80 92 86 84 81 76 74 70 11 -17 -18 -2 -20 -18 -19 -25 -10 183 IA6 184 184 1135 185 184 1R4 -16 -18 -cO -20 -20 -22 -23 -22 -17 -19 74 76 71 64 64 16 -18 -12 -7 182 185 1 eH -21 -20 -20 Igg :1i 114 -27 ~g Z~ 3 0 4 :1 ~ -17 ~~ ~~ ~~ ~~ -7 -1 -8 -8 -8 -8 -8 164 165 165 166 164 165 166 -10 -11 -13 -12 -11 -13 -11 -~~ :t~ I~I U~ :H :~5 -31 -[:4 89 89 3q 153 153 150 150 150 146 143 -22 -19 -17 -17 -16 -12 -11 -11 -7 -6 2 2 -63 -62 -l:3 -61 -54 -51 -4S -51 -48 -47 -43 -43 38 39 39 38 40 40 41 45 4!? 47 5C 56 -1<1 -21 -23 -27 -19 -11 -17 -14 -13 -13 -17 -14 12 71 71 12 74 77 81 82 84 84 88 86 80 80 81 B4 85 86 90 90 96 96 101 105 -5 -0 -8 -10 -8 3 a -1 3 2 1 a 196 195 195 198 199 204 206 210 213 211 211 211 -21 -21 -22 -23 -20 -12 -12 -12 -11 -12 -12 -12 12'] 27 21 -3'~ 10 69 -14 98 96 114 111 -4 -5 214 212 -17 -12 l~~ llt9 ljd 127 :~~ ~A :~~ :~f -3'1 j~ ~~ :l~ =11 -15 ~l ~~ +~ t~~ :~ :~ g~ ~B =H :t~ 330 Tr,f: Li'.'If") \TA;i. ~~~ T. -*~.~. ":U'·'Iq-<-: IISF,I \') fT' ?t.I!( THIS f('i~l 1\ *>:-:«* *~.**,~~. *~'7"'-':--:'-*""~*;' "'* ".* ** ~ *>:> t ** v>;. '* **0:-* ** * ****** *** *.:. *** *******#* ** * .\j1*********", *** -* '" '" **111 **"'* •• ** .... "'.$ **v **** ~ »**t *'" .... *** .... ;(1-* -7< ?7 29 , I 10 33 35 3R 31 36 * ** -l_~ : ** ** ~.*** ** ')~* **t·;(I'lr}* -*.:- ****** **t **96•• ** 113 .. $*$"'$ 14rJ ** * ,:,***~,* 74 161 764******************* DC 24 -td *'1(1* ••• 7C *******» -13 $ -1' -11 -2? -('1 -?h -"\1 1 /,n 14(.. 1',') I'd -~,l -":1,1 -~4 7~ 14..' 72 74 -17 _1,/, -I,f' -I, J -"'1 -47 -1.7 -I,t -?-l -?7 -?~) -I~' -l? -12 -1":1, -11 -11 -1? -11 -II, -11 -11 -12 -11 <-'-']'J "':0'1 I) 'n'j 5>{()q S"r.r~ S',C'J 'l~Og "i-'r)1l (n'J 'l"C<1 '5'\01 'j .,,()'~ '-.lnq ';, ;()'1 "-'()'J ';t"0'") "i"I;'1 ')"C) 'l,;nfj "i '09 h~*~.'~"~** ** ':U"lrr.<.< lJS[l lr::.p:--' F,l,: "IS 11,~ I:: ~I, 23 1',·' -?~ -4q -4:> -}4 -27 -l'1 -22 -24 74 -~9 -3'" 7b 1/~I, 1/,"-, 147 145 14\ 1 /,<;' 1:;," 7(-' 74 7,} 7'1 f:tH -40 -43 {-.It -f,'} 64 -AS -41 -50 -h1 -(1'-' h4 h(, -f,7 -fiR h". f.'~ I(Tf' I f .f-\ -70 h'1 }It} 7[1 llff-. 1>4 _I·,j -7<) (,4 lIt" 14" 11,7 147 -PO -[14 -9) -102 -In? -112. -113 -71 -92 -l(lu -113 -12't -127 hll "'-' 5h l'·~ ~)4 147 "'0 <;1 14~ In 4 1"''1 In7 <-;7 ')4 ')7 '11 51 ')n 4>1 44 47 1""~ 17 1J 17() 17" 177 lq(; 1!-1(\ -11~ -14? -l'1J -IS'" -169 -105 -157 -1')7 -1(-.3 -131 -1") -7M "i() 1~1 51 4') 4P 48 48 4r', "i0 44 47 44 1 C)") 1'1') 11'> 1'17 l'J() ll~>< Inn 1\1.:) 1'11+ THI~ * P'J\~ 15') 160 16P. 168 tb8 787 A16 QZ7 H4H 845 136 138 14U 13'1 141 144 145 ~54 It>rl 869 164 BRI loR "l'n 17H ~24 1'13 180 gOg '1'1 176 891 1)0177 1l1:!4 SR 17S ~f.~ 56177 P56 55 177 83i~ <:'5 176 H34 ')~ 173 '143 'i7 171 '1'i~ 6f) 161 !.!h'l ')g 168 Po77 h? 161-1 W)4 6'3 167 111 (,"1178 97A 56 208 951 ~ 252 "JRg b(J 251 10o~ "'n 26 /t lOCg I-.n 278 leAe Ii>? 30'3 1112 5~ 312 1117 5') 348 1173 55 364 117g 43 3B4 1089 ')[1 381114(' "'0 )78 11t.7 ')2 402 1226 Sf) 50P. 1297 48 '574 1137 47 643 1403 4~ 6RR 14'.13 <:;2 7')2 1505 52 e17 1'133 ')7 891 1t76 40 1000 I8at> 3~1 1058 19f.4 38 1062 1979 37 1086 ?022 2A 1074 1914 20 :134 16PJ 17 '125 16R~ 22 CJ45 1774 3;) 1011 lR9"" -Sf> -51 7P 14"14,' }l,J 2') -2) -1'1 -":1,1 -45 16 ,**~***>:"* ******¢**f<~. **~,~ -* **~ * *'" (11.\'1 C.HM; ell\ I ',!liI'l ':H'\lj CHA'J 2L -?) 17 Lt,'> 14') *** '" -19 -2"> 72 1~1' -l,h -/,~ 'JT~C> II" -17 -19 L,l'::J n 72 71 6'1 7;:> 7f) 7() 70 72 72 1 /,1\ ':>0 5'5 Sf) '54 ')2 '57 ')'1 1:.0 hO h3 -'5 tli U1fl 14() 14f) 1'.(1 14(1 -?"1 -?7 -11 n'F 140 -lJ--J -12'1 16h 14~ 1-47 150 15C 143 1(,8 146 144 142 141) 145 1413 -40 -42 -35 -36 -37 -32 -42 -46 -51 -54 -51 -5 -51 -4F 1 -46 -43 -42 -45 -4R -4f1 -51 -53 -'52 -53 -58 -43 -41 -38 -28 -28 -25 C 5 9 A 9 7 14,'1 5 150 155 150 150 141 150 149 152 15C 149 -1 -2 -9 -') -14 -20 -22 -19 -1'1 -18 -19 -16 -21 -22 -29 -32 -43 -44 -52 -53 -32 15C 152 11)C 149 15C 1St: 15A 157 16~ 160 147 155 160 166 17C 169 172 17C 168 165 157 142 137 131 130 I1tl 104 9C 104 113 17 le 8 6 4 4 1 -2 -9 -10 -7 65 6e 60 63 63 65 68 69 10 17 14 7C 69 69 68 1i3 t7 61:. 6~ 63 6C 5A 57 55 4!3 40 4C 40 42 4f1 43 45 41 -2h -21 -23 -24 -2':1 -27 -2'-1 -27 -31 -31 -21 -21 -24 -)t; -44 -58 -68 -73 -R5 -88 -98 -103 -llq -133 -129 -129 -138 -116 -70 -73 -fib 44 38 3f. 33 30 30 30 48 40 36 33 2R 28 25 25 24 22 23 1<.1 17 14 17 -2t -31 -32 -32 -33 -36 -3e -3'3 -31 -21': -21 -32 -26 -If-! 2~ 47 42 35 27 -U -22 -26 -lOA -14 92 109 -13 92 108 -1 95 104 -5 92 104 -6 96 104 -Ii 99 lab -Ie 102 106 -13 102 105 -17 104 105 -18107106 -19 101 109 -18 104 105 -19 103106 -18 101 109 -17101 lOB -17 qg 108 -2C 102 III -2C 100 109 -23 q7 105 -22 96 103 -23 95102 -22 92 96 -21 92 97 -19 92 96 -4 84 86 C 83 85 3 82 83 13 89 8R 13 81 99 13 92 91 13 90 94 18 92 91 11:. eB 87 It: 89 89 13 87 8t-. 16 86 8S 14 82 82 13 A2 83 -S87 79 81 15 80 83 15 91 96 13 81 90 14 85 85 14 81 82 11 80 78 13 18 76 12 78 76 12 77 16 13 77 76 13 76 76 14 72 76 25 75 66 3C 74 70 3C 72 70 27 71 69 25 76 81 26 88 96 30 88 94 2':; 83 86 31 82 75 ~7~ 1,< ',?0CI)f) "<;000(1 'i7000() r;7(1)()[J ')70n'10 170Qf1n s~~g;;~ 211 ')'joooo 212 'J70C.)(I 213 f-:no,)1)1I ?11 h(;f)O'J() '11 ,.,C0000 ?ll tr.OfJOO ?141l.?OO')() ~t~ ;~~gg:i~~ ?l" !-'iocon 2lh t,70CO\) ZlA 670000 ?It, b70n'l() 717 70CCOl) 2\7700rlOr) ?IP 7201liJD ~(~ ~,;q ~~i +~g8g8 770D00 Z~gg8~ l~ 1:; 13 14 14 I';, li14 14 11 1'1 14 11 13 if13 itl 11., 11 1'-) 1'1 14 l~ 14 l~ ?;-'h ), '" 7')0'1')1) 771 '):) () Ij0000n 8?OfJO(\ '?6 "ioonn Ib 16 1'" 21 111 1'i "')OOl)n 11':10000 H )nl)Oo "'",)C0'")() ':IS,10()!) 17 15 14 1'1 10 2.:.2 223 tn, ~~~ ?2.7 23.7 177 ?!.7 7!~ HlOono ~~g3g~ 229 <;'">DC'ln ??9 "i"OC'10 77'){I, '}4000() 7~0 ?)] ?J2 ?-I1 734 23<-' ?~t- /57 210 ;'3'} jn ~~~ 23-) hO()OQn 'loDDon 71000n nJR?2....: AI)85'i':i f,fJ P 7 P 7 b r)l('JO "'U() 2) 7 ~(),}5'1"i nl)'}h'}h hll'1h'~ri 8 I) I,h -11 ",~r]fl 41 -"E "i-!O~ :~~) ~~g~ it' ~:i t..-'J- 4') ','i 4,! 1 ')nn'1 'i~O'J ~ \C'l ?~C'1 _~r '5-~O'j ~,"O'1 47 47 4 1t '-t7 so -4 f , ~~ 4~ 41 ~d 3? ~~ 11 13 14 20 16 17 Ih 15 13 11 If, 11 if2 iI); 1~ -'~ ~1fJq -I"' I~A '11 H, 4[) It 7 ;2 7'1 1n 12 111 tn,;> 11:: ltb IlJ lIP 117 112 111 112 (J -3 j -3' -~ \ ')109 '+? 4>-\ 26 24 It: 41 (,2 'iC l~ -2'- ')"f)::j ~~ lA~: t~~ -,,~ ';rrn 2')() 200 204 I'l2 PU tF7 i~~ 11'l7 18h IS7 1Q i 1~'i 11U iP .. ~:g~ -'11i ')'lG~ Itl', l!-l;r :0') if'll) -41 I) l~(; (HM,' 44 48 52 '56 ')4 '1<) 64 9~ r:HA'J CHMJ CHAN CI-A"I CHAN CHAN CHAN CHAN CHAN CHAN 16 If,r; ~,~.8~ -II; l 1'-' 1r 17 171 2')1, '-:>--lrn 5-d1'1 n" t:;'Jllq '5jl)~ i~ZP I">P In~ 1(1/, 15~ 132 -13'~2 -6 -211 -26 -il -82~ ')cl(-;q 24 10 2{\ !hl)() r~f)I~ 5'Jn9 <; CC) f:l 0'1 5 rj ~q ,)'1 S'1 (lq n'1 iJg ';'1 ()'~ 11'5" 0'-1 Gel t~~:~ gi 1'11f~ 1)9 l'l~n 1~14 t~U,1 -~'1'i 1<--;2 'J.,IJ'i 2?iL' 210 7 ?(7) "qril l~~ :i~~ '1'10'1 ,-lOg PJd H)I Lri~ :~~~ '" 10'1 7"1) lf~;' :~i~ -4H3 -"3';, -1',02 -[-171 -10R3 t4~ 12, 32: n,::.,n -2r's7 102 103 1.;g2 ?Q') 66 67 66 66 70 83 35 35 35 35 38 43 40 70 7C 7r: 83 -105 -108 -113 -11q -119 -121 -135 -31 -31 -34 -34 -35 -33 -44 C -2 -17 -13 -13 -15 -lC 3C 31 3C 29 29 28 23 66 67 61 60 59 61 74 6q 66 69 69 69 70 69 41 40 51 53 55 55 81 2579 2699 2716 2733 2863 2894 3034 88 80 77 78 80 7C 52 -168 -188 -184 -190 -221 -228 -254 -43 -31 -31 -31 -2L 17 687 90 85 80 78 71 70 62 60 618 51 1150 50 1188 52 1220 49 1359 461488 29 1724 30H 3 -316 1284 -43 -17 -123 -212 -321 -354 -311 -364 -3<.16 -440 -501 -563 133t: 14C') 1436 1437 1465 1492 -623 -653 -702 -672 -749 -442 -392 -351 -321 -281 -264 -262 -171 -128 -119 -120 -121 -128 -131 -140 -123 -123 1540 1566 1559 15U 1513 1569 15t:2 IS62 1589 11:.77 1717 1808 19C6 19C1 l<.lC9 1947 1956 1<.153 59 66 79 9C 105 113 114 115 104 90 79 76 89 87 94 109 123 136 r)q gJ 2~ ~4 ':-,7 }g';, =tE~ t -;;'h '1 -24 -t'11 126 11h Ij? 118 l13 -f-. q') -1" -1:> 12 pq 1>7 4J 4.\ 34 3?1 27 2(' =tg :; -lu ~g~~ ~~~g :t~~ l~~i i~6 ~~~j :1~A~ :3t~ 40 39 ~~ r-3 37 107 ~l.~ -8~ 75 72 70 69 69 76 1" 12h1 2227 37 I2q1 2269 3') 140R 2317 35 1445 2355 3j 1448 2354 '30 1463 23158 2816072448 ~'; -/137 Ih4 lZ~ -171 -177 -Iq2 -19') -lC)n -1'17 -q?2 -7'i0 -f.'J7 -741 -7')'i -7')2 -1080 -1i'4'} -11)37 -1"'5'" -1t.7') -170'3 -1727 -17"i3 -1775 -17RJ ~~ =iJ6~ ~2 =1~g2 ~6 -11410 29 2b H~~ l~~i 1748 lA67 1flR7 1108 2C37 207b 2227 ~~i~ ~~~j ~j ~~~i jl~~ -~~ I~96 ~2§~ 2224 020062792 :5 2187 30R4 0 2212 312F1 -1 2257 3216 2~ 2285 :3303 "~2227 3241 ~~ -1013 -44 -23 -35 -47 -22 -1·--1 -14 87 126 1311 120 120 118 115 101) '14 tl4 ~~~~ 2235 2111 2066 200f, 1960 1')31::\ 1955 1958 1956 194t- 201f1 1'157 1975 2016 205.:, 2061 2065 2074 ~~ igji 75 2061 ~~ ~gj6 *. "'*"". 31 32 31 3C 32 27 -135 -147 -159 -121 -118 27 26 33 28 '1j()Q ~~g~ -17b -121'1 I{I le 10 3 1 a 14 115 118 lIS 50 48 3'1 -234 -260 -200 -2h4 -2'13 -3r)2. -j51 -1/' :~~: CHAN -31 -32 -,6 -35 -33 -25 ,71113 2072 .;7 1147 213f: 37 1205 221q 3P 1264 2239 4012732249 27 11q4 2058 72 Rl 82 84 '10 ')1 !}4 lRtl 170 I~S -If" -171 -1A4 -177 ~~ :H'j ')"09 'J:cq '1"O'J 5·1 ()q -5', lflO 44 't? 't4 44 45 47 -5~ -/,1] -'-)1) 4 6 6 7 8 6 9 7 fl '1 10 9 13 10 11) 10 10 13 15 lQ 20 20 20 23 13 19 IS 15 15 16 If! 17 2C ChAN ...'62728293031323334353637383940 =r~ 'l-jcq -21 -21 -24 -23 -24 -23 -22 -12 -10 -') 'I'> CIL\~ It 1)'0.-1 -1,-' -113 -I) -10 -11 -11 -IU -iO -10 -12 -10 -11 -12 -13 -15 -1'5 -17 -18 * **'" *-,:.** *** ** * * (** * ********** *-**** *** ****** **'* ** ****(1 ** **** **** **** *** » *$ *** *t"* *»>1'* ** I) -;..:-< -37 SO 4') c;r) 40 39 ** "'**.** ** -15 *.. * -3 212 -) 214 -5 216 5 220 3 221 5 222 5 221 4 223 2 225 3 226 3226 3 226 2 226 0226 -1 226 -2226 -5 228 -7 233 -7 t32 -10 231 -8 230 -10 231 -11 230 -14 229 -5232 5 225 9 228 15 232 24240 25 240 23 24j 23 244 25 24? 28 246 29 24.':1 28 246 31 246 30 246 31 24!l 32 244 32 246 28 24h 29 2',6 27 244 31 244 33 245 35 241 35 241 39 23) 41 239 42 238 48 236 35 221 35 21g 34 21Y 33 220 35 221 30 226 35 22f1 34 226 34 226 IS *** -.:.* -* ** i' ** ***~.1]* . . >:. *.:' I,'J *~,~. ,._~-*-21 *~';' *"d)~ * **~ -* 19'1 *>:: * * **~, 44 *-* **-153 -* * -* ** '" *** **-* *1086 » *-* -* ** **** ****** **** **** -27 ... *«*.. .*** »'" 33*'" "' .. -* 16 *** '" ** 11 ** "'fJoncO 37 2029 117 -128 17 -* >:. ?,)') l'lI, 2{)7 711r 200 2r,"i 71J'1 0) '" ~~ bC ~~ -1~1 :}~2 ~g :~Jl ~OR9 poe9 eOPI) FOSY 8089 2089 SURg BOR9 ~6~~ SOR9 :~~ 11T~ :~~ :~~~ i~2~ ~~~~ :~~* :~~t 3'336 eOfl9 8089 AOA9 80H!] BOfl9 FlOR9 8089 8089 BOR9 :~~ -b2~ -fl05 -5q1 -5Ag -538 -474 -490 -'S09 -514 -525 -532 -525 7970 1':00 i~jg 7g70 :l~~ -133 i~~~ UZ~ 1946 1~ ~6 r~ :16 -Ie -f~ -66 4628 :i 23 §5 22 44 50 43 42 43 47 16 -2 -8 -18 -34 -38 1 2 a -1 -5 -3 20 25 35 42 48 ~g ljj 130 -11 -15 -10 -13 -11 -17 -9 ~~ 5~ J~ 3~ =4g 50 -48 74 -33 613 -23 73 -15 92 3 as 15 9C 21 89 21 116 16 21e 20 531 -2 128C -117 16B1 -297 2218 -507 5145 -581 6423 -794 b423 -1155 6423 -1322 ~~~j :l~~~ 6423 -1731 ~~ ~~ oj! *** .. *.* 19 *- 223 19 18 20 20 20 19 223 223 221 221 222 221 212 18 14 19 20 20 20 20 ~~~ ~i H~ ~Ag ~~ t~~2 ~~~ ~~ f~~~ ii~ ~~ ~~jg 36 2111 812084 69 2234 67 2295 71 2435 812542 3288 2603 94 89 Be 87 80 81 85 86 76 36 -156 -473 -540 -594 -568 -615 -723 -766 :~1~ -854 >l< '" 223 221 221 223 223 226 285 275 276 27b 284 27') 253 172 i~ ~~ -4 -10 -8 -7 -10 -15 -25 =~~ -30 -~J 156 139 133 c:I6 4') 18 -16 -25 -26 -28 -20 -10 -5L -75 -77 -7b -70 -64 -62 -57 -72 -91 -94 -120 -154 -138 -151 -247 -304 14 28 28 27 20 20 15 18 3 -1 -10 13 40 100 173 305 ?89 697 ~~j~ ::~~ --- 2649 2600 2534 2483 2463 2424 2425 2423 2511 2568 2551 2503 2490 25AB 2446 2263 22bO 2317 ~~~~ 2484 ~ -Ill :j~Z -459 :~ §~~ 331 Tllr. L 140 ~~. *"., >!< >:""., ~,T~d~: 'W/>'l\l='~ LSF:J \'-, l!::q': FJK THr~ Ru:-.J IS * *4* ~'O:- ~t< '* **** v~ (:"., * '<-?- »: * ~ *".. * *" **>l:".. *".. '* * >I' **** ** **'" **** * * *",, , ** "'".. '" *"'.$ "' .. ** ****** * ** *** .***.$ {I CH.',fj CHMj (~l CH'\'j Cl-lf.~ (HMJ 43 4;> CH~N CHhr>.! t.'" 4') CH!I~J CHAN 47 46 C~AN CHAN 49 '30 CrA~ 51 CHAN ;2 $' 41"* *•• $.* ... .,. "',. »: "',. ... '" (! *-:jI "' .. '" '" '" '" '" '" '" 1(1" *' CI-'Ar..; 53 CHA!'\ 54 CHAN 55 CHAN 50 CHAN 57 CHAN 58 »'. *** ** ChAN 59 60 * ~ *1** *'¢"70In *** *..:: *.:: *>« ***".. *~*~** * *' *** ** * *C '* * **"..O '" **** * '* '" *** »*** *'* ** ** **.. ** **".. (J" *** '" '* « ** *** *' *".. *** \'I »,. ***;0. "'. ** ....... *• .:. ** .. *:$ '" *"',.,.:+ '" '" '" "':+,.." "' .. *"'"* ** 7 U 0 (] O 0 a a a cae ceo a COO 10; 1 ,') 7 n7() 7 ? 10101(1 7" IfllOlfl 1 121712 ~t, 12121<' 2. 0 1 2 '2 ~:.~ t~~~t~ 'i 2'\ f,t" 7 a ~ 2 2 G -1 1 3 4 4 4 -i -_"_!.' _-.} ii 22 -g -1 ~ I i I 4 1 -; 171717 J~~l~~ ~ 202070 2?2222 2 2. ~~' ~~3~~~ ~\ ig~g~~ ~ f -1" t -~ \ 1'. In Ih ?2 ?a :'C ;u () 0 7()701 7C7{17 ItllOI{) 11l1n1r) 121.?l2 Ih ]1'1 L~1212 13 l~n~F: iHH ~ l~ ~~ 17 ::'1)202'1 ;:()?020 111 -,' 10 n ~~ J~ /3 22 ?2?2ZZ 16 2? 20202!l 171717 17171-' I{' 16 ?? ."\'J '-'2 ~(~~h;A lbII) 11111.... 11'1 17 U1212 I~ jgi8i 7(171\7 1.1 l~g~i0 l~ lit 1'1 1'1 14 Ib 16 1()C71() l2n71? U()711 1~,(171"i l'-,()71', 170717 1~gnl~ , =1 -'\ 15151'1 1)151'> ~2i~~ . ~'f .~) 1~ .\') \' l' 11 ~~ ;,(; 2,' 2'1 2(. ~~: 21 ~ -1 'i'1 61 hI A2 A2 hI ;,j ~~~ f.2 o{, hI ~~ r,3 2', ?i ('1 7'i ~4 ~;; 2' t~ f, 2L ~i ;~gj~~ 28 2":1 25 2 i, 7~ 17 2t. 7? 16 2 1, 7 2 1 7 20072n 2Dn720 170717 170717 ·:,lIt·' (111\\\ 10 17 17 17 1'1 '11 7n707 ')170707 s; 71rl)? ',? 71007 ).., 71287 ',., 71207 ')4 71"507 ')4 71'5('17 .... .., 71707 '1') 71707 -11 -13 -12 ~~ ,7 '57 '1R ~g~gi j~dg+ 72207 7221)7 720(J7 "ir! 72()07 ,)071707 ')4 71707 ;,(1 71':>07 'JO 71'3n7 hI fl2n? 01 71207 1 h . 70707 1·,3 707n7 1/1 707p1 2t:.. HHOll'l ~g ~;tH; "4 171717 {,A /.()20{,C 7:' 2222?Z H2!J20?'J (I(, 171717 II'lA 151'3}:; Itt, 121212 17 f , 101010 7;.~ ~~jg; 10 ,5 25 ;~? 23 21 )j 73 4 ~ 1, -l 1 0 2 5 =1a -t ~ j j 37 34 37 35 36 34 35 34 34 19 23 20 20 20 60 56 64 6':> 6R ~j ~j ~2 ~i ~6 i~ +~ ~ ? 4 37 37 30 ,6 1h 34 i~ iZ 5 ~6 36 34 =~ §2 -2 20 16 If: 'It.. !') ~~ l~ }Z Ij 5'3 t~ 6~ 8.~ lU 3;3 22 ~~ ~~ 19 17 27 2R lq 21:> 18 28 11 2h 15 271) §~ ~~ 31 ·3S 37 27 34 32 ~~ ~~ 21 24 22 24 22 2 /t ft 2h 16 2H 15 2b 15 31 32 34 24 22 22 41 49 ~~ 37 37 301580 33 Ig 70 29 18 71 32 20 SA 30 23 53 3~ 3g 4g 87 ~6 32 34 60 61 66 61 67 67 33 33 59 ~6 at:} 73 7C 86 8'5 75 gC 70 6C 60 46 45 Al 73 71 Sf: 86 .0.3 ~~ A4 74 71 59 57 ~~ j8 2~ ~~ ~~ ~~ Z~ -17 19 l_l -17 -22 -20 -27 19 22 -11 -9 -14 -14 28 27 24 22 22 35 32 3.3 26 24 :~l :t~ 33 33 i~ ~l ji -17 :l~ €g 66 61 6P 61l 73 71 52 57 55 6C -2 -5 -8 -7 =l~ ~i ~c~ 31 33 35 3'1 37 ~i 3g 4(' ~i it ~6 ;t 12 14 17 14 ~6 t~ ~g ~~ 32 f 27 j~ ~i :~ =i~ -1 7 0 5 6 ~g :~~ :~~ ~~ ~~ a 33 ~ 14 17 16 if. 13 12 R !3 C -i -1 :~ -1 -3 -2 -1 ?C 1'1 19 11 14 10 1~ 4 -~ 61 59 62 61 64 62 S9 69 g t, 13 13 10 11 10 20 17 50 48 40 38 62 57 '55 49 48 57 10 48 10 48 't 40 16 6515 37 2620 ~~ ~~ ji ~l ~~ 4 4 5 4 § -1 §2 55 jj 1~ j~ ~~ ~Z Z~ Za 36 §i ~~ t~ If j~ ~~ ~J l~ 33 33 12 33 33 36 31 37 33 41 41 47 27 17 433414 42 30 10 49 40 10 47 37 10 52 40 8 .3C 38 53 5g ~8 ~~ l~ ~5 4q 15 2j~8 3~~8 5 ~~ ~~ ~~ 25948 -1 -1 3 t1 13 11 q 23 27 23 23 23 28 ~~ Ii,., g 2'1 30 26 28 20 23 12 5 ~ ~~ -] -7 3 12 ~r ~~ 55 53 56 55 5'! ')') :t~ :i~ 513 56 60 5f: :~ 1~ 20 19 -16 t,8 65 ~ e 1~ 1~ 26 51 57 ~f 19 15 5 lC ~~ r~ 31 §j 3 21 -g =~ ~~ l~ ij He ja 1':> Ie 16 9 9 3 12 ~ 0 a ~r ~~ 5':> 52 57 55 57 §~ -1 -6 -3 19 :18 24 -10 21 22 53 0 6 2 3 7 H H 27 15 16 15 272'531253622322') 73 2C 20 it:: lq 16 1 10 3 7 9 ~ 0 -~ 3 a 3 6 2e 37 50 55 46 4 26 33 44 52 40 62731455139 C 6 *"'**** ** *** ** *** t<** ******* ******* **$* ***** *** ** ** o!I*** *1\<$ ****** ** ** »** ** * *:rIo:rlo ** ** **** *¢ ** r:1-l~N 4") 4C "iO Vi 3~ 33 6 ~6 ?n r,~\\'~ '-:'ljil.1\ -1':i -IS -16 -17 -16 -17 -If, -20 -1'"; -15 13 11 12 12 12 11 1Z 14 12 14 1"1 1') 2.11 21 ?l 21) 11 1" ;'1 21l 11 17 -11 14 I.:. -1? -11 -13 -1'" -14 -13 -lh :lj -14 -1~ -11 :::t~ -12 -14 -13 -16 -13 -13 -11 -13 -1; t~ lfl r~ 19 18 1(' IB 21 16 18 1:1 {7 1',(' ;';2'1;'>'; <0'\ 2':>2r.j2'i "127272.7 ~p 2.72727 "2 ]OlnV) f,2f1. ·i030~G ,q 3?323::' 3?3 6 73 .., 2·3 ".. ?S -:4 .?4 ~'J~S~5 ;; ?q :~4 i~~;J~ r~ 2t 2f, 2 1• 24 ;.. 21 7<. 2') 2' 21 2 7 7 .~~J\ ~~;~~? 2,~ ';::'5 2j 2<' 27 Ie 11 12 11 11 13 13 11 12 11 77 I2l21? 77t. hlS1':> 71' 17171? "4t 3 -4 -0 :~ ig a -1 -3 -3 -8 -7 CHI'~! .'f6 CHiI,'\ 47 (!-1M, £,4 CHMi 41 Cl-A~~ (HAN jO ~l CHA.\I ')2 CHAr-.; 53 CHhN ')4 CHAN ~5 CHAN 56 CHA~ CHAN 51 CH/IN 59 58 hO *' '1<;0715 " ~,,~ *~ ",~, *'* ** *If>*,~~",;, ~*,~7*" **~..,;:, *2~,. * * *..; 71 *",:,~, f.: *- *"* * ** * ~,;."* >:<~. *** ** **.f. * * ** **** **** * **,. **** ***** **** ****.. ,. ** ** ...... ***:rIo ** ****** ...... t* .. >10""" >10 *" .... :rIo .. *** If' 27 1') 35 20 18 a 8 -1 e 23 33 .38 42 33 '5 ..,,'1 t')071') it' U0712 16120712 q 100710 37 1'J071() i~ CHfl: I,? '~1 j~ 3C 32 ~g 7"*** "~**** ~ ';"*~·.~**f·* **>T ** ,...*~ ** t ~,>:,.t ~ ****** ** ~,** t , >(. ':' 27 l~ 32 31 31 1~ IF 23 g 33 34 23 to 27 -7. -2 22 16 10 If, 1~ ~1 -2 ~ J4 17 <,,, 3 2 ~ ~ g 5 24 21) 1 11 6 IS -2 ~ 23 1'i 21 21 Ie; It. C 5 7 12 13 -(! n ~7 - 2 6 4 9 11 -1 31 30 32 1[} 27 11 -2 6 7 10 10 12 13 10 i~ 31 .16 17 Aq l~ l~ 3 3 C 0 0 ~~ l~ ~~ ~~ iZ 21'0 Ih 11 24 13 £; ~~ ~7. i~ ~~ l~ i3 ~~ l~ 172(12.',74172615312114 20072'1 ~(; '21-, 23 2'1 20 21 40 41 41 2<' 21 ~: ?b j~ i~ ?". i~ i 1 3 2 a -Ii -h -4 a -2 2 1 -2 =li 3!'l ~~ /:It<. fJq 1-.'1 1 [) -4 0 -12 -Ih 1'1 '\(, ~t hi. :l~ 3~ ~b hk :J ;£:n ~! 2h z·, 1~ 1:' 7' ~~~ -10 U ,3 ~l :: ~' 1 4 ?: Zh 21 ~~ 0 -4 -4 -5 -6 ? ~c L0 1 1 12 13 hl f.;> f,7 t2 f)2 ;!! 0 2 -.~ ~ 20 ?2 2lj ~j ~.\ II' 1) 1', }i. lIt L! 11, U L' l~ 1'1 11 tl 1" l' 1(· l~' 11 11 1'11 14 11, 72 70 72 "1 71 ~3~ PI (1) ~lf, 2tJ 014 87 '14 Rfj 2(1 'l4 8'1 Z[ 2P 27 .g7 q4 'lR 8'1 R7 89 72 28 2'-1 26 27 2? 2A 21 q<.; 14 Pi If< 21 1':> 17 11 13 Rfl ~~ p"~ }~ )4 q7 l;,~: Q~ :'!JO ·n qg 'n <1.J '19 17 (;~ 7P. 7g 1/\ ~1 l4 j 5.?Sz 27 21"· 10 21" it r·; 1,0 15· 21 lh 11"l ~* ~~ ?5 l~ 17 lfl 21 111 31 H P S 15 1'1 27 24 26 2'1 26 ~~ 19 2'2 20 21 Ib In 13 14 12 11 ~ 3 4 7 8 13 11 14 13 16 1~ 25 75 22 1') l~ 13 q 7 >l 14 1') 19 16 ~~ 2~ Ib Ib lq If) 14 ~~ 30 30 l't 15 14 12 14· 14 14 14 14 14 It> 13 7 7 5'5 57 54 55 56 54 51) 55 'if3 5, 52 '53 51 51 t~ ~ f. j 1 2'5 21) 27 26 29 28 30 30 32 33 39 40 37 38 35 33 33 15 lZ 11 H1 g fI 10 9 6 9 j~ ~§ q 3b If) 35 30 29 31 30 7 11 12 9 1 % ~6 jg ~ ~~ 34 30 30 71 72 68 68 oq 71 71 14 17 8 11 9 11 10 12 l~ J 7 7 lr If) ~~ ~~ j~ 72 10 11 13 17 15 4 6 5 10 12 10 11 11 16 16 23 20 23 22 21 33 33 33 30 31 39 34 35 27 40 38 42 3R 46 4? 50 52 60 59 47 48 ':16 56 64 62 71 70 78 75 30 30 37 36 44 43 5C 53 59 59 47 46 54 54 61 6e 69 66 74 73 12 17 11 Ie 8 3 1 1 -5 -5 29 28 28 23 21 20 15 13 9 8 30 30 30 21 23 21 18 18 13 77 8A 69 65 55 5'5 44 44 39 32 12 12 R 13 95 94 84 81 69 70 60 60 55 49 28 31 20 26 69 70 60 60 so 49 38 91 86 79 17 09 6f: 54 56 50 -17 -11 -13 -5 -7 -) C C 1 14 1t; 15 12 -3 -3 2 3 6 5 11 12 11 21 30 2g 31 29 :1 16 -1 13 -7 b -211 2 16 3 20 9 23 12 28 23 24 28 26 20 16 10 8 59 59 2C 13 Ie 35 37 36 75 7", 7q 79 89 81 95 C -1 -7 -7 -9 -Ie -11 2 2 4 A 10 ~§ ~j ~2 ~~ ~~ §~ Ij ~6 38 35 27 9 9 3 1 l~ ~~ 31 44 24 21 19 24 ~~ 7 28 30 45 26 40 6 24 31 48 30 49 8 25 43 54 34 55 62137482946 4 31 28 41 23 41 3 2A 20 34 16 33 1 33 10 21 9 25 2 34 4 2C 3 18 14 14 14 16 11 10 7 ~~ v; 19 21 23 20 11 16 14 ~~ 68 71 68 l~ 11 11 q 9 6 6 §1 '31 20 24 25 24 25 47 50 SO '5'2 51 52 't9 ?::.J 2f:· <} ~~ 21 23 22 19 17 6 5 7 4 2 -) 3 17 15 14 2;, 28 31 '2') 30 'to !~ 27 25 2') 17 20 20 17 2~ 23 22 i~ 1h 45 47 411 48 48 53 '52 51 53 52 2.3 24 .~j 37 3R 3R H rJ 39 42 !~ 36 3q !r 56 ~~ ~~ 30 37 51 61 65 10 28 27 29 28 26 58 60 66 66 13 77 83 83 81 84 84 90 r::I8 97 58 59 62 62 61 1::8 75 2P 95 107 87 3~ W ~~ ;~ ~~ ~~ l~~ 40 45 ~~ 16~ 106 ~e -16 -18 ~g § l§. ~t ~~ ~~ j :~~ -1~ 31 33 31 ~ri 18 18 12 11 10 7 3 r -2 45 37 38 29 30 34 28 27 20 18 7 9 9 13 11 17 15 1'1 10 9 q 29 2<:J 27 23 20 19 12 14 11 q 1.3 13 12 15 17 16 19 18 IB 18 2 4 4 3 5 .3 5 7 -5 9 15 10 10 13 0 -1 -1 1 2 0 2 2 -10 3 10 7 9 11 25 ~~ ~ ~g 2~ j~ 43 43 43 46 46 45 50 ~2 53 ~~ ~ U l§ q a a -2 -2 :~ -10 -13 -11 -10 -10 -8 -6 -7 -15 -3 0 -3 -4 -2 3 t~ ~6 20 25 23 20 20 20 17 LA 25 17 16 17 15 12 1~ 19 9 7 24 10 2 29 10 0 2190 18 5 4 11 -3 4 10 -5 8 4 -11 8 2~ 36 37 32 l6 42 42 41 41 47 45 48 ;~ 55 -l~ 1~ 26 23 20 16 13 14 32 30 5 4 5 1 0 0 a ~~ ,2 30 35 34 37 l~ 44 l~ -~ -2 332 THf UHIl) STA[,f **~: **' ** *** NlJ~Ht:1{ 1j~r:U '\S lERli F!)h THIS RUr-1 IS *** ** *** ** * '* *""* * *r. * *** »* ~ . . ** *** ** '* .. *:';: *** * *.. ** ** *** *".. .. '* .. '" *.... ** *** .. » *JjJ .... *** *... **'" -'it** ...... $ $1)1" *' '* *** *** ** .... *.. ** -* *.. $",," $,Q CHflN CHM! 41 Clll'o~ (f1f,'1 4~ 42 CH'I"i CHA"J 1,445 4f1 CH~~ CHAN CHIII\ 48 47 CHAN 49 CHA"'J 50 CH,A1\l 51 52 CHAN CH~N CHAN 54 53 CHAN 55 CHAN ')6 51 '* *')4h *** *~~~, ** *' **' * *** b.. '1= *** *2,'3**** . . 1.-, *** '* * '* A6 ** *.. ".. .. 31'> ** ** ** **2 * .. *.. *1**,. .. *613 **".. *'" **14.. \Ill .. " *..2P** ** **ge*** ** *** ** **.,. ...IOi: '" ** ** -2C .. '" >l' **** -1 III '" "l'l153') IDe e7 "i,e ]">1'535 h 2'1 tit P.~ 36 4 11 73 13 28 97 108 88 106 -2C -1 (t (1'1 ~iSr., >if iq if! fl'} nnn 25 H ?5 6 28 1?"i 9 ?5 7 25 A 25 3 2" q 27 7 27 h 7'; I) ~73737 151531j 32323? 30301n 272727 2';J2<;2~ In 222222 'H!\ 202020 J2 171717 It'll 1515\'-) 'n 121212 e)l. 707U7 )'-1 70707 '1')1\ 121212 ')1 Hfo, J'l 11."3217 3~J1~j~ J7~n7 6') HUIl0 ~7101() ':> ~7r)7!17 "I l~:~fo. ~jg~gj llr~~ ~±2jgj ~?07Lr:; ll'l 2707"27 1:::rl "1()07.FJ 1/1 1207"l2 liZ 3)07~S 123 n07?7 121,\ ',0074{J 123'\ 3707J7 12~[ ~~gnJ, 32073';' U"J ~()073r l(f. Tm LllflO STA-:'L 2<, 2':i 211 ~2 2/1 25 15 ?7 ,")1-, ?o-l ?'J 4 2':< 4 75 2 ,4 12'1 '2t:; 2t'l ; ~ lilA 11'" 2 2 4 t:l~i, {H~t~ ISC71l7 l()'~ 70707 11'11\ 70707 II" l?0712 II(, 1707t7 It7 n07?2 2(: 23 24 4 2 4 -" " l(JC 17172.7 l!J(),\ -1727?7 l')(nl127{7 1 jet: 1727?7 1111 J7?22:? tnl,\ H22?2 1'12 171717 11)?flHl717 1!J21) ~7151'-1 1')2(. 371'51') 1(]1r' I(j:;lL I,J4 'J <; 1 H~2~? )1 24 _, 4 1 ~(-, 111717 If A 2222?2 ~7 2727;;'7 'J7f-l h it " -1"1 -5 -7 -7 -7 -7 -7 -6 -5 -7 -7 ~~ 27 ?7 J,:> ~"t ~~ n ~O 1/: t." 4') 47 45 't·' -P. 4f3 t..g <)1 1)4 1)5 ')4 -3 -3 ,9 '15 =~ \lUf.1PE~ ~~ US[!i 1<.. 1': 14 II. 84 qR Q4 P.4 f~4 i/) 17 1" 14 84 1'; Hfl ':q cHl 9h 17 >i7 1·.) 1" If-. '10 '18 ,.,~ l'j If.!, lA 1... 11 1..: 1, L... 1'l lt 1~ 11 In Ul 12 L:' 1~ tt. l~ ~1 1'\ ItJ 1::; 13 :i 1,Q, 30 1h 1 -1 ~i ~~ i;~. 7 "lC 0.<;1 p~ i;: 1,~ 1 1 3 4 7 13 14 20 22 A'1 ~H 182 lAo lClO l'n IT3 lqf ['15 lqf-1 ? -~ -3 4 21 Ii 11-1 17 15 12 11 1 -1 61 FIJ'~ ~ 0 -3 21 20 17 19 15 15 19 17 2'1 ')H 511 "in 5R ':Ih 56 2lG no lERr] g ')h Fl If) ~ 0 -2 ~~ ~~ 60 ')6 61 jii -l0 41 41 56 1< ~6 1~ 15 17 ~[ t b2 THb R·IN 72 73 74 73 73 75 76 76 77 81 8C flO P4 CJ2 13 14 12 13 11 12 11 9 10 11 21 25 26 27 28 ::\1 '1 33 31 36 38 40 3 40 4 11 12 14 14 14 12 44 40 36 3b 36 30 107 110 104 97 90 83 1, 69 62 5'5 4R 38 22 39 52 6'5 80 95 106 113 120 108 115 121 109 101 q4 'H 79 73 66 62 51 45 30 62 ;., ., 19i 107 tOil 108 tg~ 19b Inl) 105 142 13R 131) 131 12q 127 127 125 125 123 122 121 l~g 131 131 :l -2 ~~ 50 50 21 3] 33 25 -2 -3 5~ -1 0 14 11 14 14 1)1 53 5g 51) 48 40 17 21 21 23 22 20 21 36 37 30 2q 26 24 30 24 23 e5 55 39 27 23 18 13 7 2 -3 -10 -10 14 14 38 43 -19 -17 -6 Y 1~ l~ ~£ §~ 40 ~~ ~~ ~~ :~~ §i 45 43 34 ~~ il 33 31) 69 66 53 45 38 34 21 24 19 14 4 4 =18 -9 -9 en fi9 9C 8.3 11 1') t5 51 53 4C 39 32 1~ 4'5 53 t4 14 89 C;9 10'5 llC So 8't 81 17 7] 63 63 48 lea 43 40 ~2 26 25 11 lZ l~ 19 17 5C 45 3'> 25 18 15 7 3 -3 -7 -15 -15 :~~ -21 -21 It4 117 11C leI 94 89 81 13 65 6e 51 41 26 bO 11 81 95 10e 119 128 133 116 le3 101 9tl 91 7f! 1R 65 61 5~ 54 :Z 38 34 2q ~1 ~~ 29 24 67 511 47 39 31 25 2C 13 10 C -5 -6 :l~ -16 -it: -24 -2t: -21 -17 -14 -9 -1 -2 1 7 11 17 22 28 2C 12 C -2 -12 -17 -19 1/1. .. " 58 ~r:;(]72'J -tJ ~5 220722 170717 120712 70707 707117 1~4 7121)7 l~"i 71707 l1A 722(17 1.17 72'507 117t" 202'5211 1 ~Q 20272() 131 2'13020 1'.. (' 2.03220 141 203520 h2 ~(nT2(1 14?t. 173717 1421-' 1':i371" 14'2(; 1»371" 14" 1')}<;1" 14'. 15321'> -5 -t, -3 "5 '1'5 5'; '51 itO 59 43 CHAN 47 l~~ 1t,7 t~~91~ 1')2~15 72')07 14Q 72207 14'1 71701 lSU 71207 1;::;1 70707 1 'J? 70707 1 J?A 120000 153 170000 1~,3A 220000 l(t7t. l-i', 270000 \':411 30000n 1 :-14 H 320COO 1 :'4(. -'l -5 -" -') -':> -4 -5 -3 -3 -5 -3 -4 -'J -4 -4 -6 -" :~ -1 -3 -1 -2 -1 0 0 0 (1 n () -2 0 :\H 1, el,'") -12 -12 12 14 f,C 02 h2 '32 64 /-'1 -22 -210 -30 -23 -lg -13 -11 -/) 14 1':> ~2 16 3'J ~i "1 '.7 '+8 'in 0 0 48 47 1;100()0 400001) Ihl HOQno 1611\ 370000 0 1 (1 -1 1 2 4,/ 47 513 ')11 'j,; ')~ 1 ,_, pI 170000 lQC 170Q00 n "i9 "iy '>'{ -5 J.,2 l~t~ :.~ IhO H338:i 350()()O 11,2 lll3 loit 27C0f1n J h" II)h 17000n 100 11,'1 70Qon t 20C(j'1 }1)7 320(1)0 nooo!"; 12Cr)Of) (1 () n -4 -4 -1 -2 -h 11 07 36 f~O ~6 0 42coon ',5Dono It 50000 '150000 -4 -'i -t> -v -14 -12 3A 17 40 37 44 '+3 ''5l '-10 50 19 'tf' 0 1.,7 1'-18 1',r\ 1,)1-1 1 ::i') -,~. b4 R4 79 1C --10 "B 04 ~~ 35000f) 370800 400000 7 11 7 -4 -B -4 -1 -2 4 7 7 ;> 3 4 1 -2 14 1'-l6A ',DCOO') 1 'l5 1 -1 7(' -1 1 hP 71 '1 '.)2 hit WI g~ h4 ~~ 1)3 ~6 1)3 Po :f, :l~ :i3 J " 64 1)4 nR n4 r,7 10 13 33 17 ')'1 CO '13 2U 21 22 It} 17 1" I ~ ·20 27 25 22 27 1'1 9h if' ~~ -~ '16 ')5 1'14 11, d 1 60 53 55 5b 54 49 45 44 36 34 33 26 25 54 58 57 58 50 47 43 40 37 36 27 25 40 20 20 10 31 37 41 53 58 60 12 4Q 4':1 47 43 37 35 30 29 25 23 -1 -4 -3 -3 0 2 5 7 8 12 1-l 13 17 17 11 19 7 27 15 23 17 20 1') 16 30 11 37 8 40 0 40 0 48 -1 38 -1 29 <) 30 7 205 21 6 11 10 10 9 f3 1') 615 0 17 1 20 3 3 12 q 11 17 57 27 49 31 43 37 33 41 22 52 14 60 10 6'J 60 6 66 62 13 58 54 22 49 44 21 413 42 22 43 34 21 38 J1t 30 33 22 28 33 24 41 25 21 3825111 1t5 20 11 46 22 12 24 26 2e 53 53 60 9 10 7 2 1 -3 :~ :lj 7 9 47 57 68 79 bR 71 71 71 11 60 61 94 96 9q lC3 105 lOb 107 111 III 113 112 113 -3 -3 41 52 61 72 79 85 92 97 102 110 111 106 -13 -13 2') 40 49 59 67 70 76 85 90 99 100 97 7 0 -2 -5 -12 -15 -12 6r; 112 112 84 77 75 67 -3 -13 -'1 -7 -3 -3 ~~ ~6 ~~ ji 3C 29 51 56 5e 63 be 66 bb :g 71 ~~ ~Z Hj l~ ~ ij 8b 90 9R 103 106 114 115 110 1~~ 87 7~ ~ =Z ~i :~ ~g -10 -11 -11 21 23 28 ~~ ~i =iI 24 25 31 28 19 14 '1 =16 ~Z -'j IS CHAI\,) 11 11 11 »** ** *.. CbAN **50.. *.... **53.. '" *......45*...... '* -4 '" * 48 Cl-'AN 49 50 54 >} *** ¢ »»*";\ *»*»* 55 56 5q 56 5'1 58 4>3 43 36 11 26 29 20 26 22 20 i6 14 15 16 16 20 -2 -") -7 -8 -13 -II) -16 -20 -23 -2'1 -23 -11 -23 -17 -16 -lti -26 -24 -'2"i -23 -24 l35 13R 145 148 149 150 151 155 1513 158 150 151 154 Ilj6 lSR 161 156 l63 163 163 163 11 7 2 2 1 -16 -19 -22 -23 -24 -19 -16 -19 -19 -18 -16 -27 -23 -26 -25 -21 48 50 58 65 70 A7 73 15 78 19 6R 68 70 72 75 7q 75 80 82 B2 Ae -17 -13 -10 -3 a 18 36 56 74 87 70 80 90 102 118 412 421 430 441 43l 419 -5 -5 2 8 11 30 47 69 88 98 81 qO 98 114 125 138 136 139 146 136 126 ,l ,0 -24 -27 158 167 -24 -27 77 87 384 40l 91 l09 45 53 n5 Ill=! 54 51 44 36 -27 164 -27 lS9 -33178 -2<"1 182 -2h 181 -21-, 177 -23 177 -10 17'5 -28 -23 -26 -26 -24 -25 -19 -16 83 329 79 296 86289 83 30~ 80 328 79 347 77 367 70 385 51 30 21 40 54 68 83 91 -17 -15 h2 ~~ ~~ ~~ 31 ~j 26 16 18 16 ?3 26 2g 2R 33 ~R 41 41 45 4P 51) t>2 69 7r;, i~ :~~ :~~ :I~ :[~ H~ 192 I111j~ th~ -11 168 12156 14 155 14 1'57 lit 158 lZ 1~8 7 162 7 165 20n 167 21173 1'1 177 Ib 177 If, 1d2 IS 17~ 15 1'36 12 IP7 7 193 1 196 -6 f~~ :~r :~~ ~8 ~~ :l~ r~ :~ ~~ -11 4 4 4 3 2 -1 -4 4 10 g 11 10 8 4 0 -3 -9 -~§ 65 m m ~2~ ~1a 42'-] 2~~ ~~ 19~ 12C -21 -2C -11 -7 0 1 27 41 f:3 75 59 67 77 lC2 lC8 ICC lC3 108 99 89 Sf: 91 IDA 120 131 l26 130 133 l24 114 2 -4 -7 -8 -8 -2 1 106 105 102 100 93 96 83 73 63 5A 63 62 55 48 42 36 33 36 33 38 43 73 94 16 11 60 53 33 II 4 20 34 49 64 77 4l 9l 51 101 59110 53 103 43 98 37 91 3C 82 26 12 e!! gS 58 =8 20 0 -1 12 28 42 55 65 ~~ 91 -11 -12 -4 0 6 21 40 59 80 89 n IS! 81 ~X ~~ 107 t~~ ll~ tjZ 139 ~~~ ~~~ ~iz 54 506 160 123 40858 57C 539 313 37 865 584 518 393 38 865 588 595 399 40 1356 ,81 58'1 398 43850575582390 48 837 566 573 381 47 B3A 567 571 384 45 841 1)80 581 399 44865598607418 43 850 5A7 598 4C7 43847582594407 4€ 84C 576 587 401 48 A25 568 512 389 57 194 552 556 ?16 58 759 536 532 357 6'5 716 516 5C5 331 73 670 491 471 316 ij ~~~ 63 ~6 62 6C 56 53 43 31 20 16 22 17 17 f! II ~: ~~ ~g ~i ~~ l§ ~t 8~ IZ1 14 63 a 53 Ie 90 9 8~ 11 8~ 16 93 21 98 23 99 23 101 26 106 32110 36 113 33112 41 121 4C III 5C 132 57 140 b6 150 77 162 ****** »* $ » *» CI-AN C!-AN CHA~ CHA~ CHAt\ CHAN 57 58 -31 -27 -48 31 40 -21 -ll -20 -13 -5 6 10 20 -35 -31 -25 -15 -6 -1 7 17 36 46 40 )4 34 29 27 39 28 51 62 61 59 59 52 47 48 56 76 70 70 67 62 5b 47 40 34 47 58 58 55 55 53 47 46 56 74 71 70 70 64 51 50 43 31 -30 bO :H :B -lO -12 ~~ 32 Z~ 50 55 53 54 51 ,,9 43 45 54 66 60 60 60 53 47 39 30 28 ~9 :~~ ~~ ~6 ~~ 57 49 42 29 14 -4 -5 -12 -20 -28 -29 » -1 -1 -3 -6 -11 -21 -30 -38 -32 -32 47 36 22 9 6 -1 -10 -12 -19 10 12 6 1 -1 0 -8 -16 -21 -19 -15 -18 -12 -16 -10 0 6 14 25 60 'It 4 6 q 15 23 28 35 36 40 42 40 28 27 29 30 34 33 26 34 38 39 37 64 54 40 28 10 10 4 -4 -10 -17 14 10 1 6 -2 -3 -lO -16 -23 -21 -17 :~~ 59 It. "' •.•• v" *.. ****** * *1 ***'" 61 *** '* >1'. -1 *** .. *136 **:+ ** ..... ***. ** 44 * '0 ** '" -14 *,. »*.** **:+ ............. ***"* »•• ., .... 1\1 »$.** '" 1 20 !-IS 99 74 32 15 Db 114 74 _',4 fl 17 fn 27 123 7it 3f,., 1"i R4 13 30 128 7P 41 " 16 j-\Ij 12 28 135 7g 1'5 10 15 AA 12 30 121 77 2F lA 14 91 10 33 9f. 105 77 ?7 16 12 '12 q 34 94 104 °0 2~ 11) 4924 V't 88 qq HI ?1 If '+ 92 4 3b 86 94 79 1{ 76 ') 18 ] 40 73 81 77 11' 23 6 q7 2 40 7') 84 gr 12 31 4 101 "3 42 59 69 "111325 1A 1405967 H2 f~ 15 1 101 -1 4t; 50 01 132 7 ~? 3 102 2 47 49 59 11 1', 10 2.. 2'J 1~ Ih F 1,'" 111 37 36 35 34 11 21< 27 23 2l' 17 lil CHAN a :~g :~~ ~Z ~~ ~~ B :g 37 ~8 19 n 15 13 12 10 14 17 17 20 20 24 24 24 27 28 34 3A 44 51 §~ 333 TfiF LOA["1 *0;: '*" ~TII.Gt 'HJ.~\13fQ. I~ 7ER(, FUF, THIS RUN USFl, AS *.. * ** ** .. *** '* **** *i<¢ *** **** '" * ** ~ .. '" *(\' *t .. *** '" *...... *1)" ** ** ** .... >II *....... *",,,,,:0 ****'" *.. "'** ** .>\11 .......... ** '" *41 ** ........ ** .. *..... *...... '* ».. st »"' .... $:. ** .... ** .. .. CHrV" CHA\! CHAN 4"1 41 CHA~ CHAN 47 46 CHAN CH.lIN 4" 49 C HAN 51 50 CHAN 52 CHAN CHAN 54 53 CHAN' CHAN 55 51> CHAN 57 *.t~~ CHAN CHAN 56 60 ** .. ** ****** ***** .. *** ** ...... ***"~,,, *.. *** *'" -* ...... *........ "' .. ».... ****., *...... '* ...... 0: ...... "' ...... *.* .. *t***.*.* .......... *11< ............ "" *.. *....... >II .... " " " " . " " " " " " » *-* .. .. Ij~A ggggg g1 j9 -12 72 -1) 213 2,4 237 b8 -iP -17 234 231 11 13 h6 11 66 1'~0 -302222 272'l22 0 I} 70 1-" 22.2222 3 14 ~ t~~ ~~~~~~ ~ ~ W' m656 r~~ 1bgggg IH7 12001)() g3 1eR 1"9 3»0000 noool) l~gA 370COO 1 '~'l'\ noooo 1 ','lC HOOOO IHQI) 170con 11\'1E 37000(1 l,l')t: Hoonr') 111'1/- HOo(H) lW1F 370000 lP'J; nocon 0 Z 5 6 1 2 1 a 0 () 3 g -6 -1 }~~H ~lgggg 1'"H -1 (tlOOOO t'{j ~jgggg 1'13 4700UO 1'I41100COO 1')4 5000no 1')') ~OOr.OO llA 400nco 0 0 -1 0 m mggg l'~C) -~ l'jq ':120000 ">20000 a -2 2JO ':I'">OCOI) -1 ~~g ~~ggg8 g -,3 -1 g -1 ~~g~ ~~gggg luor, ')'l00I10 ~:~g~ ~~gggg 200!: 2Ul 2()2 702A 203 2U4 55000n 41)0000 20COOO 20000n 300000 400000 -1 -1 0 0 4 T!lF LGAD STAGF: IW/>lf1Er{ l~ -14 2'222< 2722>2 302222 32222: 352222 3727..2? 17') ~ fig 177 172 1 Po 114 175 4 2 2 0 1 0 4 l~~ ji~n~ i~~ blj 220(1UO 17h =tl U 20 19 21 18 18 lil 17 171 1711\ 22000f) fl8 67 70 -13 -i.2: -10 -12 h6 -17 1,5 j~ =13 lR7 ?12 231 231 !3-~ ~~~ t~ i? =it, ~~Z -17 rH g :H m 2~ :~t -2 /t -2'. -22 -23 -17 -1') -14 hS 6') "'9 70 <'9 !< CHA'l ilB 25 20 ~g 147 619 46 ~2 68 ~~A z~ 52 44 146 L47 146 145 145 147 145 145 ~~ m ~i~ ~~~ 178 1249 1179 1024 1042 1106 118'l 339 659 g~j ~ij 31 -499 884 60 59 9R7 147 141 529 545 514 Sf6 631 645 644 659 f;S9 647 647 654 lq3 18 68 6e sl@ 541 51)1 560 571 611 631 631 642 641 636 t31 640 694 728 131 66C 695 44 341 346 135 750 710 114 840 851 856 870 870 861 859 866 924 952 955 856 geO ::2 44 504 5C5 m 32 30 21 48 39 U2 17F1 61 66 67 66 66 68 68 69 m ;~l tl 350 365 35e 359 351 356 351 351 §8~ 511 i~g j~ !g 40 jH 515 S25 522 519 511 511 514 513 ~A~ ~t1 681 Z~ Z~~ ~~~ ~g~ ~8 ** ** '* ** *** * ** ** *** ** ** * *****-.!t '* *' ****'" t< * *** ** * ***** *' ** ** *"* **' '" '* *,. *** *».. CHMJ ~~: 43 44 31 38 ~~ l~ ~ 19B -2 -6 -1 11 10 18 21 29 32 29 34 lAb 185 182 FJ7 ~t t~ m l~t 513 ~~ ~~ i~J 51 S6 he zZ 61 181 lql} 196 191} 197 ~{; ~~ -7 1~4 3~ i~ 522 524 189 185 1P') 18'5 46 49 46 44 41 60 45 5S ,~lq t~ usn, .n _it 690 691 198 63 bC 61 63 ~8~ 67 61 m lZ: 191 -4 3 3 1 3 1 2 -1 ~g~ 65 6e 65 ~~1 1 ~% 53 III 56 l?h ~!; 27 30 3') ,I 33 29 '50 46 44 42 3') ~A7 3 1 1 If~ :\2 I? 17 17 10 35 44 43 45 44 45 I) h 5 ~ :~ :j 2(' ~j ~; ~~ Z~ 522 540 536 537 534 533 531 530 203 204 1 -~9 6q3 716 712 714 100 690 694 695 ~g~ H7 23 "il 16 '';7 It ~g 64 Zi i~ jiB 15 13 12 hq 61 47 54 54 53 <;1 ~jj 214 .215 21q 243 240 334 HZ q7 174 l'B 1915 191> 196 197 198 200 198 11 II 13 14 Ij B l~~ =Z2 64 61 64 1>4 65 66 67 CH AN CHAN >II CHAN 41) 49 (,,:"*:(1. ** *""** $-*** ****-** ***** *** .. ** CHAN 50 C"AN 51 CHAN 52 CHAN CHAN 53 54 $$ 'ioil>l,* 55 ** *.(l **'" *' *"'.(l >l"" * jjl CHH CHAN 56 $ $ C~ CHAN 57 56 *. (I: »I';' *' ** CHAN AN 59 60 ** * ***** ** ** f,I:* ** **** ******* * *In* *** 234 ** ** *..;. **A8* *'" '" *10 ***' '* '1292 * "' .. "' ......1846 *' *........ ****" ** 1,9 •• ***.**** *01<*** •• ,,"'1**11) *.* •• *............... ** ..... 154 *.. ***898 ...... $:. -24 *** 205 ,001)00 £ 2-) 46 1046 1114 904 728 6C 120 161 ~g9 ~~gggg ~ ~8 ~~ ~j~ ~~ ~ t~~~ ~SZ~ ~~ 19~~ lt~~ ~l~ i~Z ~~ ilZ t~~ t~I ~l~ :~1 20Q 570000 200 mggg 370000 211 7[2 5<)0000 070000 3 21 0 32 f'i 1" -I 2':> 2R 14 10 ~6ggsg i -h -3 m ~gggg8 -6 ~g~ ~~6 713600000 211 I)OOOO() m mggg a -1 g n ~_~ ~~ 2' 25 ~~ 215 650000 215 650000 ?l61)70Q n o 216 fJ70con 0 -2 -1 -1 117 70000n 219 7,0000 -g n 221 400000 -2 224 ,I' 770000 ROOnOI) 820000 820000 0 -1 227 Q5CCOO n~ ~~gggg m mggg m ~g 2i5 22f-. ngggg msgg m mggg m m3gg 144 :~~ -"' ~~~ 1iZ~ 127B m 1m ,,,A 342 m m1 1404 2328 2380 41 4B 44 40 1567 1578 2555 258b 14h3 U~i mt :;$ lW 61 1700 ~~~~ m~ m~ ~~ In 132 11t2 ::~2 44 ::~ ~~ ::~ LLC1 11~1t 1009 80? 6C 115 1013 1073 921 737 94 147 tll m m m :~~ 1100 1116 LLA5 1195 1014 \039 809 626 69 7C 118 115 t~~ l:~ :~g e36 840 92 93 110 112 917 96\ 96 19l2 -35 1232 1250 1196 -40 1240 1259 1203 -139126912841272 -150 t286 1289 76 1328 -222 1961 -450 t~ }~~~ ~~h~ 2006 m~ 76 2339 2476 m~ 1204 l~~~ :~~g F'1 1~2, 1350 lig1 911 118 179 1463 1250 -46 1995 -41 ~~~ l~l l~! l~g~ ~~ ~m ~m m~ H2~ :Z~ -581> 1269 1269 l3e9 1122 117 111 1903 2969 15BO 1m 1m n m ~m ml m! 1718 1694 1699 1699 1341 1380 1410 1409 83 9C 83 60 130 140 131 131 2262 2189 3372 3402 3423 3416 2025 2031 2053 2056 -21 -11 -9 5516 2064 -27 :m 1m 1m 1m 1m ln IU 1485 ~m m~ ~m 1m I88t :!~ 88 2287 2008 2718 3146 3840 4211 1947 1858 1738 1093 2640 -772 2614 -eA4 3027 -973 3164 -1021 1590 1610 1939 1653 1697 1731 1759 4707 1121 4053 -1199 1695 1791 1100 1419 77 124 2192 4707 4707 612 516 3906 -1054 3043 -1060 1443 1454 1427 1460 13"9 1236 1253 77 55 138 112 1824 le4B 5152 4gb3 -1207 1831 1822 uno 1841 1841 1841 1e4C 658 H97 1112 1112 1l:<39 1681 1675 1427 1434 11t31 1486 1480 1480 3 -17 -63 -142 -165 -Ill! -196 53 51 67 11 53 43 33 2141 2168 2117 2210 2220 2228 2215 5515 5489 5491 5431 5422 5460 5502 2062 2113 2149 2161 2170 -8 -15 -39 -32 -31 -45 -60 1829 1b48 1418 -247 8 2111 5522 IB48 -82 m6 mr m~ :m 1m -220 -221 442 4,2 '-<71 4).\9 138 162 184 204 216 n4 232 4707 4707 4707 4701 4107 4107 4707 115 46 -45 -150 -222 -260 -290 5316 -1261 5844 -1424 6024 -14b4 6024 -191 6024 -619 6024 -624 17('5 1755 1769 1149 1722 170Q 1689 244 4107 -336 6024 1601 m 1m m ~m m 1m l1~ ~{2 i~~S 2g~~ 102 109 11':> 11<) 137 141 14'5 -?17 -l'n -18'> -171 i.7h '+64 "02 2113 2135 222t 2341 2376 2413 ?47r, 1'14 -141) 442 24111 ~~ri ~~~~ ~§ ~~ ~8 ~~ I~~* 219~ 2213 1m m~ :m~ 1m m~ 1m UB ~~ m ~m ~m m ~m :Im 1m !HI 1m 1m ~I m mg ~~gi ~~j j~~~ :H1Y i~i~ l~~r H~~ B~ti 9~ l1~ 1~~1 mt m mz :Im W2 1m 1m 1m n m 1m ~m tZ~ iig~ t~i 4~g~ j~~ ~Z~f ~l8~j f~~ ~1~~ :H~~ ~~2 ~ig} :~~2 ~g~~ :§~~ -493 l~r~ l~t~ l~~ij ii~~ i~~~ l~j~ 1367 122~ 11~~6 U~~ Ij~~ t~6~ 11,19 ~1 1~ tz~~ :~l~ 3~ l~g~ ~~ ~t~~ ~? ~~fi m~ m~ §~~g ~m 518l ~~~9 ~~~9 §~1g 1693 :~~ 1601> ~§ 2326 1~1b 2415 100 96 i~g =tz~ 1~~6 1915 1873 IB7A :A -13 -44 -46 -45 -44 1M 32C) 390 -:n2 143 201 160 1120 147 210 162 1123 151133013141115 160 1350 1356 1185 n6 180 110 -167 -174 -"I He 117 121 122 -7 -24 -30 1094 i~Z~ -13 -7 -10 -10 -8 -32 -33 960 976 1582 ~~~ ~g :i~~ tri~ :~f~ 143104e 144 1054 ~~~ 1498 "2 1,0 119 B~ 1510 200M JI) 142 142 ~2 1397 ,58 :~ 110 160 ~~;. -2q 367 -1,,1 g :I~~ ~~ :l~~ ~j :l~j Be9 tm :m 1m tm 1m 1m m m 1m 70 -g 965 116 311 :n m m2 ~~:m ~~~ 2531 632 62 1710 2533 644 56194224391024 56 1851 2423 1068 ~2 145 145 ~~ mij m~ lin m ~~ m m m lm :~~ 1m 1m 111% m m m m W 1m :::g -3 :~ \y~~ 43115912041115 43 1166 1206 1111 :~g 173 lW lm 1m m ***** -3 :b -6 '1 -41 510 923 9b5 60 ~g 56 66 66 nn ~3~~~~ ? ,-} lOC .:Ill ng 40 1923 1q44 19SB 1967 :~ g :n ?gO m 483 m -27 -2'" -34 -3 4 2262 1337 lm ml )30 141 343 J40 ~~1 fJ~ ~~~ B 11 -~ z: 2126 -0' -Ill -12') -136 -3 -0 A087n 7 6(19(1JO /',(1'1292 6U95911 609696 6096Q6 () 2~ 52 1436 32 40 45 'i1 22'JA 5400(10 230 600000 ?3') 21" ?17 23° 2:i'1 23'} 219 B8 ~~ 02 27 23 ~52 ~~~ ::; 25 1>8 t:.7 0 ~~ 70 208 =~4 ~§ i~ 256 0 7;>77 It l7R :g -54 g m 97 I6 m '13 ij -2 242 -4 ., 77 :f jtgggg i~, -d0 ;~~ ~~g8gg j~~ m8S8 h4 M 'Jq 5'1 11 ~g~~ m~ l~~~ 1m 1145 1756 t~~~ i~~~ 1998 ~036 f4~~ 6 :g -27 -I~ :16 ~ I~ 17 16 i~ :~ :~~ 334 Tljr. L:;t,f) ::'TI\~-;L ~W:·lf1t:K. USFl' lH - "IS F(1Q. THf::, I') Rd',j *, *- * * *** ** 7** **** ** **** **** *** * *'* **.:. '" * ** *::< **** *** ** ******* ********* ******* ***"***** *** ,.** '" .1jo***** * *** *>l<*'" *****"'* *$" *'" It*. ** ** '" ** ** **** UU:; (Hn'l rHfl'l CH6~: CHt\r\ CHfI\J CHi'll\! Cf4 At-, ,,1 >, -:< ",~, ****** **.:-".*,;_ *** "'* ** C* 7***"'~'l **-t"* 7(1707 (' 1l1707 1()1'111l LI)lO!!) 4 4 ni~ii '3 2. ~ UgU I':!} '>1 , 2 111717 20Zi)?fJ ?'120?n 222?2;-< 1 4 4 2 3 ?2?"l.?? ~11~{~f~ ~ l':lllil" 1')151') 707!)7 70707 70707 707n7 1(;101(1 1010111 1/1?1? Ul?12 J 4 '1 4 le 1'1 14 17 IP 2C IS 17 17 ~n2n('n 1~151'i 1'51')1, 171717 171717 ~ri~~}~ ,!?222,J 2 1~ ~ri lq 2~22?2 Ih (,n20?rj 17 17 17 If' 17 lq ~r.l?112() 171717 171717 1~1212 121212 ~2iri~ 707tl7 701(17 100710 10071IJ 12r:71? t~gn~~ 18 17 17 1~ 17 16 t~ 1'>071'1 170717 17 14 ZfJ07?O ?207?? lY 16 2L072:! 1'1 ~bgHA 2C0720 21)07?f) 170717 11I)7l7 ii Ih 16 16 14 -2 -3 -'\ 70 =~ -5 =1 -\0 2 7 ~ h b i~ 2" 1(. I)l 47 -r' -l~ -1 ~ '-J1 -~(; 2~ -if- -ll. -') -'3 2 2. ?l 21 19 I-j 1') 16 11 Ie I? 12 ~ 2. 4 <:, ') 'J 1 Ii t~ 1') l't 11 11 'J 1 ')/J 't7 :P 10 1" I'. ~l It:: "I lil ')h "r-. ... ., "j,:-1 AJ hP ~~ 70 AI', bl ,.,'\ h(\ <;) 47 10 2B 1" 1~ U ~~ 3':i ~i I,n ,1.3 42 4't l'J It7 't2 4" 21 3'J 3! t.h '-,1 41 t'-l 11'1 H 31i l+l 4' :~ 1~ If,,- -1 -3 -I') -IS H ;~ lf 1 ~~ 21 H V. ,~, ~./ CHAN 72 CHM" 7J CHAN 74 CH.M.. 75 CHAf\ CHAI\ CHA'J 7R 77 76 *. 0 .. /11\' 79 HO ** ** *f)*** *>:-*llo0 ** '" ** 0***** .. '*"* **....0 ** *************** ***** t** '" ** ••c *** ** ****o ••• *"'."* .. c '" **,. o '" »... o *".. *» * '" *"* * C C C C C C e C I }~ Ci-'AN 71 '*:(- J I) CH~N (1-I,o'J Cl-fiN oR :>,q 1,3 S4 ~t ~l-\ 21! 21' l,{l ~~ 31 ~l .j~ '4 40 18 n 35 Hi ~l 1 5 a 16 17 ~~ 27 43 43 50 4f> ~r 44 34 -1 -3 -\ :~ ->\ -l'i -12 -11 -IS -14 -11 :lz -11, -0 -~2 -f) 10 16 71 A7 77 b7 72 72 1h 74 76 74 2 ') ('5 22 20 21 17 17 14 12 II) 10 H2 rq 7b 7A ()7 (:>4 ">3 51 2 5 ~~ i~ ~ 1 't 1 q 11) 14 I~ 261M 24 19 24 19 24 17 2'1 1') ~~ n ('6 27 14 11 26 27 27 26 2) 22 22 11 11 11 11 12 12 12 ~~ hI l~ 67 -1 -4 -2 =i -to :~ -8 -7 -to -10 -10 :j -'1 -4 -4 .3 2 20 22 11 1q 11 11'1 11 11 11 13 i810 ,g 10 q 11 11 1~ 15 ~~ 20 2Q 19 IH 17 ii 17 14 U 11 13 15 17 t~ lR 17 6R 1 a a -1 10 8 :~ ~6 -1 q 4 ole q Ie 9 10 31 16 34 4q 76 72 OR 8f.: 49 74 67 85 8A 5C 64 64 E!l 80 31S 77 2A6 5'3 2R4 57 23R 2~ '3 214 24 22274 82 23274 79 1'1 284 135 20 2B3 82 19 295 9C 1'1 2'-)1) P7 19 310 9f: 15 311 95 13 3i'P 101 13127102 76 "8 SA 28 25 65 60 i,7 be 75 76 R4 83 '14 93 7lj 55 53 26 21 51 44 51 5t. :1 -5 -10 -13 -12 -14 -13 :B -13 ~~ 15 51 75 7'5 IP?' JlS jI~ i~ ~~ ~~ -5 -10 1 f6q 7 10 10 12 14 16 19 ~i 23 23 25 25 20 I~ 20 1'1 ~~~ i6~" 36-; 364 31)2 3'JC 335 335 302 29A llR 11R 101 105 95 96 75 10 252 25C 255 251 3R 37 ~b6 2~C ~~l 2~ 3'" 31 ,,1 ~~ 273 4'1 4f.l 17 2e2 I") 2E!6 1P 290 19 283 18 282 18275 19 274 51 5b 55 52 51 44 '11 i~ 60 2l-8 ~~~ 70 ~1 71 ~~ ~6 ~i l8b 111 111 104 100 93 13 75 73 4Z 3q 17 4j 3g 52 ~y ~~ i~ eo 68 eq qC % lie 1~~ 112 112 lOb 106 q~ Gt 74 11 ~t 2q 31 2h 36 28 ;5 53 1~ ~1 f~ ';7 60 07 67 63 6C 54 54 72 40 46 6g 1C 6b 60 59 5C 41:< 73 -2 -2 :~ -11 =}~ -19 -21 -25 -40 -35 :ji -3C -20 -2C -I) -5 1" 14 11 q 1 5 C 1 -3 c :J -13 -13 1 -3 -4 1 -3 -3 1 -2 -1 0 -1 -1 0 -6 -3 -13 -12 -9 -11 -lO -17 -24 -24 -21 ""27 -16 -15 -19 -23 -22 -13 -18 -17 -20 -1'J -16 -17 -1A -22 -22 -18 -28 -24 -13 -16 -15 -14 -19 -14 COO -2 0 -1 15 35 33 21 36 31 12 31 26 15 29 26 1 21 25 12 26 24 6 20 21 f: 21 21 2 14 17 4 17 16 -17 -10 -10 1 2 30 29 27 27 23 24 19 22 17 17 :~ =t1 -16 -2C -23 -26 -27 :~~ :~ =~6 -22 -25 -26 -31 -35 :~~ :~ -7 -5 1 -3 -1 :~ -14 :t~ :~r ~ 199 8 13 1 4 :i~ Uj7 :~ :}~ :ii -16 -8 -8 3 h 3'1 1.0 35 35 3') 33 27 27 23 20 IS14 :f~ -19 -10 -12 -1 -1 1R 17 12 14 11 10 9 g ') I) 6 -1 -2 11 16 16 25 2.3 9 12 11 16 12 22 20 31 31 28 31 26 31 33 2'1 29 25 27 29 25 22 20 30 j~ n 1917 q 2C 16 16 15 13 25 23 20 9 6 13 G 21 21 23 23 t~ 17 17 1') 12 lY 12 3 0 -1 4 2 4 6 7 5 5 7 7 7 1C 18 15 16 18 18 20 21 19 Ib 16 16 16 18 18 B 12 11 g12 C q B 17 17 13 16 l~ ; 74 1 4 3 q 9 f~ II ~ 75 ~~ ~t t§ j2 ~~ i~ 77 76 ~g 19 17 1~ 9 6 15 18 17 20 18 24 21 :~ -l~ 10 15 13 21 21 -8 -8 -2 -5 6 6 :* -l~ 1~ 8 4 '5 7 8 7 7 b 1 7 9 10 18 79 1 2 5 7 11 'J lA 11 ~ 12 10 11 12 HO ***"1'1(;71'-, ** **~*~~***** *,~* ,'" **,,_~, '-" :~*10** *~****** "'** '" *,.17** ~ ***** **** *****-"'* f****** ** ••• **.** •• * 711<******* "'12.... **'* *8*** *'" ** I') **." -1 _~l 2f 17 ******** 12 1Y ***264 3e 50 3P r 21 ***.***** 21 12 *':l"J '5 1P 1,071', l20712 120717 1007111 lu071n 7070-' 707[17 -.j n,7ln 'If -If, 37 17 l" "170707 ',2 7lcn7 '-,2 71 Of" "~ 112(J7 ;"~ 71207 '-,471'5r)7 .,... 71,07 J') 1I707 ')') 71707 '1f 72001' "if 720r)7 )7 12207 <'7 72207 :,>1 72007 ")p 72007 ',4 71707 )'l117D7 (-'(J 7l,)()7 hO 111)07 1'-,171207 ')1 712U7 rc170707 '11 70707 111. 70707 ~A InlOln 3A 121212 i,t, 1"'1'51<:' 'i\171717 f,f, ?0202rJ 7f>. ?O?2? HfJ, ?!l202n '1'< 171717 lOr... 1'11'11'1 16 14 -.2 ? 14 16 21 1 4 :1 17 23 17 10 If) 17 17 1'} l~, 1'1 1q ?O 1'1 17 If) 1R 17 18 27 16 1P 17 1'1 16 l~ 11 17 17 1f> 15 In 17 11 2~ 21 ':3 11 '"~4 ?3 ~4 23 1~ ?S );~ l'J ~n212 ;_:~\ ~~{~~~ 18 t~ ,H 3h 17 I,,' 4n 3 ', 2) 12A10101U 111\ 707(17 7f707{)7 {7 171'212 7H, 1')151'; 7P 111717 g,\ ? 12(l?() 7':1 /2222.[: ',0 }'i?,)?'-j WA. 252'1;', r-l 2727;' 7 >,1', 272727 lZ12J? ?t, en 3h 34 2' ., !-1A 4') 17 22 3 2 -2 B ?b 22 22 1~ n l' /.' 17 11 12 ~4 ":i ~ '> t -') -J =~: '}(I ,}', h'~ 7~ b 1 7'" 7, i~ L~() Zf, 23 n 30 2R H 28 18 i1 2q ?q 22 24 21 lR 11 1R R 1~ A '3 ~ ?6 11 t,l '+7 2~ 77 3;., 4;" 47 41 2'J 23 If) 2:5 ?'1 21 26 76 ?f1 ;~q 12 ~,) l~ "10 "'1,2 33 H 1"7 2\ ., )1, .:, 2t. '117 10 12 13 1(: 21 IP 1"0 tr] 10 ') /4 ?'-, :.:'] 1" 4(' (~'j If, 1~ 10 ~E.1 ~7 .~4 211 ?h J., 34 2.H 13 t7 ?'i 11, '.1' 25 ?5 23 It. ;:~,~ ~~ig~~~ n 14 37 26 17 17 1" 14 17 IJ 13 lei. 14 1:1 If, 17 lR 1q 1'1 1">1 17 16 Ie llAl?l2I~ P 1.. 1127 H h Ih 2~ ~7 22 12 P, 3 -7. 19 33 ~4 ~!l 30 30 2'" 26 2l ?l 2? 20 Ii Ib 11 lit R '1 14 1,3 ?O 24 2'J 24 19 1b 11 h l, 22. ,I, 40 40 41 44 "", i,q '.1 ')3 "'3 ")7 'if? ~~ ,;' "i1 ')1) ':is ~~ Fl, 63 61 r,f,. he h4 ~~ ~~ ~~ 23 272 .41 5C 31 20 255 35 42 26 22 251 35 44 24 22 247 30 36 16 22 24R 29 31 11 25 255 4b 4C 21 22 23 254 46 3q 24 20 tcJ 279 72 57 48 2.1 18 ~7P 10 55 46 ?O 20 2A2 6Y 60 51 20 19 2R2 69 58 50 20 19 28') 70 '59 51 20 lEI 283 6'5 ':>8 48 19 17 2R5 6H 61 51 17 17 287 6b 59 51 16 18 2A9 65 60 54 1'5 15 2QO 62 63 54 17 17 295 67 61 58 15 17 295 65 65 57 'to 12 15 304 66 6e 6C 40 12 1'5 303 67 6A 61 30 15 17 2q4 62 60 54 34 14 17 298 6U 60 56 "10 15 18 2AA 56 56 51 30 14 20287 52 5q 4':l 27 17 19281 47 51 40 27 16 202AO 48 50 43 17 20 21252 27 32 31 22 10=} 23 272 41 45 48 If> 22 25259 30 38 28 16 22 24 255 29 36 34 B 20 2iJ 252 24 28 14 If) 19 25 263 30 39 41 16 16 21 20 278 3A 46 51 1R 13 20 20 294 47 S5 62 22 9161731057 b5 70 27 2 11 14 328 67 76 82 31 1 13 10 3'50 75 86 q3 26 2 11 t3 335 67 79 e2 20 R 19 17 321 56 67 14 10 '::j 20 20 302 44 55 61 1211212228" 334454 7142023272273542 10 lR 23 27 2ljlj 2') 26 31 43 1,0 31 31 2RO 56 53 45 47 25 27 29 311 76 74 64 '52 21 10 27 323 sl 83 71 50 20 20 25 334 82 88 80 5'5 16 24 20 350 q2 99 96 5~ 14 21 19 36R 99 110 106 62 12 21 1') 3q1 111 123 115 h2 10 22 17 yn III 120 11b &4 6 19 15 414 117 134 114 64 7 lEl 13 413 121 134 12e 0 C 0 2 2 1 5 12 7 12 13 11 8 3 -1 -1 -11 -18 -Ie -5 -3 2 6 q 14 4 3 C -4 -10 -17 -15 -23 -21 72 6'1 -3b -25 -25 :!j :!j 11 16 1'1 14 14 2') 32 '12 ,1 ')1 4C) 4C) 44 47 46 44 44 41 40 ~~ i~ 11 In 21 11 1'1 22 ~ 0 0 g 1>1 18 13 21 17 23 24 25 23 25 23 23 73 26 20 20 22 23 20 16 20 21 20 22 10 22 22 26 31 26 27 ?6 23 ~~ 12 1'5 i~ 197 7 ~ 2z~ 46" 466 2i5 g~ 140 142 ~~~ l~~ 170 172 1~~ H~ 1413 162 ~~9 8 lC q 12 14 13 13 7 9 3 5 5 4 4 2 3 0 C C -2 =~~ -36 21 20 12 24 25 16 3A 23 18 29 25 19 2q 25 18 36 29 2b 33 26 24 Ie 41 25 25 11 41 2b 25 1 40 23 22 7 41 24 21 1 41 23 22 7 41 24 22 7 39 23 24 ? 39 21 21 5 35 21 22 5 31 17 21 5 36 19 21 S 34 16 22 33 18 22 4 31 15 20 7 35 16 20 7 34 21 20 7 38 23 20 5 33 20 21 9 38 15 23 1 39 23 22 It: 50 30 29 13 41 26 24 Itl 47 31 23 15 47 2,q 22 16 44 26 19 12 39 25 17 5 37 19 12 3 32 16 9 C 2612 7 -4 21 6 3 -IC 11 4 -3 -4 20 6 -1 -1 21 11 2 2 29 13 6 6351610 137 2t 12 12 41 25 15 11 61 39 23 13 55 31 20 11 52 29 21 6 46 26 20 2 40 22 12 -1 38 20 11 -5 31 16 6 -6 30 14 7 -Ie 21 11 1 -13 21 9 0 Ii 11 13 15 16 Itl: 17 l, =t3 if1 1 :~ a 5 -5 0 :~ -11 -11 :~g 9 12 12 16 16 28 27 38 37 38 3A 38 37 36 33 32 32 )0 30 21 25 26 25 24 26 25 24 30 25 27 25 20 19 13 10 3 -2 -6 -3 -1 2 3 8 10 40 35 29 21 23 16 10 10 5 6 :2 -12 -12 :U 12 12 15 15 16 iFl 18 12 12 11 11 12 12 9 q 6 6 5 5 1 1 6 2 7 7 9 A 15 12 19 17 12 12 ~ 2 1 -1 -7 -7 0 2 ':i 7 12 16 11 7 7 2 0 -5 -2 -9 -8 :t~ -22 -20 :~~ 335 lE:~r: THF UlIIO STAGF '1lJ>"1[!fR USED i\S *- l~ FfJR THIS '!"*~"'* >:<*te'-* * **** ** ** *****~ *.** **** ** "'* * *** ***** *** t***$"~* ***1\<* ** ******** o»$~.$ **Ill ":$ $*¥ *:t * >,) CHMI CHAi\l 61 CHA'j f,2 CHAn CHf.\j ..,4 h3 CHAN 65 CHAN h6 >(0 CH61~ CHIIN f.7 6ft CF-'AN 69 CHAN 70 CHAN 71 CHA"'J 72 CHAf\" 73 0)1 >I< CHA~ CHAN 14 15 CHAN 16 ****"*** **::< **t"***************f.:-***** ***** *- •• ******"' ..2;~ **>J:<* *'"-43 **1!10$ ,,>\0»: **$ .. ,,4035353'; 17 -7 81 f..7******* 66 ******* 17 ** '" -2 12 "(1"" '" **** 7 •• *********** 473 440 333 -45*** ** -4 h4C '." ~I')A ~j Fi3<;i}'1 313737 373731 itl If;, 11) j~~~~~ \b 16 303030 272727 J(l 25252'1 )1222222 JIll 20207.0 }2 171117 J:'A 11)1515 'I, 121212 ')'l70707 '1'5 70707 'ISA In21? 16171717 )hA 222222 H 27'2727 'nA 323232 -,p lA 17 15 18 17 18 14 11 13 16 14 17 In 14 A1 n .. 9P N 11JO 1<}3'5~') 17~n31 :40 "3 ') 11 10 14 15 21 '27 33 2E 22 18 10 5 3 1't Ih 373232 372127 10 l~lU~ jH~~~ r~~c jH~ti 14 11 21 2n 2t!. 17 250 lri ~~ ligg ji}8tri 1'.)4 370707 t~ l~i 12 t21b i2 11 12 12 11 11 12 11 lq In 12 t,4 IS 14 1041\ .170707 i;~~ ~?gjgj i~g~gj 1n1 707n7 114', 70707 11') Pf'J71.7 I1f. 17n717 117 ?2072~ 11" ~5f)72? 11<:) 2707t7 pn lr)073!) 121 ~20732 122 J'10735 121 37(7)7 121/1 400740 l;?ld 370737 123(" ·170137 124 35071"; 12'5 120731 \.:'6 100730 THF 12 11 10 II 12 13 LrflD STAGe "HHli}tR ~~ 30 7.g ~g ~z .34 2'5 17 11 7 1 -I) -7 -15 -?1 -16 -20 -15 -10 -'i USF;ll 'if) ")3 48 40 ~8 33 24 20 A 17 ?3 ?R 1.2 <}) 1)3 67 14 "3 1'5 '11. flC. 77 H7 q', 81 hh 10 ~~ 71: 71 67 ')7 51 50 41 ]\ 20 34 4" ? 10 17 14 1>1 15 17 6K 72 75 ri 10L 10 l~ H121'2 11' 94 q" () 17 \~ 1(li"( "}72727 11)\ .'17222<'11l11\ 372212 1112 371717 11}2f1 371717 10?!, 371'51') llHA -5 -8 -6 ~l "i7 3) 4" 2 /, Zt, 17 ~~ 2'1 13 13 n -2 -12 1~ :l~ -~ :~~ h -10 -1~ :i 7 U 45 47 -22 -17 -1R :~i :lZ -11 h, 71 7/ 71 7'" 19 42 41 4h 'l7 41 37 33 1)1 21 ('7 bl SI, !\~ 2h /ER!) 71 Ff}Q 17 fl3 A4 3h so 57 64 74 fl·? R9 ')0 :~g n g6 ?P 1') 16 1 -2 -10 ') 2 f)"i ~i CHA\] 20 q 7 14 12 l'J lQ 30 27 32 31 3h 33 43 13 41) ~~ ~~§ 4',,2 461 4b9 ~~6 11 13 19 452 435 416 399 380 361 343 3?5 2R3 31'5 345 317 414 451 484 504 530 520 515 427 410 392 376 360 342 321 104 262 301 13q 36'-1 400 432 467 4A8 51(1 '501 497 27 26 35 34 31 512 505 505 491j 493 487 15 20 ~~~ 490 481 482 471 469 459 431 433 432 432 42'5 420 21:2 254 256 247 25(. 248 -)9 -23 4~6 ~j1 rn 479 450 411 251 :~~ :l~ :6 ~j t~ ~ii 46g 470 441 439 ~A~ 411 410 240 243 -0 ') 44 550 "12 43 59 'l7 297 331 348 2P4 339 )50 :12 '50 '51 53 'l4 4R 40 17 :'4 ~o THI::. 45 't6 -24 :Z j9 31) 63 66 oh 64 no 61'0 1'02 62 11 30 2" 24 22. 25 24 2q 31 32 SA 42 40 3'5 12 4'1 50 4~ 41 40 37 3'5 ,2 31 h5 6') h7 ~~ ~2! ~~~ ')3 5;; }hG 362 '5n 48 47 47 44 44 43 42 53 52 47 47 49 49 47 44 45 48 50 ')2 49 '51 53 52 380 3RR .395 405 414 422 430 435 '.. 28 415 40') 394 376 382 389 397 401 411 415 417 408 390 379 :310 358 45 45 3~4 ~B j~j ~~~ 267 30e 316 327 345 352 360 368 375 3A5 3CJ2 396 3'JC 379 369 351 347 ~~~ -34 -ZG -24 -18 -11 -8 0 't 14 11 3 -7 -15 -21 -39 -42 -46 -43 -4C :~i -33 -35 -31 -31 -27 131 13h 70707 71207 11107 72207 DB 13'1 l'tn 20272f'J 2U302U 203220 1~4 1)') }~i~ 2!~~~~6 141 1'+2 142A 142\'1 142C Itt 1 \44 ?035LO 20372() 173717 15~71S 1'J371"i IS3'11') 1")3215 11.. 51':>301'1 1I,61'l2715 t4iA f~~ li~§~j jf~g~7 1':l(l 7120 1'5170707 f:t~A IJg~R~ 1 ')1 170r:0\1 1'"'l3A 2200(1) 1S4 270000 1 ",4t'o, IQor.r.n 154[' :120000 !",,4l )<}OO()O 1'55 HOOOO 156 400000 1'l6ft, 400001) 1')7 420r,00 1')8 450000 l'JR 450000 l'JA 4')000n 15'1 420000 160 40000/) 101 370000 )(~IA 370000 Udb HOCO!) 1l,IC HOOOO It-li.; 370000 Ibll 170000 If.2 J500UO {~~ Ih5 lhf. 167 168 Ih9 ~~gggg 220000 170Dno 120000 7(1)00 1200\)) 12 l~ 1~ 11) IH lit 19 U 1,<, 16 16 14 14 10 13 1~ 14 14 16 15 }ri l~ 2 45 49 ')4 '19 7 17 11" ~~ ~~ 40 41 't4 45 51 I.') 53 ,)'j "i5 54 ')3 52 ~~ ~~ 17 IB '1'1 "i2 17 1& 16 18 19 18 19 17 17 1'1 1'1 '\2 t~ 1'1 19 l' lA 17 1~ 17 11:0 11 12 14 IZ12 14 14 16 14 37 ~~ ~~ 4~ 42 4'5 ~5 14 Zg 28 ?S 25 17 15 16 22 23 25 23 25 2>3 25 2"5 30 ~~ 44 '11 5R 65 hI 194 ~~ 13 2fJ 22 -i2 -21 -10 -if -3 18 -17 -13 -8 -~ 42 42 47 ")1 5:' 4"J 13 16 17 23 23 ?O 4'1 17 13 10 9 7 4 4 /-t 3h 37 27 IH y;: -12 -~ -22 -11'1 1~ -~ -12 17 3;! 44 <}5 ".2 hi' 77 81') go '')7 1l"J 116 117 111 tOS '11 '}4 101:> 12<) 11'1 1l.~ 10". ~~ 77 h4 4 J 3h 5~ :t~ :i~ -" 6 18 23 12 t,O 47 54 ')A 64 5'5 "7 "8 '13 4'1 41 40 47 70 114 fd 61 ~~ 33 10 lA R 2C 1~ _~ -6 -4 -2 Il 1'1 ?O 21 23 27 21 17 16 14 10 R 6 -~ ~~ 2 4 7 52 41) 43 41 2= 26 2'5 29 27 32 21 If! 14 14 8 5 2 -13 -~~ :r~ 'to 16 31 34 42 51 &1 1 11 21 30 36 4'5 't1 4H ''is hI 64 h4 hI 5fl 54 53 fJ4 R2 RO 77 73 bZ 1)6 SO 41 11 41 3n 1~ -iI :t2 =1z -20 -28 -2b 9 18 19 26 31 38 44 56 13 62 54 41 32 19 11 1 -46 -39 -41 -3E -37 -35 9 9 10 11 13 -33 ~~ ~~ 128 171 la9 195 2C6 208 221 225 237 240 237 250 24C 224 226 218 207 23 30 27 22 18 13 13 12 7 1 5 3 5 17 15 7 '5 4 C -3 -3 -5 -6 69 124 121 113 108 105 99 97 93 89 So 79 81 81 84 89 91 5 -9 -5 -) 7 15 17 -5 1 .3 _I. -24 -27 -27 l~ t~ 6 119 t~ ~a §~ 5q 91 86 86 79 17 73 71 71 66 66 6::' 65 64 68 66 13 -)'1 :jr -27 -19 -13 -10 -5 -1 3 7 10 18 42 36 27 17 13 -5 -1 -14 -13 -16 20 20 ~~ tl 19 12 6 0 20 Ig :~1 -~~ )0 -30 -36 :~~ -18 -13 -10 -9 0 3 9 12 20 29 20 12 4 -28 -;j 1~ 6 10 14 20 24 31 34 40 It6 5j 43 36 -20 -26 -28 :~~ 20 ~~~ l~r ~ -23 -27 -27 16 :~~ -3C -3C -1 -7 -7 -28 -27 -27 -21 -21 -21 5 :j~ -21 -22 $: 12 14 12 15 10 ~ PO * ** +*-22 .... $" *'*-22 ..... "* '" **. -3 -32* -213 -27 ::~ CHfi"l 79 10 4 6 -22 -17 -16 -10 -7 -3 Z 10 10 6 -3 -11 -17 -27 -30 -17 -35 -30 -28 -1'1 -21 -20 -21 -22 -27 -22 -i.2 -18 17 -17 -14 :~~ =~r :B -20 :~i :~l =B -13 -24 :~~ =~~ =u :B :~ -24 -24 :f~ i6 -12 -12 Id -j 22 49 45 34 29 25 21 16 11 9 2 1') 60 57 4,,} 40 38 32 28 20 20 15 2 10 7 8 13 15 a 16 n 21 17 12 13 11 10 10 1 A 9 1 6 8 12 -4 'j h7 72 64 64 65 hI 57 49 47 6() 84 77 76 70 ~~ 43 34 22 17 2h 2r j~ 31 30 30 28 21 22 26 27 2<.J 31 33 32 52 ~~ ~6 65 h2 60 "ih ~~ 52 51 "il 51 51 46 51 52 53 53 '17 58 ~~ 4~ ~g ~§ ~i i~ 49 '50 69 CHAN CHAN 70 71 67 70 57 361 332 72 CHAN 73 CHAN 74 9 7 10 12 14 12 64 63 foO 59 302 314 329 345 286 298 314 331 413 420 431 436 445 432 425 418 410 401 393 385 272 293 293 308 Is2 161 170 39 leI ]92 3qa 409 419 431 427 422 411 404 399 386 ]80 364 369 318 3A6 395 389 386 318 372 365 357 353 ~i~ 29 29 227 229 233 239 244 238 230 226 219 217 213 206 2~ 7 8 4 5 2 -1 2 1 q 8 11 15 70 295 70280 2A6 2fl6 279 262 149 138 362 397 435 463 481 '110 535 511 592 622 747 75C 7'52 738 719 700 699 715 123 710 712 695 346 593 544 495 445 483 §8 50 50 4A 45 47 45 47 50 49 52 52 55 ~6 ~~ ~~ 73 70 58 60 59 53 '1l 4f! 42 40 lq 12 16 15 19 18 16 12 10 10 13 72 65 60 54 52 51 49 4q 44 40 29 27 2'5 28 33 32 35 32 37 38 35 39 32 37 42 42 39 21 25 2'1 31 2!l 52 55 62 65 58 l~ ~~ 75 ~g ~6g jZ6 ~1* ~~: ~~§ ~4~ ~l~ ~§~ ~~~ j5~ ~S~ ~84' 415 450 462 492 51R 552 571 605 778 1R3 181 771 751 731 731 741 769 742 740 722 Zg~ 612 5bl 512 459 500 ~~~ ~Z~ ~~~ ji~ ~~9 ~$~ 330 363 395 424 440 471 493 513 521 55C 615 680 t83 670 653 635 630 h49 667 to45 646 635 ~~6 545 500 460 416 446 Ua Ijg B2 l!~ lig lIHI 76 22 ~~ ~~ 36 ~§ ~~ 38 43 ~~ l2 18 $. O"AN 78 79 BO 17 ~~ ~~ 18 ~g ~1 18 ~~ ~~ 42 41 41 39 46 43 40 38 25 19 13 10 -7 -7 -Ie -13 -13 -17 101 tOO 99 97 96 90 95 66 65 104 103 105 110 63 66 66 70 66 20 22 18 16 17 11 14 19 18 19 19 20 -2 -3 -5 -8 -8 -12 -10 -6 -5 -4 -3 21 22 22 21 21 19 19 24 25 27 27 27 93 96 44 '14 57 64 70 76 18 81 90 93 94 102 94 96 7CJ 71 66 61 54 "tb 46 42 31 26 26 34 41 45 46 46 62 66 64 69 35 29 19 11 8 4 -] -14 -15 -21 -50 -49 -49 -45 -40 -37 -35 -33 -25 -23 -23 -18 27 20 14 8 4 0 -3 -16 -20 -25 -42 -42 -43 -40 -34 -28 -32 -23 -14 -15 -16 -10 131 153 168 119 167 106 121 130 123 qit q 22 32 44 38 15 28 40 52 42 -~ -11 -IC ~ l~ la~ 98 l}~ 1~6 21 137 2413q ~~ -14 2 16 29 19 -15 C 12 2C 11 :i~ 16 ~~ S~ 92 86 84 82 468 428 394 356 385 q 98 19~ t~f 136 131 126 121 554 541 538 550 51C 558 560 548 §68 77 >\I' CHAN 15 11 7 3 -1 -10 -16 -21 -33 -4C -69 -13 -73 -67 -61 -57 -57 -55 -52 -50 -50 -46 56~ 27 19 7 l~ 17 1 -3 -s -13 -18 -25 -32 -37 -43 -68 -72 -6€ -63 -6e -53 -55 -52 -4" -46 -0\6 -39 209 23b 253 265 283 296 321 380 'tC1 51C 511 519 >10 CHA~ CHAN **:0) *.. £;*•• J(I* 97 ** .... »....74$' **.....16**.... :0) 1(1""". *** 19 15 17 19C j~2 ~~~ CHAN 1\< • • 325 ~8 ~~ 4q 42 315 ;\'1 32 27 22 17 It:. 14 12 12 10 14 lR 19 19 17 20 20 19 22 ~j 0) >:0 >I< C~I\N CHAN fiR t 1 -4C -3 1, -32 -2e -II? -I? -Ie -5 4 3 -6 -13 -23 -32 -39 ... 47 -52 -47 -43 :~j It .c5072'> :i1 CHAN 78 ** ** *»***** ******** **** ******** **'* **~ ********-**-*** ***** ** »*" ** '" *1 ** *' ** CHAN 02 lit:. :4~ 1(1 0) -4 -13 -13 :~~ ~§j ** '* -* * *"210721 *(, ** * ** * **** ** ** * *' **' ***";< ** *.;. *** *-* ~ * -* * *** -:. -:.,. * * .. -:.** *'" *I\< '* '* .. *.*,.,.. *.. *.... * .. '" *.. '" *"'** **,,"$ *** .. * 127 12 -2 44 18 2h 2t:. 36 52 55 371 345 338 2C3 tj~ t~gH1 n~ 1~gj6~ -45 -52 -53 ~. >,) >io '" ** » **"1jl** *'* >I> JI) R'J"l CHAN CH4'1 'l3 53 2~~ ~fS ~g6 ~i -32 -34 ~§l 3A9 ~8 45 :~~ 409 440 448 443 !~ 4A -45 -52 -51 227 215 2Ci 194 le2 169 157 It"l lIP 145 1M 195 215 237 261 277 292 29'J 2eB 335 323 310 296 2R4 267 252 210 246 270 292 325 3'5'. ~~ 37 ~~~ 1b5 349 236 256 256 ~~ -h 2~ §B 338 373 377 :1% -24 *~, t. ** ****************"7****>!:*****>:t** ***** *"***** ~ ** ~** **** (f!A', 9 13 IA 16 20 25 27 30 :l'5 33 31 27 20 17 10 473 '-t98 500 :~2 -20 -~ § 19 21 22 24 26 30 31 33 40 41 3A 33 31 2A 23 20 23 2R li 37 16 22 12 3 "3 l~ "i 8 11 12 17 21 24 2'1 32 2'/ 22 18 11 27 26 16 .3 2 15 10 l3 -61 65 60 53 46 40 77 'l9 ~b -2 -5 -6 ~~ 40 Sf:. ~5 ,4 ()i t 6~ 4t 4R 2fl D h! 1)3 150 4j 40 36 30 23 18 d 24 34 37 49 "iq 04 ~'5 Zh 57 ~S 36 4(1 42 44 4':> 2C 'l,~ fl6 11 70 {< CI-lAf\ 17 :~~ i~~ 139 126 114 131 101 94 86 15 6q 63 56 56 BY Z~ b4 64 60 59 62 ~~ ~~ U~ ~t ~? ~~ 8 -/1 -7 -4 a 1 ~~ ~~ ~g ~~ 1 12 20 ~! ~j ~~ -~~ 36 37 -~ 28 16 a 2 -6 -10 -11 -17 -31 -38 -41 -47 -48 -47 -43 -38 -34 -33 -32 -34 -32 -32 -25 :1~ -2 7 19 29 20 336 Tllf- UlAn STi\(;F *,,~ t- ~HJr·H31'::~ LJ51=,) * *" ***" ** ~ **~ ** ** ** *f.< ** CHI\~J CH'\'j (,1 ¢ .... t· ~s lER(l FOR ~ *,., **'* '* *- *'* *'* '* ** **** *** *'* * *.. 't. *.. *.. "* ** ** **'" ***** * .. ** ***. *' ** '" *!).,. It .. *.0/< ** 1ft * ell'I') ~Jgg~g t~ 17t. 177 J72?2~ 3':12222 322'222 17fJ '!l?2?2 1"[) 272222 hl ?1J2222 1"2 n~2.?? 1,Q 222222 1>1,111 222222 If,4 2')0000 1,~'5 ?70COI) UP, IHh 1Vi 1 JI'. \'17 1'}p 1)') l'J'l zor, 71)('1 ?00 :?I)(H, ?()nA 7()C'\ ?nnA 45 4') 43 '.5 '.7 47 11-1 t,"i 14 II;. 16 13 1'1 WOOOO ~8g8gg ')';0001) <;",nnnn "''Jonno '5'jooon '.}·jooon ~'J)O(}Ofl "i')0001) ')"'}OCnn ?Ill 400000 ?,l? )00000 ?(171'1 luoooa ?(J? 3(0001) 2\J4 40000(') 2()nt, ,Jl)nu Tllr Lillin ')TI\I,I- '1, ):17 P.3 77 77 7...., 7:~ 7? 7'; 7"> 7[, 7;: 7" 77 flO, A7 '11 101 107 HI 137 141 1')1 1~7 157 1'),.., Iht'} 1&;: Ih7 17(] 'J 17~~ -2 -'J lA/, -f) tHlJ -~~ 14 \4 14 14 14 lit 11 14 13 12 14 14 12 14 14 13 14 12 12 11 ')':iI;COI) 4h j ~~ 30000n 400000 450000 '100000 520000 '32000[) l~IJ 14 3 -~4 -26 -~~ -?7 -6 7~ LA 12 -3 ~!Ur~iP,FR 43 4i 'tf) 67 CHAN CHAN fiB 17 / , 1'10': tnl ~ IO}!) 11't;:: 117r, 120b 1201 120J UO} 10t 'JOl 'J6 J In7'} '}1 47 43 3lJ 42 41 4'~ ttl;. 45 30 41 40 47 48 5 /1 "ip 57 98 ':U.. Ino lIb 116 llR 120 11k UP 121 121 12'1 130 130 69 PP, 1.33 l)B 140 140 14.1 I'll 11fiC) U12 1;:20 1110 'l04 1>11 Inq4 Fil!~ -if 10 t§~ 0 -4 -10 -12 -14 -14 -15 -1"i -14 -13 -20 -15 -I'd -7 10 3'1 3',) 24 11) 12h 1~0 149 l56 ~59 loo,A 1'16 70b 731 755 thl 762 fn'i "'91 "0'5 1043 fl10 61') 6g5 73t. 71114 'F)h t,93 THIS RU"I -8 -17 -1B -21 -2R -31 -31 -32 -31 -33 -3'3 -42 -1213 -133 -130 -111 29 17 12 5 0 0 -4 -3 0 0 4 3 3 2 0 17 32 29 20 10 B 7 i1 7 7 l! 5 1 -4 -8 -8 136 146 ~h" 4'1 53 4') 50 53 53 ')4 55 55 52 51 53 52 50 49 49 43 43 40 3'5 32 34 27 25 2) 30 29 29 30 29 27 23 20 16 15 14 h 10~ ~j :~~ -80 -75 -H7 -102 CHA~ CH:\~. 62 CHlli'J 72 CH.6N 13 (I CHA,., 74 '" *..... *** .. *" It> , ¢»"". » '* '* ** *.. $"" * .. *'* *- **~ CHAN 15 1/< CH~N 76 CHAN 77 CHAN CHAN 7B 7g r:HAN 03 (11M, hI, CHAN 6") ~~~ ~~~ $ 0): III HO ~~~ >I< ~§~ 53'1 555 556 565 573 583 595 606 595 579 563 548 '533 517 508 520 ')36 555 574 594 611 608 675 155 7St 747 748 7')0 749 7t-A 790 813 tl43 842 tiB 628 627 631 641 644 t55 671 659 6411 629 611 '59'5 '580 572 592 612 63C 655 676 69A 696 790 798 e03 AIR Rl'J ROS 80C 807 805 822 842 865 A9t 895 705 720 740 768 710 610 621 642 660 686 688 709 1AS 828 A73 913 '1l"'i ')53 91:3 1C09 1018 1015 103') 103'5 1032 1047 925 725 735 015 915 765 841) 884 930 9b7 949 qAl qB4 1011 1029 1021 1044 1030 1027 1042 922 132 303 B3'1 937 668 734 768 A09 P45 852 815 e81 897 912 918 952 956 958 970 P64 6R5 694 767 £156 594 65, 683 123 751 167 79A 8le 823 830 845 867 853 85C 864 17C 618 617 6S0 156 74~ ~~~ b84 686 f,97 t98 ~g~ ~1~ :tg8 -44 -71 -85 -ICC -113 -115 -130 -133 -141 -143 -141) -154 -151 -151 -155 -113 -45 -47 -13 -105 18~ r~ -9C 105 102 101 ICO 97 94 9C 86 88 92 9 lt 99 104 102 105 103 92 87 83 16 11 70 66 66 6, 74 72 76 14 73 74 70 64 56 49 46 -10 -18 -9 -3 0 ? q 17 12 10 2 -3 -8 -13 -22 -24 -26 -25 -27 -21 -20 -23 -21 -19 -22 -27 -38 -40 -49 -48 -53 -74 -85 -91 -101 -lC7 -115 -117 -122 -123 -12G -133 -126 -127 -132 -ge -41 -42 -b1 -92 167 1)C) 123 110 101 99 atJ 88 81 81 81 12 75 13 69 116 166 118 141 117 83 6'3 52 3q 32 31 22 22 IB 15 15 10 14 16 11 45 94 95 1tt 51 -17 -37 -47 -61 -70 -76 -83 -87 -93 -(H -98 -lC7 -99 -100 -101 -71 -15 -15 -34 -60 -it 610 602 6ee lj~ 151 150 149 l't5 139 137 134 130 134 138 141 146 151 156 154 149 140 136 127 121 11s 114 119 124 127 138 139 141 141 141 149 141 139 129 121 119 -13 -14 -14 -19 -2C -25 -2'1 "'25 -Z5 -19 -15 -13 -Ie -9 -16 -21 -26 -32 -36 -44 -11 -17 -22 -30 -34 -43 -41 -')3 -56 -56 -55 -CSt -54 -52 -53 -51 -60 -12 -71 -90 -8e] 5Pb t;.91 -Ii -13 -5 -1 -7 -11 -16 -2C -Z5 -28 -24 -ZC -2C -13 -8 -5 ble b9C t89 694 ~j~ -~ 469 41<1 48C 485 493 499 SOg 520 510 499 490 41C 45t 448 429 43q 45c 478 -495 513 529 523 580 573 590 -i14 -53 -Sc:l -63 -62 -6C -5e -51 -5E1, -63 -66 -1~ -82 -88 :~~ li~ l? ~§ 11 12 12 8 1 28 23 23 18 14 8 -2 -5 -1 3 -z -2 -6 -5 -h -7 -7 -12 -12 -9 -i-l -7 -4 -1 2 1 -3 -8 -11 -18 -21 -28 -25 -38 -43 -42 -41 -44 -42 -42 -42 -47 -50 -52 -51 -67 -67 6 q 15 19 15 10 3 -1 -10 -13 -20 -20 -5 -3 -3 5 6 0 0 4 0 -2 -& -14 -22 -23 ~z 30~~g :~~ :i~ 9 -10 -22 -3h -43 -44 -56 -54 -61 -62 -67 -72 -69 -66 -73 -39 1H 32 7 -19 -35 -52 -61 -72 -78 -84 -Yl -91 -'12 -94 -95 -107 -100 -100 -un -73 -28 -10 -48 -71 IS >';0: 61 CHAN 71 SP] 599 ',)99 hOR 615 62q 642 655 647 632 615 601 5P4 570 564 582 601 623 644 66R 6R1 682 740 748 ~ * >: t,. ** 7- ** ** *** ~ ** * ** ** '* ** *~ ** ~ * **..:: * ** r.,*"** *" '* -*"*'" **** **;:. * *'* ** *:« *'* * CII/\~j CHAN 10 lR 19 1'1 23 23 i5 22 2A 25 23 22 23 20 21 21 lA 12 12 11 A 3 6 3 -1 -2 -3 -4 -7 -7 -A -1 -7 -14 -17 -20 -17 3'\ 11 2g 25 20 17 14 12 15 12 7 140 142 145 103 I?? 131 13'1 144 14" 146 14/< 14f 14b 150 1ht, 843 H60 f~ '~2 13h li~ ~2 10} 112 i20 12P uSFJ .·\S IERr 34 33 31 12 27 31 29 10 21 27 27 31 16 40 11 40 11')7 III l1'i 137 136 128 126 ]33 131 138 43 ll~ ~'5 30 32 30 32 15 35 3h 3.'1 3fJ 34 16 34 64 5') ')7 50 46 :',1 hO ')h n rjr)t 2~ I:)p 31 2R 23 26 27 25 ?g 'iC 10 24 ?o 10 n 17 42 4f-. 50 -('41 77 7R 'J4 9? '13 '17 rn Inc 11'11 107 110 11<) ti3 1'50 16 J IH1 l'h 211) -I) -10 -1 ~ -15 -1".l -It. -LA -17 -17 ...,,.., ;,i 61 {2 4b '1') 30 ?') 22 20 2':> 22 20 1') 17 11 12 Ij 5 13 12 17 12 12 14 $: CHAN CI'-'MI1 tit ~'; '11 9"; "I'J D l'f 65 ~4 47 SO 46 45 45 4'l 43 42 14 14 14 13 12 1'5 lR 13 15 14 14 14 14 H17 ~?nooo FW l~COO() P'l noooo IIJY!\ 3700llO 1'19)., HOOO(1 149C 370non 1d,)[1 310000 1,.9F- 370000 1>19:: HOOOO 1t'.1F 370con IhlJt' ]700no 1..,91; HOOna 1'0'111 HOnno 1)0 40CnO(l In 1J20000 1')2450000 1'/?; 470000 113 410000 r~i ~j 11 16 14 14 15 1'5 14 12 14 13 I', * ***- *** *'* ** ***27*'* "" *.. *3q***'* '* *"* *' * .. ** 502 ** .. *# *446* '* 387 *",. *- ...... *** .. ** "''II'l66 ' ** *' '* •• zc .. * *»17 28 .. ** *** 60 * *** 4A4 18 ** ** 12 123**.. * ...... 31 '" * .. *!Io" 45 t- ... **20*- * ii? CHAI\,! OI·iN *~. ~ *- *- '121)000 !< ** ** *- ** '* * '* * *- ** *~: * **r.-" « It,'H, 14 00 "i l l7lA 22CC(10 1/2 2')?2?? 17? 21'22'22 17i \02222 1'4 322?2~ 1700, 3'}222? RIJ~J 0): (HMI h~ bJ THIS. CH,~N CHt\N ",6 67 (J $. 1\< CH/l11l 613 ***'* **** ** ******* ** **..;. **$. ~ -* **" '" **** *" *'$ **:1< '" ** **** * *:¢ ,*,.. * * >11 CH/IN 69 C""AN 70 CHAN 71 CHAN 72 CHA", 73 CHAN 74 (E CHAN 15 CHtr.N 76 CHAN 77 ,*.1)*.:) C..-AN 78 -* **'* * CHAN 79 80 *"* *' **)~':;CfJC;OO ** ** *' ** **** *** **-If! * ** ~ I..11Hf:o **' * *-* *119h '* ***** q')'} ***** *'751'< * *- ** ** ***2 ***.(! *'" ** ***** ** *- ** *- *", **** *** ****,;.",* **.. '" 0)"':-116 (1'' '$'" * (0 (0*'"94*>\I *" **26 *- -* *"" JIt.:¢ **.. * 2D'i -117 010181035 9'51 83l: *- 1\1 -139 -S8'" *- **-* -45 -92 Jlo IIi lOt 207 12 14 14 14 14 14 14 14 12 15 13 14 14 13 13 14 14 14 13 12 -?4 -26 -16 -3':> -15 -7 -1 -24 -35 -3'1 -48 -4'1 -47 -15 2 LO IS flO teoe'oo 14 14 11 12 1'3 10 12 11 2/51'101)01)'1 ?!.6 82000n 11.:0000 22f-. R20COf) ?h, f1Z000n 727.'350C(lr) 14 13 12 12 13 11 227 ?2'" 22Ft ?2'J 2 ... -111 2':\I'l fi')Ocnn 5':>0000 'i'5()ono ?4ClO1)0 ':540Don 60()CO(j 10 11 H 12 14 g -'5A -,)4 -')2 -47 -44 h,lP2Hc:' 60H5H'3 11 17 -f·/1 :?V1 ?31 h012}2 ~~~ ~g~~i~ y 7 ~()P 2fJf' ?()8 2fJ9 2()1 21n 211 217 211 213 ?l3 :?l3 ?l4 214 215 21') 21f, n6 ~t~ 217 .?1 P 219 Zl'=l 2 ~r) ?~(l ?21 ?22 ~~~ ')20000 "i501')on ....,70QOO 'i70nno '17000n 37DOon 3700/)f) 500eOO ')50000 '5700no ,.,00000 ,.,/JOOOO 600000 bCOOOO A20000 bZO(}OlJ 650nOn h5000n 670000 670con ~6gggg 700eno 720000 7'501)00 7'iOOQf) 77fJf)on 770con L,onO()r) j~ggg8 ?/f. ~~i jg ?1.l, ;;~ ~1f< 23"J ?3g 21'1 ? -19 ~;ggg~ jyg88~ ~g~~,~~ f:Ill1Sh 0 0 0 n 11 18 H l~ 121/, 125? 132') llgl 1407 1252 124h 133-J HRr 1430 161t, 16 r Hl 171)[', -4q 1712 -34 1'12') -14 1'--/3! -21 2117 -202141 -20 214h -18 213'i :l~ bO 133 III ~i~j 2127 ?nq1 ?llh 22"7 4707 hl:.17 hhJ7 hf.,3f ~!. ~~5~ 'J') 67 39 31 15 _7') :~~ -4~ :~y -k2 hb37 hhJ7 hh37 hf))7 6!-.37 n637 2.~j; (;,637 li:30 1272 1161 1 ~f3'3 1?'12 1220 1219 1130 1377 1427 15'tO 1<:;1)2 1552 IS,)7 Ihi)O 1062 1772 U60 1?76 IJ63 1373 2 1 -11 -7 -4 20 22 9 2 -2 6 2 2 7 -1 -1 21 22 50 5B -123 -129 -140 -146 -146 -117 -117 -131 -142 -149 -1&0 -157 -157 -153 -177 -177 -201 -203 -23'5 -237 2136 1"0 1'82 21h2 1621 1b84 2200 1&44 1710 71'=1216,41724 2217 If,7f 1744 17'12 166r., 1742 702 1311 1174 3~2 1500 l'j17 77 87 82 71) 47 32 7f, 47 -243 -249 -257 -263 -7>1817191794 -621 176'J 1790 -75517701794 -f' n 1765 17g2 -'lAC) 869 17q4 -110 1R35 1'!29 177C) ZIRO 2161 ~Iii -~~i :,~~~ 12 14 14 14 12 :~~~ -341 -154 -~A7 -HI7 1290 1308 1444 146" l~~~ i~~~ ti~g l~~~ lt~g nz~ -1 1046 lC59 C)78 A60 -4 1078 1089 1007 890 -6 1120 1128 1041 920 -7 1109 1132 1049 92C -6 11n 1134 1048 926 13 942 964 891 7a9 10 941 960 A95 789 -1 1049 1066 99C 874 -5 1093 1112 1034 9CB -8 1125 1146 1060 c:l4C -10 1155 1205 1123 997 -11 116, 1229 1139 100!) -10 1170 1232 1137 lCle -13 1163 1235 1142 1C14 -24 1190 1262 1176 l1C9 -23 1203 1202 1179 1112 -87 1215 1322 1228 1159 -891275132812331165 -101 1358 1356 1307 llq5 -102 1365 1359 1300 1197 -148 -16C -171 -173 -174 -115 -114 -14A -166 -174 -187 -18fl -190 -190 -201 -204 -230 -234 -256 -260 -125 -133 -140 -142 -141 -9C -93 -122 -131 -144 -153 -157 -158 -159 -167 -168 -183 -183 -194 -195 -272 -166 -216 1372 1369 1233 -60 1457 1389 1367 1219 -10 1487 1391 1388 1210 71508139113831215 -24 1520 1388 1191 1219 -35 1521 1311 1316 1267 47 1164 1047 1055 917 A 1160 122B 1228 1130 -301 -340 -376 -390 -415 -431 -265 -351 -37 -h1 -62 -'55 -57 -72 -286 -297 -21") -2g8 -301 -32A -441575142014211313 -40 159, 1436 1465 1337 -351585 141e 1444 132C -35 156C 1382 141C 1297 -34 1569 1389 1414 1307 -23139812801292 IH:6 -501 -550 -)'1 -3H -31 ~1 ~~ :Zg :~j~ -2f>7 :~~~ :~~A -'H7 -')7B -1017 1'1637 -1129 1'11117 -ll~O 61-,)7 -l?72 1702 15<}O 1447 1420 1417 1445 1hS5 l'J-46 1413 1181 131H 1'116 -28 -52 -277 -259 -229 -227 -226 -244 -H~n -14t)~ lRR1 180U 1760 118't -147 -lh7 -420 nl>3 -1'+')1 6637 -ltt47 10,00 2574 11'1') Id82 -295 -410 6h17 1:1637 ~:~~; :E~~ /,I-,:>,? or)17 l~ :l~j ~~ij7 =l~gg -216 -274 877 17R '-J07' ~02 9'10 ';3h g7R !149 i·H36 fl51 893 763 H9'l 763 9IJO ,;:;to 9A4 ,1'52 1007 86-4 10<'}3 119 110R en4 1110 'J36 lilY ')46 Il1? 1()51 11RO 11)62 ~~~~ :i~l! 6637 hh37 6637 hn,7 -l t d7 -1435 -ltd 7 -1409 l~h~ t~Zg ~I~8 81,)0 6150 ~150 8150 i21i La~ l :~f 1922 1140 Ill'} liNl -j() :~r :~~~ :~2j -518 -h17 -633 -3fl2 :iya H6§ -98 1415 :~~ -~ l§~~ H~~ ij~~ 1~11 th~g l~~~ 16~~ -223 -231 -248 -247 -257 -266 -135 -203 -24 -28 -39 -)5 -35 -37 126 5B -55 -64 -72 -75 -90 -96 26 -37 -550 -561 -515 -304 -335 -342 -332 -342 -329 -10 -15 5 21 zl 81 870 819 79C 78'3 183 190 -450 -443 -428 -413 -409 -401 -229 -219 -211 -2C3 -204 -21.2 -371 -361 i~jj l~~~ 994 q64 f108 719 849 e12 815 1ee -7A4 -100 -119 t72 715 517 532 573 549 590 546 -701 -647 -';153 -529 -90 -83 -71 -60 601 595 5e9 601 460 446 430 434 520 513 530 531 :iij -P16 :;~~ :~r -~~~ 1a~g ~~~ ~~~ ~~; Z~~ §l~ 492 475 472 471 ~~~ Z2~ ~9g -97 -102 -lC7 -109 -110 -60 -61 -89 -97 -113 -119 -IZ0 -122 -119 -133 -134 -158 -158 -182 -187 -52 -59 -66 -66 -69 -19 -19 -49 -63 -11 -81 -84 -8& -84 -99 -99 -123 -12S -151 -153 -98 -104 -108 -108 -110 -71 -70 -96 -107 -113 -137 -139 -140 -140 -156 -1&0 -167 -167 -190 -192 -253 -278 -287 -318 -332 -207 -270 -194 -230 -25q -269 -302 -320 -162 -237 -214 -239 -261 -267 -292 -305 -209 -267 -146 -185 -193 -183 -193 -146 -itl3 -482 -491 -484 -SOD -508 -401 -480 -501 -490 -504 -517 -310 -402 -402 -398 -407 -44R 123 125 121 118 125 101 -114 -108 -103 -94 -93 -100 -242 -124 -57 -)4 18 -364 -313 -Z88 -277 -273 -207 -403 -392 -387 -381 -318 7992 -209 -198 110 126 -88 -14 28 32 -7} -61) 7992 7'192 -312 -311 -142 -159 179 164 -35 -54 -311 -113 -374 -381 -152 -14S -153 -153 184 189 194 195 -74 -1b -93 -95 :~~~ :~1Z g~~ ::~§ :~~5 -72 -d -67 98C 896 859 837 f139 846 -2 -3 -5 -4 -16 -18 -32 -34 -44 -42 1061 gq';l ":158 939 940 958 -34~ 934 1331 777 755 755 762 U~2 88 81 17 74 73 125 125 88 75 68 50 48 48 47 31 30 4 5 -19 -16 15 20 30 31 30 15 :~%~ 111 >10 .. g2~ Zg~ -~60 :::8 :~~a :j~~ §~~ :j~g :~2~ :~~j :U~ :l§~ :~~ 17 11 6 5 6 52 51 24 9 It :~i :11g -224 :l~~ -i~ :1~6 :1~~ :~~~ l1r ~~ t1~ t~r :B~ :l~~ :jl~ -3b ~~ :~~ ~~ :~~ ~1 :Z18 -~~~ :~5 46 52 -59 -61 70 12 12 72 -36 -37 -30 -30 :Z~ :1i~ :~;6 :2~~ i~~~ j~~~ 7992 7992 i~~~ 7992 7992 79'12 7<}92 337 TH- ChM~ Cf1,A,N B1 n~ >I' 1 \JSEL~ LrAO STAGe "JtJMPFR A$ 1ERr. FOR THIS R.(J,\ eflA"! CHA,., CHIl''i CHIlN IS CHl1"J R] "2 CHAN CHllN Ct-AN 89 R8 B7 CHAN 90 C",AN 91 C.-AN CI-I-,,, CHll~ CHAf\ 94 93 92 95 c"'~t'I. CHAN 96 97 Ct-A~ 98 CrAN 99 100 ******* ********* ****:(" C ** ***O ****** **1)******+",* **C "' ••• *** •• *.... *** .. ** •••• C*t* ••••C*" ** ...c *•• ** ....... **+ ...... C *..... O '" ••• *tO .......... ** 7C 70 7 a *.. i'******** C () O 0 C C C e o 0 11\ 70707 '1 lr)lOlO '2A 1010}0 -:I 12121l 0 -3 1 0 Itr.151'il'5 ., 171717 "',AI717l7 r. 2020(10 At.. 202020 7 222n? 7f1, 222222 7!\ 222222 p. 202020 2 1 2 4 2 1 2 1 4 3 ~~ t~i~t~ p<\ ~O'?OZO ~ 1'31<:>15 1/1. 151 'jJS 10 70707 In~ 10707 11 70707 11 10701 14 101010 14 101010 Iii 121212 I"> 12121? Ih l'i151'-i 2 2 2 17 17 17 16 F) 17 17 16 17 17 17 16 1"1'11~i 17 171717 17171717 1R 21)702(' 111 202020 t~ j~ ~1 ~~~~~> ~3~g~~ t~ i~ 171717 21171717 27 121212 22 121212 23 70707 r'l 70707 26 ,o107 ?h 70707 '-7 100710 27 100710 "f1 120712 ;;n 120712 2'1 1 ')1) 71 Ii 2[-1 11)071'; ,c 170711 F} 170717 31 20072n 31 200720 3(' 220772 ')222072;'. n 5~ -~ ~:~ 1 I/-, 1 -.3 -1 17 15 16 17 17 15 11} 13 15 15 15 14 14 15 16 16 16 16 17 14 ~8gt3~ ii i;gni l~ ThE' LOAD STAG': ~U"lrEq -9 -12 -13 -15 -17 -21 -19 -1'1 -17 -17 -9 -10 1 2 1l:l 18 12 13 (] -1 1 12 -1 5 "3 q 1 4 "3 10 27 30 34 48 4b ?O 30 33 43 45 bO 61 '):? 5) 34 'lR 11 2210 31 12 33 12 51 18 51 20 "'4 20 55 19 5'1 22 51 20 SI 22 3tl 15 38 18 17 12 14 14 h4 5'1 6U 50 64 1J2 btl 50 6B 48 64 4B 71 49 7n 4q 74 47 74 4A HI 48 11 6 7 44 44 3') :.N 19 3B 37 37 34 34 34 ~~ ~§ j~ ~4 I-, ~i' ~.o:; 611 :~ -~ 3 2 10 10 17 17 13 16 If! 17 17 16 17 13 1', 13 Ib 13 IB 1.1 }~ II 35 14 11 66 ')g hA hI) 70 bJ 61 0 1 54 <)7 "'0 12 tl C,7 1),2 liP .,7 1 It <)~ 3', A 4 q lZ ('7 t8 71 70 71"\ 711 8" 7') 7A ~') A6 ;::Pl ~~ ~~ ~6 ~~ 1~1 ,:1 15 7') ')9 li7 4C 40 ,5 13 14 30 31J 3'1 Vj 7') Ii'i on 4(1 39 )1 34 3(. :n n n 4=1 4'~ 4'-'. 4,3 'i7 40 42 45 45 49 4h li3 5" 'i~, ~~ ~~ ~j i~ lFRI~ lJSEll.t\$ 72 h9 1)2 51 34 ,4 24 25 26 27 29 30 32 30 34 33 'tl 14 42 40 j~ ~j =i1 ~ ]l el ~~ ~f -2 -3 -3 -3 It 4 2 5 4 4 g 11 12 11 11 10 11 ~ IJO 36 42 40 35 35 32 28 25 24 24 22 25 a5 24 24 25 25 2(, 24 30 2R 31 -:1,1 30 26 2, 24 IB 19 14 14 14 17 16 16 17 14 U lR 1'~ 17 ~§ ~: Ff)l{ THIS RUN l~ i~ -3 -1 -4 -4 -3 -3 4 10 -} 8 1 13 .'\ 6 7 16 16 17 16 17 14 14 9 10 7 A 48 42 43 42 40 0 -1 2 12 12 12 10 11 23 33 38 55 55 63 65 63 36 38 51 52 64 64 6<) 8 10 10 10 10 58 53 50 49 4q 45 43 42 42 42 38 40 51 42 43 18 18 63 58 63 63 -b -7 :~ 1 10 39 39 40 .3R 17 40 37 j~ ~b j~ jj 34 32 21 26 24 22 11 15 14 14 14 16 15 14 14 31 36 30 30 28 27 20 17 17 17 14 15 17 13 12 14 13 13 12 12 17 20 14 17 17 l~ t~ t~ tl 1 q ~~ 55 b9 66 13 75 Al 82 9A (n ~g ~~ 79 1:'0 59 1J7 39 3P. 32 30 29 21 33 33 33 35 35 40 42 3~ 43 43 jg ~~ 1~ 2~ 53 58 39 38 13 10 44 ljl 413 4B 58 SA 64 61 71 74 85 85 ~~ ~~ 16 75 55 55 36 34 28 2q 29 29 33 34 41 3B 43 45 51 48 55 55 ~~ ~~ 2 16 15 30 ~~ -2 Ie lC IS ~~ ~~ 513528 68 48 31:l 68 5C 4C 91 70 5f! '}O 7C sa 99 87 6f, 98 e5 61 99 aCJ 6A A4 7"1 51 83 7"t 6C 52 5C 42 52 4>:] 42 7 lC 11 5 I) 11 30 47 41 21 ~4 43 43 54 '52 39 53 52 56 64 61 54 63 61 71 75 6e 70 76 69 84 84 7B 86 87 8e 101 99 87 105 ICC A8 H~ tg~ 1)0 86 58 56 21 21 17 11 17 17 22 26 49 30 35 37 44 44 50 51 ~~ j~ H~ 19~ ~~ ~~ 81 6-4 l::0 57 30 3C 23 18 71 57 53 35 33 31 26 25 30 3U 29 26 3C 33 37 36 3P 39 43 42 47 4t: 23 3t 35 38 40 4'5 43 5C 49 ~j Zg >II [11 \~.tHN CHI\'l q2 P.) CHA\ ~4 CHAhl AS :~f -21 -29 -27 -35 -37 -43 -42 -42 -35 -35 ... 20 -1 -2 -7 -6 2 1 23 23 13 17 8 8 2 -4 -13 -12 46 44 48 46 =B -3 3& 39 3 -7 :~g -7 8 so 24 2t: 2t: 23 26 26 21 21 IS 19 13 13 12 13 13 ~~ jl) :H <6 15071'1 120717 120712 :H3870707 iggH8 P 70707 ':1170707 SI 70707 1)2 71007 '-;2 71007 '51 71207 ')3 71207 J4 715(17 ~)4 71507 'J'} 71107 ~5 71707 '16 72007 ')A 77007 '-;772207 1)1 72207 ')1' 72007 "if! 7Z007 ')') 71707 J'l 71707 f)U 71507 ~~ hI /)3 H~gi 11207 707f)7 70707 1,\ 70707 ?~ 101010 121212 4Al'lIS15 ')A 171711 &.A 202020 7' 2?222< u:l ,t., ~~I9In~ 16 lA 17 lj10 11 14 14 JA 15 14 15 15 13 14 16 1(' 16 13 16 15 14 16 15 15 i~ 17 18 19 f§ 23 22 16 18 15 1"J 13 13 11 10 6 6 7 6 2 3 j b 10 >1 12 Ij CHfI'"\ CHAN q1 h6 >/0 C~~fIJ Ct-'AN BR CHA~ 90 89 Ct-AN 91 CHAN CJ2 CHAN 93 f~ Ii 11 H 20 21 21 16 7Rr.. 202020 79 2222?2 2')252':1 tOA 2')2525 ttl 14 16 i6 7 3 -1 1 ~l" ~~~H+ >·21010,0 'i2A 303030 ,"1 )23212 RJA 323232 h4 31)1535 !-:4tJ, ~535~') ~i 3' 40 47 4A 4~ 4'5 It 7 46 44 4':1 44 41 4A 't5 47 4f' 43 ~{:; 3q 3-1 34 ~z 36 12 ]C ~~ 34 17 'tA 47 7 47 4'5 43 It 1;3 42 43 t.2 42 41 43 't3 VJ 42 1'5 35 30 ~g 2<) 2'*' 27 ij 37 34 47 47 44 44 44 43 44 40 37 17 34 17 ~5 37 12 33 28 2') 2t- I~ 20 21 20 ~~ t~ it 17 II) IS Itl 16 16 ii :~ -10 -10 -14 -19 -24 -21 ~i j~ ~j 40 3\ 21', 2? ]7 4f, 34 26 lq 19 41 C,1 21 1" 14 12 36 47 n .t:j4 flO ~~ ~~ 9l A3 10 77 75 111 Iln 12:', 02 )2 '--l9 14!1 14h 110 112 R1 '~; 13~ 12~ ~6 'l~ ~6 f.;(, n"l ~i ~1 Al AI} 90 101 104 12 10 14 t~ 30 22 29 23 42 32 40 31 40 31 372M 35 27 35 24 32 24 32 19 27 16 28 19 2'1 14 24 15 22 13 21 13 20 11 19 11· 20 7 21 q 18 8 t~ }'5 14 16 10 14 14 14 ~~A iH~tj 3'~ >00 13 2'1 27 11 18 20 2(. 20 14 19 ?O 2t. 11 14 14 14 18 P 1~ 10 14 16 17 2.', 20 13 14 17 12 3-~ 2'" 18 14 151037122413 1't 6 4f, 17 32 15 1:. 7 5r 4£1 'to 11) 17 0 6/' q 44 17 14 16 IDA 1':>1515 11< 121212 12< 101010 13> 70707 76 70707 n 121212 en 44 41 :Z 40 39 35 34 30 28 24 24 22 17 17 I? 18 14 14 15 15 14 10 11 A 8 8 8 8 It, 4 lit ~ ~ $" 10 8 14 ~~ 1r t~ l~ 19~ ~~ ~j 2A 31 37 47 47 54 53 ~4 4e 4::1 34 34 10 10 4,~ 47 53 54 5~ 51 65 66 73 73 81 AO 4~ ~6 ~g gr 79 86 84 63 64 42 42 36 36 33 32 35 34 36 34 34 31 38 39 38 38 79 62 59 44 44 36 36 31 32 32 33 36 32 32 37 36 36 31 36 74 75 58 57 38 38 34 34 32 30 34 32 3') 35 37 33 35 37 37 35 j~ jj U j~ ~i »1) **'* *" .. $" $: ** *»'i'''' » >I '* ». »'* CHAN 94 CHA~ CHAN 95 96 tz13 12 12 12 l~ 25 26 31 36 3'1 37 40 39 40 36 41 3CJ 39 38 43 42 '.8 43 41 29 29 29 29 32 32 34 32 32 35 36 35 39 40 43 40 39 39 34 33 29 17 12 14 14 23 24 27 29 35 32 41 41 49 49 57 58 51 51 42 '.3 35 l~ ~~ 10 12 2 0 -1 -1 -4 -4 -4 35 43 53 -1 -4 0 8 30 25 30 22 14 14 32 43 15 13 13 63 7lj Fl2 83 5 5 5 4 '3 4 l08 le7 122 123 151 152 Z <) ~ ~ 29 30 32 2R 13 14 13 11 11 16 II} 16 29 27 11 15 11) 14 14 17 16 29 2R ?8 31 27 24 8 7 6 4 7 4 2 , 2 5 3 32 3 2 4 5 4 4 ~ 1 0 1 6 21 19 ~~ 40 34 35 43 42 40 36 31 30 28 22 22 18 18 16 14 14 12 10 10 10 1 1 3 4 10 14 ?/l 33 30 28 20 23 33 34 34 31 25 24 2C 21 16 15 16 15 14 12 14 9 1 12 7 10 12 15 32 33 ~s 11 12 II lj £6 q q '} '1 10 i~ t~ 46 1~ q :~ ij 17 ~ 38 36 35 28 fj26 14 12 6 12 18 28 j§ §§ ~~ ~~ I~ u I1 3~ 37 30 30 3t: 31 33 18 21 21 30 30 3C ze 35 3q 4C 47 43 5C 48 53 53 6C 61 68 68 60 29 30 35 37 40 40 41 41 43 42 Itt 46 51 53 53 53 52 ;0 5C 43 43 42 37 ~~ 3Lt to i2 ~~ I)C ~j 24 24 36 32 1B 5 18 2C 18 3 18 20 14 0 13 13 22 13 23 23 2'1 29 38 30 38424841 48 60 tl 5C 59 79 18 61 68 94 90 7C ~~ 39 32 25 \8 23 38 bl 51 I~ 36 18 4 l2 42 5', 40 30 2l 3C 50 e5 77 88 87 8S 103 120 121 88 le3 115 III 113 108 125 128 146 147 169 171 191 196 23C 239 155 155 115 178 215 220 §~ ~~ ~1 li~ ~§ gg ~~ 43 33 25 18 29 43 l6 69 Be 91 93 18i 106 lC3 11-; 113 123 121 ~f 2B 3C 26 26 21 2C 16 13 lC 11 5 7 2 1 5 5 Ie Ie 16 ~~ 21 2" 3C 31 23 17 e 2 -7 -16 -~ CHAN 97 **,5* **'1'>0715 * **** *". *** ***". '* * '* ***14*'** **... * **. *....3fl.** .***32...... **.* 16 ****18** ** *"* 4 *\ **'* ** 34*«*"* *.. **"* '* *" 24 12 **.. *** 10 .... "':4< '33 3-6 .. **. *.**-. ••Ie"••"4i **'4-$ 6 2~ :2 360 33 30 28 24 17 16 13 10 13 11 l~ ~ 0 6 4 10 22722 4 37 31 36 36 56 50 15 53 52 15 66 60 13 66 59 15 68 64 12 60 54 15 60 54 10 40 40 B 31 39 5 10 16 R 12 16 54 61 66 52 51 62 50 66 66 48 66 64 48 12 70 44 61 67 45 76 74 45 76 74 46 86 80 48 86 80 41'1 96 87 45 97 87 ZZ H 2 7 4 11 'I 14 46 1e Zg ~ -i1 6 7 18 20 lCJ 18 20 18 11 14 14 8 8 56 50 51 48 49 4'5 46 -}9 -2 -2 -5 -5 ~~ r ... >:< CHA\I -7 -7 -15 30 . . ** ** ** ** *** *' ***** **::- * **** * *~, **:(: *»: *".". ~ *'40 *". ******". ** . . ***** '*". '* * "'*'" » '* '* ** '" *»*. . *.. '" >II .. *' >l>:* *' '* **'* *~ ** >lI »** CHt>.~l a C 8 6 13 fl -7 6 2 26 29 50 48 46 48 46 41 43 41 36 36 36 36 34 36 30 28 24 26 21 H 20 >11 >00 iii .. »4' '* *". *»* CHAN 98 CHAN 99 100 »..... **.. $" »".".30 **". * *30* 13 *»""32 15 13 13 32 26 32 33 27 32 31 29 28 30 30 45 45 42 42 52 50 44 42 52 53 57 57 59 55 60 51 62 61 62 64 67 67 62 57 54 53 48 30 32 39 35 lZ 45 45 44 "2 43 42 39 37 35 35 35 35 32 32 31 31 27 ~~ j~ 56 56 59 56 63 62 66 64 61 70 75 74 66 61 60 57 49 j9 j~ j~ ~~ 40 43 49 44 50 48 51 50 59 60 66 64 57 57 50 50 44 jj 24 40 40 40 15 20 24 26 24 14 22 25 27 25 9 15 17 20 20 8 14 26 27 26 B 13 33 32 33 812424140 9 14 50 46 49 11 16 60 54 58 11 18 70 63 65 ~ l~ ~6 ~~ §6 40 7 13 23 30 38 22 8 4 lO 14 36 33 12 lO 14 17 34 34 44 35 27 25 46 60 41 36 30 27 46 57 -3 -10 -17 -17 30 28 30 29 33 33 32 32 81 q4 99 103 15 82 A7 A1 68 74 85 83 27 25 24 26 29 28 29 30 30 28 32 30 130 131 141 152 195 199 106 100 119 121 146 146 103 101) 117 115 133 130 1~ :~~ -27 -27 -31 -33 -43 -42 ~~ ~~ ~~ ~j ~t H~ ~j ~~ 31 24 11 33 45 g~ ~~ 338 THF LOAn .l:>TI\::'.[ >!<~*****,..*"(t NUHfl~R uSEfi ,~S ZERU FuR THI$ QIJ.~ IS *".******************* *** ****** **** .~.1;'< *********** .... *¢*.t.+ .... *~**** ****0::."" *' ***** ****» ****** ** CHA'l CHI'IN CHAtI CHAN A3 Al CHhN CH AN CHI'IN 85 14 CHA~ CHAN 87 88 90 CHAr-. Ct-AN 91 >}\'I 95 92 »**t/I *****'$ ** 1/1 * *lI) *>10 (0 ** * *'" »*'*,..."* CHAN CHA-N 8"C ~53S~5 e5 3737\1 .,,'ifl. 373737 An f'J7 3~35JS 323232 303030 272727 10 257525 )1222222 ':lIA 202020 ~2 171717 12l\. 151515 '11 1217.12 14 70707 -.J"i 70707 'J'-'Jf\ 121212 '16 171117 'Jhi\ 222221 'l7 272727 OA 123232 pI? l"iq If> 1'5 17 16 15 14 1'" 15 11) l~ -?6 -2~ -27 -24 -~2 -19 -14 -11 -7 -1 0 3727~7 16 14 16 It.. 14 14 12 14 15 14 12 14 14 16 14 14 lOlA 372222 16 -12. 14 14 14 16 11) 14 lit 14 16 -11 -3 1 '~7R 18 1"]1 100 10(11'1 U)C(', ~')35~'l 3n737 371232 l72727 H2727 t~~( n~J~j i\~~A j~l~i ~ 102tl 171':il'i 10?C H151~ 10-::0, 3717.12 In11'\ 371212 I03C )71010 lil3C nIota 10" 170707 lU4A 310707 105 120707 ig~ ~Jgigi lUR 1')0707 ]0970707 114A 70707 11<:; 120712 116 170717 11722072? llA 2507('5 119 270727 120 ]00730 121 320712 122 350715 123370737 123A 400740 123R 370737 U3C 370737 124 350715 125 32073). 12b 300730 THf' Ln"o STflG[ l~ 13 15 ]0 12 12 12 12 9 10 13 12 11 14 13 12 12 14 9 13~ 12.1 111 104 h3 '}t, i07 114 116 109 104 95 93 R2 77 67 57 4'} 42 22 4'} 61 71 2q 30 29 2A 25 25 24 22 22 18 16 15 15 11 35 35 35 31 38 38 10 16 11 8 } -7 -12 8"> 74 5<', 71 RA '17 12tJ 141 '55 tt? 21;} '50 h2 7<) '10 105 -25 -;?S -22 -17 -17 -17 171 18'1 16H 1"il 14" 14"l 129 117 122 104 106 Ina 102 112 124 132 117 104 100 'YJ ~6 P4 20 ~, ~3 52 52 44 10 6 34 34 26 25 29 5 6 4 3 5 23 24 71 7't 76 q4 Po7 90 Q4 96 101 101 102 100 5 7 40 42 40 39 '+1 39 37 39 35 34 Ij -20 f~:U i~ 111 125 12i tlY 110 105 g7 89 P.C 73 1St:; 167 Ihil If,O 15\ 142 :~ 121 IbO ~~ ijG IH fg~ t~ 91 97 4 5 4 10 71-1 7M 71 611 611 47 47 17 31 30 29 27 18 23 23 67 67 107 29 30 70 21 II" 1R G2 -3 0 H Po !-\R ~~~ ~~ 21 125 11 136 20 13F, 19 141 II:! 1411 16 154 18 l')tl 1610'S 17 16·q lR 16~ IJ.l l,}n 20 IS? 25 146 l'J 141 ~q '10 'll 97 '19 103 In2 101) 10C q4 ~17 82 7'5 fll. ~~ ~1 '12 ~Z flfj 84 79 73 4 6 5 6 4 3 7 .3 3 .3 2 3 1 3 33 31 21 24 22 20 22 HI 13 12 -1 4 3 tb6 160 -7 -8 122 122 Q 1 0 -4 20 18 18 14 22 lA 17 16 11 37 12 2q ]0 22 q ~§ :~ ~ 4 -13 -B -11 -12 -13 -10 -15 -13 -14 (HAN (HAN CHAN -10 -8 -12 -10 -14 -13 -13 :t~ -12 -8 -It 22 22 20 19 17 19 16 11) 15 11 14 q 1 -3 -3 lA 17 14 13 13 11 13 10 1 6 3 -3 3h CHAN -8 :l~ -6 -7 -7 4 -h ~ -~ -8 1(-,7 181 L86 181 111 161 154 141 132 122 113 103 g3 72 86 101 ll6 13A 151 182 196 212 201 182 1A1 178 tj~ lIe 23 23 203 12 72 -17 -15 f3 69 69 -11 254 2E6 9f1 91 91 220 223 214 213 206 205 231 233 225 223 214 210 202 2C3 19C 63 63 60 60 50 104 130 721C7 94 130 109 141 122 154 140 107 151 113 161 179 log 185 179 193 190 2ee 193 2C1 201 212 193 2C9 191 203 183 197 176 193 164 185 18 2 27 31 35 42 4', 48 50 53 se 58 61 53 51 46 41 37 l8~ 81 -7 -7 39 35 30 27 26 21 18 17 14 10 10 4 -7 -8 -8 -9 A8 86 132 53 51 81 g4 98 108 li6 122 128 137 141 14" 154 148 145 142 136 12A. 135 -29 128 78 68 67 55 55 56 141 147 152 155 158 162 165 167 170 167 161 157 154 149 44 37 33 32 25 25C 274 3C3 290 282 283 279 112 100 100 A8 AA 90 g~ 30 54 32 32 25 27 25 21 20 1'1 18 17 15 11 41 43 42 42 43 45 121 129 1.31 12C 111 ICI 93 81 70 62 53 42 31 7 18 32 41 6g 86 108 11g 129 118 108 108 103 -1 -8 -11 -10 -8 -8 :~ 28 31 31 30 26 26 24 20 19 16 16 12 11 5 41 ttl 40 40 41 41 45 44 34 32 29 25 251 279 281 270 256 241 224 206 188 168 149 127 lOR 64 58 91 125 166 208 249 271 298 208 269 211 268 §~ ~~~ ~ji F~6 196 179 t~g lelj 17C 154 135 117 80 86 l1S 14') 180 21 t , ~Z~ l~j ~~~ ~I H§ >II .. 214 218 240 242 236 225 214 202 187 176 165 152 137 125 97 117 136 156 180 204 234 255 276 257 214 230 2.26 154 174 L13 166 155 146 136 125 114 10i.t 97 81 73 4R 53 6R 87 111 134 154 168 185 16.q 14t1 143 1413 I~J 233 268 27C 264 24';l 235 223 2e5 t) .... ;~ ~4C -lie -4" -41 -33 -21 -IS -11 _t,2 lC te 23 4C 46 33 Ie 2 -11 -3C -34 -42 -42 -34 -31 -36 :}j :~~ lj 26 33 58 52 '03 4C 33 31 29 27 25 2C 17 Ie 19 23 28 28 155 174 174 170 161 15') 146 136 129 119 106 101 90 72 92 106 121 133 153 172 183 13R 146 191 171 171 169 142 122 12'; 120 151 103 152 153 140 138 122 120 le7 106 III 112 113 104 101 90 87 80 fl3 82 70 70 60 60 50 50 40 42 43 5 114 7119 '.8 174 45 114 40 172 35 117 32 175 29 175 25 176 24 178 19 116 15 119 12 182 q 117 -1 166 l 167 0 165 0 160 87 135 134 134 133 135 134 131 132 133 131 133 132 123 120 118 112 ~4 41) 45 74 43 ~~ ~S 15A lr 13 7 A 1 1 0 1 1 -12 -1 -7 -4 -4 2 5 1 1 41 38 31 25 21 18 11 9 6 1 -4 -4 -18 -18 -19 -19 100 * "' 155 .. *.(l *.. :Ue138 .. * 12 10 12 8 ') 7 10 7 ~ 2~4 tr~ i i? 19j l~8 H~ ~z 137 148 149 145 135 128 120 110 102 'J7 86 78 67 48 55 68 86 102 11'~ 1~8 1~8 JZ ~g 71'1 76 80 80 79 80 80 87 86 89 85 80 78 7fl 75 IS *** ** *** ** *** ** ** ******* ****** ****' ** .. ***** **** *** *>\1' +** "' .. (HA~ :5 -6 -13 lR 33 25 24 20 It, q ~ -l tjH l.fpr FOR THIS RUN rWMIlER USFD. h'S 7 1 16 16 LA 17 12 10 12 q 6 6 4 3 2 C lq 20 11 22 21 22 24 25 16 14 14 7 q 11 11 10 8 8 5 4 4 3 l,2 1) >1< 99 98 *' 1:34fi ** ** *** ** *** **" *** ** '*-2t* ** **r,- 11)-> *tr,~* *' * 111 ** '* * '* *ID7 '* **'* '* **28 ** ***11 .. *' *'*,. *14 .... *.. * '" **6 *.. «..165 ** ,*';' *;\1'5'5 ** * 111 ** *** '* ..233 *** * *122 >It * .. **"' .. »'" -* *** *", v '* .... ",';':t 153'13'" 14 246 -4C 31 31 (0: CH AN CHAN 96 CHAN !It >II >:0 CHAN **:(1 ***** *** ** "'* ** ::<**** ** *** ***** (lv*'" $"** 1/1 *. . 1/11/1 ** 4< (I ** 'l> *****(I $""* q "'"* >I< >It II ** ** 0) * ** CHAN CHAN CHAN CHAN CHAN CHIIN CHA~ CI-'AN CHAN 99 100 95 n ** ****** ** *** ***** ******** *** .. ***** ** *.. *** -6 (1:. '" ***-12 *** .... *142 .. ****** ***.** *** .... *1/1 >:;-.'31" **.....33~*. *.-22 ** ** 0>II "' .... t156 *' $:"" **114 0: *...... *** 127270727 12 **** ** 25 ******** 133 70 67 15 **-11 125 156 175 95 A1 A3 128 1(,9 130 131 137 113 134 13' 25072<; 220722 170717 120712 70107 70707 71207 71701 12 10 16 12 13 13 14 12 26 24 29 30 30 33 28 21 117A 13' 139 140 202521) 202770 203020 203220 14 14 10 15 6 1 -1 12 -9 13 0 I m mgj I~ Ig mm 142A 173717 199 mm 14315351' H 14 l~~ I~ 144 mm 153215 I~ U7 :~ 400000 2~gggg 1.,8 '1 5Q(JO 0 158 4<;0000 11)9420000 If)O 40000t) 161 370000 161A 170COO 11)1B 37000{J IhlC 370000 1l;lU 370000 iZJF j~gggg 163 120COO 11)4 270000 16522COOO 166 170000 t67 1200UO 16P 70000 16 q 120000 hI h7 69 72 59 64 66 69 ~6 m n 147 77 ~ m ~~ 1548 320000 lS4C 350000 ~bgggg 122 12.0 12 P 135 ~~ 12 14 I' 23 29 3'5 i~~ hO 5241. 31 22 21 24 29 m 11 14 16 16 14 10 16 15 16 16 Db 1~6A 102 87 72 71 76 83 65 57 47 34 22 2C 25 30 ~~ 12e 126 62 51 47 30 27 18 10 '5 31 26 17 115 92 88 82 7h btl 73 104 112 132 16 17 1 -1 18' 201 l~ :~~ l~ 19 1~ H -ii 17 -21 16 i5 13 -20 -21 -17 -l"i -13 -12 -i4 -i13 -lH 14 15 14 16 17 l4 13 -2 5 15 26 33 25 15 17 17 16 17 1~ l~ :if -10 i~~ ~~ H 73 U 63 n 61 21() 502 <;OR 49A 4Ah 474 41" 90 91 12 1 4 -1 -5 5 3 4 -11 -16 -19 -21 -24 -19 -21 -23 -10 -16 -18 -23 -26 -18 -18 -2C -15 -17 -18 -22 -26 -14 -15 -18 136 130 120 110 100 83 94 103 116 lOB 96 85 12 56 64 71 4 5 5 4 -19 -19 -22 -21 -18 -20 -19 147 155 165 171 116 124 126 134 -2 -26 :12 -23 -18 -22 -23 -23 190 -21 -27 -26 -26 -32 -30 176 170 -25 -33 -33 -33 -33 -34 -31 -32 -28 -28 -30 -33 -36 -34 -36 -34 -32 -33 -34 -33 151 131 126 114 102 gO 90 112 135 159 11. -14 -27 -21 226 265 183 238 g ~ :g -5 -5 :~ ',9 85 103 100 116 R 10 (J 11 30 ~~ 130 k6g '185 513 51b 493 46H 440 414 3R6 35') 11(, 5'j4 S24 4YO '163 I t 33 '1h5 ~fi~ 89 -5 -8 -B -11 -9 -12 -10 -10 -5 -3 591 ')80 570 051 558 "lA7 602 bC? 4~'j R8 51 34 3< 22 16 12 12 24 44 60 ~j m m m t.~~ B7 :-If, :~ 147152<;15 147A 72507 148 72207 149 71707 1<)0 71207 1~1 70707 1?270707 1,2A 120000 103 170000 I"A 220000 l~:A ~6gggg 120 Il'i 84 ~~~ 5~C 172 l2~ 457 463 ~ :~! :~~ :~~ =H -29· -34 -33 -37 -36 -36 -36 -3h -32 -31 :~~ -23 -21 glq :11 -13 jZ :it 33 -9 445 43< 432 4.45 471 470 30 29 2A 25 25 30 35 33 -11 -11 -13 -17 -13 -12 -4 -8 '149 424 398 370 347 314 331 27 25 1'l 18 12 7 10 -11 -13 -17 -19 -22 -24 -21 4~3 ~Zt ~~ :~ :B -15 :~g :~g :fi -17 -~A -6 -:7 7 6 3 2 2 5 18 7 l 6 1 -4 -6 -12 -16 -13 :~~ :~~ -28 :~~ :~g :~g :\1 -10 -iA 12 11 10 10 10 6 13 28 21 ~5 15 16 10 8 7 8 3 *. I) *. 148 138 121 103 81 60 78 IDe 169 158 144 129 115 107 120 140 26 lq 13 4 -2 -11 0 7 33 38 45 53 55 64 55 46 -20 -25 -21 -26 -26 -1 -3 -I -4 -6 -5 -8 -1 8 11 9 179 189 204 216 210 224 234 246 43 51 55 63 0 a 1 1 15 15 15 142 244 278 H 13 2C 13 Ie 6 -5 -3 128 121 222 211 UO 252 61 51 106 88 83 71 61 53 48 73 94 181 151 141 119 94 68 60 96 142 184 211 196 lB2 151 135 109 lC7 140 178 217 40 28 21 6 -1 -19 -7 13 31 35 41 50 6e 613 75 61 48 32 268 311 301 35C 12 81 3 -I 311 486 684 681 669 651 625 623 631 655 653 170 819 845 847 773 718 168 156 741 746 151 773 1A3 A12 777 735 t>93 651 609 642 752 122 687 651 618 518 611 620 576 527 468 410 349 391 m ~~ m m H H m m m m m m m m l~j ~r6 m m m 1~6 ~~f ~~~ m m m m 382 ~~3 845 852 836 822 802 601 ~~t 361 ~~§ ~~fi ~H ~;'6 ~!9 780 761 150 730 729 736 155 754 ~~~ 129 69b 652 6C5 551 SOC 537 Z~ ~~ -23 ~~ 1~~ -~ -l7 13 H 26 l~ :~ 113 -11 66; 671 671 661 650 650 653 613 61C -61 652 633 609 583 560 528 541 !~~ ~rj :!~ I ~ :1 -7 -6 -i~ -16 -16 -19 -24 -30 -33 -32 -31 -21 -23 =tg -9 -5 -~ 6 2~ 152 145 141 133 126 124 144 159 110 104 100 95 89 93 103 115 68 60 59 55 48 39 50 60 207 221 233 241 150 161 167 176 q7 103 109 119 294 244 139 284 276 235 231 130 120 241 205 4 227 196 2 218 IS6 -5 194 171 -7 111 153 -12 147 1:39 -10153149 -7 178 165 -5 2C3 190 -3 236 215 100 93 88 70 57 40 33 53 10 88 H 14 m m U 14 H 11 m m m q Ig3 j 8 12 m m m m m w ~~~ ~:~ 286 331 451 464 379 385 377 370 35, 359 369 396 400 3B2 366 344 320 295 271 291 1~ m ~j3 ~~t 61~ -68 -57 -49 -42 -41 -37 -31 -32 26 26 24 21 18 17 21 38 26 60 60 58 58 55 55 59 10 60 646 653 636 625 610 623 648 649 626 635 625 614 604 603 614 636 636 -14 C 13 32 47 62 48 18 15 7 3 -2 -9 -4 54 52 45 tt2 37 32 35 619 589 559 529 l,97 461 494 616 596 560 543 516 488 509 :~5 ~2 ~3 t~~ 317 351 ~g }2 ~r 611 ~j~ ~~~ 130 153 m 240 ~~b ~~j 339 :6 >!- ]p(, l'J{. 'il(, 4,"'n 4n (t4 J 4f,'C' 4'11 51< '13,: 1',/,4 ?l, ?ll 21, ?l".:l 214 114 211', 215 21h n~ Hr)OQO f~Ci')C()() Il!.llcn() h?OOO() f.')OOuO 6'10r,nn /;7UOOD 2~gggg ?1170COOi'J ?i 7 70nOOn .?lP 7200G(} 21'1 1500flQ 7l'} 7">COOO 2,ZO 770000 ?,-0 nooop 2rl 400()or; n? 1-:0000(' 223 7')()nOf) ;;~ ?tf, 7th '?If-. ?2(-., 227 ?27 727 227 22,3 ?2 P 22'1 ?2'lt, 2~O ~31 7~Z 2'11 ~j~ 21h ?17 23Fl 23-'1 )31 2.n ~6ggg8 fl2Cr;0i1 'l?or<)o C]2con'l fl20C()O RSCCOI) :~')OODO H500()n fj')Qonq u tg12 12 12 12 10 11 '1 12 Ie 11 16 ~ 6 b 'i6t> 1 0 'j'">COOfJ -i 'i'lf)Of)O ',4CQO() -A '54(1~0n hCOCOO c"CO~l() 71C'c!}n ~OR2'1'> ~g~j~j I-OQr,l!) hW;)2'1.~ 60gS9"> (;Ogf:')'l cl)<)(--}f', n 231 (I '21'1 .?51 q 0 -/1 -4 11 17 20 17 i;17 12 10:; I"> 1 10 lit 14 17 :t~(~ -}I'll -Ulf, -2(16 -224 -;:;>4 -?45 -;:0:,7 -10';6 -214 -2hf. :~~~ -;}.f-]'Fl ~~~~ 117; l"l77 lq'h 1"9'} 18'5') 1>1R., lAn r 11]20 14fJl_, 19p,f' 19~;: t 10>1 1'10~ -j43 l'1'1i' -3')'1 l'1Q" -4()3 1'''17 -111 17/,l -371 1<;1" -11)01.17; -1"21112 -3ftZ 1017 -1),--1 'n7 -314 ")7') -141 lO[)p -::''17 ilR7 -1hl IVi 'i -3P,2 l'i"j"-J =~~: -Vir) -id6 -f,71 -'t7f: -47f-, -4'-\3 -It'll -411 -41? }~j'; 1107 tilh:, Ult- DOL 1112 1114 Ll'} 1-,".:17 1';44 1~77 If,P'" 11~9 i~2~ 11")') H'12 1 IhC! 21';1":4 2ee7 2)',7 2')-\R U"P lr~~7 '2['''9 At. l1~n 112 :;f. hIt fJ4 47 "3 54 Al 64 00 65 7hM h4 174 78'1 7'1'1 914 974 65 111 h4 '11 r.4 h3 61 52 3" '54 1-,1 A7 IOOf, lfH4' 10rl4 10'1":! 1101 '14~ ']42 1014 1081 .0'j'J 1121. 1144 i14 /, 114<) 12~4 13n? 1407 1414 1'1h4 i~;~ 160') 16131 lR,)~! 1954 lY/l1 1t72 22/)0 1')21 1844 2141 ?U~ })ii 2l2<:J 211'i 212'-, 21~4 21 ~Q 2,)(18 '22'1') nr.,7 2244 2251 7.237 2.1114 7" 77 75 7'1 76 h4 b2 72 15 7" 7<', 7"2 74 73 74 b8 72 7't 7" ~~ 76 70 81 '12 01 44 67 '14 07 29 ~ri gg 12 14 17 14 (16 '1A 1':,h9 197~ 1742 IhOg 1"'73 ltd 6 I t d"i 14,'B 1':;'12 1 [,t!fi 17'14 1342 17g l':l"lP 15'12 1'5')4 Inn!" la72. 1704 llisn 80 6'1 04 64 67 72 74 8'1 11"4 2,,)12 2114 2091 22'1'-' 2301 Z'3(}4 nOl no? 1+9 i3Jj t~~i 212'1 21"'7 2111 5 2117 '1.n?1I -2b -'2() -2~ 13 l? 14 17 11 1'1 1'~ I} 1') 1·1 1) 17 21 1') l 11 14 17 I'} 14 1'1 lA 17 14 16 32 44 51 41 33 21 3D 41 41 -7 -4 4 2 -1 -~ -6 -10 -1} -11 -iO -11 -14 -14 -10 -1R. -ZJ -23 -20 -22 -lq -16 -11, -11 31) 'H) J? 44 42 1.; 34 16 ~5 31:'1 17 18 42 42 40 31 22 29 32 1f> 40 ~q 11'l 41 Yl 40 i.0 54 57 '.i7 '16 42 2f1 42 47 '17 A 12 70 1M 16 13 11 2 a 4 3 1 -) hRO 72~ 742 741 7'tl 740 74(' 741 742 74g 7'51 74P 741 -27.39 -7 -8 -14 -1{; -12 -16 -12 -12 -14 -f' 736 731:> 730 74g 7hF 7H7 pO'1 831 8'1f f'.77 -111 c47 t8>! 706 70-5 706 70) 707 70(( 70t: 71t 71t; 714 708 7ap 708 707 701 723 737 757 777 HOI fl2l: P.3>l 48 4t> '50 gIl 66 q')C BAh of:, 56 53 60 151 q54 HAt ~18 AS7 B5t:. P6'~ R911 897 902 '5b 9h2 gOB 62 f)B7 932 60 10Cl 95'i 'J5 Ie32 qfn '.i9 1062 1012 63 10b4 101'3 f,2 10931044 62 10'11< lCLth 49 <.f35 pg/~ 51 1017 q7~ ":i2 lu6C lC16 5R 1110 IG67 5') 114~ 109>3 59 1150 l09R 61 llR2 1127 63 I1B2 1121 63 1187 1138 63 1182 1143 63 1191 1168 78 12'1C 1244 851308 12586 ':186 582 584 )78 a 42 ')74 ')7') -1 40 -I) 40 1 -9 -10 -10 -l9 -15 -13 -15 -9 -CJ -10 -6 53 ~5 'SA 70 69 58 SR ')9 58 61 5') 58 60 ')'1 61 61 38 46 51 51 56 53 'JR 61 61 hO 56 ':>7 72 76 72 61 40 64 7'1 91) 3~ 43 57h ':l80 ')77 575 530 '160 ,82 581 ')78 ':174 573 ")72 566 573 H3 U4 j49 350 .150 3'14 341 572 _~4"i 573 S68 ')73 566 571 566 570 565 25 502 560 29 591 ,73 2H 5'"13 586 )0 610 598 31 631 616 3') 651 634 32671653 32 684 671 84 730 711\ 84726 7U q3 734 721 10~ 7<;6 144 103 7'i5 144 92 75'1 14" 92 756 7411 94 166 75i 92 761:J 7S'J 96 184 77") 96 qO~ rYb 94 1:125 132] 97 851 866 9} "l53 871 g'J 876 9n'J 98 tl76 906 79 730 7'-}6 83 804 8')1 88 d43 .'!Rl 9'-1 :!81"> l?lfl ]2711 1.::/1 1,11" lil72 1166 1:<')'1 "1)2w "')2 -21-) tli') 6C f.2 6(; hO 6?h 64'1 OR j4r ~46 Hh .547 -:142 .:I4j )41 .540 1]0 ~47 J57 3&Q jR2 39'; (fn, 417 ~5() 456 '103 I;R3 4t10 l;rJ~1 4Bi1 4'-}4 '1f)R ')11 "J_~n ")')2 '.J75 ")77 a07 ':lI2 '523 '">73 :'19 l..32 h6i 677 70'-1 720 11!'l 14'> 770 794 ~05 lH2 81t. 750 637 035 ()Aif 747 ""**1114 ;~., ** ~**"t ****~.* * *~, *** **** ***** **** **110* *** ***** **'$"* ******** *.. *.,. ** ******* 95 ***'* *** *** *973 ~..,. .. . ,. * ** ** ** ** 9'?Q 7<; 'J'. 63 1<11 1282 1227 1252 113C 1322 -3(; 113 1226 HIC !,l7~ 1~7; IR11-1'171 -2J '-17? PAl) '1(100f)O 550cnn '17I)nOO 60000(1 hCofJ00 h00CoJO -27 -27 ''is P81) 712 720 711 no 211 ?12 -21 ')p, q813 ?[J'=l -2;! -2ft -24 -21 'i(VI nc' ?()p -2l1 ')1:>7 7 ?!)~ -}'-1 Z~ nh r 2()f.I ?U'1 -q -13 -10 -1'1 -21 -16 Zl h1..3 '~*~*;"* 1; 7 '~"p,\"'c",:< #"< 10 -77 ln4f' 10 -PI lnn 12 -4,7 111~ 12 -'.,13 121~ 12 -n 125 13 -~3 1211 11 -:i'] lUll 12 -f.n 1101 -81 l~L 4 -'17 i2f,? 12 -17 !.2q,~ 14 -125 1'1')1 11 -127 1"17'. 14 -127 ISh 1?; -12J 1"ir-l' III -142 IbZ:' 14 -141 1114\.. 12 -140 17Flf 12 -141 17'1.' 11 -11,3 1"121 -17 -} -11 hC, u~l '120CO i ) <)iOCOO "70COO '1700 r )n '170000 nOCQO 12 51 53 ">4 -l~ (,'1 11n 207 4 ') 1(; 10 11 y6 91 >:- '){,t, 671 1:17 ', '.ir.? f-14 ?t,t ,J. 't ,0 80 **-('0 ***** '" -11 *** . . ** ** ** ** 610 *** * *' **3Rt *** -* *.'*** * *** -* -,) '" 47 '" *** ***,.;. -* *-* *4<;4 '* 4' * * ~ -* 510 -* V** *:('1* ** 3 ****** t-41 53!:: -* *542 -3 * ~ -* '* 3'J 51,4 ,7() <;gl Air) *2\l"i t *" ~*~~**>:" .~ *>:-': '3ccon(J t18 ~ *****~ 14 >:- olo* 334 lhi 1'< j~~ 22. 404 2') 4(14 26 40:, 21) 40"1 Zit 3~·) 22 ';Of-, 14 40b 0 411 1<) l'll 1') 411~ 12 4111 12 3')') 11 iq4 c) yn Ii ,~114 n'}p 227'J 22"7 2?S') W-} ~~ 74 74 41 'tl 31, 4r:1 41 4] 54 57 6) 67 AI.. 49 4') <:>7 60 5} sq 67 67 63 64 6') 46 47 56 '57 ')'1 hO 62 A2 h5 60 72 7~ 7'1 ~~ h4 '19 hI') h2 55 "q 5P '17 R1 ~~ 92 1)1 R2 'H 98 123 121 136 148 162 101 106 116 11g 121 123 191 lr.}O 1£17 1,139 196 191 181 173 ttl 14) 141 143 1'10 156 165 lRO 162 174 173 174 207 203 189 1B3 l1q 165 161 160 166 170 174 196 216 203 213 223 230 243 26>1 10 I 371 1'12 183 19f; 202 195 19q 204 204 706 i~g ~g~ ll~ 124 136 146 f~~ i~~ 103 1312 1262 1299 1110 1363 105 1345 1301 1351 12C4 141C 11114101375141812261448 1121416137"114281226 144q 113 1419 1381 }430 1230 1445 102 1226 1184 llB4 1018 129t 100 1225 1181 lIRa 101 ... U89 110 1341 1304 1338 114'" USC III 1i90 1358 1407 12C5 1423 11114101392145012441463 112 1431 1455 l't86 1460 148'5 11C 1446 1 ... 64 14fl:6 146R 14fl3 112 1442 1467 14A6 1468 1480 113 1441 1468 1490 1474 148C 96 14,1:12 1t:.25 1524 1566 1533 91 1492 It:26 1541 15fl 1532 8816351171 lHOI ItSS 160C 86 1640 1716 1815 ItgZ 1595 177 IH21 2045 IP84 1864 1721 l~j U~ci ~a~t 24519422255 264 1q75 2261 327 2045 2558 384 2052 2756 412 2056 2820 580 2C55 2(:59 614 2C151 2668 604 1352 1755 626 1709 2168 672 1986 2t31 ;~~ ~gi~ ~~j~ H~~ ZC25 2019 2045 2060 2068 2C86 2C'H 924 IS18 2108 ~~~6 Fl42 2081 2623 8051 864 201:6 2605 8051 862 1944 2585 8051 869 1962 2f:OC 13051 94fl 1959 254C A051 926 lA6G 2373 8051 902 1733 2118 8051 87q It07 200t:. 8051 852149018478051 824 1360 110B Re51 AI0 1326 let8 8051 H12 1325 1673 13051 808 1411 1158 8051 802 Is5£1 1932 8C51 800 1682 2131 8051 812 1896 236>1 R051 ~~~ 816 900 961 16<] 947 942 942 122 '120 lZ~i 11192 1952 19P2 lS95 2eoo 2010 2016 1'.;94 lq16 ~~~; ~g;l 2603 32gt eC51 BC51 249t 443~ 8028 B02 A 9028 13028 802e 8051 8U51 RC51 8C51 8051 BC')l BC51 i~~~ U~i 20611783 2C88 1863 2054 201B 2018 2070 2C12 2083 lc;ea 2Ca9 1975 208e 627 lC59 1313 1551 19CC 2C33 i~~~ 1970 1965 1949 1<;t:.C 2CC!:! 48g9 799C 7990 19QC 1S9C 7990 7990 1~<;C 199C 799C 799C t~~g 79gC 79gC 7C;9C 7g90 7990 7990 1<;9C 1990 7SC;C >!I >;\ -44 -49 -SC -5C -41: lC 15 -21 -41 -3e -37 -37 -35 3 1 -11 -11 -43 95 99 lC7 101 lC8 87 88 99 103 105 116 122 120 125 126 128 163 169 255 -69 -87 -99 -97 -lCS -llE -5 -6C -101 43B 417 688 735 780 'no 983 flOO 955 1038 -3t =2§ -tC ~~i~ :i~~ 2144 2138 2126 2133 214A 2222 2271 2260 1279 672 -629 -656 -193 153 291 ,'n ~~! 531 597 701 723 73l- 753 768 Beg 843 jj9 19~~ III 9'16 1255 828 116 1026 1290 ~51 11810651326 HfllJ 120 105b 1336 B10,. 0...... ,. ***0 "' .......... >t ..... ** ................ *............................... -0 ................ .,,. ... -. .. 70707 0 0 0 C C C ceo 0 0 0 0 >:< III 70701 ? 101010 1 0 -3 7 -1 Ii :; lZ 1<, mm -~ 4A 1')151'1 , 171717 SA 171717 0 0 ?7 37 't2 j ~~ r i~ l~ 121212 1'51'51') 1'5151') 17171717 17 171717 tr 202020 IH 202020 19 ?22222 lq 222222 ~1 ~~ IS 17 15 10 17 lA 16 16 f.7 67 72 74 el 171717 17 i' ~A Hl;l~ ~f\ ~g~g~g 7 20Z020 t=' 70107 707D7 70707 16)~~6 t~i~t~ 12 l~ 1<; If; It, ~g ~g~g~g ~~ ~~ HtH~ 1~6~A~ 21 ~~ ~~ Tllf LOAD 21 22 34 22 I" 11 U. 17 17 1'"' 23 22 22 24 25 23 ?4 1'.1 2i l'l 21 11 1," lq ~t f~ 1~ 17 15 17 NUI-,BfR. i~ ,ERn CH"~J 102 CH fiN :i~ ~t ~~ Ig ')0 44 12 10 40 0 :~ ~i "if) 46 41 -1 -3 3f1 q 15 11 513 ~~ ~~ 39 38 ~~ 10 11 40 g 45 ~~ ~: ~~ ~~ ~j 2~ 62 it 95 66 81 57 =1 16 tg~ 2~ ~~ i~ 20 20 20 20 19 20 16 16 ii 4 4 9 8 16 IA 26 29 22 23 29 31 35 37 45 42 51 4q '12 44 34 34 64 71 71 64 63 55 54 j~ ~~ 67 17 18 71 b8 59 58 ~i ~~ I~ ;6 5C ~~ 61 1 67 61 64 15 82 ~J ~~ ~~ 11 a 7 10 12 15 14 120712 ',2 71007 52 71007 '3 71207 '3 71207 "71507 ~~ ~rig~ ~~ ~~ggi 5571707 57 72207 '.7 72207 "72007 ,8 72007 Em 60 71507 2? Bigi 61 71207 s~ 17 lA18 II 14 13 14 15 15 14 19 n 30 H 3.7 37 38 41 41 45 i~ ~~ t~ ~~ I, 17 14 15 14 l§15 46 59 ')g 51 51 CHb.N CHb.N 105 C!-IAt-.: CHA"l 1 07 lGh 6jA 2A 101010 15 12 2~ mm n l~ I~ ~~ 45 44 57 52 '2 50 59 flO 54 52 -6 -4 2 5 I"~ 42 41 33 23 I', Ii, " t~ 202020 222222 2')2525 252525 272727 272727 115 15 15 17 14 14 6'i 12 Pl 80 :,6 81 ')4 5', 57 51l "323232 R3A 32323? 15 17 15 17 III 126 131 6' 71 Rt, 8t', 7nA 7q ,so f',O' 1'1 HI\ ~~, fill mm 3535~') H'tA 3') 3 19 14 45 34 H 4C 5~ DgHi ti i~ 19 ~i jf· ir ~~ t: ~~ f~ ~J ~6 l~ ~~ §+le 188m 70707 ;r m8i ,1 ,70707 :~ -21 -32 -32 -41 -40 61 15 13 86 87 98 100 112 114 2 3 I :~j a 188 86 11 2I ~§ 12 46 46 44 44 31 39 B4 4 4 -1 -1 -4 ... 6 -Ie -9 1 -6 -i3 Zg 10 10 41 12e 5q f~ 13 14 l~ 1 11 Ig ::8 -41 84 :l~ bC 22 21 IR 18 18 16 H j~ g~ 3 17 t9 }i 23 l242 ~l "31 -1 -1 IS E ~~ 40 50 51 :i~ q 10 3e 0 -1 -i~ :!~ H :~t -26 -29 ~i -2 12 :l~ 53 :iC ~ 29 26 24 24 22 31 29 34 -15 -21 -19 60 8 ~i i~ 25 34 35 ~~ 14 11 16 8 8 7 7 5 3 ~~ ~~ ~~ II 13 ~i ~~ 14 14 14 15 13 14 11 ~~ ~~ 35 27 23 28 28 37 38 47 l~ 37 42 41 3'-1 41 17 313 ~~ -16 gy 50 -12 ~~ 67 68 73 74 j~ ~~ r; 13 11 1'; 12 12 16 12 10 6'3 47 54 52 57 57 60 66 67 71 2~ l~ 1)0 52 57 52 1~ --It i~ =lj -12 ~2 Z~ -2 -6 I~ 2l -4 -9 -8 ~~ ~~ 63 72 73 81 84 94 94 104 105 31 32 18 58 58 §b ~~ 49 61 59 69 68 18 81 92 92 34 2R 2B 2" 26 ?O 11 11 75 85 84 95 97 106 t07 121 122 t~ j~ ~§ 75 ~~ C 9 :~ :~ lq 26 24 6 7 2 2 -3 -2 -9 -6 ~~ 22 25 22 22 22 20 g~ 82 81 ti10 f.O l! Z~ -20 l~ ~~ 34 47 47 2 -4 l 1& 36 4" 4q JT 95 -1 6 10 1~ ~~ 38 53 55 -2Lj 1 -1 57. 56 '56 60 :~ 1.(") 2A 25 25 ,n 25 24 23 ~~ R, 34 31 31 30 JO ), 36 ~~ ~j u; IISEO·<\S CHt\·~ 101 jg 4~ :2% -20 q1 gO 102 104 ~g ~~ 10 24 24 22 21 22 24 24 :~~ ~~ 12 4 6 0 -1 -5 -5 -11 -12 ~~ ~t j<~ a 0 9 1~ ~§ -17 -20 =~I I~ i~ 0 11 -If -12 :~~ 0 0 22 ~n -2 -3 :~ 23 2' 30 :l~ 60 70 70 PO ~j Z~ j~ ?l fb CHA:'~ 72 ~2 29 21 22 19 16 17 17 16 ST<\G~ 'l.'\ ~~ ~2 l~ B8Hj 13g~~0 71 ~~ 10 17 16 15 17 15 16 15 31200720 32 220722 j2 220722 31 200720 33 2007211 34 170711 v+ n0717 "C qo ~H -2ft -28 4~ fJ"i 61 67 ~t ~t S1 67 0") 6', 71 -33 14 1<) ~g ~9 65 7'l 73 til q2 10 41 77 6b 't" '5'~ -14 -21 -21 ~~ 1(' 10 5h ?"l Pt l~ n 70707 2670707 26 70707 27 100710 27 100710 2R 12071Z 28 120712 ?q 15071., 0:;6 155 ~~ ~i :t~ 35 46 4(-' ~6 j~ 4 7 I~ ~j :g ~~ ~~ 13 12 5'. "g ti 6't ~~ ~;{ 11 0:;2 }~ .\,~ 37 31-', !'j ti15 30 40 40 ~~~ <)7 '16 4 , 17 ~~ 2" 2,,' 1 -4 10 ~b ~j 12 ~~ 65 1 :3 Ot, 202020 ~A I~t~i~ 10 lOA ~i i1 2Zd222 i~ ~~~~~~ R 1~ 11 n C 10 4 ~g ~j ~§ ~~ 4132 ~~ 20 10 20 ~~ ~ 14 g38 39 ib 32 IZ 24 1.,71 17 16 12 12 12 ~ ~ 10 l@ 15 20 H 17 12I 32 16 37 29 14 33 ~l ~~ 29 33 31 34 34 36 j~ 41 l~ I§ 8 4 4 0 0 0 :~ -6 4; -t6 48 -14 4A 43 44' -14 -9 -9 27 :z -I 28 19 1 10 j~ 3~ 1% -~ ~~ ~~ 43 46 48 43 38 41 ~~ 38 ~§ 38 38 37 37 14 l 11 I~ 19 24 22 18 16 15 l~ 14 l~ 16 1B 14 II ~5 I~ ~~ -28 -12 25 23 15 123 -! ·6 ~Z -~ n 4 ~~ g32 35 40 43 43 42 42 40 26 32 29 21 30 27 20 H 25 H 24 26 25 25 21 25 43 36 30 22 15 25 38 -12 -19 -14 -9 -4 I 4 0 10 3 44 43 39 '40 j§ 33 16 25 21 21 26 26 ~~ 22 23 26 26 27 n 24 ~~ ~~ 19 13 ~~ n 26 61 69 78 78 8A 88 88 99 112 III 122 123 47' 51 64 64 70 67 17 15 16 12 13 14D 143 170 167 -29 -32 -35 -3r; 9b 97 113 116 -20 -30 -32 171 115 212 212 115 116 139 139 154 155 169 169 83 86 106 106 6 7 8 6 19~ m :~~ ~~ :g -28 m m m ~~ H 29 30 21 21 28 88 98 114 115 131 129 n 25 26 H 27 -g -12 -17 -16 -19 -22 114 115 1":1,4 133 28 29 ]0 30 30 28 30 25 fl I 9 U 23 ~! 58 6'\ 74 73 78 1R -2 -0; 31 21 28 ~~ -13 -12 -10 -lA ~~ 24 30 ~x ·76 '10 100 10) 116 114 ~~ 31 ~~ ~6 25 B 20 ~ 28 18 ~o 29 ~t 58 69 11 71 81 86 19 14 10 10 2 2 -9 ~1 2~ 25 H 37 109 109 132 138 ~~ 31 9 63 78 90 80 69 54 H 30 6 !6 51 ~~ 44 a ~~ 20 11 1 11 11 24 29 33 39 47 35 52 59 52 45 35 21 19 30 20 26 20 !5 l511 H 42 H 34 36 39 3" '33 it H 31 36 H 34 2~ Ig13 U 30 26 ~~ 27 8 31 H 33 25 44 ~9 39 6(; 72 H2 '4 01 'l2 1~ J~ 2e i~ -8 -13 -8 I 2 7 14 20 29 16 ~~ ~~ ~~ ~g 69 N 6' 63 49 38 27 16 25 48 ~6 }~ E 28 27 21 21 54 ~~ 4g 61 51 44 31 21 12 5 21 15 4J 16 ~~ 18 16 13 15 18 22 25 26 31 32 21 1~ 27 '*.,. ...... "''it. t.* Ii):" •• » ~~ 33 39 45 40 34 30 24 16 13 24 36 57 71 83 71 57 47 33 21 13 34 57 ~s CHAN 117 ~l 62 75 90 75 65 52 41 32 25 33 55 -4 35 CHAN 116 ~~ 28 3q 53 42 28 20 8 -I -8 12 32 -i~ ~~ ~~ 25 -4 I~ 30 50 56 27 ~g U 17 17 U 16 17 22 39 CHAN 115 n n :~ -~ -15 -15 ~~ CHAN 118 0) 0)" CHAN 119 120 »*.* » ..... 11 "' .. »*** B 53 ~: g19 H 33 ~~ 39 36 31 34 34 30 30 33 31 30 32 35 30 34 ',1 31 40 29 26 30 29 34 34 34 34 32 32 35 44 H 31 ~~ 27 34 34 34 33 34 ~~ :8 40 $~ ~~ 34 ~i ~1 ~.l 34 U 31 j~ B ~~ ~~ U 30 15 26 20 37 39 39 37 31 27 34 10 2 -7 2 10 8 24 31 34 48 31 n "3 -11 -3 6 12 23 :0 9 4 29 60 75 81 16 65 56 40 29 11 30 50 39 38 37 41 41 39 38 37 34 52 51 87 100 113 116 127 128 9 "'1 -1 -8 -18 -14 86 96 109 109 122 123 10 2 -6 -5 -12 -10 56 57 59 57 59 59 143 140 115 118 -32 -30 -36 -40 2~ 24 18 g n ~~ ~l m 36 H8 i9 :g f~ H ~§ ~Z ~~ n n m 154 154 114 176 :I~ -23 -21 -:31 -30 ~~ ~~ 34 ~~ i8 62 63 68 71 341 TIiF LIJAO STAGE NUM8ER uSfr ..,.;; JERe FnR Till:, ** *** ** *** *** ** ** ** *** '* ** >:-' 102 CHA:~ CHh.", CHA'~ 101 RU~l IS ~t. *-r:, *'* *'* *' '* >:'< *** ** * * **" *>1<*** ** ** *:(0 **'" ** **** '*"* .. '* ** ** .. .;. ***** ** **$*:/1* '* *",!II -* **$ >/I $ 1()4 103 CH AN CHM-) 108 l07 11)6 CHAN CHAN CHAN 110 109 112 III CHAJ't CHAN 114 113 *(1.$ '$ ",.e CHAI\' » (I 4' $ 115 >I< $ ql!r >\I 4'"$ 111 lIb * ~ *'* «* >t '$' CH.M~ CHAN CHA'" »*" ** *t.1J * CI-'.6N CHAN llA 120 119 * '* * *** '* * *>:t *' **t,r*"' ** '*:!< ** '* ** *'-" ***'* ** *::;. ** ~*** "* **'* ** * ***'* **"* **,;. '*"*"*"* ** ***"*"* *'" ** '* **>11 ** *' **** ** *'" *.. **.;. *' >lilt ** '* ** ** >\I >/Ill' *** *** :$ *1)"" *» * '* '" "'"* »'* I) 1) CHAN 101 rH~N CIHl\ CHAN 102 CHA"I 106 ChAN 101 Ci-"lAN lOA C",A"l 109 CHA"I 110 CHAN III CHAN 112 CHAN 113 CHA~ 114 CHAN 115 lib I) \II CH.~ CHAN 111 118 119 *** ** *' '* .. ** *' ******14** * *** '* ***'*::: 34 *** *'* '* 76 *** ** '* '26 * '* '* **345 '* i,o *'" '* '141] *"* »$: ** '173 * '" *** $: 205 *** $' >/I *$$* »*$ >/I ».$.Q.';' *'295 " >II *»* ** 21 »*** *306 » '*.;. ***» 127270727 S,) ** ***'" 2'·} *»'* **r:..7'* **** 94 50 '" » »289 64 22>I' » i~~ ~~gj~i i~ ~I I~ ~~ :b ~~ b~ ~2 j~~ l~d t~8 i~~ §~ ~Z~ ~1 ~Z~ ~g ~~~ j~ fj~ lfgH~ }~ ~i it ti ~~ 4~ ~; ~i ~~~ ~~ fBi il1 ~2 ~I~ ~r t~3 ~l ~1~ ~~ 1(10 132 10101 \33 10101 134 71207 135 71707 13A 72201 137 72507 1371\ 20252fl 13P 20272() Hq 203020 litO 20322f) 141 203"20 14220372n 1424 173717 142P 153715 142(, 153715 14, 15351' 144 15321') 12 13 11 13 13 13 11 13 13 15 15 1') 13 14 14 14 13 110 llA 12j 113 134 131 131 123 117 5:" 5q 5 i; 54 4'} 1t.7 1'52511j 13 'H 3'5 14q 1?{) 71707 71207 }~~ }~~~ }~~ t~~9} ~ l~g f§ 15 ~~ ~~gggg j~gggg 27000n 220000 1700no pnOQ{l 70000 120000 167 lbP )q igig~ 16 Ib"t 75 HI g1 1~ 370COO 370QO() J10COO 370C()Q HOOOO 1':>5 16t t.7 h2 ij15 11,1£\ Inltl 161C It>1D lAlE i~14 3,2 31 i~~g~ lo2A 120000 153 170COO 15?>A 22:0000 154 270COl) J o4A 300000 15 1jK 320000 15 i .C 150COO 1':15.170000 l')h 400000 l':;6A 40QOOf) 157 420000 15A 450eoo 15" 450000 i§~ f~~ t~ ~~gggg 15 16 16 17 13 15 I'> 14 17 17 16 15 l' H i~ 15 16 14 15 1') li 17 13 1'" 1" Iii 1"i I): I) >10 59 42 11 q 17 21 3? 30 20 III 50 73 3'1 ql 100 11)4 117 1.:?9 11R 137 133 li?q 124 116 ~6 41~ ':d ":14 611 f,h !~ ~2 14 f, -11 7R AS "i5 ?,e 07 1)0 4A " 7f3 ~~ ~5 3'~ 1(19 122 111 147 hit j~i rn -i57 3fd 39..! l'1n S23 14t. ?,p.~ ]R.l )1l5 {~~ j~b ~f,1 )1)1. rJ~ 143 Jf)'; 2.'19 277 ZI]I "40 12" 30t' 31'1 ·~25 2fJf} VJn 8~ 22 111 111 117 146 1:;8 17(1 1P1 1q6 346 35q 77 8r1 lOt123 13'i 351 36" h8 133 105 tgi 89 41 64 5" 48 38 46 56 66 5 8 12 -1 14 2(' eo 107 114 120 112 D7 141 1 i tS 14n 137 12'/ 123 51 54 46 30 32 26 20 14 12 7 2 2 0 '13 QS 105 112 109 109 lOb 101 9R 4q 68 89 50 31 ':>0 60 76 e5 1f:,O 17'~ 1'18 :12 4"2 49P ~Ri ~~I 4Rt. I;~J7 'i2 /t 'd1 'd1 ~f~ 4'12 (,70 I t 50 i t ?'4 404 4?? H~ ~~ ~~ In3 126 140 1')4 liB 204 240 214 2')6 051 619 ~~~ ~~~ b'i£' 603 681 687 6'10 ~~~ 646 1'>1>1 5'13 5A'J 510 5-':i2. a ~~ ~t In 111 187 193 202 204 292 300 305 310 315 332 329 315 300 295 291 46 42 lj4 51 5..., 55 108 115 118 119 124 126 124 109 104 98 97 15 14 78 82 8'1 90 142 146 151 154 159 163 158 150 142 135 133 144 136 140 145 151 151 185 190 194 196 201 205 208 205 "276 86 122 31 21 21 14 A 3 0 -4 -6 -9 -12 -14 -16 -16 -15 -q -6 -r ~g~ 2~ jg 42 73 1)9 13 15 ~~~ ~~ l~ ~l ~~ 1~6 ~~ 56 42 3') 21. 11 10 9 2 -1 0 -4 -2A -29 :~~ -~~ -11 -8 -1'1 -3 -2 lci 22 37 4"! A2 70 hI 4g 48 63 1d g7 105 113 123 131 145 155 162 322 341 j2~ jj8 328 21 197 188 30 21 14 7 0 -4 -4 -10 -11 -12 -17 -36 -36 225 211 319 369 411 440 496 553 622 677 122 1125 \131 :jb :~~ Hi~ i8~~ 35 29 52 82 111 143 165 183 218 265 3ec 454 493 \125 \141 H~~ lJ9~ 337 358 358 361 -22 -20 -15 -12 -14 1047 106} 1086 108'5 1087 1C10 loa..., 1117 1115 1118 336 321 310 2<:)} 276 291 15 27 36 41 33 964 892 806 731 653 712 lOOt' 945 A71 196 714 16A j~~ =z1 ig~6 igZ~ i~§ 3~ 7e 71 ~~ 88 120 148 115 204 215 250 215 314 392 453 1195 1205 H~& IH§ 1109 1113 1125 1125 1132 ta9~ 68 11 68 11 72 68 62 61 64 62 l:} 189 169 174 181 187 192 249 257 259 26ft 211 21f'l 211 269 261 >10 9b 101 105 101 98 98 81 19 7e 78 19 163 139 150 157 167 168 248 258 260 268 276 285 285 210 258 255 248 12 92 87 84 79 15 48 47 42 43 40 38 39 46 52 55 bO 184 L6b 111 119 198 192 263 211 212 281 284 291 Z9} 279 268 262 261 10 245 182 174 196 195 66 6S 68 71 12 13 255 19 19 82 09 9C 92 lA6 13 243 98 233 115 166 155 94 leo 116 109 913 91 85 83 84 86 91 99 91 51 49 111 218 263 )07 331 368 502 565 660 716 164 1303 1314 99 63 zoe l~a l~ 25~ ~~~ ~~ l~r ~~ f~~ 199 111 l4~ ~~ il4 199 H~ 156 151 163 181 202 226 246 260 323 364 436 520 550 10AO 1091 l~~~ fg~~ 1056 1071 1095 1091 1095 19~~ 10071021 925 q73 831 919 135 863 635 e02 10C 841 78 18 192 183 81 76 13 12 68 68 73 77 18 81 83 15 8 232 206 303 331 356 459 517 609 686 721 1319 1331 i~ BIZ 1239 3 13 13 12 13 13 l~ B~~ 125lj 1281 12e} 1286 i~~j 2311 119 24 1D64 2e 966 33 872 37 169 32 8...,3 §~ ~! 61 6S 68 7C 1C ~j ~~i t~2 l~~ l~~g l~~ij 1215 1229 1251 1258 1256 if~~ 921115 leI 1024 111 922 12C 826 12q 730 121 814 ~l ~i r~2 68 52 45 37 40 40 39 44 38 13 l' l~ ~~ 32 30 27 27 26 1~ $11 CHAN ~~~ i~~ U~ L96 236 216 311 345 373 521 588 681 153 805 1305 1316 t~ij~ l~~~ 1222 1235 1253 1251 1253 H~§ 541121 68 1036 84 <;141 98 851 110 756 98 821 120 >$ * *;(1136 "" ni lji 68 82 78 12 68 65 40 36 34 33 30 26 28 32 39 41 44 130 131 130 130 131 131 133 134 136 l1R 134 139 137 134 136 134 137 53 131 74 81 131 135 80 64 151 152 156 154 157 158 15'+ 159 163 171 173 221 228 2~ ~1 ~~ 51 33 2b ItJ 29 29 23 25 2't -15 -16 -:~ 16 10 i~i l~: l~~ ~~~ ~~~ 11 B 9 8 227 23"" 247 250 251 ll2 54 69 84 97 83 248 247 245 243 242 244 }~ ~§~ 342 THF Lr'\:) )rAr;,~ ~i\J1\f\rR lJ~FL, lf~I' liS FI'!', THJ:::' 1:-' 1·1.iJ'1) ~ >:" * ;'<** ~7"* ** ** **** (" * i: * **~.** * *****'* >:0 *' * ** * (: ** * ** ** ** ***** *(: ** ** ** * ** .. ****** ** ******* ****** *** ** .*** ** .. **'" ** '" ****. ** .. "' .. '" ** ..... *••• *** ** CHfI~, CH1'~ 101 ,." ,.t; \' »: >:<.:<* l oJ)6 120QOO 17r. 17I)Ot)f) 1712 L OCnn 220000 17, ,~')2222 1., 1'l 14 171 1 (4 17"" 14 1'J If:! 14 117 H':! H6 q} ?'1??~2 17 It-. 15 IS 222i~_? 1"1 -H4 ',I" 'HI 17 10:} 1.70000 )!}OI')(Jil 17 17 1M 11 1'5 16 1~ 11 17 nnn 13 )n2?")/ 322222 3';222) ;;~~3~ U1 l~ ~2?22? 170 17' 110 141 1,1? 1(13 1')2272 <'.722;>:' 5!??")") ,~~5~~1~ l;;=:\ 1.<» l'lA 11-7 lio }j ~?COI1'l 1'-)0000 370000 HOOOf) HOOOr) If'g lwlt\. lii9fJ 11!9C nocnfl 11 I"Q[o 170000 noooo 1:~'J!::: 11'1f:. 3700(H1 l,ql- Honon l'IfJl- 170(,O() ])-.1")(, 170r,'lr; 1'('1t1 nOODQ "icocun jqUO()'l l,?j In H~ H7 "1?t ~2S HI 341:> ~1)7 3/") 44,) It!-q 466 '-J"H '))1 "il)nron 'i?OCOf) '-}<,ccrn ;?un 11 q 12 13 11 11 ,':!oon\) ')'-)ncnl) )qn )111' 'i')f)(J,)r1 ,:!jccnn ;'.')CI\ '~"iocon 2C("lt, ""')'Ir', Ij II '-J~)O()ln ... ·;ccnr ?IJC!\ 1~ I"' '">'1wmo )r:I'{, ?r,rl 'l·jOC(lr:. 11 ?()CQ[)1l Ifl ~:;~ j~ggf)~~ 71~1 ·H'CCOI) .;OOC(JO 7'J?/\ 7(1', *~ 11 liJf1D t~ f3 1j ~TA;F ., .... '") . . . '11 ~dC bon 4n 47LI 611 470, 1111'1 ',1}7 L,72 477 Cl-ltl~1 CHlI"-: II'" 107 CHtl'\j lOR ~jd O-lIN 109 14? 311i )41' 1")>-1 '-I'll '-.95 (osn 2':i 20 11 14ri 34:j nhr) bn £,qf.. H 7Zn 730 7s'j 7hO 7hl1 0 0 -2 j~~ 1f,,. 1R,) ~~" 4':J7 4hd ~~~ ',11 ')('L, "\44 ')',q 'I'll ")·It, "02 48~ !'1'1 liP' h22 t"o?4 h,.... L, 4'"1'-1 4A~ 4'1" ..,01: 'ill] 5 ~l 1)4" <;77 ')f.l\ ,~?\ "g~' A4r, hH~ 70 / , 1,12 (,"l4 (\4'1 f:f·ll ho-12 704 7r)f. 713 717 h'i4 UJR 7,'?1 7<;.1 7o-J7 '·-1(")2 74" ~I..) )n1 '1 ':! I, /1-,1, 7?~ Q7f' 17,\ 82.! Q7'1 jQ~~ ~~~ 1"~f) 7'lf:. 7g') )'00 ll?t"> 1-'11 CHlIN 110 Ct4AN 111 CH.H. C'-AN II< 113 CHAt... 114 LHAN 115 CHAt... 110 CHAt... 117 CHAJ\ 118 C,..At\,' 119 120 *...... *..711 ******69'5 .. ********* ** ..31** .. *f39 ... ** *.. ** ... * ***** '" *t 97 ......... ~21 '" *.. ** "' ...... *.. *.244 ** 707 e35 llll 813 A2 gh7 1019 1077 11nO THIS 966 992 9q3 1110301091) 11 1007 1068 12 '177 1041 15 945 1011') 16 916 qet1'1 flR6 9~7 1072 1045 lC19 9A8 g54 925 1069 1056 1043 1026 1008 994 19~j iri~ gJ~ ~~2 !g~~ \g~t ~ti 16S~ 30 'J -21 1141 1182 1218 -17 <;04 ')24 ,4H 57A S7L~ olR 6211 1)14 AD,) h}7 -43 714 743 on6 -34 hh1 -'+3 1160 1222 1144 48~ -20 -S3 -'17 -1l2 ~71 927 flBb 94b -~7 41J -10 144'\ 14R"l, 14'}4 1521.' itJ~ 4f;>':J -30 11'-1 1"i7 162 46b -2q -38 -,6 16 13~O 't~i 45h -1~ ,,'}A 74'1 In? 176 781 810 886 92q 1H2 1090 1201 12'57 12(>7 1100 404 427 431 416 45H -1 -1 -~1 )<","1 >17 140 166 9g6 CJ76 1006 1023 le43 i~ 11M ,QI1 -/1 -10 .sRj~ 91<) 915 g16 R7') 'H7 954 985 lOtS -53 -<:'7 -r)7 1l5R (}?2 -5~ -~g l;1(j', 7 '. -4 11)5 361 -? -2 -1 -1 -4 -22 9AF~ 83A £I5~ '135 IfJC2 983 1026 969 1033 1018 1049 1005 1C6tl 1057 lC70 -g 1041 1100 11C3 1095 -11 1082 1141 1153 1116 -12 lOA'} 1155 li60 1123 -20 1141 1198 1188 1149 -24 1144 1198 lUn 1154 -29 1156 1210 1190 1160 -27. llAS 12~1 1213 1179 -20 11'pj 1239 1215 11q1 -22 1193 1251 1232 1185 -2? 1192 124P 1228 11R6 -22 1201 12.17 'lUHHEP (J::H. ~1 f,lfl .J4} "A7 ..,7'l 331 f..4R '-'~1 1--.4, 333 334 1Hl 61:· ~n" ~:~~ ~~~ 6f,5 37 14 30 39 4 1.... 77t 1.~1 627 ,..,1--1 A1--1 31 26 19 11 16 305 464 1-'47 71"-\ 'I b 7?1'] 624 320 327 32B ~47 ~4 4fJR 4h'. C1(' hf-:7 h2(-, 288 hI ':10 3q 41l 40 27 ?'J 31 1":1 jCOOI) '170000 ::'n7 11 11 13 14 10 '1 40i)OOn '1,JOO(1) j'j(' I'll 1)2 1n II";). 1--14 I ~4 ,1')':! 11)\ *~, .~*** ** **J;':"~ **-,:,~,~>:;*"" ~.:'* . . * ** **~ * *,~*"" ** ***** *t* .. ** (: ** .. *** 171~, 17? (H "I~! CH!," 107 iI~~ -!i id6i 18 JA7 f) 1191 1414 !~j~ 1217 1408 It43 l~li B35 1069 135C 28 929 261C29 26 1C42 23 1089 111 906 1C510C5 lC1 1024 102 1066 20 18 18 1115 1149 11A3 ICC 96 91 1" 16 1225 12C2 1112 1142 1108 1076 24 105 1~ t~i~ 18 18 26 26 ~Z t! 11 1 t;. C -13 -Ie -32 -36 -2C -31 -38 -Se -82 -91 -IC1 -117 -13e -159 -183 -17'7 -181:> -184 -ISB -116 -13t -lt1 70 70 6'5 1007 64 1092 1125 1158 60 54 50 g~ i1~9 RS 91 91 101 lC6 llC 1~6~ 1741 1763 lA44 1899 195t: 2021 2126 2223 2265 2262 2299 101 1123 95 1166 91 12C7 891249 82 1293 88 1295 8C LH8 18 1315 8C 1326 81 1350 81 1350 85 1363 84 1362 8'1 1310 88 1374 84 1410 19 1452 74 1~00 6g 1550 6e 1550 64 160S 62 16ca 1041250 85 1433 74 1521 b6 1023 58 1687 55 1096 491763 45 Id01 36 184, 32 1889 29 1950 43 l!.J92 4'1 1988 51 1-180 43 1990 1392 1641 1926 111 93 1! 131e 1383 1411 1459 1501 1561 1,69 H::36 1642 1283 1-46-4 1563 Itb5 lZ~~ 1I~ 10~5 10')6 1056 1CRO 1114 1143 ~6 l~i~ 1206 117g 1151 1118 1081 1048 461195 50 1168 55 It43 61 1113 7Q 1081 10 lC49 lb~ 19~~ 21 1145 21 1184 1-1 1226 181264 it': 13C4 18 1308 12 1326 8 1324 1 IB4 6 1359 8 1359 tj 1371 R 136q 16i~ :t~~ le02 ilbO 1345 1091 gC4 -}94 83 l~ 19~~ 1115 1154 41 1191 401234 31 1216 34 1216 31 1298 28 129B 30 1307 28 1331 28 1330 2~ U43 30 134, 31 13')0 32 U5l 27 1,83 20 1411 14 1443 8 1480 61482 -2 1523 a 1526 5611')2 27 Ij5l 14 1444 0 1')31 -7 1,)A6 -11 1596 -221650 -27 1684 -30 1721 -33 1752 -3g 1832 -32 1881 -27 I1n1 -30 1905 -34 11"35 60 50 !~2~ 6~ 1224 1430 1658 64 37 10 H~~ 1141 1345 1S83 69 54 54 'il ?44 i'.4fl 254 254 43 40 33 254 1.57 260 29 32 259 258 254 2.54 254 254 51 i~ 3fJ 44 50 57 ~~ 39 30 24 14 13 12 14 12 9 10 10 H 7 .q 5 1 -8 -1~ -21 -22 -26 -26 30 4 -12 -2A -37 -37 -48 -56 -58 -60 -61 -5CJ -'55 -51 -61 -l~ 42 14 -13 254 i~} ?§l (:'54 253 254 260 257 254 2S7 260 261 ?72 ~72 c.74 ?74 173 271 214 ,'72 273 i:14 214 214 276 270 214 214 278 278 279 2R2 282 282 tAL 2AO ~84 284 iA6 2Hl ~~~ 271 273 27h I') * ** *** **~. ****** >:' *******.(,** *'" *** ~.** *-.:- ** **.:> **.;. *** *****>It ** **:(1:* * >It ***** **** ***************** >II:+-. ********>11 ****** t* **>lr**** ** *:(1: ** * ***** **** 1 (11 101 lLI't 1 o~ 1 'If 107 * ** ** ?:..'7 ?1l".1 ****~, *t,***>!** *~,::. *",~. f; ?-*.,. '" t * . ~">'I fI *:'; ***t"~.* *~~** 0(> **- * 'lCOCnl1 fl Inq ,1ft! 145 1~<)() -45 12'12 ;I>A '1,!CCQI') 11 7if; 17 1' l'31,t-, -Ltg 132q "i':!00Q(1 11 747 1"0', 1'n 1 <;'){) -"ifl 1~77 'i7r"\(jIlG 12 71--'\ IOtl'l lC4? 16?3 -1--,7144l ;::'Wl 3700no *")1,,, ~_ *'i':(I: ;'IJ6 ~~~~ ~Jg§gg 37,,)000 15 12 2P 71/, 214 21'" 21') 21" 710 .?11J 217 ,,7 21R r'J(JOOr)(J f-.?OC()O i';lnlJUfl t'">OO()O 6'JOOIJO 670r,on 10 12 11 12 1, II 11 t70COO 700()00 12 12 75CIJon 13 ~~g 2~i n? 7000,00 ?i00011 7,00no j~ggg6 40CGOO 'n h00000 7'0000 22'> 800000 ~(:4 ?u-- 77000n ozor;o(J ;~~ ~~ggq~ ~;~ ~~8ggg ?,;'7 ~27 2/7 ;:?).-i 2~>< "1'-jOOr)n 'lSCOOn f-J')CCOI) ':!.,(1con ')5CC00 ~2~A ~~gggri 2~O 6cor.nn 231 (-16000'.1 13271000() 231 60A2H2 ?~4 tOR5Y5 211'. f;OA1R7 ?3A f)oyo,,!n 237 hlJ')2'),2 ?3P h09S'F) ? F! 1'10961f) ?~q f--O'1 f--,'1.', 2~1 0 2';J n ?n I) ?31 n l'~ 9 11 r' 13 I' 10 12 '1k\ i(;~~ t~~~ =~~ -Iii -lg -49 10" )110 2242 2364 -13t -151 1894 1915 2744 1)741 po'l'. -150 2A7h -1'36 1~;'1 2321 2Ul ?740 7 40lP 7 4011 ll)'Jl 170 r , 2(),2h zn'l 22'" 31h1 413' "127 HOP4 RO"4 247" '37' 77RO 7780 -i50 -[52 -140 -147 ROB4 77BO -165 "30" '"I](H 8n"A 77BO -210 1931 374'1 '-1575 :l,4"15 3273 'n(j~ f.l'l(\o.; >~10" R10'~ F:3nv R(jq4 P f 1f-14 HC>l4 RljP4 e0P4 77RO 778(1 7780 77Rn 77RI) 3 3~gl ., 3621 331"41 1 40h~ 3 40'?7 1 4211'5 -3 fln71 -13 !-l071 -8 A071 ~lC:'; AOq~ 77AQ 7180 77A(1 7 16~6 2232 246) 27,,3 2R65 -5S -54 -54 -~1 -140 -150 -150 -154 401-1 40::''1 HO" '-'30 G ~()R4 R(1P4 77PO 77"1fl B05B -140 7 7 ') -1 ~ _') ~~42 ~~~~ Rr;71 A071 P10" W30i-; ~11J." '110 l l ~1jO.l '110'1 ~.'iOq 910'1 /QO'j -7 f110" -A A(l'l n30" -7110711110-\ -1 ROn H~OI-L, 'Fl71 810 ': ~8~Z BQP4 AIlP4 ROB4 AnR4 ROP'-l Fj;1'14 11(;84 8f1A4 8084 R('A4 80R4 BOR4 R084 Fnq4 ~t~g 77PO 7780 71RO 77ro 77RO 7780 77RO 77BO 7780 77?O 7780 77PO 1894 IH2 1927 1936 1931 t~~~ 931 ~~j~ 1~88 1998 2022 1879 If!9') 2242 2316 1903 2414 1875 -!f!4 2784 -172 -,~41 AOr:.;~~ -]28 -l'14 -130 -111 RC5R fleSH 805(3 ROIii:1 ~g~~ '105R ROSR B05A ROSH RC5Q A058 8058 R058 R05Fj 80,8 '10'58 R058 A058 R058 RI15P -Z'7 1993 2015 2033 2040 2046 ~gi~ 1)3 CHAN 115 CHAN 116 CHAN 117 lIB 119 1?0 ~~lJ ~~I~ i~~§ 1865 IB75 1903 1907 l~I~ 2224 2413 2411 2448 -26 1893 -35 1958 -472033 -40 -56 -66 284 2R6 2,)0 -24'i 279~ -261 4399 -2624559 -281 5740 -284 5802 -313 6'162 1589 1580 U!50 31 1970 29 2020 24 2098 21 2115 21 2120 21 2115 14 21.85 142118 -122183 -12 2185 -2Cj 2197 8 159b 6 1594 -21 1866 -41 Flg3 -50 2055 -60 2163 -62 2184 -62 2186 -62 21q5 -67 222Q -702220 -952248 -100 2252 -122 2299 -10 -8 -44 -'59 -68 -83 -19 -18 -80 -10 -71 -86 -86 -115 2AB 292 291 294 308 307 306 HI 304 308 30B 309 314 -322 -"364 1301 eC69 -35 -5C 2189 2159 -127 -i45 2314 2349 -110 -127 313 312 --4€1 8C69 -6'1 80bO -149 2346 -2.:n -2~1 -316 -311 -418 -471 ~§j~ :§~Z 190e 1899 69 67 43 222~ 2373 2~3~ 2585 2721 2748 1104 e069 8069 e069 ~~~~ -4C4 8069 1913 2038 2425 -572 1943 1711 2lt62 -174 992 <;54 935 1220 12t5 1~~~ ~Z~~ 21'56 2195 2221 2256 2204 1963 i~I~ 1~~5 2341 247B 2461 -462 -531 -653 -53 -42 -60 2193 2140 2082 2471 -22 8060 80b9 -131 8060 BC69 -251 8060 e069 eC69 8669 -65 -115 -189 B060 8C60 7970 8C60 8C60 8C60 -213 -202 A410 A41() R410 8410 R410 A410 8410 8410 R/tl0 841C A410 A410 R410 237') 2272 1224 2C70 2114 2585 1191 20Q2 4134 A188 12052171 4157 81AB 1193 2370 439381881195 2411 4456 R1f1A 12CO 25R6 4983 BlPa 1P~2 2630 ')515 8188 1193 2580 604') A1Fl8 1195 2~73 6255 8188 1194 2614 6377 Fl188 1193 2623 6490 81PS 1191 2603 61515 8188 1193 2tJ16 6656 81A8 1193 2t:24 h705 R18A 1195 2629 .... 4'3f:: -324 -349 -317 ~ggl :~~~ -~91 -4el -Ld3 -431 -43B -436 -435 -it34 -431 -434 -431 e069 -le02 eC69 -85t: 8C6<;l -73t eC69 EC6S -6'ie ~g~~ :12~ F.Cf::9 8069 eCbg eC6Q eC69 eC6g eC69 HC6Q 8C69 8C6g 8C6g eC69 eC69 PC69 8069 :2~ -126 -149 -159 -175 =~~ 3~~g :t~! -tee -135C -1218 -1112 -1182 -gC<; l~~r -31 ~8~~ :8t8 gg28 8060 2154 2104 2C79 2121 2103 ~f~~ ~~ ~:Z2 :l~~ ~g~~ :~~~ ~2Z~ -i2~Z ~g:3 -i~2~ 2614 2551 2592 225g 1S2C ~~Z~ 51 1930 42 1917 342017 1939 1328 1999 -214 -200 -207 -209 :~g1 2327 2410 840 1915 -150 flO'5fj B058 1'1~5 197R 19R1 198R 2C05 2005 1918 1979 1863 805ft -70 -67 -92 -q4 -:H -g2 -104 -L07 -lOt. -ln7 -103 -107 -101 -un -11J2 -)94 -224 -239 -247 -246 -251 1423 1934 -16A :}tz -9'1 If§~ :~~4 f~~l 1531 1923 -lBO ~ 2g~! ~~g~ ~g~2 i~~8 :~2~ ~g~: :t~8 J Z8~~ ~~8~ ~g~2 ~l:8 :i~~ ~g~~ =1~~ h IJZ~ -1'-)2 -15H 1~011 132Y 17~'1 l7Pl t~21 14t, .... 1326 1322 1532 1625 1654 1724 1736 1739 1742 1868 1879 2e18 2026 2216 lr;'J6 1'553 1P20 1947 1'191 =~~ ?f177 22',11 122, lil""L ~)7 1311 1312 1t:6g lR.33 1AB2 1886 1R80 1882 lA7e 1889 IPSO 1818 1873 1840 -1'5 -IA -39 -41 -52 -74 -76 -125 -12'1 -138 "43 In7h I1J8L 1?71 2215(: 13p"l 13fl..? 142h 1446 14 P B 1624 1652 161'17 175n 1741i lqlR 1911 2222 12W, -191 -214 1955 19yA 199t -60 -72 -77 -7'1 -7'1 -It1 -114 -15rl -1 hi -.l<:'1 lll'l~) 7'J1 r:;'2 "12 -flO 15')2 160C U:?6 1702 I73P, 1781 i~~6 CHAt\ 114 111 183C 11'168 IJ:l89 -37 -L,4 -4') 1348 1349 1627 1731:> 17A9 1837 1851 19'53 1956 1873 IA11 18R5 1887 IH94 In7l CHAN 110 **"*-':p ** * **1650 ***,.. .. *** ***** ******** **** ** ** 2199 ****** -* **5'1.... *1883 * ***** *-20 .. *** ..... **f" *-4C *** ** *282 *"* * IPP'> 1711 1")14 -I'll 1836 ~ ~l~t ~jg~ ~g~~ ii~g =t~A 1~l~ =t~@ ~ 113'~ n10~ AOA4 11AO ~~6 Q05A -Rl b JOnl ,n0" noq4 77no -120 R058 -110 7 109 l17 147'--1 133 1474 lCnij 1~l)h 1040 Ihn4 1('')') lfl)') lC'1 .... 16'3P 1121 1690 1128 16')2 11.;2 161' l1CfJ 17t,;: 17141711(1 1"1112 10r)7 l'JU-.. 1920, 2YH 21(J,~ 1417 1200 2LI18 221b 41114 234b 'PI hOOOOU 'I' 211 75l lRl LIB j to 213 decao i;;~I·J bPI bPI SQO()O(, ssooon '}700JO ()i)OO(lO beOCOn ~~r 11 ?'),l ?10 211 712 211 211 CHAN CI--'Ar--J CHJ\~ -8C9 -601 -66€ -728 -13€ -751 -114 -1ee -7be -156 -158 -155 BCbO gg~g 8060 8060 8060 8060 8060 8060 80bO 8060 8060 8e60 8C60 8060 -14q 8C60 -7458060 -748 8060 -66 -120 -159 -169 ~g~~ :~~ 2306 -114 2312 2304 2324 -134 -145 -155 -151 ~~~j :i~~ 122b 1816 2288 ~~t 28b 314 310 301 290 (:'86 ~bA -66 261 250 -112 -152 263 258 2316 -159 -205 2313 -192 202 -226 -164 -120 115 55 2386 2364 2384 2345 2320 -273 -225 -180 -lCO -70 180 152 134 144 152 -209 :~gZ :~fil ~~ 2330 -175 ~~~~ :i~~ ~~~~ :}~~ ~~gl :§i 68 2341 4 80 2386 14 17424287854 154 2383 7854 1itS 24167854 136 2436 7854 125 2429 7854 113 2431 7854 109 2423 1854 107 2411 7854 10424217854 100 2422 7854 9824197854 9724257854 94 2433 7854 224 t~~ ~?3 t~6 192 212 142 132 133 132 133 126 111 130 130 111 130 130 133 343 THF L06.D STAGE Nut4f\ER USfD i\S lfRfl FOR. THY'::' RU~ CHA1\ CH!\'J 123 122 121 124 CHA~ Ct-bN 125 IS 126 Ct-liN 127 C~ll".j Cl-llN 128 129 130 CHAN 131 CHAt. 133 132 *'* *1 ***" **** *'*-** '" *' **a* *** *" *** ** *f)*,) *~ *v.:.C '* '* 'O * ** **O $*-''' ** "' .. .;. *.. *~ *~ .. "' .... "'. *' » -* $**** >!I 1)." *>11 ........ *$$$.$>11 *** *¢ $Q$ *" 10707 C 0 cae c c C 0 (I -(I It. 2 70707 101010 101010 121212 " 2 1 3 -2 41\ 151'll» 1 13 ?fI "1 ~A HI~I~ ~A 6 hA 7 7n. 7t: p p,,\ f) HIHt 202020 ~ l~ ~ ~i 2 2 2 20202() 222222 222222 222221. 20202:f) 202020 1,?151'1 "3 j lOt. 70707 1310707 1"3 70107 14 101010 14 10101(1 t" 12121? 1'"i 1Zl212 1f, IS1'ilS U 1'l1?1" 17 171717 17 171717 If< ?flZOZO 18 ?n2020 1 15 17 17 17 17 20 20 17 n 1A 13 16 17 2.02020 121212 70707 2170707 26 Fl7()7 2'" 70707 27 100710 "27 100710 2,'1 120712 ZF< 120712 2') 1'l071') L9 1'5071'1 H ti8iH 200720 32 220722 ~gggg g )gg;)g 170717 5~ ~4 j4 ~5 4~ 15 16 ~3 ~i; ~~ ~~ "f-I ')') 'tl 39 2'1 27 22 22 22 22 24 24 2', 25 41 47 32 7q 25 2"i 25 25 2A 25 11 10 ~2 2h 51 11 2" }4 )l jj ~~ ~~ 28 j~ 27 2r. 27 hI hO 54 1.6 H 27 "i,) ~~ '31) 2h 12 4h 44 50 1)2 1)2 5'1 ')2 3.:1 3n 2'1 2q 212"' 22 22 3<) 2'+ ~2 4 45 44 46 45 '12 <)1 ">3 1)4 S~ 10 i~ 170717 51 4} 5':'1 54 12 ','3 411 .... , '17 ">5 '56 i~ 18 'II 44 4!, j~ ii 17 Ii 17 26 21 31 29 31 27 l~ 3h 4h 44 40 34 "3C 26 24 24 1.2 2.7 7(-, 27 26 14 25 32 31 37 29 29 11 4C 4"1 4h ~~ 23 24 10 2'1 27 23 24 15 46 47 r~ H 4~, 44 ~0 54 10 2 3'1 47 47 47 "7 t~ lR 13 1i ., ~'} 17 16 17 17 1') 17 15 11) 1') 1'5 17 lR 22 l3 1~ 47 48 lh Hi H~ ,,:712121? ~g ~2 16 ih }:~ 2021J?n ~}~~~~ lq lR 21 11 22 1) 1, 13 ti 11 -1 4 2 4 ~§ ,Ij ?4 -1 5 2 5 1~ l5 3C '30 13 35 j6 32 2 1 2 3 Ij6i~~ lriA -J 0 -1 -1 ':3 2 b ~s 12 2CJ 1 6 4 9 0 -1 -1 }~ -t~ =1 -13 -7 -9 :i2 :i8 :li -23 -13 -15 26 21 ,0 21 29 21 24 16 17 -22 -25 -26 -23 -20 -16 -3 15 lZ 5 42 41 45 3'1 43 4'5 44 41.} 49 1ft) ~~ ')7 ~~ ~d -7 15 15 2'J 11 25 24 11 18 15 17 13 10 7 7 33 34 44 44 44 42 41 40 40 39 35 3S 32 ci0 30 Itl 43 34 33 27 26 2f, 20 2'1 2H 31 5~ j~ j~ :j H 31 B '31 :~ 32 30 24 '30 35 0 0 )0 t3 11 1~ l~ t8 30 ~y 12 31 39 34 3Lj 2'1 Zq 20 28 t116 H 13 3l 16 14 l~ ~ij 2g 31 51 46 4C 42 30 3C 75 28 27 2e 25 26 ~2 il 35 ~~ 26 l8 26 16 23 23 Pi 16 ~: 34 H 30 ~1 31 -j -l~ 11 5S 54 4 3C 3C 25 22 15 16 7 9 2 :3 fi ~5 l~ 64 Z~ sq :~ §i ~~ -7 63 Ie 6 25 27 21 22 25 24 21 22 24 24 44 40 35 35 28 27 2S 24 21 21 25 25 ~~ ~~ 25 17 Cl6 l!6 q') 35 34 23 20 15 13 6 1 rt7 06 23 22 21 30 21 22 IB I~ B 14 ~~ H 28 22 20 19 18 is i~ 21 18 18 18 16 1%13 Ig 10 ~~ H 19 ~~ 37 40 ;s 35 J? 3" 33 34 24 23 22 57 56 53 52 3/t 3 L, 30 30 27 27 24 22 ~~ 23 44 42 40 40 4l ~8 ct~ 22 l, ') 42 z:; 23 23 ~~ 50 48 62 62 13 25 27 24 22 25 25 "2'1 23 ~~ 49 81 78 76 76 72 6'1 67 6 13 25 ~i q '" 5? 5< 53 at, -1 -7 30 l~ 15 f~ '5 44 26 H 12 -i~ :i"r ~~ 1 12 1'1 9 15 16 \6 16 ') 42 3B 37 37 26 26 22 23 23 23 22 22 0 :~ ? 10 ~ll 57 0 =~ ~37 59 62. 60 --/~ 2 2 -1 -1 "3 -H -29 -28 -16 'n 6 f, :t~ 16 140 1 -3 -29 -37 t~ 13 65 62 61 60 60 56 57 S& -8 1 -4 -5 -!6 35 34 34 35 32 30 23 11 53 51 55 54 57 54 56 57 61 63 68 ~"e l~ Cl-bN 139 15 :1f lt, -20 !b :~1 32 -31 34 34 38 42 39 35 35 25 ~34 25 40 38 35 3lt 31 30 25 21 22 21 l~ ~~ -32 -28 -28 -12 U 28 35 33 32 22 25 18 IB 18 19 1q 1B :~~ ~2" t~ DfJ 2 ) -1 2 !I) -3C tiC} ~~ 56 l~ ",-21 20 16 2~ j~ -1"3 =l~ -11 -14 -21 -21 -19 -14 -15 -4 55 14 73 44 ',6 37 36 3 L, 31 34 32 32 32 :l~ 3 B 4 S ~7 -16 48 38 35 30 30 25 25 21 2C 12 12 ilq i~ O;/lN ,Ct} *OJ lit >}" * \1' * * $" '" '" '" $ » >:< c oo a 0 0 l"~ 13 56 ',9 5S 54 5C 47 52 51 53 56 58 5S 65 70 b8 61 61 66 61 71 74 78 76 g] 54 :f~ $$ C -5 -le fi 11 fl i~ 3 -4 28 28 3] B 31 2f, 21 22 11 >!> -q 39 39 40 £,2 41 35 3'1 30 2~ 20 21 32 31 31 33 .31 30 2'5 25 21 22 H 31 "} 5 -2 l 7 72 60 74 10 68 64 6q 68 7] 74 79 111 ~ ~~ -7 2 3 0 0 13 32 29 2A 25 21 19 12 15 <) A 0 a 0 j~ -2 4 -2 0 Jj :~1 ~5 -111 ~i 32 1~ :U -5 ~~ 42 37 30 2q 2') 24 24 24 24 25 26 21 4 -3 -, 40 34 35 28 26 20 21 14 14 ., 59 5':l 57 ill 17 15 13 ''is -I) 18 45 4 it ;n 54 57 60 -16 -22 -23 -23 -17 -15 1~ IS 40 37 30 30 {,~ 49 7 50 "il 52 ?5 5q 57 -13 -17 -18 -16 -11 -10 2 lJ 3 43 It 1 -3 -2 -5 -1) l~ zq -1 -5 -2 -5 -q Ii 13 l~ 30 )~ ",!(o 2 '3 5 A CHAf\ 136 1, 15 15 14 1', 15 10 fHE LOA[) STAGE "lUf>lBER USED 1\,S lEQ..lJ Fllf{ THIS RlJI\J 15 CHo'''I CHAN 121 CH ,ON CHM' 122 123 CHII~ 124 CHAN CHAN 125 126 127 CH/IN 128 CrAN CHAN 120 130 *. 131 CHAN 132 *. CHAN CHAN 134 133 CHA~ CHAN CHAN 135 136 137 CHJlN CHAN 138 139 *** * *** ** ** ****** ** ** ***** **t< **'*' ** **** ** *** ** .. **"' .. *** ** ** ** *>jI ~ .. .-.... III *1$1* ** •• *•• *' o. "" ... *4>*$*. It"" '* >I' 1/1* $" $$ 4> $ *$$ $""" ~ >1 1,1 $" 'I' *>l< ** ~~ f~g~I~ f~ ~~ ~~ ~6 ~~ ~Z ~~ ~ ~~ l~ ~~ ~5 H i~18 2~ ~% ~~ tg ~ ij 36 120712 16 24 22 27 22 25 25 0 38 21 28 20 13 ~1 25 22 18 4 14 36 120712 17 24 23 25 23 25 25 7 35 21 28 10 2 7 It 24 18 18 4 3 ;; 138m t~ ~) ~i )~ ~~ ~~ B 201~ 48H g ~~ 19 B fg33 l~15 26~~ ~b Ii 12~ 12 [6 38 70707 lR 26 2P, 23 37 25 23 33 32 26 21 32 ~4 '(1 is 70707 51 70707 -'>170707 52 71007 5271007 5171207 '3 71207 54 ?LS07 >4 71507 05 71707 5~ ~1~m; 7200-' 57 72207 57 72207 -)872C07 >8 72007 5q 71707 ';9 71707 6071507 00 71507 ')h ~l 03 nm 70707 'fA ;gm 2A 101010 4~ ~~ 7A 8A OA lOA Hi m mm 222222 202020 171717 151515 m mm 13A 70 70707 70707 HA mm 7g 222222 17 16 18 16 16 17 lq 17 18 18 r: 17 If! 16 15 17 16 15 iA 15 l~ 15 f~ 15 H H 14 17 17 15 l~ 13 l' 27 40 40 42' 40 '19 38 36 \6 36 j~ 3A 37 37 34 35 32 32 29 27 H 19 H 19 2~ 3 f) 3h 31 38 36 J5 36 JB " ~~ 3h 36 '14 3':1 33 31 2P. 27 27 ~~ g23 16 23 r~ H 34 34 27 25 33 2" 24 19 43 39 32 28 29 jr n H I; 30 12 13 ~6 i~ ~~ ~~ ~g~ ~§~§~; lb 15 ~~ ~~ ~~fI 16j6~6 P.?A 10303() H3 323232 ;"-13A ~23232 84 35353C; p.J.t, 1'51'535 i~ 14 16 1'1 17 15 I~ ~4 l~ l~ U1272727 ji 37 38 '1fJ 3"i 35 34 33 ?9 30 21 i~A ~l}6}~ 16 24 2q '31 33 13 12 32 34 32 33 47 5j ~l '58 63 h5 7n 76 45 j6 jij 35 41 36 40 38 '19 41 40 39 38 27 32 31 35 32 35 32 32 32 36 43 40 39 38 34 36 32 30 31 37 39 32 34 32 30 29 27 4£ 40 2ti 24 H 21 ~~ ~g ~~ H 22 H 22 H j~ 41 3" 31 28 41 ;5 32 26 14 24 18 30 14 28 !g 41) 1)2 r~ H ~~ ~~ n B5 2i23 ~~ 44 36 33 28 H 15 26 §~ ~~ 4'1 63 72 70 7R 7fJ 65 72 73 B2 R4 62 67 h4 ib 23 j[ ~~ 55 5':'1 54 1 -3 -3 -2 0 2 4 5 5 n~l 50 60 62 36 41 39 36 35 33 33 31 31 j~ ~1 l~ 57 ~~ 19 20 20 19 17 15 ~~ ~§ 4R ~~ 23 29 31 33 33 33 29 35 34 35 ~~ ~~ h8 76 76 49 56 ~~ 63 67 68 16 16 13 12 8 5 ~ 1~ 47 60 61 57 55 54 54 50 50 44 :j 43 3CJ 40 40 41 44 45 49 48 §~ 15 55 =~ :~~ ~( ~~ -35 -17 -21 -11 ~~ 51 20 25 32 38 -Z7 4~ -~ :~6 ~~ ~! :j~ ~b 24 -26 -4l :~~ -55 -66 -10 -83 -82 52 72 35 23 2§ 7 0 0 -11 -12 (I '" " ' . 33 33 35 32 32 29 20 25 23 21 35 49 49 47 48 30 48 44 46 45 46 44 46 41 42 19 19 i5 20 16 18 16 22 20 45 48 41 44 41 38 36 35 35 41 46 45 41 37 34 31 30 30 ~5 )~ 25 2g 21 1~ -~ -13 -7 0 4 g24 37 sa 53 49 49 44 :~ ~6 24 H 24 39 32 29 35 31 26 21 49 18 40 H 39 H 25 §Z 60i :~~ -34 -45 -1,6 -51 -59 15 ~~ ~l :i -Ii, n H 16 H -3 It. t~ ~~ l~ -(I<.$.¢ 40 35 35 32 31 35 37 25 28 23 33 35 51 33 35 33 30 28 26 26 23 21 I~ 13 H 15 I§ H 28 i~ i3 It 5 15 13 15 16 l~ 19 H 16 1~ :~ 13 31 16 44 I ~~ %l 68 ~~ 62 ~~ 67 72 73 31 84 ~~ 64 74 11 90 91 2~ j§ 38 43 45 52 52 61 63 19178 12 4 27 36 34 38 37 36 -3 -2 -8 40 38 38 1 2 It:31 --, -11 -25 -11 -8 -4 3 Z~ ~r ~ij 32 25 21 17 ~~ 56 32 27 34 36 38 37 30 1~ -21 -18 -20 -12 -12 -1 -7 -I 12 Il 10 -1 -i: -21 -12 -9 -2 ~ 14 29 35 :8 .ftO ~f4 43 39 39 33 32 31 30 ~~ .~~ 44 40 34 43 ~f 41 ~3 &J3 30 37 33 33 30 30 ~~ 11 5 4 -3 -1~ -14 -19 -22 ~\3 ~15 -1 -10 -1 1 63 -15 -lq -20 -22 -22 -30 -43 -44 -5C -49 69 71 19 q4 94 ~b ~~ ~~ ~~ 51 §g 55 61 62 15 16 10it0 13 -~ :H -25 12 24 25 25 25 24 22 23 23 20 ~~ 'II 18 if} 17 12 15 16 15 15 15 -3 13 :~~ :~~ ~ ~ 7 -4 4 4 if :~ -12 50 26 27 37 18 10 16 -I; -21 44 ~~ 27 l 18 17 31 ~g 9 27 30 ~8 20 40 ~4 -1 :5~ 43 41 3~ ~~ -l~ 41 22 34 :! i -21 -~ 42 43 20 26 25 18 17 1 34 30 28 25 H -13 46 H 19 20 U ~b 21 18 H H 1~ :~ H 12q l3 42 43 l)1! l~ 1~ 5 -18 -12 -4 -33 -33 -34 -34 3 4 2 1 -33 22 4 20 ~ li ~~ :~6 -30 :~j -37 -43 -42 -52 -51 :j~ 5 I~ H 10 25 H j '" 61 -9 -6 -3 ~6 ~~ ~j 22 ~l 20 19 20 18 20 344 THE LnMI STACe NU"":hcR USED 11.5 7ER.r) FOR CHA'j CH.'\\I l2l RU~ (HAr-.1 CHld~ (HMJ CHMi 122 THIS IS l27 CHAN CHAN CH AN CHAN 123 l28 l29 130 CHAN CHAN CHAr-., CHAN 133 132 131 13< CHAN CHAN 136 135 138 *"':Udj *~ *** *** *** * * **14**' '* **74 ** **** 07 *** ****gO**"* **** ****" **71>lo* *.. -87 ***" .. '" -13 >1'' ' "' .. ,. -63 "' .. »** ** 84 '" !ll.* ****'" *** • • ** ** .. ,,4o" ».. "'"(I ** *'" "' .... " i~35·~'5 84 **'" '" 75 94 65 .... .$I -24 -51 101 82 0) >:0 il4C 3')1<;15 173137 '-\')A 3717H yf, 3')3,)),} iH .12323.? I.P 303010 PrJ 272727 14 15 H" In ')1 1'1 I'j 16 14 16 16 1J.1 ~~52'>2S 722222 ~~I\ I?I~i9 iZA '-13 l~ 70707 t21212 171717 722222 'H 272727 J7A 321137 .l7~ Vi)'1]') 91' 373737 ')'1373732 lUll 17?7?7 InOI\ 1727'!T 15 17 17 17 17 1'3 10 IB 17 15 14 If, 1'1 14 101 lolA 11 16 14 l'i 1')151'> 121212 70Tr)7 'l5/l. 'If, J[>;\ l~g2 i~~Hi l~ 17222;' 17222~ l~;sll rnH~ l~ In2K ~71515 II1?C 371')15 1113 1712J 2 11)11\ '311212. lo'3u 171010 IIJ1e l'> 1~ IUh lu7 lun Ing 114t. 111) 120 121 ~~~ 12~1, 123b 123C 124 U"i 121'1 41 >jg f14 1-13 i~ ~~ 73 71 63 hI <;q 5b ~: a lor) 74 4,\ 44 4 lt 40 4il O}} 'p ':12 ;,) 4R 47 42 31--. 3:' ~6 <'>2 V 27 23 bb 6h <;f, '1,' 'ill 3~ 11 ~':? 5') b,~ ~j ij ')'1 4q 4') CH·'l,'1 CHfI~l 121 12L ~~ 4138 -65 -bb 15 15 -61 -62 74 13 90 59 51 51) 1)4 51 50 49 50 45 41 41 32 31 -51 -50 -43 -45 -40 -41 -36 -37 -32 -27 -23 -15 -5 13 4 -5 -15 33 31 35 37 45 43 49 4t) 52 53 60 5'1 61 63 58 58 55 55 51 51 45 47 45 41 36 31 28 56 5"1 64 60 65 115 112 107 9A -4<;1 -49 -47 -46 -43 -41 -3A -39 -32 -25 -17 -5 4 42 34 24 13 50 51 47 43 40 39 32 34 35 3] 34 33 34 OR 89 84 84 6l 64 58 56 51 49 52 44 46 43 43 41 41 98 95 95 96 48 'IB 45 43 38 38 33 35 3, 34 32 28 31 64 63 62 59 22 22 25 23 28 28 31 )0 33 31 32 32 32 78 70 63 55 73 74 -31 -36 A9 84 79 79 86 87 54 53 ~2 -8 76 75 69 65 63 61 -53 -49 -60 -50 -46 -40 -21 -19 -19 -17 -IS -13 73 70 57 54 52 50 81 11 61 64 61 59 46 47 36 36 31 33 6n ~~ ~~ ~~ ~i ~~ CH~N 129 ~A ~4 CHAN 130 CHAN 132 -~~ 11) 15 17 32 32 32 30 28 29 25 25 23 25 28 :l~ 3 13 25 37 26 10 -3 -32 -42 -51 -38 -23 -23 -13 -13 19 15 -21 -24 -24 -28 -28 -26 -27 .,..29 -29 -29 -30 -33 50 47 42 36 13 14 15 14 15 13 13 13 12 12 14 11 9 45 45 42 42 34 32 -17 -17 102 100 86 B2 -13 -15 4g 18 19 73 12 66 69 61 62 60 59 58 58 59 91 93 91 94 61 66 62 61 56 58 52 51 52 51 51 50 51 86 82 82 80 8 7 17 15 20 18 21 28 21 27 30 31 31 57 59 58 57 40 51 5C 93 93 15 72 54 56 26 20 22 21t 18 19 21 22 4e 49 47 41 47 46 91 89 82 83 19 79 61 62 55 55 54 51 51 SO 47 49 41 47 6 2 -16 -18 -20 -23 :~g l~~ e 2 9 lC 13 12 3C 2C 22 22 21 22 25 49 49 4~ §~ CHAN j~ ~g 18 CHAN DB l§ §~ ~~ CHAN 137 l~ :lij -20 ~~ ~9 CHAN 136 :l~ -~ l~ ~~ CHAN 135 :~1 Ji ~~ §g -11 ~6 84 :j ~~ 134 94 H -14 -13 -13 24 20 17 16 12 12 9 4 2 4 4 q CHAN 133 13 16 15 15 16 15 15 15 14 -q 4 ~1 2~ ~1 -10 -13 -Ll -[3 -13 -11 -15 -15 lC4 117 124 132 124 113 113 1~ ~~ §~ g2 CHAN 131 §~ 69 62 140 ** .. "... -B ** "' .. .;. *15 ** >/I -53 -53 -62 -62 -53 -41 -40 -32 -26 -22 7 -8 -2C -36 -43 -52 -41 -29 -31 I 11 63 aq 87 81 79 77 64 57 48 64 77 83 q '5 lij 63 ~r ~j :fz 85 17 77 80 88 Zri 17 3C 48 3S 24 16 3 -4 -12 -2 ~4 (I >:< CHAN 139 52 50 42 61 73 17 82 92 100 104 114 105 91 95 18 25 57 37 29 53 58 63 72 8e 85 87 18A 91 g~ 2 -5 12 15 15 80 18 81 CHAN 12B g~ :~l b4 :~~ CHAN 127 :~~ ~i :~~ ~~ CHA"j ~ :§~ ~~ ~i 12.6 :~~ ~j 5h CHAN -31'- 100 112 111 100 102 94 94 84 82 18 -!9 Ilj -4 69 71 72 69 65 62 ':>9 <;g l2' ~j 72 71 (rT 93 R7 83 83 130 CH.i\i -~~ -53 -be -se -51 -49 -4C -32 -27 -2C -lq -14 -8 -4 3 8'1 90 15 R7 Br) 81 7') 73 70 65 124 Z~ -25 -28 -Zq -24 -53 -72 -81 -91 -83 -73 -72 6g of! 55 -31 -31 -21 67 72 73 70 61 (::4 tl 53 52 51 50 39 69 80 88 9B 101 118 125 130 118 106 106 ~r ~~ -4b CJ4 104 103 100 96 88 85 80 74 46 42 35 65 73 81 qa 99 108 111 112 102 86 86 'fi; CHAN l23 94 87 q4 aq 86 81 78 74 68 65 0 5 15 25 13 -3 -15 -1) -50 -60 -71 -69 -62 -64 qQ hO 4t 7h -64 -71 -13 -64 -55 1)2 58 63 19 65 52 39 25 8 -1 -7 -5 9 10 b'i 1"-9 i~ l)? 5 I 9'3 1114 113 121 113 107 107 ~2 -11 -11 -L8 -9 -5 5 15 22 30 :2~ -34 -23 -7 10 -3 -20 h7 ~~ ~~ 43 37 29 31 48 50 h9 64 f,1 A0 'il 'tR 7'"1 Al R3 Po7 '12 'i7 AO -87 -CJ5 -95 -88 -A2 -71 -71 -65 -55 41 37 26 42 49 '12 67 74 £16 89 9h A8 82 82 7f1 7'J 75 76 72 72 td~ '-11 jl 71 ~~ ~t g2 02 A4 'l1 Sf.: <;'1 55 '-11 <;1 48 44 42 17 3C 4h h7 5'1 54 19i g4 74 ~~ 63 Al ,)Il 59 ;'6 56 13 12 13 12 13 q4 ~'j 72 74 1113 H~ n'l hJ 7q 73 71 "17 73 AS 12 'J'1 ')2 77 83 83 83 76 73 69 65 51 FIb 44 42 ;\1 60 65 72 h'i 611 7\ 77 !It 7·, 76 7'1 ~~ 't5 ,,, H 40 4H "i5 h\ '~h jjgHi 170737 l')O7!'" 320737. 3007l,1 ~~ 41' ~h ?o7D7!.7 41)0740 h2 4) ql 72 U 13 h~ 2~ <=,n 11 ~jgH~ ~3 1'. 27 5,. 71 77 100730 .'3201'32 H~ Rn 72 72 41+ 12 48 no??? Ilh 117 1~ 'ih i~ {,f, R4 ')3 'B qO 84 77 7j 61 61 P,7 8q "i4 4,' '-2 16 14 17 13 15 11 14 270707 22(;707 1<;0707 70707 70707 120712 170717 79 71) h' 63 ')1:1 ~20707 HliliO 0" 6!: ~~ 11:> 11 Itl 17 1<; 16 17 1{J4 17071)7 \lI4!\ .Ho707 In~· 74 1-12 83 79 7,) 71 A6 67 CHAN CHAN 137 25 22 14 15 14 12 CHAN 139 140 *127 *' * **270727 * ** ** ** ** ***12*** ** "11 ***::--"* *3} *"". *"':+"* *54***" **70 ** **** 52 *** **. 51 ** ***-3,'* ***1 81 ** *" **-13 *' *"' .. **** "'****.* .... ** **** 44 •• "*.* 51***. 21*"' .. ** * 22'" ** ..... 42*.. ,. ••• 74 48 *"" •• 45*.. ** -28 10 *", 12A lc.9 IlO 1q 132 1n 2')072') 220722 170717 120712 70707 10707 13 12 l3 U 12 13 72207 1-~7 72507 tJ7A 20252n 138 2027?0 13Y 203020 140 203220 1"112015('0 142 20372(J 142A 171717 142e 1'1371') 142C 15371'5 141 153'11~ 14't 1~321<) 13 16 14 15 13 16 14 12 13 13 16 13 ij~ Dh l~~ 14it\ 14P H~gj l~~~i~ Ij~~~:; li13 tj }~ 722iJ7 14971707 1')0 71207 101 70707 152 7D707 1')2A 120000 103 170000 16 16 15 l1 14 16 17 1'14A 300000 154n 32000n 13 Ib bA 4000M) 156A 4000U<) 1"7 42000n 16 16 17 i~4A ~~gggg ls~C i~~ 1igggri 2~gggg 450COO 1'J'142000() lbO '.00000 1Al 37011nn II)lA )700nO II-JIB nocoo ItdC .nocoo lAIC _~70C()1) lhll: 37000n I"iH f~j It,4 Ih<; hI'> 167 It-8 16'1 ~~gggg 270000 2200on 170001) 120000 70000 1?0000 ~~ l~ thlfl 17 17 17 17 t'i 13 13 11 B 14 13 1~ 14 1') 11:> 't8 44 42 34 27 30 ~~ 't2 't5 "i3 'i5 58 hI 64 69 70 66 66 02 hO gg 2b 44 40 12 28 2h 32 46 ~t 74 71 1~1 12'J 159 1" U~ 3-24 122 312 3n6 31)5 310 32.3 11') :H'5 ~64 25 25 31 35 39 53 42 41 42 41 39 49 14 69 67 64 62 62 45 43 43 40 3q 50 47 44 46 45 43 56 b8 69 80 81 86 91 93 99 94 94 90 89 83 "8 48 55 58 62 67 67 72 67 61 61 64 59 39 32 21 16 15 13 8 5 -5 0 3 3 8 6 -3 -1 -7 -14 -22 -28 -4C -48 -47 -47 -38 84 87 99 104 110 112 120 130 133 134 133 131 126 67 69 74 19 81 84 90 91 94 97 91 92 91 13 6 0 -3 -13 -19 -27 -35 -50 ~~ :~ }§ -.!~ fAl 100 ~~ 50 't5 41 38 32 25 73 f,Y 64 0}7 54 44 51 4':l 42 34 29 27 51 43 44 35 31 25 -31 -27 -20 -11 -5 -3 85 A5 -6 -5 9') 11B 125 13 19 30 Itl 41 37 35 30 39 50 41 44 39 33 45 "3.::": 3q 38 52 '14 56 61 65 70 05 65 62 1)4 61 71 74 £12 PI 134 39 ';1 51 SA <;9 P2 81 7R 64 63 61 59 55 54 41 40 54 56 62 63 65 70 67 65 62 61 57 -2q -4q -53 -5fJ -63 -11 -77 -84 -83 -71 -73 -10 103 85 82 75 75 15 12 68 72 77 83 83 13 9 -12 -17 -20 -24 -26 -26 -30 -26 -20 -19 -15 58 63 69 10 73 13 80 80 71 74 12 71 ~I i~ !8 :~I -~ §~ ~~ 34 44 4i' 4f"! 4'-1 5~ 5'1 51) 5"1 '52 41' ~~ bO 4~ '17 j~ j~ Zl 2') 2', 2'1" 1.., 2{, 32 ~:1 5'i (1(' ~~ '3\1 10, In7 rn 301 2'H, 28·' ~~h 2H~ 2':U, 30? ?'~H 29"i ~~~ 27', i.'IA 24'1 21:-' 217 22". F32 2'd 27 23 23 18 16 33 34 3S 31 2'1 22 2"'\ l'Jl "276 ?62 >Go '" 25H §~ ~~ H8 84 ~6 i~ 3B 30 76 22 l't 2'5 31 bn 62 71 ~~ ~3 104 l19 129 53~ 313 305 200 ?P.9 2')2 216 312 3f)5 ~()5 1~~ ?7q ::tl'l 247 :32 21') 230 bO 50 45 40 311 4P j~ bO b2 ~r 37 32 20 ~2 ~~ 3b :\g -25 =~i 92 H1 104 ~i 16~ -40 109 -33114 -25 122 -20 128 -2 141 -20 132 -36 119 5 i~ :16 2§ 55 ~6 ~b ~~ ~~ ~2 ~~ H 10 15 22 27 34 23 10 49 39 34 25 15 29 35 56 46 40 30 28 43 53 45 35 31 23 15 28 3B 23 27 32 38 3€ 2q 16 75 -41 69 69 91 96 64 67 -s -11 10'} 124 133 145 170 IB< 103 llq 130 150 176 IB6 -lIe -lIe -IOC -9C -9C -7e -82 -82 -82 411 410 403 394 399 404 422 420 420 -48 -28 384 36'+ 344 331 309 322 58 52 47 -12 -83 -91 -172 -161 -150 -138 -138 -131 -133 -117 -136 4 15 23 32 35 43 51 48 46 -164 -154 -144 -135 -134 -128 -124 -126 -127 426 421 414 404 404 414 442 442 4"2 387 180 373 367 369 377 399 390 387 297 295 287 283 281 287 294 294 -49 -45 -37 -32 -32 -23 -12 -10 -11 -78 -53 -33 -11 -28 82 100 118 133 14q 139 -8e -11 -47 -27 -14 -24 411 392 374 360 337 353 355 337 31b 301 28ft 299 267 257 246 235 222 221 6 19 31 45 58 45 j~~ j~Z ~l~ 310 323 320 311 30g 3,16 327 326 324 180 377 371 363 l70 185 181 37'3 315 312 305 295 291) 305 32) 318 315 300 2HZ 267 L52 234 247 355 141 .121 :104 ZAS 297 293 275 2bl 243 229 240 jf~ ~65 1b~ j6~ -16§ :lj~ :lii -100 l~ :~~ § :l~~ ~~ :16~ ~~ ~j f~i ~~~ ~~~ ~~Z ~~1 ~~ ~~ ~~~ ~04 -~ 196 247 239 -113 -117 -123 J~ ~~ :~g :~~ -47 -47 -55 104 II" 129 ~J lSi -it 85 -35 :n -'.9 -11 -8 -ll 116 l19 151 -88 -2 :~ -il :2~ :~J :ll~ ~§~ 305~1 :Z~ -1:] 12 32 11 l~f l~I 4~~ 4A~ l~ -50 -43 -36 -12 -19 173 IAI lji 14q :11 -17 :~~ 8 7 5 5 4 10 10 12 10 10 12 10 11 10 5 5 3 3 4 94 101 65 68 ~~ g~ -3B -41 -45 -48 -49 -49 -52 -53 -53 -'54 -53 -54 .. 64 -68 -73 -73 -13 130 137 67 73 -4 9 25 39 4C 21 12 H~ ~~ -28 -32 ql 18 5~ :~6 ~6 12 62 56 50 46 55 61 1'1 29 38 ~f -3~ 1~ 92 82 72 6B 78 92 30 23 I? 15 25 36 22 ~~ -33 -3b :i~ ~ -5 8 24 -83 -83 -85 51 40 22 -64 -63 -61 -3 -5 -4 -5 14 14 15 -50 -50 12 15 -39 -42 -51 -43 -36 22 24 25 356 349 H6 340 342 341 362 359 355 -Ob -79 -67 -61 -59 -53 -Its -50 -50 -29 -33 -31 -30 -29 -9 34 26 22 29 21 28 29 30 38 55 49 45 330 311 302 290 275 281 -22 -2 18 36 54 2 22 22 20 19 17 20 50 50 50 49 48 47 ~~ l~g ~~~ ~~~ 37 ~~ :~~ :g~ :~~ -64 :~~ :2~ -)6 :~~ ~2 t~ l~ ~g ~g 345 NUM~ER THE LOAD STAGE USED AS ZERO FOR THIS RUN IS *',.. ***>:<** ** ****.******* ********., . . ***...... ,. *' •••• *** .. "'."'>11" *** *.* CHA"l CHAN 121 CHlI,N 122 CHr\~ CHAN 123 124 CHAN 125 CHAN 126 CHAN 127 .*. **.* ••• ** •••• ** ••• *............... **'41$*"""'$ ••••• l1li"""" 4''' »".$ ».. "' . . ** .. >It *" *.. *"' . . oj< CHAN 128 CHAN CHAN 129 CICCOO 202 200000 l'H3 ~gyH m 204 A 500000 t6gggg ~~gg8g '46 292 m 18i 107 :~~ 398 338 30 -65 389 328 247 25 22 22 :Jt -87 -91 -90 -85 -81 -75 95 95 95 95 100 103 -85 -91 -86 -84 -78 -74 382 388 386 383 382 377 325 331 330 328 321 320 249 253 253 249 245 244 265 271 278 281 2'12 301 312 ,It. 24" 253 256 262 26B 2BO 2B8 293 264 269 273 2A3 289 301 30B 313 213 278 2B4 293 299 307 316 319 331 137 341 347 359 170 383 JB6 273 287. 2A4 292 299 312 322 323 -71 -82 -93 -101 -114 -123 -135 -142 105 95 88 79 69 61 48 45 -67 -76 -88 -94 -107 -115 -132 -139 363 374 381 391 400 411 427 309 316 326 331 344 354 369 380 233 242 246 253 259 264 216 287 421 355 -127 32") 332 352 'tlS b5 -131 m m m :~~ -120 433 493 :l~ij ~1~ 326 341 -136 64 )69 340 339 354 153 372 371 431 438 312 373 -140 -146 11 65 -127 -134 371 340 357 372 444 375 -152 65 -137 36" 381 3AR 400 400 40e 474 499 405 420 -IB6 -195 35 27 -172 -195 '106 442 20 -196 575 -170 -lq4 -20b -208 -221 -222 -223 -217 -214 -187 -241 -239 561 586 60b 608 e23 620 '17 654 j~~ 354 347 19~ ~~~ j~6 j~~ ~§j ~~~ ~~~ jj~ :12~ ~~~ ~~ ~~~ :14~ ~: 2~~ j~4 444 ~~i 2g~ ~ri~ ~'H 398 413 12 13 13 l2 12 12 12 12 13 13 13 424 446 473 469 501) 65l 691 716 7'>13 7A1 7AO 180 380 404 421 4'.2 451 472 482 526 393 411 429 429 4,l 480 489 389 40R 419 411 42'1 433 438 439 %2 S8l ,fl4 635 639 636 414 SOH 50') 13 601 441 472 711 53l ~ci~ 3~~~ td7 m m %~i 416 4h5 54f', 4~~ 489 511 O)? 544 511 'lAS 600 '57 451 ",6 o7~ -207 :tgj m g~ 348 22 47 1178 h24 m ~6j -183 -201 -220 -223 -234 -228 -197 -151 -13q -137' -123 -120 22 13 15 8 10 10 a -12 13 -31 -32 63 ~~ m m m m 444 634 '539 014 l~~ -15 60 ~:8 ~n 337 336 ~~l 461 454 347 340 H3 3~0 ~§~ 519 j~g m m m 554 571 ~J~ :i~g 4B6 501 3tl 313 §r~ ~J6 -5 -16 -19 -26 -33 -27 -34 -42 -55 -64 -71 -82 -9 -78 -1 -12 -~l 362 366 365 364 362 361 309 311 311 310 305 304 3 6 357 361 374 383 394 404 414 428 296 302 308 317 322 333 342 352 460 H4 !93 690 688 413 462 474 414 -18 -74 -66 -78 -16 -121 "136 -149 -152 -16) -167 - 68 547 477 371 8 :w -25 -102 -"2i -b9 -72 -7~ :2~ :t ~ 5 3 5 ~ -17l -16q -17C :~~ 49 51 49 48 45 45 -14 -16 -16 -24 -24 -23 35 34 54 31 31 ~ 2 -9 -17 -27 -35 -42 -55 -57 ~2 33 31 25 -)3 -36 -42 31 52 -45 44 -44 -52 15 70 477 401 :§f -53 84 67 64 65 513 531 440 452 -95 -91 56 52 549 469 -103 524 554 574 584 604 604 604 603 621 614 710 703 452 412 492 502 522 522 518 516 522 590 619 620 -82 -103 -ll6 -130 -l40 -142 -146 -153 -162 -162 -182 -183 51 50 50 41 47 50 45 50 49 50 59 57 56 5H 501 -43 47 57 :~3 :~j :8~ 57 ri~ ~j ~~ ~~ ~~ ~§ ~~~ -i~: *H~~ %~ 4~~ :~~ 65 61 53 :~~ 60 §~ ~g 59 59 60 SA 51 60 59 4b 47 m m:m -40 15 12 10 7 6 402 ~~2 - 14 -167 ~6 H 17 5 m m -i~~ ~~ 53 412 405 ~§8 -13C 55 j~ 473 412 :~~ :1~3 -37 -14e m m m 582 454 33 Zt~ -49 654 8 :t1 :31 -14 -89 :H -lZ~ -29 -116 -39 -23 -58 -62 ~20 310 ~ 400 ~fi fi 41 z~1 -81 -87 374 391 4C1 410 422 "24 5~~ 396 2~ *"' •• '22 " "' .. "' ...... 44 ** 10 458 :3~ -4 -12 318 m m :iij -\7 389 m m m -15~ 1~ 12 6 -I 518 :~9 b84 -154 :12 19 16 6 370 m m m m -16 -18 -18 -11 -17 - 1 21 37 m m -It -17 :U -18 494 511 537 540 558 559 557 550 553 610 611 618 ~12 -H:m 129 -74 -~~g 440 522 514 ~~:m ~i -3!~§ 442 492 :l~~ ~~fi :~d~ 422 444 464 464 489 50fl 519 560 574 587 586 585 h01 43q ~~[ ~~~ ~~~ ~~ m m 2~i n m m m H 295 301 300 292 290 285 m m m m m m:m B 13 m m m ~57 :~1 356 361 358 ,53 ]50 349 406 470 B 400COO 289 -57 :~t 1t4 294 304 Z99 294 291 287 ~~~ 1\ 12 B 12 l~~ ~ggggg 278 :i8 -74 286 285 289 285 282 280 273 'HO 1~ 4?0000 470COO Wi 340 263 268 2nA 263 200 258 j~? U 12 l§~t ~tgggg ~*~ fU :6l -63 287 201 295 291 2A6 2"2 279 3'-4 l~ lRqE 310000 11l9F 370000 266 351 13 l~~~ ~~gggg m 270 m m m m m m m m m m m m m m :n l~ 13 13 13 13 13 lA9C 370000 263 ~~~ 2"2 16 15 13 16 15 lagB 370000 1')7 2"5 m m g15 H 14 m mm m m m m m l~ 13 m mm m mm 140 139 0) . . . . . . . . . . . . . liY mggg hlA 220000 CrAN CHAN 60 bO H §~ ~~ m m :H 590 -109 644 H 71 76 THF Lr,4D STAGE NUMBER USEO AS ZERO HIH THIS RWJ IS ** *' ** ***'** ******* ******* *** *** »: ** ** $** *** *'* »: ****** **** ** »>/I »***' $*>1<* *** * ""!p~.,, *$**$$$ • • • • *** *$$ Ill. *****$$ $*.$ *1/1 >I< CHAN CHA~ CHA"'I 121 122 CHAN 123 CHAN CHAN 124 125 CHAN CHAN 126 127 CHAN CHAfIj 128 129 CHAN 130 ** **** ** u;****** ***************** *****.;. 491 ** **** 682 '" *** ** 585 *** **,. -60 ** "' •••• ** .... *. . >I' 205 500000 13 176 582 A28 14 -206 CHAN 131 ,20000 550COO 570000 13 13 13 797 823 859 597 61h 647 697 715 )39 598 610 635 -80 -104 -1 -3419 -17 -237 -28 -254 m H8ggg U 13 ~~~ m m m m 622 613 527 721 m 603 -8 -65 :l~~ m 710 206 201 20R m mg88 210 2ll 212 12 '13 822 846 873 213 600000 213 bCOOOO 12 12 215 215 216 216 b50COO ~ggggg m mggg ti l~ "50COO 850000 850000 229 229A 230 231 232 540000 600000 660000 110000 237 600292 238 239 239 m 239 219 60959? 609696 609696 g0 0 -65 -65 -130 -145 -147 -180 -189 -265 -304 -326 -402 1060 ll54 1396 1252 -200 -317 1424 1452 1449 1319 1848 IA51 1465 1483 1485 -564 -611 -631 1507 1427 1354 1790 1710 1633 1449 1365 pOO -740 -726 -705 1207 1211 1213 1244 1302 1458 14,9 1444 1436 1465 1120 Ill? 1105 1101 1119 -722 -785 -835 -885 1573 1604 1610 227 227 227 tl H 12 -161 -161 -166 -165 -167 -188 -180 -182 -216 -28A -331 1,93 1634 1643 1763 1799 IB04 m ~mg§ m ~gg;l~6 804 Bl1 869 874 889 963 971 1038 1101 1115 1195 1322 13 13 16 10 0 10 12 6 053 958 11)24 1031 1039 1096 ll011216 1294 1325 1436 942 945 991 995 1005 1084 1I00 IIb5 1230 1247 1318 1m 1203 1332 820000 820000 820000 1~ 757 761 830 842 852 918 931 994 1017 1032 1100 A64 A66 935 94? 954 1006 1020 1108 1155 1173 1252 m 226 226 226 m 540000 mggg -25 -26 916 982 14 15 13 12 -117 -115 623 67.6 600000 150000 H 13 681 685 778 182 222 223 m m8g8 819 823 74' 748 1038 1033 1I20 1134 1236 1319 1371 1421 1m 1354 1485 g -211 -231 -254 ~8~ 1m 1205 1853 1713 1700 tm 1472 1472 1463 1462 1500 1m m~ II 12 12 1996 2134 217l 219l 13 2225 m~ nab 159B 1528 1m 136.\363 3be 1387 1420 1~~~ m~ Ib49 151>4 1495 1m DOO 120g 1295 1305 1335 m~ 2068 2084 1811 1868 18(;1 2012 2031 2073 21 V. 1m 1845 IR53 2214 <243 If ms Hil 13 2211 21lH 643 660 690 497 511 ~l~ m 517 534 727 1~9 660 665 690 -278 -279 749 154 694 692 527 524 -366 -365 -411 -421 -425 -454 '-458 -524 -,12 -606 -721 861 859 051 961 'lSI 1027 1070 1161 1238 1260 1368 1m 1304 f430 847 848 969 915 976 1039 1060 228 1332 1365 1497 6Zl 624 122 126 726 712 791 9 5 1024 1124 m~ h~4 1m 1128 -~~~ 409 1555 1087 p96 1865 889 890 H81 15F :m :m -315 -674 -4 9 -BOI 7 1~~1 :~5~ -635 -1654 -661 -1731 -665 -1154 :lgg4 -694 -189~ -685 -1874 -617 - 863 1m 1m 1m :m :m 1m 1m 1m 1m 1m 1m 1984 1B44 1"34 203~ $:" '* ».$ '* ** '" *»: »» -* * >II 136 >10 137 >i' $; $ $ CHAN C~AN 138 533 -61 -66 -95 :~~ ::~ -77 -89 -190 -151 -164 -201 715 739 156 648 669 680 -163 -175 -190 ~m m~ dU :m -122 -619 -678 -724 -754 -780 m hl7 167'1 -1884 -ISS2 - 946 -2013 -2067 1622 1m 1501 1501 1533 1582 1626 :m:lm 1m tm 1m 1688 1713 1 4 537 10~2 I~§~ d~3 1900 1849 ih 1690 693 730 710 801 -~4 :m m m :IU -177 720 652 -165 - 0 -15 -1298 -981 -2409 -1420 -lOll -2542 - 446 -1004 -1846 -1465 -1012 -1474 1986 2029 2C39 2048 11.88 142B -1410 -1019 -1095 1433 -1417 -1029 - 083 2046 1m Ih84 m~ :Im :lm :Im 2042 m2 140 67 25 65 65 -222 -223 -215 -210 -206 -210 -204 -122 -128 -127 -207 56 52 52 50 50 49 50 54 55 54 58 -185 -198 -222 -2F 841 851 775 780 -184 -185 -265 -267 -264 -307 -313 -3 943 944 1000 011 1011 1868 76 196 278 309 910 912 985 997 1006 1054 1060 1181 1261 1290 1439 5~5 -26 -15 1m 1417 :~5 -3\ :1% 1421 1441 1"82 512 -18 - 6 - 5 "72 -99 iC31 960 940 -164 -160 -219 -291 2234 2217 2202 ~ln 2160 2165 1924 -407 le5S -317 145~ ~g b~ 63 67 675 685 f H 67 71 71 70 -193 760 ~~ ~~ ~§ ~~ 62 59 59 63 60 63 62 60 62 61 62 lth \HS -ld 1344 1396 -240 1502 519 -119 -195 llb 110 85 84 -350 -352 -352 1831 1871 1877 -374 -389 -389 99 99 3282 81 80 ~864 1962 902 18H -425 -416 -396 91 91 79 90 75 1693 1692 1739 }190 834 1716 1715 1750 792 1830 -361 -359 -403 .444 -482 59 62 52 47 43 59 62 53 55 57 -~~t 1m Im:m :m mz:m 16:m 1614 1565 1523 76 72 70 65 65 65 744 i~~ -~~4 1m 1415 1443 1455 1463 139 66 70 -194 -204 -" -n -3~~ -64 -358 -2! -25 -24 m 1~5~ 1~60 .108 -105 5 It 11 -15 -14 -12 1m :m :m :~m m8 1m 1m :m 1m 1m :lm :m :~m 1m 2m 1m =m ~238 1626 1015 1674 1678 *' CHAN :m m m:m H w m :m :H:m i4~ m m : o~:m m m -19~ :1~3 m m.,g~ m:m :~~ :~2~ m m U~ :18~ m m:m ~H 1m 1m 1m 1m 1M nn .om 1m $$» CHAN *** •••••••••••••••••••• **.* •• **1)" ** $. »»>11:$" 16 ** »*;:, *** 630 487 -50 -142 702 636 -149 70 :m m m m -7 -21 868 814 m m m (0)3 :g *g, 17 -02 746 764 h98 :lg~ -103 551 565 217 217 21A 219 219 220 lZ 644 -b8 625 648 717 12 13 13 13 12 13 13 10 12 12 13 m n8ggg m J;lgggg 509 532 556 66~ "0000 670000 610000 670000 700000 700000 720000 7>0000 750000 770000 216 705 n m m m m m m 500000 550000 570000 m 64,2 bM CHAN 135 132 0) oil",,,, . . . . . . 703 716 132 7102 CHAN -408 -183 -359 :m -321 -321 -370 -412 -4H :m :§U -594 -674 -619 -677 1m :m :m 1923 -387 -682 -690 860 1921 926 1m i019 1939 tm Im:m m~ 2m ~834 lm:m m~:m I~S Igl 101 ~~ 92 ~8 ~~ ~g 1794 889 i976 1917 1799 1795 1802 -592 -609 -636 -b39 17 21 20 22 2404 2752 1637 1835 -670 22 24 m~ lm:m -665 ~~ ~§ a~ ~8 n ~~ ~~ 43 44 43 43 ~~ 44 47 346 APPEiiDIX E.1 COMl)UTER PPROGRAMME E DESCRIPTION PROGRAII]VIE TO CALCULATE ACTIONS ON A REINFORCED celT CRETE SECTION This programme is described in Sections 7.3.3 and 7.3.4. The values of steel strain and concrete strain measured at any section defined a linear strain profile from which the strains at the top and bottom surface could be calculated for input into subroutines CONACT and srl'EEL which were used to compute the concrete and steel actions within the section. E.2 SUBROUTINES CONACT AND STEEL The following assumptions were made in deriving the subroutines: (i) The strain profile was linear across the section. (ii) When the neutral axis lay within the section, all concrete subject to tensile strain was assumed to carry no tensile stress once the maximum tensile strain in the concrete exceeded the fracture strain. (iii) When strain across the section was tensile at all points in the section, all concrete subject to a strain greater than the fracture strain was assumed to carry no tension. (iv) The stress-strain relationship for steel was tri-· linear as defined by Figure E.1(a). 347 (v) The stress-strain curve for concrete in tension was linear up to a tensile fracture strain of e t at which the fracture stress was c f'/~ c (see Figure E .'1 (b)) . (vi) The stress-strain curve for concrete in compression ~as that proposed by Hogenstad et al.,(2) and shown in Figure E.1(c). (vii) (viii) The section was, in general, that of aT-beam. Moments were considered as acting about the middepth of the section where the net axial force was considered to act. E.2.1 Subroutine STEEL Section properties were known and the strain at the levels of top and bottom steel were calculated from the two known values of strain at the top and bottom surface. Stresses could therefore be found from the assumed stressstrain relationship. E.2.2 Subroutine CCNACT Knowledge of the top and bottom surface strains enabled the determination of concrete actions by use of the assumed stress-strain relationships for concrete in tension and compression. Subroutine CONACT was written as four separate cases depending On the sign of top and bottom strains: CASEA Both top and bottom strains tensile CASEB Top strain compressive, bottom strain tensile Elastic ( 348 Strain hardening Yield plateau (a) Steel O L-~----------------------~~----------------~----e ey ef Strain Fracture (b) Concrete in tension ~.~ ect Q ~--------~----------------e e'ct Strain FIGURE E.1 ASSUMED STRESS -STRAIN RELA TIONSHIPS (c) Concrete in compression o Strain 349 CASEC Both top and bottom strains compressive CASED Top stra~n tensile, bottom strain comres- sive. For each case integration of the stress-strain curve over the appropriate ranee of strains was performed analytically and the results used in the subroutines for the relevant case. In computation the flange overhangs of "r-- or L-beams were ignored initially and the actioris on the rectangular portion of the section were found. To calculate the flange contributions, the strain at the level of the bottom of the flange was used in place of the strain at the bottom of the beam. The flange sec- tion was then considered as a rectangular section of different depth and breadth. The subroutines were then used to calculate the moment and force in the flange as related to its mid-depth which were transformed to equivalent actions at the mid-depth of the beam. Values of the parameters defining the stress-strain curves used in computation were as follows (notation referring to Figure E.1): f' c 4350 psf, f y /f'c =:: 9.78 (beam steel), 11 .82 (slab steel) ey e ct .0014 (beam steel) =:: == .0028, .~ e sh == .0100, e f 1 .85, eo == == .00169 (slab steel) .0028, e == .0101 , C == O. u == .004 350 APPENDIX F CONCRETE F.1 SLAB STRIPS DESCRIPTION OF TABULATED RESULTS ~~he results oJ the test;s on three slab strip specimens are tabulated be low. Irhe quant:itie s I i sted are: Load Stage Number = Vertical deflection at mid·-span in ,0001 11 units DHZ Horizontal movement of the free end in .0001 CST 11 uni tf;. = The average of the two concrete strains in microstrain. The values listed include a correction of --20 microstrain to account for initial loading. The average of the two steel strains in mierostrain, The values listed have included a correction of +15 microstrain for initial load. rrotal load, in pounds, applied to the strip PRF through the proving ring. The sum of the forc.es, in pounds, measured in the tie rodE; w:oed to apply the axial compression to the section. NCAI,C ;: Axial cornpreesioll cnicnlaL;cd from strain readj ngs. MAPLJ) Total moment about mid~depth applied to the mid-span section. MCALC tions Moment calculated from strain readings. om the strain readings were computed using the subroutine s CONACT and 'sIJ.'EE.L. The value s of the para-- ml3ters defining the stress-strain eurves are given in the table and correspond to those given in Figure E.1. variable, SR, is defined by SR == £' If! Y c == FY/FCDASH trhe S TR P Sl A8 ECT: EY: 5R : JIj L Y NC.l 80fiE-03 EO : O.250~-C2 Ee 0.600f-02 0.169E-02 E~ : O.2~OE-Ol FF 0.100f-Ol Q .. 11.40QFCDA5fl : l'J68 Q C.OOCO C.C 44CC.0 l SN DVT GHl CST 'S3 'S4 55 56 57 58 59 6C 61 62 225 235 256 251 250 241 240 240 4129 3940 3680 4 -5 -4 3 10 19 2'; 32 395 396 382 389 399 371 270 -7 -57'; -555 -538 -408 -562 -279 -262 -358 -485 -529 -552 -562 -560 -558 -552 -549 -545 -525 -429 -331 -172 -621 -608 -598 -500 -382 -355 - 2 54 -281 -29'l -277 -2'S6 -232 -211 -112 -105 -79 -';3 -26 -72 -124 -168 -176 -19S -245 -300 -361 -19P -,6 -30 -69 -10'; -137 -163 -1 R1 - C59 -226 -243 -261 -204 -17'; -143 -106 -63 -196 -264 -237 -213 -181 -135 -95 -307 -282 -251 -217 -170 -351 -321 -299 -255 -202 -380 -384 -341 -290 - 51 -100 -117 -134 -149 C3 64 65 6C lSN DVT Lllll CST SST PRF 1 0 0 -2 -11 -p -25 -29 -25 -20 -12 -8 0 5 2 -20 -44 -61 -83 -108 -131 -150 -129 -107 -gz -58 -39 -54 -76 -99 -122 -144 -167 -182 -162 -141 -119 -97 -7<; -8H -IQ9 -133 -154 -17P -202 -219 -198 -176 -154 -132 -111 -126 -149 -111 -194 -216 -241 IS 0 -24 -40 -52 O. O. O. O. O. -5'; -4C -23 -4 50. 50. 50. 5C. 50. 50. lCO. lCO. 100. lCO. lCO. 100. 15 O. 150. 150. 150. 150. 150. 2CO. 200. 2CO. 200. 200. 2eQ" 250. 250. 25C. 250. 250. 250. 300. 300. 3CO. 3CO. 3CO. 300. 350. 350 .. 350. 350. 350. 150. 2 3 4 5 6 7 8 9 10 11 12 13 1<1 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ,9 4C 41 42 43 44 45 46 47 48 49 50 5l 52 a 0 4 10 15 43 38 32 29 26 20 4l 50 51 58 62 10 92 90 85 80 76 11 91 96 101 109 113 120 142 139 134 130 126 120 145 156 160 165 171 179 2CO 194 191 J. 88 185 180 202 209 215 220 0 -5 -8 -ll -19 -19 -15 -9 0 9 14 20 11 9 2 -2 -15 -15 -12 -6 2 11 20 25 20 15 12 '; -5 -4 1 5 14 22 30 30 26 20 12 -25e -235 -216 -194 -172 -lSI -166 -186 -210 -232 -7~ 1"1 78 40 25 9 -7 -22 -40 -26 -p 6 24 41 <;7 71 53 39 22 'i -9 5 20 36 S4 71 89 105 100 83 106 49 33 45 61 78 96 120 138 154 136 120 103 O. 1-t00 .. 4CO. 4CO. 4CO. lO ~CALC ~APlC ~CAlC 0 1007 2019 2995 3993 500'; 4987 3999 29')9 1915 899 34 32 1016 2031 3035 4013 Sal! 5000 39')9 3015 2003 1012 35 101. 1164. 2363. 3434. 4464. 5691. 5587. 4591. 3501. 2258. 1124. 199. 215. 1235. 2291. 3369. 4371. 5540. 5464. 4410. 3452. 2340. 1301. 285. 214. 1248. 2253. 3294. 4405. 5440. 5431. 4438. 3422. 2338. Ut8. 290. 222. 323 323 323 324 326 330 619 613 6C7 6e3 6CO 598 873 878 883 890 333. 45C. 370. 422. 541. 552. 937. 888. 849. 801. 716. 646. 905. 1005. 1099. 1173. 1241. 1265. 1566. 1558. 1490. 1440. 1358. 1266. 1519. 1586. 1712. 1768. 1846. 1938. 2241. 2187. 2114. 2054. 1911. 1905. ~AP 37 1032 2029 3017 4022 5027 5016 4034 3032 2035 1025 32 35 10 16 2037 3035 4023 5025 5012 4030 3037 2036 lOll 45 5'i 1036 2062 3046 921. 1928. 2996. 4021. 5107. 5169. 4144. 3182. 2120. 916. -74. -167. 817. 1841. 2869. A97 908 1193 1183 1173 1164 llS5 1148 1423 1432 1443 1455 14e8 1483 1769 1754 1738 1724 1710 1698 1973 1988 2005 20 2 3 2041 2062 2348 2326 2306 2286 2U6 2248 2524 25<;4 2567 2590 2191. 2387. 2472. 2554. 2626. 2724. 2996. 2914. 2817 • 281'i. 2791. 2721. 3013. 30t5. 3174. 3246. 67 68 69 70 71 12 73 74 75 76 77 78 19 80 81 82 83 84 85 86 87 88 89 90 91 n , 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 HI H2 113 114 ll5 ll6 117 118 119 120 121 122 123 124 125 126 127 128 129 130 IiI 33';8 2812 2640 2C30 700 419 510 649 1065 430 1678 1679 1290 695 -482 421 391 423 452 485 515 468 532 10 18 1641 2385 355 478 5ll 951 1679 2429 3125 638 950 1653 2755 3355 IC30 1470 2995 3512 4605 1419 3602 4271 5038 4346 3959 4138 4320 4522 4732 4971 5197 5379 5655 6065 6400 6808 730') 8255 8912 9579 10366 11140 12,)OR 13370 -198 -658 -588 -450 -320 -248 -610 -521 -342 -351 -242 -667 -660 -615 -639 -590 -661 -660 -651 -646 -635 -622 -615 -b09 -607 -626 -627 -572 -540 -588 -';54 -755 -754 -754 -797 -P90 13? 16g22 -F?! -Ho -184 - 202 -217 -234 -242 -244 -247 -248 -241 -234 -224 -201 -181 -149 -14 '3 :l~! SST P RF 'APl8 NCAle ~APlC ~CAlC °7 72 400. 4CO. 450. 45C. 450. 450. 45C. 450. 3CO. 200. lCO. O. O. O. O. 4041 5042 'S047 4041 3062 2038 1046 52 55 51, 56 ,8 1038 2030 3023 4029 <;035 5023 5061 5086 4762 42 -42 957 1976 2941 3917 4969 4959 4951 4947 4945 3961 2983 1930 969 -25 4910 4968 3948 2964 1953 nl -3 4969 3929 2944 1934 953 4961 401B 2932 1973 949 4936 3971 2941 1953 4 1000 1042 1095 ll45 11 94 1239 ln9 1305 18510 2613 26t,) 2127 2899 2874 2247 2823 2799 1995 1'<44 893 3'i2 614 3327. 3454. R7 103 120 137 156 teC 2150 1840 1458 1044 '559 178 -3'32 -722 -813 -739 -569 -41 -785 346 830 325 -297 -561> -733 -797 -776 -754 -728 -698 -690 -525 109 716 1208 -811 -709 -598 2 672 U84 1678 -524 -69 581 1253 1723 -gz 371 1274 1712 2239 159 1237 1776 2238 977 622 898 106'1 1279 1482 1709 1921 20n 2278 2312 2304 2293 2384 2141 20C6 1761 157C 1199 14.9 7 1462 P!~ O. O. 150. 300. 450. O. O. O. O. O. O. C. O. 50. lCO. ISO. 2CO. lCO. lCO. 100. lCO. O. O. 200. 2CO. 2CO. 2CO. 200. 200. 3CO. 300. 300. 3CO. 3CO. 4CO. 4CO. 400. 4CO. 4CO. 450. 45C. 450. 450. O. O. 50. 100. 150. 2CO. 250. 3CO. 350 .. 400. 397. 381. 370. 355. 302. 3D!. 287. 281. ZQ6D -;]9. ,47. 35':. 131.,0 1415 1460 1490 1496 1418 1301 1130 P81 590 12, 38 - - 3? 4946" 4934. 3954. 2954. 1902. B62. -241. -151. -1900 -514. -491. 398. 1143. 1956. 2320. 2574. 3012. 3420. 3615. 2584. 122. -293. 476. 1297 • 1816. 2198. 2503. 6838. 2837. 2984. 3137. 2574. 2166. 1384. 569. -229. 2583. 3175. 2831. 2158. 1353. 520. -244. 3454. 2882. 2108. 1280;(> 814. 3558. 2936. 2067. 1658. 819. 3648. 2900. 2165. 1678. -184. 516. 576. 594~ 592. 614. 1027. 1051. 1070. 1133. 1213. 1238. 1275. 1270. 1222. 1233. 1313. 897 .. 823. 44()., 398. __ 48~. 858 936 605 533 1404 2301 3339 527 330 "315 446 460 181 490 517 807 1096 1387 1677 1058 1031 1069 10!? 311 499 1660 1624 1704 1750 16"6 1 f~ 2 2 2290 2346 2459 2505 2292 ): 13 3033 1 3215 3{~O 2960 3498 4228 4054 3781 324 718 1029 1346 1665 1988 2313 2i:37 n49 328, "3364 3354 37610 3687. 3630. 3535. 3486 .. 3490. 1771. 1391. 12 /i4 .. 8CO. 919. 1047. 1081. 917. 1004. 1410. 1901. 2632. 1042. 476. 708. 716. 632 .. 717. 815. 969. 4183. 1264. 1402. 15" 9. 11"1. 1022. 1149. 122C. 1177 • 1013 • 1564. 1433. 1603. 1753. H06. 1689. 1916. 20590 2210. 2349 .. 2010. 2533. 2588. 2950. 2623. 2491. 2878. 3524. 3484. 312.;. 953. H21. 13e4. 1632. 1864. 2107. 2055. 2308. 2518. 2124. 2780. 2790 e 2981 2783 zeC7 2340 2806. 2825. nE 9. 2645. 2432. 2<14. 2170. 1984. ?~3Q . P~25" 3369 3370 31:5 31~5 2283 1925. JULY NC .3 ST~P SLAB ECT= 0."00E-03 I:C C.2I)OF:-C2 EU 0.650E-02 0 c.sceo tY= 0.169E-02 t~ 0.2COEc-01 EF 0.10 rlE-01 C 0.0 SR = 11.400rCOASH = 4400.0 lSN DVT DHI C 51 SST PRF ~APlC 1 2 3 4 5 6 7 8 0 20 38 55 75 95 114 131 ISO 170 18? 209 57D 371 51 71 94 115 0 3 4 -20 -35 -49 -04 -79 -94 -IIC -123 -140 -157 -173 -190 -CIO -331 -165 -186 -20; -214 -247 -270 -298 -325 -3P -4010 -464 -530 -616 -716 -811 -2C7 -184 -204 -222 -242 -265 -294 15 Zg 41 54 O. 50. 1CO. 0 6 8 6 9 10 11 12 13 14 15 16 17 18 19 2C 21 22 23 24 25 26 27 28 29 30 31 32 , 3 34 35 36 37 38 39 40 41 42 4~ 44 It 5 46 47 4" 49 SC 'il e2 138 158 179 2CO 225 2'51 285 321 368 419 470 70 60 81 101 124 145 170 199 226 265 3G8 35'1 40'1 470 61 55 7h lCO 121 150 1 PI nr 2P~ ., 8 9 10 10 10 II 13 16 130 121 8'3 a5 83 83 83 83 83 83 76 75 78 80 81 e5 90 50 75 79 80 81 81 83 86 89 90 9'5 100 105 114 71 79 00 80 81 H4 P'J '13 1 1:r -~37 -~8~ - 4 52 -531 -t23 -712 -n4 -191 -166 -IP6 -?C7 ~9 PC 95 109 123 137 156 lAC 1751 lC41 -129 -113 -~4 -79 -1,0 -3'1 -14 11 54 102 lI'. q 248 350 469 5~9 -126 -99 -78 -60 -/-tC -16 Ih 65 12') 211 J09 432 'i57 719 -qg -7S -'>'5 -31 -?3~ -273 - ~ ?') -L.l": _cr' ) I .. e l?~ ~ (t 1 572 l,)C. 2CO. 250. 3CO. 150. 4CO. 4'5C. 5CC. '350. 2C2. O. O. 50. ICO. 150. 2C0. 250. 'CO. 35C. 4CC. 45C. 5CC. 55C. 6CC. 650. lCD. O. O. 50. lCO. 150. 2ee. 250. 300. 3?C. 4CO. 45C. '>CC. 'i5C. bCC. O. O. n. O. C. n. r. O. r· ~ 9 9 A 10 11 13 C Al C "APlC "CALC 101. 113. 98. 109. 69. 128. 113. 42. 53. 87. -54. -294. 2591. 1257. 8319. 8330. 8198. 8177 • 8118. 8C26. 323 598 873 1148 1423 1698 1913 2248 2523 2798 3013 B48 1437 324 348 1'33 333. 600. 856. 1122 • 1403. 165;:. 1941. 21<;3. 2489. 277e • 3101. 3471. 4105. 2275. 284. 660. 1048. 1397. 1829. 227< • 2784. 3197 • 3653. 4103. 462e. 5171. 584 I. 6584. 7235. 745. 797. 1214. 1586. 1995. 2460. 2927 • 3436. 3901. 4469. 5095. 5777 • t4C3. ~ 16 66 40 5020 5018 5016 5016 5014 5012 794~. 5007 5006 7884. 5C08 7882. 8031. 5012 5018 8320. R677 • 5C28 9264. 5043 5065 ~992 • 5096 10550. 92'18. 4992 4003 7822. 7658. 4003 4C04 7522. 4008 7379. 4011 720'1. 4009 7062. 7074. 4C 14 7193. 4022 749<) 0 4C34 40 S4 8014. 8595. 4021 410'1 n42. 4151 9645. 7985. 4CCtl h638. 3CC7 6475. 300'l 30C5 6244. 3rl0 59"4. 3')1, 'ie7'> • 3024 595". ~C47 h 313. 3r: 7 -J r h )4f-:. • no 1205 1492 1777 20£02 n48 2 c-; 5 2q23 ,216 3509 38ce 4110 4412 3~7 347 630 913 1197 14et 171:6 20<;2 2339 2629 2922 3219 351t 3p18 347 3~9 (,20 gr::3 1~4 410R 7~2 043 ~'34 70£::5. 868. 873 • 1293. 17'54. 2313. 2~IC. 33;3. 40~7. 4762. lSN 53 54 55 56 57 58 59 60 ft 62 t3 64 65 H c7 68 69 70 71 72 73 74 75 76 77 78 79 PC ~1 B2 P3 84 ~5 ~6 87 88 89 '10 91 <)2 93 94 95 9f; 97 98 99 ICC 101 102 103 104 105 lOt lC7 DVT OHI 348 408 470 56 59 82 116 11:5 231 3C2 381 440 5C5 68 105 183 259 335 406 479 548 610 692 170 340 431 506 589 702 840 1005 12CO 1408 1772 2CCR 2516 3COP 3502 4012 4505 5COO 5'550 6010 6500 6750 7010 7?75 7505 7755 A014 8120 "260 109 116 121 BC 8R 89 90 R4~9 9001 9490 lOB 11']004 109 10'529 llC 11530 I I I ll4S'J 112 174 hO 113 f' n 105 115 126 132 141 89 100 112 123 135 145 158 163 16A 170 116 1'39 171 182 192 202 221 239 255 2H 312 332 370 404 435 462 490 512 521 ';29 530 529 529 529 529 529 52g 529 ')28 52R 024 ')24 '522 522 'i2l SST PRr -611 533 -702 6~4 -796 R6~ -168 -73 -153 -32 -184 4 -233 73 - 318 2C2 -419 374 ')65 -520 -622 771 -695 933 -780 111~ -161 -24 -209 191 4D~ -306 (11) - 391 -478 8n -560 lCIC -645 1208 -727 IB9 -804 157C -903 17'06 -266 267 t;'jr; -343 -444 12('3 -526 1424 -60'1 16b1 -69, 1943 -773 221h -p 59 2'523 -95R 2'336 49Cf) -1029 'i3'ir. -1159 7'](;C -1262 -15CC -6U3 3(21'; -1755 -2C17 30ze -2297 l02e -2575 3020 -2863 3020 ,02e -3150 -33B9 3PC -31:26 3 C2C -3749 3020 -3859 3020 -3962 lC20 -4C4P 307r; -4139 1U20 -422P 3C2Q -427'> 3n2~ 3()?f) -4323 -4,95 10'1) ";)r:21"' -4~34 4CO. 450. 5CC. CST -4f:'1"J -47" Q -4t:;2? -'i[7': 'in -sr: 11 S:?C -SOli 0 2t3(] 1r")f' 3C7( 1C;~C 3C ?r~ 1 czr ~nzr 3 (" ( O. O. 50. 100. 150. 2CO. 25C. 3CO. 350. 4CO. O. O. 50. ICO. 15C. 2CO. 250. 1CO. 350. 4CO. O. O. 5C. ICC. 150. 2CO. 25C. 3CO. 350. 368. 390. 386. 434. 462. 476. 4se. 5C9. 50<;. 495. 4A4. 4,,1. 4106. 463. 453. 436. 473. 413. 4 0 6. 408. 19~. J73. 147. -1 ~ 1. HI. ,cr. lC l. 4Ch. 0,. PlC ~CAlC "APlC 3120 3156 3203 3011 1993 1998 2014 2035 2077 2125 2179 2216 2266 2006 7525. 7941. 8345. 6607. 4945. 4636. 4494. 4773. 5249. 5710. 6160. 6426. 6766. 4877. 2668. 3024. 3377. 3781. 4145. 4536. 4907. 5272. 5861. 3185. 1600. 2096. 2445. 2753. 3133. 3502. 3869. 4339. 2836. 3374. 2585. 2631 2926 3223 339 334 614 896 1181 1470 1762 2056 2345 2637 ~A 993 1047 1099 1157 1204 1250 1294 1337 1397 IOc3 44 46 49 52 51 48 45 53 78 181 279 '325******* 779 1026 1257 1449 1625 1791 1894 1979 2017 2046 2066 2079 20'10 2089 2089 20P 2065 2016 1941 IP 32 It 7 il 1313 374 14275. 16819. 19404. 2l7n. 2397C. 25922. 27393. 28722 • 293"8. 29921. l0420. 30823. 31234. 31627. HAZ8. 32C31. 32327. 32P79. 33343. l3P?3. 342 8S. ,47 9 2. ·1404b. 17 310 P ')C. -2115 1232. "CALC 548e. 6079. 6662. 919. 1211. 1842. 2423. 3127. 3861. 4541. 5198. 5640 • 6154. 33e 1382. 1979. 333 617 2629. 901 3189. 1186 3766. 1471 4298. 1757 4844. 2043 5362. 5846. 2329 6433. 2619 341 245C. 2420. 324 599 3112. 3653. e75 ll51 4181. 1426 4536. 1702 4847. 1917 5159. 2254 5547. 2359 4506. 2497 4958. 2504 431>7. 2842**· .. ••• 3099 8725. 3302 10234. 3513 11639. 3777 12793. 3912 13713. 4042 14399. 4120 14830. 4255 15153. 4245 15286. 43C5 153P7. 4315 15467. 4283 1:525. 4267 15576. 4270 1'5619. 4254 15638. 4281 15655. 4265 15677. 4191 157C7. 4C74 15721. '39PA 15724. 3799 15715. 34q6 15692 • 2491 15bRS. 25ee 1:425. 323 -96";. W Ul W L SN OVT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [7 0 0 [P 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 H 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 59 59 60 6[ 62 0 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 19 eo 81 82 83 R4 eo 86 e7 98 89 00 91 92 93 9<, 95 g6 'J7 08 5 8 10 19 40 60 7B 95 115 132 150 170 29 15 35 52 70 89 105 122 140 160 20 13 15 52 70 89 lC5 122 140 160 19 9 28 48 63 90 100 118 [35 152 10 0 20 40 60 76 95 112 no lH 6 a 19 38 56 72 90 110 [28 145 0 22 98 170 [90 210 230 249 266 288 305 325 348 370 393 450 499 612 88 90 7b 55 08 11n 138 160 188 21b 250 28' 321 355 390 413 OHZ 0 -5 -11 -IR -21 -25 -22 -21 -20 -18 -15 -12 -10 -9 -?5 -22 -20 -19 -15 -12 -10 -8 -4 -[ -22 -[ 9 -15 -11 -10 -8 -4 -I 0 3 -15 -11 -10 -7 -4 0 ~ 8 12 -8 -2 -1 o· 3 8 10 12 16 20 -1 a 2 5 10 11 15 11 20 23 1 -24 -11 -1 1 3 9 10 13 19 20 21 25 30 32 4[ 50 70 -12 10 1 -?8 -22 -20 -19 -14 -10 -5 C R 14 20 25 30 C 5T SST PRF -2C O. C. -127 -144 15 2 -14 -33 -4 R -b4 -51 -175 -2h -38 -be -PO -in') -lSQ -39 -lql -II.,. -206 -222 -23P -253 -135 -112 -12f. -140 -15') -170 -186 -201 -216 -230 -112 -92 -3 9 >2 34 -10~ -121 -136 -151 -165 -lAO -195 -209 -93 -67 -93 -99 -113 -126 -141 -156 -170 -186 -69 -46 -61 -74 -90 -103 -118 -134 -147 -161 -46 -24 -39 -OJ -68 -84 -98 -113 -126 -141 -25 -134 -194 -2';6 -273 -287 -303 -320 -!35 -'3'32 -368 -;R4 -404 -424 -451 -'S10 -539 -578 -184 -75 - 64 -139 =m -208 -221'1 -24'1 -269 -202 - 311, - 340 -362 - 3"16 -4 C51'). 3CO. 35C. 400. O. C. 50. 1 co. 150. 2CO. 250. 1CO .. 350. 'ICO. O. O. 50. 100. 150. 200. 250. 3eo. 3'50 .. 400. O. O. 50. 100. 150. 2eo .. 250. 3CO. 350. 4CC. O. O. 50. 1 CO. 150. 2CO. 250. 3CO. 350. 4CO. O. O. 50. 100. 150. 2CO. 250. 3eo. 350. 400. O. O. 2eo. 400 .. 450. 5eo. 550. 600 .. e50. 70C. 750. eco .. 850. 9CO. 950. 950. 950. Slb7. O. O. o. O. 1CO. 1 '50 .. 76 2eo. 331:: 350. 4CO. 450" 103 144 104 260 4Cl 460 '52 FJ "i'lR 250. 3CO .. sen ~ ') 50. bC C ~ h50. ,,-CALC ,.. APl C I"C/ILC 0 998 1 '1gB 101. 934. 2010. 3114. 4234. 4011 5006 5311. 49gS 5332. 4987 5316. 4983 5297. 4979 5335. 4914 5352 .. 4168 5375. 4966 5376. 4'1')3 5381. 4969 545b. 4030 4403. 4028 4331. 402'1 42R e. 4022 432<1. 4014 4350. 40 12 4351. 4014 4303. 4018 4314. 4351. 4018 4036 4316. 3022 _ 3250. 3019 3265. 3015 3225. 3016 3283. 3015 3292. 3011 3304. 3294. 3009 3011 32B5. 3009 3277. 3023 3250. 2027 2122. 2028 2200. 2028 2236. 2028 2251. 2028 2190. 2026 2187. 2028 2211. 2023 2260. 2023 2286. 2036 2121. 1015 1025. 1020 1049. [025 996. 1024 lOB 1. 1017 1081. 1015 1138 .. 1170. 1017 [l19. 10 15 [l2l. [014 998 .. 1026 -38. 27 23. 29 32. 29 3[ 68. 155. 37 137. 36 170G 34 34 123. 179. 34 -61 .. 31 5197. 5001 4ge7 5161. 5194. 4915 5204. 4964 5161~ 4958 5198 ... 4952 5210. 4949 4,}43 5221. 4937 5258 " 5243. 4932 5228. 4928 5241. 4924 5050. 4920 4611. 4917 1266. 4940 4817. 4942 4937 .. '5016 4946 1873. 59B .. 6 -45 474. 3914 1413. 17-40. V102 1887. 3896 2C55. 3P.9O 2212 .. 3BtlS 2~07 .. 1887 3Rga 2565. 213-,. ,H9B 2918. 3905 309') • 3916 323 323 29~7 325 328 332 617 902 1186 1470 1755 2038 2322 26G1 337 329 6[2 893 1176 1458 333. 412. 470. 474. 563. 604 .. 913. 1\ APLC 3~) 23 39?8 393A 32<)5 " 34VJu 35g'1. ~23 17~0 2021 2304 2587 331 326 608 888 1 [69 1449 1729 20C9 2290 2571 328 324 6e 3 882 1160 14~9 1 7[ 9 1996 2275 2553 325 323 6CO 8771154 1430 1107 1984 2261 2538 323 323 599 a73 1148 1423 1698 1973 2248 2523 323 334 147! 2601 2892 3117 3~61 3746 4029 4315 4598 4883 516l;1 5455 5741 5770 5794 5q45 366 323 322 344 9[1 1193 1476 17tO ;:>O~6 2332 ~620 29C 9 ,19A 14el' 3176 4064 11 f15. 14S5 .. 1775. 2C38. 2312. 258'1. 2845 .. 705. 637. 921. 1195. 1458. 1722. 2004. 228[. 2537. 2766. 1::66 .. 653. 94e .. 1202. 1453. 171t .. 1958 .. 2222. 2485. 2729. 672. 564 .. 838. [116. 1360. 1608 .. 1872. 2121. 2357. 2627. 602. 530. 7'12 .. 1039. 1299~ 1529. 1778 .. 2050. 2293. 2538. 538 .. 446. 699 .. 948 .. [206. 1466 " 1721. PH? .. 2221. 2469 .. 471.. 775 1886 a G 2954. 3240. 3490 .. 3748 " 4030. 4277 .. 4548 .. 4818. 5087 a 5411. 5797. 6371. 8361 .. 416C" 4606 .. 1390 " 714 ~ 6040. 106'5 a 1342 .. 1469. 1609 e 1770 .. 1945 .. 2117 • 231 9 ~ 2529. 211'~ • "929 " 3131 e 3329~ FeT= O.BOOF-O] EC tV= O .. 169E-02 Ef< 5R = 11.400FCOASH L 5N CVT OH' 99 100 101 102 103 104 [05 106 107 108 109 110 III 112 113 114 1 [5 116 117 118 119 [20 121 122 123 124 125 126 127 [28 129 460 493 540 676 38 43 51 76 -20 -20 -17 -15 no 131 132 133 [34 !35 36 [37 138 139 [40 141 [<2 143 144 145 146 147 148 [49 150 151 1S 2 153 154 155 156 157 [58 159 160 161 162 163 164 [65 160 167 168 160 17e 171 172 [73 e5 71 95 116 139 163 199 241 285 332 380 429 472 520 570 639 89 78 [CO 129 171 220 273 328 375 428 478 529 600 100 lOB 160 21B 271 328 381 440 490 565 16S 238 282 340 400 460 272 9& 150 243 370 490 550 605 673 780 901 1065 1128 1551 1681 2345 3602 G340 4350 4600 4801 5COO 5250 5500 ')752 62'55 6500 6150 70CO 174 17? 176 725q 177 1 78 7641 ~"31q 179 [ BC 1 ~4'il r..Coo2 S TQjJ SLAI-\ -11 -9 -2 2 11 21 30 39 48 55 65 79 -15 = = = C 57 -431 -~53 -~7e O.65QE-02 EF a.lOOE-Ol 55 T PR" 667 13A '46 7ec. 750. BCO. F!39. O. O. 50. 1 co. 150. 2eo. 750. 3CC. 350. 4CO. 450. seo. 550. !::leo. 650. 692 .. O. O. 50. lCO. 150. 2eo. 250. 3CO. 350. 4CO. 450. 5CO. 550. O. O. 50. 1 co .. 150. R4 [24 111 2 P4 381 4PJ:1 595 -135 0 .. 5ceo C = 0.0 44CC.O -184 -204 -225 -249 -270 -293 -316 -3'-:1 -362 -385 -4C9 -431 -lr?"l 736 -lC2P, 773 - f 61 -C?.3 1761 P')P Eo Q.?CC>':-C1 1169 -11 -10H -10 -124 -7 -143 1 -163 10 -186 20 -204 30 -226 40 -24e 50 -271 59 -291 70 -31 "i 85 -339 -2 -107 3 -B6 11 -[ as 21 -121 31 -136 41 -152 51 -176 65 -203 73 -224 89 -243 -76 19 -44 40 46 -62 56 -80 69 -101 80 -122 50 -36 -4 -75 2 -114 20 -15[ 45 -205 66 -252 78 -27') 88 -300 100 -326 120 -358 148 -:90 178 -434 196 -398 270 -443 285 -455 360 -515 480 -tee 536 -Fl20 538 -~4q 551 -P.7~ -PSl7 569 581 -9 1~ 602 -935 -g'56 628 650 -'181 r r.6 -lC IP 7el -1 (:1') 715 -IC24 7n n.2'iO~-02 -971 -159 -133 -150 -If;6 1 go<,B JUl Y 10 ?4 31 58 6':18 797 9CO 10 16 1182 39 62 ~1 141 232 339 463 5'H b9B 814 922 1050 1221 1C2 1% 327 457 Sf?'] 710 833 963 1089 1273 320 62R 746 e79 102 fJ 1184 71 q le3 1~9 409 70B 978 1116 125<; 13,}R 16ll 1e2,) 2082 2216 2444 -1 ':>15 1 -1569 -1545 -15'<;0 -1 ~:d2 -1521 -1'50Q -14'10 -1466 -15~ -1434 - 3 ~41 -1372 -121'::'1 - She -5r:C -nO 2C? 1 -277 11 t 11') zeo. 250. 3CO. 350. 4CO. O. O. 50. lCO. 150. 2eo. O. o. lCO. 2eo .. 300. 400. 450" 5CO. 55C * b(O .. 6500 7CO .. 65O .. 694 .. 687 .. 7CO. 714 = 6!J2. 6 31 ~ t: 3 8 ~ 1)290 t2C ~ f.C4. ')81. 567," ~ 31 ~ 512. 4 SO C ~ 4 70. I~ 4:' ~ 21'L 257. ; ~ 3. N~PlO I\CALC ,. . APl C "CAL C 3942 3'150 3967 4051 ,R83 2961 2982 2980 2978 2919 3753" 3903 .. 4C53 .. 19613 .. 1617 ~ 1346. 1505. 4354 4042 4937 ,213 356 344 626 907 11139 1471 1157 2045 2314 2623 2914 3205 3494 3785 4076 ~ ;30 349 338 Cl7 B98 lle 1 1466 1753 2040 2325 2612 2899 333 3519. 3708. 3<138. 7151. 1211. 1026 .. 1 [61. 1290. 1438. 1607 .. 179'1. 2025 .. 2232. 2451. 26E 1. 2902. 3119. 3337. 3569. 3814 .. 1049. 860 .. 996. 1167 .. 1368 .. 1599 .. 1802 .. 2035. 2256 .. 2487 .. 2692. 2935. 3202. 876. 171. 613 895 11 B4 .. 29B7 29Jf1 3018 3037 3061 3083 3102 3120 3138 3181 2980 1938 1946 1954 1979 l'H9 2022 2051 2070 2096 2113 2141 2195 19S0 952 993 1010 1039 1064 1092 1121 1147 1190 1023 16 26 29 37 42 23 2016 2022 2001 2128 21B8 2215 2243 2275 2345 2425 2534 20t5 235t 2445 1652~ 1812. 1 gAO .. 2138 .. 2305 .. 2438" 2582 a 2725. 2869. 3014" 31550 3294 .. 3377 • 1355. 1066 .. [208. 1361.. 14'15. 1646 .. 1733", 1 '356 .. 1 9g3 .. 2132. 2247 .. 2383 .. 2487. 1026. 744 D 842. 909 .. 964 .. 1036 .. 1186 .. 1359 .. 1474" 1526" 552. -I. 98. 195. 290. 389 .. -150. 700 .. 1014~ 1246 .. 1565 .. la2A .. 1951. Z090 2235 .. 2383. 2627 " 3035 .. 2701. '3118 5579 .. 6121 .. 7604 .. -8747" eg9} .. 920b. g Q 2890 3519 3P Q.g 37tg 3Rbl 934g~ 3922 3'}79 9474. 4043 g6260 9771 .. 4101 0:;94:3 4144 4211 10413 " 4745 103Q't 42b ., 101'51. 427'5 Y913. '1fl.? 1 ~ 4? 90 $ G 3t;47 1 .. lit 12 318E: 3479 342 1176 1457 1739 2022 2304 2590 339 323 598 873 1149 1424 323 342 903 1473 2051 2630 29[ 9 320e 350 1 3805 4116 4442 4125 45C3 451.3 4B53 5517 5779 54~5 56e9 5065 5722 5168 5714 '31125 5884 5Bq6 58S2 '5B99 '='8/,::P b4 OR. 49R'j. 4232 1552. 2174 4577 990. 137';:: .. 1560. 1 e08. 20a 1 .. 2306. 254<3. 167. 699" 904. 1 [17. 13620 1609. 69C. 635 .. 91e. 13eo .. 1949 .. 2445 .. 26S9 c 2946", 3212 .. 3558. 3824 .. 4125e 3879. 4186 .. 2419. 2B22 • 3910 .. 4 72t 44 epa. 5013 .. 5189. 5294 .. 5424. 55'; 7 .. '5715 5772 " tOG A" B co47~ c22g .. 651 a ~ 465 1 ~ 55')9. 3032. W (JI .t. 355 REFERENCES 1. THOMAS, F.G. ",Studies in Reinforced Concrete, Part VIII, The Strength and Deformation of Some Reinforced Concrete Slabs Subjected to Concentrated Loading". D.S.I.R. Building Research Station Technical Paper No. 25, H.~.S.O., 1939. 2. JOHANSEN, K.\V. "Yield-Line Theory". Cement and Concrete Association, London, 1962. 3. OCKLESTON, A.J. "Load Tests on a Three-Storey Reinforced Concrete Building in Johannesburg". Structural Engineer, Vol. 33, October, 1955. 4. OCKLESTON, A.J. "Arching Action in Reinforced Concrete Slabs". Structural ~ngineer, Vol. 36, June, 1958. 5. OCKLESTON, A.J. "Loading Tests on Reinforced Concrete Slabs Spanning in Two Directions". Paper No.6, Portland Cement Institute, Richmond, Johannesburg, 1958. 6. POWELL, D.S. "The Ultimate Strength of Concrete Panels Subjected to Uniformly Distributed Loads". Cambridge University Thesis, 1956. 7. 'HOOD, R.H. "Plastic and Elastic Design of Slabs and Plates". Thames and :3:udson, 1961. 8. LIEBENBERG, A.C. "Arch Action in Concrete Slabs" Pretoria, South Africa, CSIR Research Report 234, 1966. 9. LIEBENBERG, A.C. "Arch Action in Reinforced Concrete Slabs" Proceedings. South African Institution of Civil Engineers, Jubilee Issue, 1963. 10. CHRISTIANSEN, K.P. liThe Effect of Membrane Stresses on the Ultimate Strength of the Interior Panel in a Reinforced Concrete Slab". Structural Engineer. Vol. 41, August 1963. 11. PARK, R. "The Ultimate Strength of Uniformly Loaded Laterally Restrained Rectangular TIJO-Way Slabs". Ph.D. Thesis, University of Bristol, 1964. 356 12. FARK, R. "Ultimate Strength of Rectangular Concrete Slabs Under Short-Term Uniform Loading ;'li th Edses Restrained Against lateral ~rovement". Proc. Instn civ. Engrs, Vol. 28, June, 1964. 13. PARK, R. "Tbe Ultimate strength and I,ong-Term Behaviour of Uniformly loaded Two-1JJay Concrete Slabs Wi th Partial J-,ateral~testraint at All Eelges." rta[;az of Concrete Research, Vol. 16, No. 48, September 1964 . . 1LI_. 'rAYLOR, R. "A Note on a Possible Basis for a New Me oc" of Ultimate Load Design of Reinforced Concrete r31abs". MaGazine of Concrete Ttesearch, Vol. 17, No. 53, Jece r, 1965. 15. Bl1C'rCHIE ~ J. F., JACOBSON, A., and OKUBO, S. "Effect of IIembrane Action on Slab Behaviour" .'1eGearcl~ ]eport 255-25, School of Engineering, MassachusettJ Institute of Technology, August, 1965. 15. C}Ui1F 17. , G.R. "Analysis of Behaviour of Roinfnrc8d joncrete 3"~aCi~) '=Iestrained at the Ends Against I tuclinal Displacements" ,'h.D. rrhesis, University of Illinois, Urbana, Illinois, 1965. i, E. (). "Yield of a Square Reinforced Concrete :31ab on 3impliC;3u_ orts !Ulmvint; For I."embrane 7orces.' 3tructural Encineer, Vol. 45, July, 1957. r.~C::UEY, 1? C.T. "Yielcl--line Theory For Reinforced Concrete Slabs at r:ollerately Jar:~e Deflexions." rtagazine of Concrete H2search, Vol. 19, ]\;c 61. Dece~TLber, 19G7· 19. HAYES, B. "Allowing for ITembrane Action in the Plastic tLnalysis of Rectant~1.11ar Rein_forcecl COllcrete ::;1 C-3.T) 3 n U azine of Concrete Research, Vol. 20, No. 55. DecemlJer \ 1 Q 20. HCGl'T~3TAD, ::21 C/iIU, A. J . "Refined Finite Element Analysi s of Thj_ n Shells Including ~)ynamic I.oadings". Ph.D. Dissertation, University of California, Berkeley, E., HAN3CJN, N.'.'!., and 1\1cHENF?Y, D. "Concrete Stress Distribution in Ultimate .Strength Design". Journal of the American Concrete Institute, Vol. 52, DeC9 0 r, 1955. 1967. 22. 1 R. "I,imit Design of Beams for Two-'~Jay Reinforcc,-" Ooncr"ote 810"_b3", .structural En",;inser, Vol. 46, ,September, 1968. 357 23. ALArfiI, Z.Y., and FERGUSON, P.I\:. "Accuracy of If[odels Used in Research on Reinforced Concrete". Journal of the A.C.I. Vol. 60, September, 1963. 24. GANIBLE, W.L., SOZEN, M.A., and Siess, C.:F. "An Experi~ mental Study of a Reinforced Concrete Two-Way Floor Slab." ,structural Research Series No. 211, University of Illinois, Urbana, Illinois, June, 1961 . 25. HATCIIER, D.S., SOZEN, M.A., and i:3IESS, C.P. I1AStudy of Tests on a Flat Plate and Flat Slab. 11 3truc"tural Research Series No. 217. University of Illinois, Urbana, Illinois, July 1961 . 26. VANDERBILT, M.D., SOZEN, M.A., and SIESS, C.P. II An Experimental Study of a Reinforced Con~rete TwoWay Floor Slab With Shallow Beams." Structural Research Series No. 228, University of Illinois, Urbana, Illinois. October, 1961. 27. BASE, G.D., READ, J.B., BEEBY, A,W'l and TAYLOR, H.IJ.J. "An Investigation of the Crack Control Characteristics of Various Types of Bar in Reinforced Concrete Beams." Cement and Concrete Association. Research Report 18, Part 2,.December., 1966. 28. IrITL:2:, 'vV.A., and PAPARONI, Iv1. I1Size Effect in .Small Scale Models of Reinforced Concrete Beams". Journal of the A.C.I. Vol 63, November, 1966. 29. KAAR, r'.H. and MATTOCK, A.H. "High .strength Bars as Concrete Reinforcement: Part 4 - Control of Cracking". Journal of the Portland Cement Association, Vol. 5, No.1, January 1963. 30. COMITE EUROPEEN DU BETON. "Recommendations for an International Code of Practice for Reinforced Concrete." ACI - C and CA, London, 1964. 31. KAAR 32. GERGELY, P. and LU1rZ, L. A. "Maximum Crack Width in Reinforced Concrete Flexural Members." Causes, Mechanism, and Control of Cracking in Concrete, ACI Publication SP-20, 1968. j 1). H. "High Strength Bars as Concrete Reinforcement. Part 8: Similitude in Flexural Cracking of T-Beam Flanges". Journal of the PCA, Vol. 8, No.2, May 1966. 358 33. "SAA Code for Concrete Buildings". Standards Association of Australia, Sydney, Australian Standard No. CA2 - 1958. 34. "Building Code Requirements for Reinforced Concrete" (ACI 318-63). American Concrete Institute, June, 1963. 35. "The Structural Use of Heinforced Concrete in Builclinr;s". British Standard Code of Practice CP 114,-1957. 36. IIBasic Design Loads". New Zealand Standard Model Building ByLaw, Chapter 8, December 1965. 37. SA'TICZUK, A. "Plastic Behaviour of Simply Supported Reinforced Concrete Plates at Moderately Large Deflections" . International Journal of ,Solils and structures, Vol. 1. No.1, February, 1965. 3?. TtAGURA, D.D. "structural Model Testing - Reinforced and Prestressed Mortar Beams". Journal of the peA, Vol. 9, No.1, January, 1967. 39. BEIERA, U., RAJAGO:PALAN, K. S., and FERGUSON, P. M. "Reinforcement for Torque in Spandrel I,-Beams 11 • Paper presented at the ASCE'National l\Ceeting on Water Resources Engineering, New Orleans, Louisiana, February, 1969. - 000 -