Preview only show first 10 pages with watermark. For full document please download

Epc9115 Qsg

   EMBED


Share

Transcript

Demonstration Board EPC9115 Quick Start Guide 1/8th Brick Converter Featuring EPC2020 and EPC2021 DESCRIPTION The EPC9115 demonstration board is a fully regulated 300 kHz isolated DC/DC bus converter with a 12 V, 42 A output and a input range of 48 – 60 V. The demonstration board features the enhancement mode (eGaN®) field effect transistors (FETs), the EPC2020 (60 V) and EPC2021 (80 V), along with eGaN FET specific integrated circuit drivers – the LM5113 half-bridge driver and UCC27611 low side driver from Texas Instruments. The power stage is a conventional hard-switched 300 kHz isolated buck converter. The EPC9115 board is intended to showcase the superior performance that can be achieved using eGaN FETs and eGaN driver together in a conventional topology. The complete converter fits within a standard eighth-brick envelope, but the demonstration board is oversized to allow connections for bench evaluation. There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. The converter uses a full-bridge (FB) primary power stage, a 4:1 transformer, and a center-tapped (CT) output stage with active reset snubbers. Control is provided by a Microchip dsPIC® controller, and basic voltage mode control is implemented. For more information on the EPC2020 and EPC2021 eGaN FETs, as well as the gate drivers and controller, please refer to the datasheets available from EPC at www.epc-co.com, www.ti.com, and www.microchip.com. These datasheets, should be read in conjunction with this quick start guide. Table 1: Performance Summary (VIN=52 V, TA = 25°C, 400 LFM unless otherwise specified) SYMBOL PARAMETER VIN Bus Input Voltage Range VOUT Output Voltage IOUT Output Current2 CONDITIONS MIN TYP UNITS 48 52 60 V 11.41 12 12.1 V Ta = 25°C, no forced air cooling3 5 A Ta = 25°C, ~200 LFM 35 A Ta = 25°C, ~400 LFM fSW MAX 42 A Switching Frequency 300 kHz For More Information: Output Ripple Frequency 600 kHz Peak Efficiency 48 VIN, 30 A IOUT 96.7 % Please contact [email protected] or your local sales representative Full Load Efficiency 52 VIN, 42 A IOUT 96.4 % Full Load Efficiency 56 VIN, 42 A IOUT 96.3 % Full Load Efficiency 60 VIN, 42 A IOUT 96.1 % Visit our website: www.epc-co.com 1 2 3 Output voltage duty cycle limited to 98% Maximum current limited by thermal considerations Board placed vertical on long edge to aid convection – Do NOT operate horizontally without forced air cooling Sign-up to receive EPC updates at bit.ly/EPCupdates or text “EPC” to 22828 EPC Products are distributed through Digi-Key. www.digikey.com Demonstration Board Notification EPC9115 boards are intended for product evaluation purposes only and are not intended for commercial use. As evaluation tools, they are not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no guarantee that the purchased board is 100% RoHS compliant. No Licenses are implied or granted under any patent right or other intellectual property whatsoever. EPC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind. EPC reserves the right at any time, without notice, to change said circuitry and specifications. EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 QUICK START GUIDE EPC9115 QUICK START PROCEDURE Demonstration board EPC9115 is easy to set up to evaluate the performance of the EPC2020 and EPC2021 eGaN FETs and LM5113 and UCC27611 drivers. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below: 6. Turn on active load and adjust to the desired load current while staying below the maximum current (This will depend on the cooling provided. If no forced air cooling, then keep the load current below 5 A). 7. If testing under moderate to full load conditions, ensure that a fan or other source of forced convection is producing adequate airflow (≥ 400 LFM recommended for full load operation). 1. With power off, connect the input power supply bus between VIN+ and VIN- euro connectors as shown. 2. Add input and output voltage measurements to the Kelvin connections provided as shown. 8. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters. 3. With power off, connect the load as desired between VOUT+ and VOUTeuro connectors as shown. A resistive or constant current load is recommended. 9. For shutdown, please follow steps in reverse. NOTE. For accurate high frequency content switch node and gate voltage waveforms, use a short ground clip or purpose-made probe adapter, as shown in Fig. 3. Avoid long ground leads on oscilloscope probes. Please note that primary and secondary side grounds are not connected to each other on the EPC9115 demo board. When measuring multiple signals ensure that they are always referenced to the same ‘ground’ potential to avoid potential circuit failure or instrumentation failure. 4. Turn on the supply voltage to the required value. Do not exceed the absolute maximum voltage of 60 V on VIN. 5. Measure the output voltage to make sure the board is fully functional and operating no-load. V_IN+ Lf2 330n Lf1 470nH Cf1 12*1 uF Q3 Q1 EPC2021 p1 EPC2021 p2 D4 vsa vsa R2 C1 5.2k 100n V_OUT+ 1T vp+ V_IN- 1T EPC2021 M1 EPC2020 EPC2020 EPC2020 s1 EPC2020 V_OUT- C2 D1 470nF s2 A1 Controller V_BIAS_SEC M2 Q8 Vsnub Q6 V_BIAS_PRI Cf 12*4.7 uF Q7 Q5 Q4 snb2 p2 EPC2021 p1 snb1 Q2 D5 vsb vsb V_OUT_SNS I_OUT_SNS vsct 4T vp- V_OUT_SNS I_OUT_SNS A2 p1 p2 s1 s2 snb1 snb2 Figure 1: Block Diagram of EPC9115 Demonstration Board EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 2 QUICK START GUIDE EPC9115 QUICK START PROCEDURE Secondary Waveforms Regulated Eigth-brick Demo Board VIN+ Vgs VOUT+ VOUT− VIN− VIN Supply <60 V Vds VIN− VIN+ VIN− V Vgs VOUT− VOUT+ EPC 9115, A V A Load Vds Primary Waveforms Figure 2: Proper Connection and Measurement Setup Do not use probe ground lead Minimize loop Figure 3: Proper Measurement of Switch Nodes or Output Voltage CIRCUIT PERFORMANCE Vsec Drain Node 5 V/div The EPC9115 demonstration circuit was designed to showcase the size and performance that can readily be achieved using eGaN FETs. The 300 kHz operating frequency is 50% - 100% higher than typical commercial eighth-brick converters. Figure 4 shows typical full-load waveforms for a 52 V input voltage using probe tip adapters as shown in Figure 3. Figure 5 shows efficiency plots for several input voltages at 400 LFM (2 m/s) airflow at 25 °C. Data are taken after converter reaches thermal steady state. Vpri Switch Node 10 V/div Vpri Gate 4 V/div Figure 4: Typical waveforms taken at 52 VIN to 12 VOUT/42 AOUT EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 3 QUICK START GUIDE EPC9115 OPERATING CONSIDERATIONS The EPC9115 is a demonstration platform intended to show the capabilities of eGaN FETs in an eighth-brick application. The converter has basic regulation and overcurrent protection, but the complete feature set often found with 1/8th-brick converters is not implemented. In particular, the EPC9115 does not have overvoltage, over-temperature, or fast-acting short-circuit protection. Hence, the circuit is recommended for power stage and efficiency evaluation purposes. The transient response has not been optimized. THERMAL MANAGEMENT: The EPC9115 demo board has no on-board thermal protection. Thermal images for steady state full load operation are shown in Figure 6. The EPC9115 is intended for bench evaluation with nominal room ambient temperature and forced air cooling. Operation without forced air cooling is possible for limited power operation. It is recommended that the maximum temperature on the EPC9115 not exceed 125 °C. ELECTRICAL PROTECTION: Overcurrent protection is set at a nominal value of 50 A at room temperature. Current sensing is implemented using inductor DCR sensing, and as a result exhibits variability as a function of the inductor and its temperature. As the inductor becomes hotter, the trip point becomes lower. 97 96 Efficieny (%) SOURCE and LOAD: It is recommended that the converter be driven from a source with both low ac and dc impedance. Additional input capacitance may be added as necessary. Additional output capacitance may be added to the output in the form of electrolytic capacitors, up to 1000 μF. Addition of bulk capacitance in the form of low ESR capacitors is not recommended. 98 95 VIN = 60 VIN = 56 VIN = 52 VIN = 48 94 93 92 91 90 0 10 20 30 40 50 IOUT (A) Figure 5: Typical efficiency curves. Operating conditions: 400 LFM (2 m/s) forced convection, ambient temperature 27 °C, thermal steady state. The converter is running unregulated for the 48 V case. The EPC9115 demo board does not have any input overvoltage protection on board. It is also recommended to make sure that the converter is started with an output voltage of 1V or less. 400 LFM Figure 6: Thermal images of EPC9115. Operating conditions: 400 LFM (2 m/s) forced convection, ambient temperature 27 °C, thermal steady state. EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 4 QUICK START GUIDE Table 2: Bill of Materials Designator EPC9115 Description Quantity Value MFG MFGPN C1, C2, C3, C4, C10, C11 Capacitor, 2.2 µF, 6.3 V, X5R 6 2.2 µF TDK Corporation C1005X5R0J225M050BC C12, C13, C17, C42, C43, C46, C47, C50, C55, C58 Capacitor, 22 pF, 50 V, NPO, 5% 10 22 pF Murata GRM1555C1H220JA01D C14, C16 Capacitor, 4.7 µF, 6.3 V, X7S 2 4.7 µF TDK C1608X7S0J475K080AC C18 Capacitor, 1000 pF, 50 V, NPO, 5% 1 1000 pF Murata GRM1555C1H102JA01D C19 Capacitor, 0.1 µF, 50 V, X7R 1 100 nF, 50 V TDK C1005X7R1H104K050BB C20, C21, C22, C23, C24, C25, C51, C54, C65, C67, C68, C69 Capacitor, 1 µF, 100 V, X7S 12 1 µF, 100 V TDK C2012X7S2A105M125AE C26 Capacitor, 0.047 µF, 25 V, X7R, 5% 1 0.047 µF, 25 V Murata GRM155R71E473JA88D C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38 Capacitor, 4.7 µF, 25 V, X7R 12 4.7 µF, 25 V TDK CGA4J1X7R1E475K125AC C39 Capacitor. 3300 pF, 2000 V, X7R 1 3300 pF Johanson 202S43W332KV4E C40, C41, C44, C45, C48, C49, C52, C53, C70, C71 Capacitor 10 0.22 µF Murata GRM155R71C224KA12D C5, C59, C61, C64, C66 Capacitor 4 0.1 µF, 100 V Murata GRM188R72A104KA35D C6, C9 Capacitor, 3.3 µF, 16 V, X5R 2 3.3 U TDK Corporation C1608X5R1C335K C60, C62 Capacitor 2 2.2 U Samsung CL31B225KCHSNNE C63 Capacitor 1 470 nF, 50 V TDK CGA4J3X7R1H474K125AB C7 Capacitor, 330 pF, 25 V, NPO, 5% 1 330 pF Murata GRM1555C1E331JA01D C8 Capacitor, 0.1 µF, 16 V, X7R 1 0.1 µF Murata GRM155R71C104KA88D D1, D2, D3 Schottky diode 3 BAT41K ST Microelectronics BAT41KFILM D6, D9 Schottky 60 V 1A 2 60 V, 1 A Vishay MSS1P6-M3/89A D7 Zener Diode 1 33 V, 10 mA NXP BZX384-C33,115 J2 Programming connector 1 N/A TE Connectivity 5520425-3 J3, J5, J6, J9, J10, J13 Test point 6 N/A Keystone 5015 J4, J8 Power connector 2 N/A Molex 399100102 J7, J14, J15, J16 Connector 4 N/A Tyco 4-103185-0-02 L1 Inductor 1 180 Ω TDK MPZ1608S181ATAH0 L2 Inductor 1 0.33 µF, 20 A Abracon ASPI-7318-R33M-T 470 nH L3 470 nH, 62A inductor 1 Vishay IHLP-6767GZ-01 Q1, Q2, Q3, Q4 eGaN FET, 80 V, 60 A, 2.5 mΩ 4 EPC EPC2021 Q13, Q14 NPN/PNP DFN PBSS4160PANP 2 NXP PBSS4160PANP,115 Q16 DUAL NPN DFN PBSS4160PAN 1 NXP PBSS4160PAN,115 Q5, Q6, Q7, Q8 eGaN FET, 60 V, 60 A, 2 mΩ 4 EPC EPC2020 Q9, Q10 P-Channel DMOS FET, -60 V, 1.6 A, logic level gate 2 Vishay SQ1421EEH-T1-GE3 R1, R19, R26, R33, R40, R42, R43 Resistor 7 1R0 Yageo RC0402FR-071RL R12, R13 Resistor, 1% 2 470 Vishay CRCW0402470RFKED R14 Resistor, 0.1% 1 4.99 K, 0.1% Susumu RG1608P-4991-B-T5 R15, R46, R48, R51 Resistor, 0.1% 4 1 K, 0.1% Susumu RG1005P-102-B-T5 R2 Resistor 1 100 K Vishay CRCW0603100KFKEA R20, R24, R27, R31, R34, R38, R41, R45 Resistor 8 4.7 Yageo RC0402FR-074R7L R21, R23, R28, R30, R37, R44, R59, R60 Resistor 8 49.9 Yageo RC0402FR-0749R9L R22, R25, R29, R32 Resistor 4 ZERO Vishay CRCW04020000Z0ED R3, R4 Resistor 2 33.2 K Vishay RC0402FR-0733K2L EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 5 QUICK START GUIDE Table 2: Bill of Materials Designator EPC9115 Quantity Value MFG MFGPN R36, R57 Description Resistor 2 1 Vishay CRCW08051R00FKEA R39, R53 Resistor 2 2 Vishay CRCW08052R00FKEA R47 Resistor 1 249 Yageo RC0402FR-07249RL R49 Resistor, 0.1% 1 20 K, 0.1% Susumu RG1005P-203-B-T5 R5, R11, R16, R17 Resistor 4 10 K Vishay CRCW040210K0FKED R50 Resistor, 0.1% 1 4.99 K, 0.1% Susumu RG1005P-4991-B-T5 R55, R56 Resistor 2 2.2 Yageo RC0402FR-072R2L R6, R18 Resistor 2 15 K Yageo RC0402FR-0715KL R7, R8 Resistor 2 4.75 K Yageo RC0402FR-074K75L R9, R10 Resistor 2 1.8 K Yageo RC0402FR-071K8L T1 Bias transformer 1 Custom Coils CCI-7082 U1 3.3 V linear regulator 1 Microchip MCP1700T3302EMBCT-ND U10, U11 eGaN Gate Driver with LDO 2 3.3 V TI UCC27611DRVT U12 Rail-to-Rail Input/Output, ±15 V, Operational Amplifier 1 TI OPA209AIDBV U2, U4 5.0 V linear regulator 2 TI LP2985-50DBVR U3 Power supply controller 1 On Semiconductor NCP1030DMR2G U5 dsPIC microcontroller 1 Microchip DSPIC33FJ16GS502-E/M U6 Dual inverter 1 NC7WZ14 Fairchild NC7WZ14EP6X U7 2 channel unidirectional magnetic isolator 1 IL611 NVE Corporation IL611-1E U8, U9 half-bridge eGaN gate driver 2 LM5113 TI LM5113TME/NOPB CORE1 Planer E core 1 Ferroxcube EQ20/R-3F35 CORE2 Planer I core 1 Ferroxcube PLT20/S-3F35 LP2985 5 V EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 6 QUICK START GUIDE EPC9115 1 L2 CON- 0399100102 1 VIN C73 Cap Pol1 DNP 2 VIN_FILT 0.33U 20A BR 1 1 2 GND 3 1 8 7 6 5 4 2 3 8 7 6 5 4 J6 +OUT 1 GPUL 1 GND OUT_ R ET Q1 80V G Q2 80V GPUR G S1 VIN D1 VIN C72 Cap Pol1 DNP S1 1 2 1 2 D1 J3 1 J4 PRYSW EBDOSA PRYSWR PRYSWL C22 C23 C24 C25 C65 1U, 100V 1U, 100V 1U, 100V 1U, 100V 1U, 100V 1U, 100V 2 2 2 2 G GPL R S1 C54 1U, 100V 2 C69 1U, 100V 2 C68 1U, 100V 2 C67 1U, 100V 2 C51 1U, 100V 2 C21 1U, 100V D1 J12 Q4 80V G 1 1 J9 S1 1 1 1 1 1 1 1 1 1 1 GPLL C20 2 2 C62 2.2U 2 C60 2.2U * 1 1 D1 J11 PLANAR XFORM Q3 80V GND J7 DNP 1 2 SEC _SW V_ SNUB_ 2 1 R5 7 1 V_ SNUB_ 2 V_ SNUB_ 1 1 2 2 1 V_ SNUB D6 60V 1A K R53 D7 D Zener C63 470n, 50V 2 Q6 60V G S1 S1 GS2_2 G S2_1 Q5 60V G OUT_ R ET D1 D1 2 2 VG _SNUB1 1 1 R55 2E2 .1" Male Vert. 2 A C61 0.1uF, 100V 1 C59 0.1uF, 100V Q9 SQ1421EEH R36 1 2 .1" Male Vert. D4 CENTER-TAPPED PLANAR XFORMER J14 1 2 VCC_ SEC IOUT_ SENSE OUT_ R ET J1 V_ SNUB_ 1 R18 1 15k +OUT CENTER-TAPPED PLANAR XFORMER C26 2 0.047u, 50V * SEC _SW _C T Q10 SQ1421EEH D9 60V 1A 1 OUT_ R ET 1 2 2 R5 6 2E2 VG _SNUB2 Q7 60V G Q8 60V GS1_2 G C27 4.7 uF 35V C28 4.7 uF 35V S1 S1 GS1_1 J15 J16 1 2 1 2 C29 4.7 uF 35V C30 4.7 uF 35V C31 4.7 uF 35V C32 4.7 uF 35V C33 4.7 uF 35V C34 4.7 uF 35V C35 4.7 uF 35V C36 4.7 uF 35V C37 4.7 uF 35V C38 4.7 uF 35V 1 1 J13 OUT_ R ET OUT_ RET .1” Male Vert. 1 2 CON- 0399100102 470nH 2 J8 D1 1 R3 9 2 J10 1 L3 D1 C66 0.1uF, 100V C75 Cap Pol1 DNP 1 C64 0.1uF, 100V C74 Cap Pol1 DNP C39 OUTER_METAL 1 1 J5 GND 1 .1” Male Vert. 2 OUT_RET 3300P Figure 7: EPC9115 Demonstration board schematic - Power EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | | PAGE 7 QUICK START GUIDE EPC9115 C70 V_SNUB_2 2 0.22U R7 4.7k 4.7k R8 4.7k 4.7k A4 22P 22P 1 VG_SNUB1 R22 2 Q13B PBSS4160PANP 5 C41 B1 A1 VG_SNUB2 4 ZERO 1 0.22U Q14B PBSS4160PANP 5 PRYSWL R24 LM5113 1 R25 DSP_SIG_SNUB2 Q16A PBSS4160PAN 2 2 ZERO 1 GND DSP_SIG_SNUB1 4.99 3 VSS 2 C43 2 C42 LILOHI LOH Q14A PBSS4160PANP 2 2 Q16B PBSS4160PAN 5 4 A2 1 1 2 GPUL 3 49.9 1 2 6 R23 SIG_1 Q13A PBSS4160PANP 2 4.99 1 1 2 R20 D3 D2 D1 C1 D4 1 1 VDD1 VDDHB HIHOH HOL HS HS1 2 SIG_2 C4 A3 B4 49.9 6 U8 R21 V_SNUB_1 GND 6 1 1 2 4 1R0 3 R19 1 +5V_PRY R9 1.8k 1.8k GPLL R1 0 1.8k 1.8k OUT_RET 1R0 R26 +5V_PRY 1 C44 2 1 2 GND R33 +5V0_SEC 0.22U 1R0 1 C48 2 1 2 OUT_RET R40 2 A4 LILOHI LOH C13 22P 22P 1 R29 1 2 1 GPUR ZERO DSP_SIG_SEC1 2 R37 49.9 1 2 C49 VREF LDO 1 1 2 R34 VSS UCC27611DRV 0.22U 6 5 4 3 C45 B1 A1 VDD 2 1 4.99 2 GS1_2 EP OUT_RET C50 R38 1 4.99 2 GS1_1 2 22P VSS PRYSWR R31 LM5113 1 OUT_RET 4.99 2 2 R32 1 GND GND 1 2 GPLR R42 +5V0_SEC 1R0 1 C52 2 1 DNP 2 2 OUT_RET 0.22U R43 2 R44 1 49.9 2 VDD LDO VREF 2 1 4.99 2 GS2_2 EP OUT_RET R45 1 4.99 2 GS2_1 2 22P 1 R41 VSS UCC27611DRV C55 6 5 4 3 1 DSP_SIG_SEC2 EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | 2 U11 1 Figure 8: EPC9115 Demonstration board schematic – Gate Drive 1R0 1 GND 0.22U R35 ZERO C53 2 A2 C12 D3 D2 D1 C1 D4 4.99 2 49.9 R60 1 VDD1 VDDHB HIHOH HOL HS HS1 R27 1 2 1 SIG_2 49.9 R59 1 2 U10 C4 A3 B4 1 SIG_1 1R0 1 U9 0.22U 0.22U OUT_RET | PAGE 8 QUICK START GUIDE EPC9115 C58 2 U6A C40 22P R28 DSP_SIG1 470 1 2 470 R13 2 0.22U 2 1 6 GND U7 1% 1 49.9 1 1 2 3 4 2 IN1+ IN1IN2+ IN2- VDD O1 O2 GND 8 7 6 5 NC7WZ14 C71 +5V_PRY +5V_PRY 2 0.22U GND 1% 1 1 GND R30 IL611 49.9 1 2 2 3 4 OUT_RET SIG_2 +3V3_SEC 2 22P 4 1 2 + 3V3_SEC 4.99k 0.1% 1 SP 2 1 OUT_RET 1 L1 VCC_SEC +3V3_SEC BAT41K T1A 1 2 1 U5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 1 D2 R3 1 33.2K U3 3 D3 VCC_PRY 3 15K 0.1U +3V3_SEC PGED PGEC SCL 1 BAT41K R6 C8 330 P 1 AN2/CMP1C/CMP2A/RA2 AN1/CMP1B/RA1 AN3/CMP1D/CMP2B/RP0/CN0/RB0 AN0/CMP1A/RA0 AN4/CMP2C/CMP3A/RP9/CN9/RB9 MCLR AN5/CMP2D/CMP3B/RP10/CN10/RB10 AVDD VSS0 AVSS OSC1/CLKIN/AN6/CMP3C/CMP4A/RP1/CN1/RB1 PWM1L/RA3 OSC2/CLKO/AN7/CMP3D/CMP4B/RP2/CN2/RB2 PWM1H/RA4 PGED2/DACOUT/INT0/RP3/CN3/RB3 PWM2L/RP14/CN14/RB14 PGEC2/ETXREF/PR4/CN4/RB4 PWM2H/RP13/CN13/RB13 VDD TCK/PWM3L/RP13/CN12/RB12 PGED3/RP8/CN8/RB8 TMS/PWM3H/RP11/CN11/RB11 PGEC3/RP15/CN15/RB15 VCAP/VDDCORE TDO/RP5/CN5/RB5 VSS1 PGED1/TDI/SCL/RP6/CN6/RB6 PGEC1/SDA/RP7/CN7/RB7 EP 33FJ16GS502 C9 T1B EN C10 C11 2.2U 2.2U 2 LP2985 5V0 + 5V_PRY 1 5 4 2 1 VO BYP GND 3 4 4 5 J2E 5 Figure 9: EPC9115 Demonstration board schematic – Bias and Control EPC – EFFICIENT POWER CONVERSION CORPORATION | WWW.EPC-CO.COM | COPYRIGHT 2015 | J2D 2 2 3 J2C 1 2 J2B MCLR +3V3_SEC OUT_RET +3V3_SEC OUT_RET PGED R16 R17 10K 10K PGEC SCL SDA 2 3 VI SDA 4.7U 1 U4 1 DSP_SIG_SEC1 DSP_SIG_SEC2 DSP_SIG1 DSP_SIG2 DSP_SIG_SNUB2 DSP_SIG_SNUB1 C16 1 J2A VCC_PRY IOUT_DSP VOUT_DSP MCLR 2 GND 4 1 2 2 2 3.3U 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 29 2 C7 2 2 2 1 1 1 NCP1030 OUT_RET A B 2 BAT41K 1 1 2 8 7 6 5 2 OUT_RET 3.3U 6 2 6 1 2 100 K R4 33.2K 10K 4.7U T1C VDR VCC UV OV R11 C14 2 C6 10K 2 180 OHMS 0.1U R2 R5 1 1 5 1 2 GND GND CT VFBF COMP 1000P 2.2U 2 R1 handy to disable bias VCC_PRY C18 1K 0.1% D1 C5 1 2 3 4 1 R15 OUT_RET 1 1R0 1 VOUT_DSP OUT_RET 2 VIN_FILT 4.99K 0.1% 1 R52 DNP OUT_RET R1 R14 R46 1k 0.1% 2 2.2U IOUT_D C1 1 C4 2.2U 2 2 3 2 C3 2.2U R50 2 C57 DNP VO VIN GND C2 2 2 LP2985 5V0 3 1 2 2 +OUT 1 1k 0.1% U1 3V3 1 EN 5 4 2 1 VO BYP GND 1 VI D5 DNP 2 GND 2 U12 OPA2 09AIDB V 1 2 GND R51 1 2 IOUT_SENSE R49 20k 0.1% 2 22P 1 1 C47 2 1k 0.1% 5 C46 R48 1 2 1 1 +OUT NC7WZ14 + 5V0_SEC 3 V_SNUB C15 DNP 1 U2 1 2 22P OUT_RET VCC_SEC R47 249 C19 100nF, 50 V U6B C17 DSP_SIG2 SIG_1 5 1 R12 +5V 1 GND IN CIRCUIT PROGRAM HEADER FOR CONTROLLING PARAMETERS, 12C | PAGE 9