Preview only show first 10 pages with watermark. For full document please download

Establishment Of An In Vitro Assay For Acute Phase Response To

   EMBED


Share

Transcript

      Establishment  of  an  In  Vitro  Assay  for   Acute  Phase  Response  to  Nanomaterial   Exposure                     Master  Thesis  by   Amalie  Bregendahl  Støvring   01-­‐12-­‐2015     Internal  Supervisor     Cathy  Mitchelmore   External  Supervisor     Ulla  B.  Vogel         Preface   My   master`s   thesis   in   Molecular   Biology   and   Medicinal   Biology   was   constructed   at   The   National   Research   Centre   for   the   Working   Environment   (NRCWE).   Professor   Ulla   Vogel   (NRCWE)   was   my   external  supervisor  and  Associate  Professor  Cathy  Mitchelmore  (Department  of  Science,  Systems   and  Models,  Roskilde  University)  was  my  internal  supervisor.     I  would  like  to  thank  all  my  colleagues  at  NRCWE  for  their  collaboration  and  help.  A  special  thanks   to   Ulla   Vogel   and   Sarah   Søs   Poulsen   for   all   their   help   and   guidance   and   for   showing   great   enthusiasm  about  my  work.  Another  special  thanks  to  Anne-­‐Karin  Jensen  for  her  technical  support   in   the   laboratory,   and   to   Stefan   Bengtson   for   always   being   willing   to   help   me   with   different   problems.  Also  thanks  to  my  supervisor  from  Roskilde  University  Cathy  Mitchelmore.                             Copenhagen,  December  2015     Amalie  Bregendahl  Støvring             1   List  of  Abbreviations     ABCA1:  ATP-­‐binding  cassette  receptor  1   ABCG1:  ATP-­‐binding  cassette  receptor  G1   ALICE:  Air–liquid  interface  cell  exposure  system     APP:  Acute  phase  protein     APR:  Acute  phase  response     ApoA-­‐I:  Apolipoprotein  A-­‐I   BAL:  Bronchoalveolar  lavage     BET:  Brunauer-­‐Emmet-­‐Teller  surface  area  analysis     CB:  Carbon  black   CE:  Cholesteryl  esters   Ct:  Threshold  cycle     cDNA:  Complementary  deoxyribonucleic  acid     CNT:  Carbon  nanotube     CRP:  C-­‐reactive  protein   CVD:  Cardiovascular  disease       DNase:  Deoxyribonuclease   ELISA:  Enzyme-­‐linked  immunosorbent  Assay   FBS:  Fetal  bovine  serum   FRET:  fluorescence  resonance  energy  transfer   GO:  Graphene  oxide       HARN:  High  aspect  ratio  nanoparticle     HDL:  High  density  lipoprotein   IL:  Interleukin     IDL:  Intermediate-­‐density  lipoprotein   LCAT:  Lecithin-­‐cholesterol  acyltransferase.   LDL:  Low  density  lipoprotein     LPS:  Lipopolysaccharide   LOX-­‐1:  Lectin-­‐like  oxidized  LDL  receptor-­‐1   MCP-­‐1:  Monocyte  Chemoattractant  Protein-­‐1   mRNA:  Messenger  ribonucleic  acid     MWCNT:  Multi-­‐walled  carbon  nanotube     NM:  Nanomaterial       NP:  Nanoparticles     PBS:  Phosphate-­‐buffered  saline   qRT-­‐PCR:  Quantitative  reverse  transcriptase    polymerase  chain  reaction   RNA:  Ribonucleic  acid     rRNA:Ribosomal  ribonucleic  acid   SAA:  Serum  amyloid  A     SEM:  Scanning  electronic  microscopy     SD:  Standard  deviation     SR:  Scavenger  receptor     SWCNT:  Single-­‐walled  carbon  nanotube     TNF-­‐𝛼:  Tumour  necrosis  factor-­‐α   VLDL:  Very  low-­‐density  lipoprotein       2   Abstract     Inhalation   of   nanomaterials   (NMs)   has   been   reported   to   induce   a   pulmonary   acute   phase   response,  seen  by  enhanced  mRNA  expression  levels  of  the  acute  phase  protein  serum  amyloid  a   (Saa)   in   the   lungs.   SAA   are   considered   a   risk   marker   for   development   of   atherosclerosis,   but   its   pulmonary  cellular  origin  is  still  not  understood.   NMs   can   have   many   different   toxicological   effects   due   to   their   diverse   physical   and   chemical   properties.   It   is   therefore   necessary   for   risk   assessment   of   all   NMs,   which   may   potentially   come   in   contact   with   humans.   Risk   assessment   of   NMs   in   vivo   is   challenging   in   terms   of   time,   as   well   as   financial  and  ethical  resources.       The   aim   of   this   thesis   is   to   establish   an   in   vitro   assay   for   quantifying   SAA1,   Saa3   and   Mcp-­‐1   response   to   NMs   exposure   in   a   human   alveolar   basal   epithelial   cell   line   (A549)   and   a   murine   alveolar   macrophage   cell   line   (J774A.1).   This   was   done   by   exposing   cells   to   three   carbon   based   NMs  different  in  structure  (Mitsui,  Printex-­‐90,  and  graphene  oxide)  and  one  metal  oxide  (UV-­‐TiO2)   in  concentrations  50,  100,  and  200  µg/ml.  Cells  were  incubated  for  24  hours  after  exposure.  SAA1,   Saa3,  and  Mcp-­‐1  mRNA  expression  levels  were  assessed  with  qRT-­‐PCR  in  both  cell  lines.  Protein   levels   were   analysed   with   ELISA   for   only   SAA3   in   J774A.1   cells.   The   measured   SAA1,   Saa3,   and   Mcp-­‐1  mRNA  fold  change  values  were  compared  to  previous  published  in  vivo  studies.     The  viability  and  proliferation  showed  a  statistically  significant  decrease  in  J774A.1  cells  exposed   to  Mitsui,  Printex-­‐90  and  graphene  oxide  in  a  dose-­‐dependent  manner.  No  statistically  significant   cytotoxic  effect  was  found  in  A549  cells  after  exposure  to  NMs.  In  general,  SAA1,  Saa3,  and  Mcp-­‐1   mRNA  expression  levels  were  low  when  determined  by  qRT-­‐PCR  analysis.  SAA3  protein  levels,  in   J774A.1  cells,  were  too  low  to  be  detected  by  ELISA  analysis.  The  Saa3  mRNA  fold  change  values  in   J774A.1  cells  exposed  to  UV-­‐TiO2  and  Mitsui  were  statistically  significantly  increased  compared  to   the   unexposed   samples.   A549   cells   showed   no   statistically   significant   effect   on   SAA1   mRNA   fold   change   values   after   exposure   to   all   four   NMs.   Furthermore,   the   measured   SAA1,   Saa3,   and   Mcp-­‐1   mRNA   fold   change   values   were   approximately   240   times   lower   when   compared   to   previous   published  in  vivo  studies.     In   conclusion,   existing   in   vitro   assays   cannot   be   used   as   substitutes   for   in   vivo   studies   in   risk   assessment  of  NMs  based  on  biomarkers  SAA1,  Saa3,  and  Mcp-­‐1.           3   Resume     Inhalation   af   nanomaterialer   er   blevet   associeret   med   induktionen   af   et   pulmonalt   akutfaserespons,   observeret   ved   forhøjede   mRNA   ekspressionsniveauer   af   akutfaseproteinet   serum   amyloid   a   (Saa)   i   lungerne.   SAA   anses   for   at   være   en   risikomarkør   for   udviklingen   af   arteriosklerose,  men  dens  pulmonale  cellulære  origin  er  stadig  uvist.     Nanomaterialer   menes   at   have   mange   forskellige   toksiske   effekter   grundet   deres   forskellige   fysiske   og   kemiske   egenskaber.   Det   er   derfor   nødvendigt   med   risikovurdering   af   alle   nanomaterialer,   der   potentielt   kan   komme   i   kontakt   med   mennesker.   Risikovurdering   af   nanomaterialer  in  vivo  er  beslægtet  med  mange  etiske,  finansielle  og  tidsmæssige  begrænsninger.     Formålet   med   dette   speciale   er   at   etablere   et   in   vitro   assay,   der   kvantificerer   forskellige   nanomaterialer   i   forhold   til   deres   effekt   på   SAA1,   Saa3   og   Mcp-­‐1   niveau   undersøgt   i   en   human   alveolær   epitel   cellelinje   (A549)   og   en   murin   alveolær   makrofag   cellelinje   (J774A.1).   Dette   blev   undersøgt   ved   at   eksponere   cellerne   for   tre   kulstof   baseret   nanomaterialer   med   forskellige   strukturer   (Mitsui,   Printex-­‐90   og   graphene   oxid)   og   et   metal   oxid   (UV-­‐TiO2),   i   følgende   koncentrationer:  50,  100  og  200  µg/ml.  Cellerne  blev  inkuberet  i  24  timer  efter  eksponering.  SAA1,   Saa3  og  Mcp-­‐1  mRNA  ekspressionsniveauer  blev  målt  med  qRT-­‐PCR  i  både  A549  og  J774A.1  celler.   SAA3   proteinkoncentrationer   blev   målt   med   ELISA   kun   i   J774A.1   celler   eksponeret   for   UV-­‐TiO2.   SAA1,   Saa3   og   Mcp-­‐1   mRNA   fold   change   værdier   blev   sammenlignet   med   publicerede   videnskabelige  in  vivo  studier.     Procentdelen   af   levende   og   delende   celler   var   statistisk   signifikant   lavere   i   J774A.1   celler   eksponeret   for   Mitsui,   Printex-­‐90   og   graphene   oxid   sammenlignet   med   kontrolværdierne.   Ingen   cytotokiske  effekt  blev  observeret  i  A549  celler  efter  eksponering.     Kun  SAA1,  Saa3  og  Mcp-­‐1  mRNA  ekspressionsværdier  kunne  måles,  SAA3  proteinkoncentrationer   var  for  lave  til  at  blive  målt  med  ELISA.  J774A.1  celler  eksponeret  for  UV-­‐TiO2  og  Mitsui  havde  en   statistisk   signifikant   stigning   i   Saa3   mRNA   fold   change   værdier   sammenlignet   med   kontrolværdierne.   A549   celler,   eksponeret   for   alle   fire   nanomaterialer,   havde   ingen   statistisk   signifikant   stigning   i   SAA1   mRNA   fold   change   værdierne   sammenlignet   med   kontrolværdierne.   Yderligere  var  mine  mRNA  fold  change  værdier  cirka  240  gange  lavere  sammenlignet  med  tidligere   publicerede  videnskabelige  in  vivo  studier.         4   Baseret   på   biomarkøerne   SAA1,   Saa3   og   Mcp-­‐1,   er   det   på   nuværende   tidspunkt   ikke   muligt   at   erstatte  in  vivo  med  in  vitro  assay  i  risikovurdering  af  nanomaterialer.                                       5   Table  of  Contents     Introduction  ...................................................................................................................................................  8   Aim  of  the  Study  .......................................................................................................................................................  9   Hypothesis  ..............................................................................................................................................................  10   Background  .................................................................................................................................................  11   Inhalation  of  NMs  ..................................................................................................................................................  11   Clearance  from  the  Lung  ......................................................................................................................................  12   Inflammation  and  Acute  Phase  Response  .........................................................................................................  13   SAA  and  Atherosclerosis  .......................................................................................................................................  14   Principles  of  the  Methods  used  ...............................................................................................................  17   Cell  Culture  .............................................................................................................................................................  17   RNA  Purification  ....................................................................................................................................................  17   qRT-­‐PCR  ...................................................................................................................................................................  19   Standard  Curve  .......................................................................................................................................................................  20   Sandwich  Enzyme-­‐linked  Immunosorbent  Assay  (ELISA)  ...............................................................................  21   Standard  Curve  .......................................................................................................................................................................  22   Cell  Cycle  Analysis  ..................................................................................................................................................  23   Materials  and  Methods  .............................................................................................................................  25   Nanomaterial  and  LPS  ...........................................................................................................................................  25   Dose  Selection  ........................................................................................................................................................................  26   Mycoplasma  Test  ...................................................................................................................................................  27   Cell  Cultures  ............................................................................................................................................................  28   Cell  Types  ..................................................................................................................................................................................  28   Culturing  ...................................................................................................................................................................................  29   Cell  Exposures  ........................................................................................................................................................  30   Setup  ..........................................................................................................................................................................................  30   Exposure  ...................................................................................................................................................................................  31   Harvest  ......................................................................................................................................................................................  31   Time  Experiment  ....................................................................................................................................................  32   Priming  with  LPS  ....................................................................................................................................................  32   ELISA  ........................................................................................................................................................................  33   RNA  purification  ....................................................................................................................................................  35   cDNA  Synthesis  ......................................................................................................................................................  36   qRT-­‐PCR  ...................................................................................................................................................................  37   Cell  cycle  analysis  ..................................................................................................................................................  38   Results  ..........................................................................................................................................................  39   Cell  culture  ..............................................................................................................................................................  39   Experiment  1  (Pilot  Experiment)  .........................................................................................................................  39   Proliferation  and  Viability  ....................................................................................................................................  40   Viability  ......................................................................................................................................................................................  40       6   Proliferation  .............................................................................................................................................................................  41   qRT-­‐PCR  ...................................................................................................................................................................  42   A549  ...........................................................................................................................................................................................  42   J774A.1  ......................................................................................................................................................................................  44   Conclusion  (Experiment  1)  ..................................................................................................................................................  46   ELISA  ........................................................................................................................................................................  47   Priming  with  LPS  ....................................................................................................................................................  49   Conclusion  (ELISA)  .................................................................................................................................................................  50   Experiment  2  ..........................................................................................................................................................  50   Time  Experiment  ....................................................................................................................................................................  50   Viability  and  Proliferation  ...................................................................................................................................................  52   qRT-­‐PCR  .....................................................................................................................................................................................  54   Mcp-­‐1  .........................................................................................................................................................................................  56   Cell  Cycle  Analysis  ..................................................................................................................................................  58   Discussion  ....................................................................................................................................................  60   LPS-­‐Induced  mRNA  Expression  Levels  ................................................................................................................  60   NM-­‐induced  mRNA  Expression  Levels  ...............................................................................................................  61   NM-­‐induced  Cytotoxicity  .....................................................................................................................................  63   Study  Design  ...........................................................................................................................................................  64   Choice  of  Cell  Line  .................................................................................................................................................................  64   Dose  Selection  and  Exposure  .............................................................................................................................................  65   Culturing  ...................................................................................................................................................................................  66   Conclusion  ...............................................................................................................................................................  67   Perspective  ..................................................................................................................................................  68   References  ...................................................................................................................................................  69   Appendix  ......................................................................................................................................................  82                   7   Introduction     Cardiovascular  diseases  (CVD)  are  the  number  one  cause  of  deaths  globally,  causing  an  estimated   31  percent  of  deaths  in  2012  [1].  Epidemiological  studies  have  shown  a  link  between  exposure  to   particulate  air  pollution  and  occurrence  of  CVD  [2,3,4].   Nanotechnology   has   resulted   in   the   development   of   new,   promising   industrial   applications,   including   biomedicine,   electronics,   cosmetics,   and   rubber   products.   Despite   the   promising   applications,   nanomaterials   (NMs)   may   also   induce   toxicological   effects   [5].   The   increase   in   the   industrial   use   of   NMs   results   in   an   increased   potential   for   human   exposure,   especially   in   occupational  settings  [6].   Defined   as   materials   with   at   least   one   dimension   below   100   nm,   NMs   are   more   biologically   reactive   than   larger   particles   due   to   their   small   size   and   corresponding   large   surface   area.   Their   small  material  size  enables  them  to  deposit  in  the  alveolar  region  of  the  lungs  [7,8].     Atherosclerosis   is   the   most   common   underlying   process   of   CVD   events,   characterized   by   plaque   formation  in  larger  arteries.  Disruption  of  the  plaque  can  reduce  blood  flow  to  the  target  organ,   which  in  severe  cases  can  result  in  heart  attack  [9,10].  Acute  phase  response  (APR)  is  believed  to   be   a   predictor   of   atherosclerosis,   as   the   acute   phase   protein   (APP)   serum   amyloid   A   (SAA)   has   been  classified  as  a  risk  marker  [11,12,13].  The  origin  of  APR  is  in  general  viewed  as  hepatic,  but  in   vivo   studies   have   shown   a   pulmonary   origin   after   exposure   to   NMs   [14,15].   NM-­‐induced   pulmonary   APR   has   been   observed   to   be   associated   with   increasing   concentrations   of   SAA   in   a   dose-­‐dependent   manner.   Despite   the   reported   elevated   concentrations   of   SAA   in   the   lungs,   the   cellular  origin  is  still  not  well  understood  [14,15,16].       The   high   production   volume   of   different   NMs   has   created   a   burden   for   toxicological   testing.   Because   of   their   different   physiochemical   properties,   NMs   can   cause   many   different   toxic   responses.  Risk  assessment  of  NMs  in  vivo  is  time  consuming  and  associated  with  major  financial   and  ethical  limitations  [17].  The  ethical  limitation  can  be  summarized  in  guidelines  called  the  three   R’s.  They  are  defined  as:  replacement,  reduction,  and  refinement  [18].  The  three  R’s  ensure  that  in   vivo  experiments  are  only  used  when  necessary,  that  the  number  of  animals  needed  is  held  to  a   minimum,  and  that  the  suffering  of  the  animals  is  minimized  [19].  The  different  limitations  of  in   vivo  experiments  represent  an  urgent  need  for  an  in  vitro  screening  assay,  which  can  predict  and   assess  the  toxicity  of  NMs.       8   Aim  of  the  Study   Ø To   measure   the   SAA1,   Saa3,   and   Mcp-­‐1   mRNA   expressions   levels   in   a   murine   alveolar   macrophage   cell   line   (J774A.1)   and   a   human   alveolar   epithelial   cell   line   (A549)   after   exposure  to  UV-­‐TiO2,  Mitsui,  Printex-­‐90,  and  graphene  oxide  (GO).     Ø To   measure   the   SAA1   and   SAA3   protein   concentrations   in   A549   and   J774A.1   cells   after   exposure.     Ø To   determine   whether   the   magnitude   of   the   SAA1,   Saa3,   and   Mcp-­‐1   mRNA   levels   correlates   with   the   in   vivo   response,   for   establishment   of   an   in   vitro   model   that   ranks   NMs   according  to  their  effect  on  SAA1,  Saa3,  Mcp-­‐1  mRNA.                                             9   Hypothesis     Ø A549  and  J774A.1  cells  exposed  to  different  NMs  will  have  increased  expression  of  SAA1,   Saa3  and  Mcp-­‐1  mRNA  levels  and  increased  SAA1  and  SAA3  protein  levels.       Ø Establishment   of   an   assay,   that   ranks   the   NMs   according   to   their   effect   on   SAA1,   Saa3   and   Mcp-­‐1  mRNA  expression  levels,  can  be  used  to  predict  and  assess  in  vivo.             10   Background   Inhalation  of  NMs     The   development   of   new   materials   based   on   nanotechnology   has   resulted   in   a   greater   risk   of   human   exposure,   primarily   in   occupational   settings   and   through   inhalation.   The   material’s   surface   area  increases  exponentially  when  the  size  decreases  (Figure  1)  and  the  larger  surface  area  of  NMs   may  increase  their  toxicological  effect  [6].         Figure  1.  The  surface  area  increased  with  decreasing  in  material  size  (nm)  [7].       Inhaled   particles   deposit   in   different   parts   of   the   respiratory   system,   depending   on   their   size.   Larger  materials  deposit  in  the  nasopharyngeal  compartment,  whereas  materials  with  diameters   less  than  100  nm  will  mainly  deposit  in  the  alveolar  region  (Figure  2)  [7,  20].         11     Figure  2.  Predicted  size-­‐dependent  deposit  of  NMs  in  the  respiratory  system.  Larger  materials  deposit  in  the  upper   airway,  whereas  smaller  materials  deposit  deeper  in  the  lungs  [7].   Clearance  from  the  Lung     There   are   a   number   of   defence   mechanisms   in   the   respiratory   tract,   which   keep   the   mucosal   surfaces  free  from  foreign  materials.  In  the  upper  airway,  the  mucociliary  escalator  is  an  effective   defence   system   which   is   composed   of   mucus   producing   goblet   cells   and   ciliated   epithelium.   Foreign   materials   get   caught   in   the   mucus   and   are   moved   towards   the   pharynx   where   they   are   either   exhaled   by   coughing   or   ingested   with   mucus   into   the   gastrointestinal   tract   [21,22].   The   main   deposit   site   of   NMs   is   the   alveolar   region,   which   doesn’t   contain   mucociliated   cells   [23].   Materials  caught  in  the  mucociliary  escalator  are  normally  cleared  within  24  hours  after  exposure,   whereas   the   alveolar   clearance   has   a   half-­‐life   greater   than   100   days   [24].   In   the   alveoli,   the   clearance   of   NMs   is   primarily   mediated   by   successful   phagocytose   by   alveolar   macrophages   [8,   25].  The  alveolar  macrophages  engulf  the  NMs  by  forming  an  intracellular  vesicle,  a  phagosome,   with  the  NMs  inside.  Some  NMs  have  been  shown  to  escape  the  vesicles  and  become  free  in  the   cytosol,   where   they   can   pierce   through   the   nuclei   membrane   and   cause   genotoxicity   [23,26].   Phagocytosis  of  NMs  is  a  length-­‐dependent  process  with  an  optimum  size  range  of  1-­‐3  µm.  If  the   length  of  the  NMs  exceeds  1-­‐3  µm,  it  can  result  in  frustrated  phagocytosis,  which  can  lead  to  an   inflammatory   response.   This   has   especially   been   observed   after   exposure   to   carbon   nanotubes   (CNTs)  because  of  their  high  length-­‐to-­‐width  ratio  [27].           12   A   high   number   of   NMs   in   the   alveoli   can   cause   impaired   clearance   and   increase   in   pro-­‐ inflammatory   cytokine   productions,   leading   to   inflammation   [26].   Because   of   inadequate   phagocytose   and   slow   macrophage-­‐mediated   clearance,   NMs   may   interact   with   cells   of   the   epithelium  or  translocate  from  the  lungs  [28,29].   Inflammation  and  Acute  Phase  Response   Epidemiological   studies   have   proposed   a   link   between   exposure   to   particulate   air   pollution   and   risk  of  CVD  [30,31,32].  Furthermore,  studies  have  reported  a  strong  induction  of  a  pulmonary  APR   after  exposure  to  NMs  with  close  to  no  hepatic  APR  in  vivo  [15,33,34].  Induction  of  a  pulmonary   APR  has  been  shown  to  be  associated  with  increasing  Saa  mRNA  expression  levels  in  the  lungs  in   vivo  [14,15,35,36].   After   being   inhaled   and   deposited   in   the   lungs,   the   NMs   create   a   local   inflammation.   The   first   stage   of   the   inflammatory   response   is   activation   of   macrophages.   The   macrophages   will,   upon   encounter   with   NMs,   begin   to   secrete   pro-­‐inflammatory   cytokines   and   chemokines   such   as   interleukin-­‐6   (IL-­‐6),   interleukin-­‐1   (IL-­‐1),   and   tumour   necrosis   factor-­‐α   (TNF-­‐α).   IL-­‐1   and   TNF-­‐α   induce  the  expression  of  the  chemokine  Mcp-­‐1  in  different  cells,  which  play  a  key  role  in  recruiting   monocytes  to  the  site  of  inflammation  [37,38].  IL-­‐1,  IL-­‐6,  and  TNF-­‐α  promote  vasodilation,  activate   endothelial  cells,  and  increase  vascular  permeability  and  chemotactic  factors.     The   pro-­‐inflammatory   cytokine   IL-­‐6   promotes   the   APR.   The   APR   is   defined   as   an   up-­‐   or   downregulation   of   blood   levels   of   APPs.   APPs   are   grouped   as   either   positive   or   negative   APPs.   During  an  APR,  the  positive  APPs  increase  and  the  negative  APPs  decrease.   The  positive  APPs  are   thought   to   play   a   role   in   opsonization   and   activation   of   the   complement   system   [39].   Some   positive  APPs  increase  only  1.5-­‐  to  10-­‐fold,  while  others  increase  10-­‐  to  1000-­‐fold  [40].  The  most   sensitive   positive   APPs   in   humans   are   C-­‐reactive   protein   (CRP)   and   SAA.   SAA   consists   of   several   isotypes;  human  SAA  is  encoded  by  three  different  loci:  SAA1,  SAA2,  and  SAA3.  SAA1  and  SAA2  are   expressed   both   hepatic   and   extra-­‐hepatic.   In   humans,   SAA3   is   believed   to   be   a   pseudogene.   In   mice,   Saa1   and   Saa2   are   expressed   in   the   liver,   whereas   Saa3   is   expressed   in   various   tissues   [15,41,42].     SAA  is  released  into  circulation  in  response  to  inflammation  and  acts  to  recruit  cells  to  the  site  of   inflammation.  This  recruitment  has  been  observed  in  animal  studies  as  increased  neutrophil  influx   in  bronchoalveolar  lavage  (BAL)  fluid  after  inhalation  of  NMs  [43,44].       13   SAA  and  Atherosclerosis     SAA   and   MCP-­‐1   are   both   considered   risk   markers   for   the   development   of   Atherosclerosis   [11,33,45,46].  High  concentrations  of  SAA  can  affect  the  cholesterol  homeostasis  through  binding   to  high-­‐density  lipoprotein  (HDL)  [15,47].  MCP-­‐1  exhibits  powerful  chemoattractant  properties  by   recruiting  monocytes  and  macrophages  to  the  vessel  wall  [45].     Atherosclerosis  is  the  most  common  underlying  process  which  can  result  in  CVD.  Atherosclerosis  is   a  disease  where  the  artery  wall  thickens  in  response  to  accumulation  of  cholesterol,  fatty  material,   and  inflammatory  cells.  The  accumulation  results  in  plaque  formation,  which  can  reduce  the  blood   flow  through  the  artery  (Figure  3a-­‐b)  [10].     Figure   3.   Atherosclerosis.   a)   Normal   artery,   b)   Plaque   formation.   The   arrows   indicate   the   blood   flow   through   the   artery  [modified  48].     SAA  promotes  the  development  of  Atherosclerosis  by  affecting  the  reverse  cholesterol  transport   (RCT).   Cholesterol   is   an   insoluble   molecule   that   is   transported   in   circulation   by   binding   to   lipoproteins.  Lipoproteins  maintain  homeostasis  by  removing  excess  cholesterol  from  the  tissue  to   excretion   by   the   liver   [49].   Five   classes   of   lipoproteins   exist:   chylomicrons,   very   low-­‐density   lipoprotein  (VLDL),  intermediate-­‐density  lipoprotein  (IDL),  low-­‐density  lipoprotein  (LDL),  and  high-­‐ density  lipoprotein  (HDL).  The  lipoproteins  all  contain  a  large  complex  of  lipids  and  apolipoproteins   which  function  as  a  ligand  for  cell  membranes.   Apoplipoprotein   A-­‐I   (ApoA-­‐I)   is   produced   by   the   liver   and   interacts   with   phospholipids   to   form   nascent   HDL   (Pre-­‐β   HDL)   (Figure   4)   [50].   SAA   has   apolipoprotein   properties   and   replaces   95%   of   ApoA-­‐I  as  the  primary  apolipoprotein  binding  to  HDL  under  an  APR  [51].     One   of   the   earliest   events   of   atherosclerosis   is   accumulation   of   LDL   inside   the   vessel   wall.   Exposure  of  oxidative  waste  products  from  vascular  cells  oxidizes  the  LDL  particle  (ox-­‐LDL)  inside   the   artery.   The   accumulation   of   ox-­‐LDL   promotes   an   inflammatory   response   [52,53].   The   HDL       14   particle   can   inhibit   the   LDL   oxidation   by   serum   paraoxonase,   which   degrades   oxidized   phospholipids.   Levels   of   serum   paraoxonase   are   inversely   correlated   with   SAA   levels.   SAA   can   inhibit  the  effect  of  serum  paraoxonase  resulting  in  increased  concentrations  of  ox-­‐LDL,  which  in   turn  enhances  the  pro-­‐inflammatory  response  [53].       The   endothelium   functions   as   a   selective   permeable   barrier   for   blood   and   tissues   [52].   Changed   permeability   of   the   endothelium,   allows   monocytes   to   travel   inside   the   artery   in   response   to   inflammation.   SAA   has   been   reported   to   increase   the   MCP-­‐1   production,   resulting   in   an   enhanced   translocation   of   monocytes   into   the   artery   in   vivo   [54].   Inside   the   artery,   the   monocytes   differentiate   into   macrophages   and   begin   to   engulf   ox-­‐LDL.   The   binding   and   uptake   of   ox-­‐LDL   is   especially   mediated   by   a   member   of   the   scavenger   receptor   (SR)   family:   Lectin-­‐like   oxidized   LDL   receptor-­‐1   (LOX-­‐1),   expressed   on   the   macrophages   cell   membrane   [55,56].   The   binding   and   uptake   of   ox-­‐LDL   by   macrophages   results   in   foam   cell   formation.   SAA   has   been   observed   to   promote  the  foam  cell  formation  primarily  be  upregulating  the  expression  of  LOX-­‐1  in  vitro  [57].     The   foam   cells   begin   to   express   the   ATP-­‐binding   cassette   receptor   G1   (ABCG1)   and   ATP-­‐binding   cassette   receptor   1   (ABCA1)   (Figure   4)   [10].   The   receptor   ABCA1   unloads   cholesterol   to   Pre-­‐β   HDL   particles  and  ABCG1  unloads  cholesterol  to  mature  the  HDL  particle  (Figure  4)  [57,58].     Under  normal  conditions,  the  HDL  particle  will  reduce  the  foam  cell  formation  by  RCT.  ApoA-­‐I  is  a   co-­‐factor   for   lecithin-­‐cholesterol   acyltransferase   (LCAT)   activity,   which   esterifies   free   cholesterol   unloaded  from  the  foam  cells.  The  free  cholesterol  on  the  surface  of  β-­‐HDL  particle  is  converted  to   cholesteryl  esters  (CE)  by  LCAT,  which  matures  the  𝛽 -­‐HDL  particle.  The  esterifying  allows  packages   of   CE   into   the   interior   of   the   lipoproteins,   thereby   enhancing   its   carrier   capacity   [59,60].   When   binding   to   HDL,   SAA   depresses   LCAT   activity   resulting   in   accumulation   of   free   cholesterol   and   insufficient  cholesterol  transport  [61].     Under   normal   conditions,   The   HDL   particle,   rich   in   cholesterol,   goes   into   circulation   for   delivery   of   CE   to   the   liver   for   excretion.   The   SR-­‐BI   receptor   on   hepatocytes   mediates   the   CE   uptake   for   excretion.  The  lipid-­‐poor  HDL  particle  can  return  to  the  periphery  and  begin  the  cycle  again  (Figure   4).             15   Figure  4.  Reverse  cholesterol  transport:  Apo-­‐I  (ApoA-­‐I),  synthesized  by  the  intestine,  associates  with  β-­‐HDL  and  come   into  circulation.  HDL  travels  to  the  artery  wall  were  it  comes  in  contact  with  foam  cells.  The  foam  cells  express  ATP-­‐ cassette   binding   transporters   ABCA1   and   ABCG1   that   mediate   the   uptake   of   cholesterol   from   macrophages   to   HDL.   Cholesterol  is  esterified  to  CE.  CE  is  removed  from  the  HDL  particle  by  SR-­‐BI  expressed  on  hepatocytes.  SR-­‐BI  delivers   cholesterol  to  the  liver  for  excretion  [modified  from  62].         SAA  is  a  high  affinity  ligand  for  SR-­‐BI  expressed  on  hepatocytes  [46,57].  SAA  has  been  shown  to   inhibit  the  binding  of  HDL  to  SR-­‐BI  in  vivo,  resulting  in  a  decreased  delivery  of  CE  for  excretion  [63].       If  the  RCT  is  not  functioning  properly  it  can  result  in  an  accumulation  of  foam  cells  inside  the  artery   resulting  in  plaque  formation.  Rupture  of  the  plaque  can  trigger  thrombus  formation,  which  can   impede  the  blood  flow  (Figure  3b)  [10].                 16   Principles  of  the  Methods  used   Cell  Culture   Cells  can  be  obtained  from  normal  or  diseased  tissue.  Cells  that  are  grown  directly  from  healthy   tissue   are   called   primary   cells.   Primary   cells   are   heterogeneous   and   more   representative   of   the   tissue  from  which  they  are  derived.  The  limitations  using  primary  cells  are  their  slow  growth  rate   and   limited   lifespan.   Whereas   cells   obtained   from   diseased   tissue   are   homogenous   and   can   divide   indefinitely.     When  cells  are  initially  seeded  they  enter  the  lag  phase,  where  cells  recover  from  the  sub  culturing   and   adjust   to   the   new   environment.   When   the   cells   begin   double   again   they   are   in   the   log   or   exponential  phase  of  growth.  Sub  culturing  is  preferred  to  be  done  when  cells  are  in  the  log  phase,   which   reduces   the   lag   phase.   In   the   stationary   phase   the   growth   reaches   a   plateau,   leading   the   cells  into  the  death  phase  [64]  (Figure  5).           Figure  5.  Standard  cell  growths  curve.  When  cells  are  seeded  they  enter  a  lag  phase  where  no  grow  occur.  After  the   lag   phase   the   cells   go   into   the   exponential   phase.   They   reach   a   stationary   phase   because   of   limitations   in   the   environment,  which  results  in  decreased  proliferation  and  viability  [65].   RNA  Purification     RNA   purification   was   performed   using   the   AS2000   Maxwell   16   instrument   (Promenga,   Sweden).   The   Maxwell   16   cell   reagent   kit   contains   prefilled   reagent   cartridges   (Figure   6a-­‐b).   The   kit   is   designed  to  use  the  magnetic  particles  method,  where  RNA  binds  to  silica-­‐paramagnetic  particles   (MagneSil   PMPs).   The   particles   contain   a   paramagnetic   core   surrounded   by   a   shell   modified   to   bind  nucleic  acid  with  a  high  affinity.       17   Before  loading  on  the  machine,  cells  are  treated  with  homogenization  solution  and  lysis  buffer  to   homogenize  the  sample  and  destroy  the  cell  membrane,  respectively.  The  samples  are  loaded  into   the  wells,  where  RNA  binds  to  the  surface  of  the  silica-­‐paramagnetic  particles.  A  magnetic  rod  is   lowered  into  the  samples,  which  creates  a  magnetic  field.  When  the  magnetic  field  is  shut  of  the   magnetic  rods  led  go  of  the  silica-­‐paramagnetic  particles.  The  particles  are  washed  and  incubated   with   deoxyribonuclease  (DNase)   solution   to   degrade   all   DNA   contamination   in   the   sample.   The   silica-­‐paramagnetic  particles  go  through  several  washing  steps  to  remove  impurities,  resulting  in   concentrated  and  eluted  RNA.  The  RNA  is  eluted  in  nuclease  free  water  [66].         Well   Well  content     number     1   RNA  lysis  buffer   2   MagneSil  PMPs   3   RNA  lysis  Buffer   4   Yellow   wash   solution   (DNase  treatment)   a)           b )   5   RNA  Alcohol  wash  B   6   RNA  Alcohol  wash  B   7   RNA  Alcohol  wash  B   8   Empty     Figure  6.  Illustration  of  reagents  used  in  the  RNA  purification  kit.  a)  Cartridge  containing  8  wells.  b)  Well  content  of   the  cartridge  [67].       18   qRT-­‐PCR   The   real   time   quantitative   reverse   transcriptase   polymerase   chain   reaction   (qRT-­‐PCR)   is   a   technique   used   for   gene   expression   analysis   and   the   quantification   of   mRNA.   The   method   has   a   high   sensitive,   specificity   and   gives   fast   result   [68].   The   first   step   is   synthesis   of   complementary   DNA  (cDNA)  from  mRNA  mediated  by  reverse  transcriptase  and  a  primer.  Random  hexamer  was   chosen   as   primer   instead   of   oligo(dT).   Random   hexamer   are   oligonucleotides   of   a   short   random   sequence,  which  covers  all  possible  RNA  regions.  The  reference  gene,  18S  ribosomal  RNA  (rRNA)   does  not  contain  a  poly(A)tail  and  can  therefore  not  be  amplified  with  oligo(dT)  [69].   The   PCR   products   are   synthesized   from   cDNA.   The   primers   and   probe   anneal   to   the   target   sequence.  The  probe  is  labeled  with  a  reporter  dye  at  the  3`  and  a  quencher  molecule  at  the  5`.  As   long   as   the   reporter   dye   and   quencher   molecule   are   close   to   each   other   very   little   florescent   is   emitted.   This   phenomenon   is   called   Fluorescent   resonance   energy   transfer   (FRET),   where   the   reporter   dye   is   reduced   by   the   presence   of   the   quencher.   The   reporter   dye   has   a   higher   energy   of   emission  than  the  quencher.  The  energy  is  transferred  from  a  higher  to  a  lower  level,  when  they   are  close  to  each  other,  resulting  in  the  reporter  dye  being  suppressed  by  the  quencher  [71].       Figure  7.  Principe’s  of  qRT-­‐PCR.  A  PCR  cycle  contains  three  steps:  denature,  annealing  and  extension.  Under  denature   the  strands  separates  (step  1).  Primer  and  probe  anneal  to  the  target  sequence  (step  2).  The  DNA  polymerase  extends   the   primer   and   thereby   separating   the   reporter   dye   and   quencher   from   each   other.  The   fluorescence   emitted   from   the  reporter  dye  can  now  be  detected  [70].               19   In   the   first   step   the   strands   are   separated   from   each   other   upon   heating,   which   allows   for   the   primer  and  probe  to  anneal  to  the  DNA  strand.  The  AmpliTaq  GOLD  DNA  polymerase  extends  the   primer  and  the  5`nuclease  activity  of  the  polymerase  cleaves  the  probe  and  thereby  separating  the   reporter  dye  and  quencher  (Figure  7).    FRET  cannot  occur  when  the  reporter  dye  and  quencher  are   separated,  resulting  in  an  increase  in  fluorescence.  If  the  florescence  exceeds  a  certain  threshold  it   is   detected   by   the   Viia-­‐7-­‐machine   [71].   The   increase   in   fluorescence   is   proportional   with   the   increase  in  amplicon  concentration.                                         The   signal   for   each   cycle   results   in   an   amplification   curve   (Figure   8).   The   baseline   of   the   amplification  curves  is  the  signal  level,  where  there  is  little  change  in  fluorescent  signal.  For  18S   rRNA  is  the  baseline  normally  cycle  3-­‐7.  The  baseline  is  set  for  each  qRT-­‐PCR  run  to  remove  the   background.  The  threshold  is  the  level  of  signal  reflecting  a  significant  increase  over  the  calculated   baseline  signal.  The  threshold  cycle  (Ct)  is  the  cycle  number  at  which  the  fluorescent  signal  crosses   the  threshold.  The  Ct-­‐values  increases  with  decreasing  amounts  of  template  [71].         Figure  8.  Example  of  an  amplification  curve.  The  curve  has  indication  of  threshold,  baseline  and  Ct-­‐values  [71].       Standard  Curve   Errors  in  RNA  purification,  cDNA  synthesis,  PCR  procedure  and  primer  transcription  efficiency  may   occur   during   analysis.   Therefore   qRT-­‐PCR   data   must   be   normalized   using   a   reference   gene   to   remove  technical  variation.    The  reference  gene  18S  rRNA  was  chosen  because  of  its  expression   level   being   very   stable   and   unaffected   by   experimental   factors.   Furthermore   constitutes   18S   rRNA   80-­‐90%   of   the   total   RNA   amount   in   cells   [72].   Normalization   of   data   is   done   by   subtracting   the   Ct-­‐       20   value  of  the  reference  gene  (CtRef)  from  the  Ct  value  of  the  target  gene  (CtTarget);  ∆Ct  =CtTarget  –CtRef.   The   relative   mRNA   expression   level   is   then   calculated   by   2-­‐∆Ct   [71,83].   The   use   of   this   method   presupposes   that   the   difference   between   the   amplification   values   of   the   target   gene   and   the   reference  gene  (∆Ct)  are  close  to  equal,  which  is  assessed  by  constructing  a  standard  curve  (Figure   9).   The   standard   curve   was   made   by   a   2   x   fold   serial   dilution   of   a   template   with   a   known   concentration.  The  dilution  was  run  on  a  384-­‐well  micro-­‐Amp  optical  plate.  Every  dilution  was  set   in   triplicates.   A   standard   deviation   of   15   %   was   accepted   for   each   set   of   triplicates.   Three   controls   were  used:  a  sample  with  no  reverse  transcriptase  (NRT),  no  template  control  (NTC),  and  a  plate   control.  The  plate  control  was  a  sample  with  a  known  Ct-­‐value  used  to  address  plate  differences.     The   PCR   reaction   is   quantitative   if   the   slope   is   close   -­‐3.32,   which   is   equivalent   to   100   %   efficiency.   The  efficiency  is  determined  by  E=10(-­‐1/slope).    The  standard  curve  is  accepted  if  the  slope  values  are   between   -­‐3.58   and   -­‐3.10   (Figure   9).   My   standard   curves   for   SAA1,   Saa3   and   Mcp-­‐1   were   shown   to   be  quantitative  over  a  range  of  32-­‐,  64-­‐  or  128-­‐  fold  dilution.       35,000   30,000   y  =  -­‐3,3344x  +  26,718   R²  =  0,98825   25,000   Ct   20,000   15,000   y  =  0,0641x  +  14,207   R²  =  0,03726   VIC     10,000   5,000   -­‐2   -­‐1,8   -­‐1,6   -­‐1,4   -­‐1,2   -­‐1   -­‐0,8   -­‐0,6   -­‐0,4   0,000   -­‐0,2   0   FAM   y  =  -­‐3,3985x  +  12,51   R²  =  0,99936   0,2   0,4   Delta  Ct   0,6   Log  cDNA     Figure  9.  Example  of  an  accepted  standard  curve.  The  standard  curve  was  made  by  a  serial  dilution  of  cDNA  using   Saa3  (FAM)  and  18S  (VIC).     Sandwich  Enzyme-­‐linked  Immunosorbent  Assay  (ELISA)   I   used   mouse   SAA3   specific   sandwich   Enzyme-­‐Linked   Immunosorbent   Assay   (ELISA)   in   my   experiments.   All   the   wells   in   the   microplate   were   pre-­‐coated   with   rabbit   anti-­‐mouse   SAA3   antibody.  The  samples  are  added  to  the  microplate  with  the  pre-­‐coated  SAA3  antibody.    Present       21   SAA3   antigens   in   the   samples   bind   to   the   SAA3   antibodies.   The   wells   are   washed   to   get   rid   of   unbound  materials.  A  biotinylated  anti-­‐mouse  SAA3  antibody  is  added  to  the  wells,  which  binds  to   the  captured  mouse  SAA3.  The  wells  are  washed.  The  enzyme  horseradish  peroxidase  is  added  to   the  wells,  which  binds  to  the  biotinylated  antibodies.  The  wells  are  washed  to  remove  unbound   enzyme.   The   visualizing   reagent   3,3`5,5`-­‐tetramethylbenzidine   is   added   causing   the   solutions   to   take  on  a  blue  color,  which  intensity  corresponds  to  the  amount  of  SAA3  protein  in  wells  (Figure   10).   A   stop   solution   containing   HCL   is   added,   which   converts   the   blue   color   into   yellow.   The   enzyme  activity  is  measured  by  a  spectrophotometer  at  absorbance  450nm  [73,74].     Figure  10.  Principe`s  of  the  sandwich  ELISA  method.  Wells  are  pre-­‐coated  with  SAA3  antibody.  Present  SAA3  antigen   in  the  samples  binds  to  the  SAA3  antibody.  The  wells  are  washed.  A  biotinylated  anti-­‐mouse  SAA3  antibody  is  added,   which   binds   the   captured   mouse   SAA3.   The   wells   are   washed.   Horseradish   is   added,   which   binds   the   biotinylated   antibodies.   The   wells   are   washed.   3,3`5,5`-­‐tetramethylbenzidine   is   added   to   the   wells,   which   convert   the   enzyme   into   a  blue  color.  The  color  of  the  wells  is  increasing  in  intensity  corresponding  to  increasing  amounts  of  captured  SAA3   protein.  Stop  solution  is  added,  which  converts  the  blue  color  into  yellow  and  the  absorbance  can  be  read  at  450  nm   [Modified  from  75]   Standard  Curve     A  standard  curve  is  made  by  a  serial  2x  fold  dilution  of  SAA3  standards  in  assay  buffer.  The  SAA3   standards  consist  of  purified  recombinant  GST-­‐tagged  mouse  SAA3.  The  concentration  of  the  SAA3   protein  (µg/ml)  is  plotted  against   the   mean   absorbance   (OD450).  The   concentration  of  the   positive   control  must  be  in  the  linear  section  of  the  standard  curve  to  be  valid.    The  standard  curve  is  used   to  determine  the  SAA3  protein  concentration  (µg/ml)  in  each  sample  (Figure  11).           22   OD450   2   1   0   0   1   2   3   4   5   6   Mouse  SAA3  (μg/ml)     Figure  11:  Standard  curve  made  by  a  serial  dilution  of  a  reconstructed  SAA3  standards.     Cell  Cycle  Analysis     The  cell  cycle  is  a  complex  process  involved  in  growth  and  proliferation  of  cells.  The  DNA  content   of   the   cells   differs   throughout   the   cell   cycle.   Cells   have   23   pairs   of   chromosomes   in   the   G1/G0   phase,  whereas  they  in  the  S  phase  have  varies  amounts  of  DNA.  In  the  G2  /M  phase,  the  cells  are   containing  duplicated  pairs  of  chromosomes  (Figure  12)  [76].       Figure  12:  The  different  stages  of  cell  cycle  and  the  distribution  of  DNA  [76].   The   NucleoCounter   (NC-­‐250)   measures   the   DNA   content   of   cells.   The   cells   are   fluorescently   stained   with   365   nm   LED   and   DAPI.   DAPI   binds   strongly   to   A-­‐T   rich   regions   of   the   DNA.     The       23   fluorescence   intensity   of   stained   cells   will   therefore   correlate   with   the   amount   of   DNA.     The   fluorescence   intensity   of   the   DNA   content   in   G2/M   phase   will   be   twice   as   high   as   the   DNA   content   in   G0/G1   phase.     The   result   is   given   as   a   histogram,   which   gives   the   percentage   of   cells   in   the   different  phases  of  the  cell  cycle  (Figure  13)  [76].       Figure  13:  Histrogram  plot  of  cell  cycle  analysis.  The  plot  shows  that  40  %  of  the  cells  are  in  G0/G1  phase  (M1),  41  %   are  in  S-­‐phase  (M2)  and  17  %  are  in  G2  phase  (M3)  [76].               24   Materials  and  Methods   Nanomaterial  and  LPS   Four  different  NMs  were  used  for  exposure  experiments:  the  Carbon  black  (CB)  nanoparticle  (NP)   Printex-­‐90,  the  multi-­‐walled  carbon  nanotube  (MWCNT)  Mitsui,  UV  Titanium  dioxide  (UV-­‐TiO2)  and   GO.  Their  physical  and  chemical  characteristics  are  listed  in  Table  1.       Table  1:  Physical  and  chemical  characteristics  of  the  NMs  [35,  36,  43,  77,  78,  79].       Name   NM   Manufacturer/   Distributor   Length   (µm)   Diameter   Surface   (nm)   area,   BET     (m2/g)   Chemical   composition   Printex-­‐ 90   Carbon  black   Evonic(Degusa),   Frankfurt,Germany   -­‐-­‐-­‐   14   295-­‐ 338   99%  C   0.8%  N   0.01%  H   Mitsui   MWCNT   Mitsui/Hadoga/Evo nik,   Tokyo,  Japa   3-­‐5   74   (29-­‐173)   26   UV-­‐TiO2   L181   TiO2    (rutile)   Kemira,  Pori,   Finland   -­‐-­‐-­‐-­‐   17c   70-­‐ 107.7   GO   Graphene   Graphenea,   San  Sebastian,  Spain   2-­‐3   -­‐-­‐-­‐-­‐   -­‐-­‐-­‐   0.3%  Fe   0.4%  Na   470  ppm  S   20  ppm  Cl   0.60%Na2O,   12.01%  SiO2,     4.58%  Al2O3,   1.17  %  ZrO2     49-­‐56%  C   0-­‐1%  H   0-­‐1%  N   41-­‐50%  O   0-­‐2%  S       Ø Carbon   black   (CB)   is   a   carbonaceous   core   particle   that   consists   of   less   than   1%   organic   and   inorganic   impurities   (Table   1)   [43].   It   has   a   characteristic   grape-­‐like   structure   of   aggregates   that  clusters  into  large  sized  agglomerates,  which  can  exceed  100  nm  in  diameter     (Figure  14a)    [80].       Ø CNTs   can   be   grouped   into   either   single-­‐walled   carbon   nanotube   (SWCNT)   or   MWCNT.   SWCNT   is   nanosized   tubes   or   fibers   composed   of   a   single   rolled   up   layer   of   graphene.     Whereas   MWCNT   are   composed   of   multiple   layers   of   graphene   rolled   into   each   other   (Figure   14b).   The   SWCNT   does   not   naturally   exist   as   separate   tubes,   but   tend   to   aggregate   into  fibers  because  of  strong  van  der  Wall  forces  between  the  molecules.  The  van  der  Wall   forces  between  MWCNT  are  weaker  than  between  SWCNT  [78].         25   Ø TiO2   is   a   white   odorless   metal   oxide,   which   both   exits   as   fine   (<1µm)   and   nanosized   (<0.1µm)  [81].  TiO2  occur  in  two  tetragonal  crystalline  structures  (Figure  14c):  anatase  and   rutile,  with  anatase  being  the  most  reactive  [82].   Ø Graphene  is  constructed  from  single-­‐atom  two-­‐dimensional  sheets  of  hexagonally  arranged   carbon   atoms   [80].   GO   are   graphene   layers   containing   functional   oxygen   groups   (Figure   14d).   a )   b)     d c     )   (SEM)  images  of  the  four  NMs:  a)  Printex-­‐90,  b)  Mitsui,  c)  TiO ,  and  d)  GO   )   14:  Scanning  electronic  microscopy   Figure   2 [36,43,77,90].   Dose  Selection     The  dose  selection  of  the  NMs  was  based  on  previous  studies  [81,84,85].  The  doses:  50,  100,  and   200µg/ml  correspond  to  a  very  high,  high,  and  medium  dose.  Table  2  compares  the  in  vitro  doses   used  in  my  experiment  with  the  in  vivo  doses.  The  In  vivo  doses:  162,  54,  and  18µg/animal  are  a   high,  medium,  and  low,  corresponding  to  1,  3,  and  9  days  of  exposure  (8  hours/day)  assuming  a  33   %  deposition  rate  at  the  Danish  occupational  exposure  limit  of  3.5  mg/m3  (Printex-­‐90)  [36].     The  average  lung  of  a  female  mouse  (C57BL/6,  20g)  weighs  274  mg  with  an  average  surface  area   on  82  cm2.  Using  surface  area  of  exposure  as  a  parameter  the  in  vivo  doses  correspond  to  1.98,   0.66,   and   0.22   µg/cm2.   The   cells   were   exposed   to   3   ml   media/NMs   suspension   in   6-­‐well   culture   plates  with  a  surface  of  9.5  cm2.  The  in  vitro  concentrations  correspond  to  63.16,  26.31,  and  15.79   µg/cm2  (Table  2).       26   Table  2.  Comparison  of  In  vivo  and  In  vitro  doses  [Modified  from  36]   In  vivo  exposure  dose     µg/animal     162   54   18   mg/kg     8.1   2.7   0.9   (Assuming  an  average  mouse  weighs  20g)   In  vitro  exposure  dose     µg/ml     200   100   50   *   mg/kg   NR NR   NR   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   mg/kg     591   197   65.7   mouse   lung     (Assuming  an  average  lung  weighs  274  mg)   mg/kg   µg/cm2   1.98   (lung   surface  82   cm2)   *NR=Not  relevant.     µg/cm2  (6-­‐ well  petri   dish  9.5   cm2,  3  ml)   0.66   0.22   NR   NR   NR   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   63.16   26.31   15.79   Before  cell  culture  exposure,  8-­‐12  mg  of  NMs  were  dissolved  in  4-­‐6  ml  cell  culture  media  to  obtain  a   stock   concentration   of   2   mg/ml.   GO   was   purchased   as   suspended   in   water.  GO   concentration   was   4   mg/ml.  2  ml  of  GO  was  added  to  2  ml  of  cell  culture  media.       All  suspensions  were  homogenized  using  a  sonicator  (Branson,  Digital  Sonifier).  The  suspension  of   NM  and  culture  media  were  placed  on  ice  and  sonicated  for  16  minutes.  The  size  distribution  of  the   NM   suspension   was   assessed   by   Zetasizer-­‐Nano   DLS   machine   to   evaluate   the   quality   of   the   homogenization.     The  positive  control,  LPS,  was  phenol  extracted  from  E.  coli  serotype  O55:B5  (Sigma-­‐Aldrich,  L2880).   The   dose   selection   of   LPS   was   based   on   previous   studies   [86,87,88,89].   The   LPS   solution   was   not   sonicated  to  avoid  contamination  of  other  experiments.     Mycoplasma  Test   Before   the   beginning   of   experiments,   A549   and   J774A.1   cells   were   tested   for   contamination   of   mycoplasma  bacteria.  This  was  tested  with  MycoAlertTM  mycoplasma  detection  kit  (LONZA,  LT07-­‐ 118).   The   test   exploits   the   activity   of   Mycoplasma   enzymes,   which   are   not   present   in   eukaryote   cells.  The  enzyme  reacts  with  the  MycoAlert  substrate  by  catalyzing  the  conversion  of  ADP  to  ATP.   ATP  is  then  transferred  into  a  light  signal  by  the  MycoAlert  substrate.  The  samples  are  run  on  a   Luminometer   (Packard   Lumicount   BL10000),   which   detects   difference   in   ATP   levels   before   and   after  addition  of  the  MycoAlert  substrate.  The  result  of  the  test  was  negative  (data  not  shown).         27   Reagents     Preparation  of  MycoAlert  reagents  was  done  by  adding  600µL  of  assay  buffer  to  the  MycoAlert   substrate  and  reagent  (Table  3).   Table  3.  Reagents  for  Mycoplasma  analysis.     Reagents     MycoAlertTM    Reagent     MycoAlertTM  Assay  Buffer     MycoAlertTM  Substrate   LOT  number     (LT27-­‐217)     (LT27-­‐218)   (T27-­‐221)   Steps  in  Mycoplasma  Detection  Test   1. Cells  were  spun  down  at  200  g  for  5  minutes.   2. 100  µL  of  supernatant  was  transferred  to  a  cuvette.     3. 100  µL  of  reagent,  which  lyse  cells,  was  then  added  to  the  cuvette  and  incubated  at  room   temperature  in  5  minutes.     4. The  cuvette  was  run  on  the  Luminometer,  which  gave  a  measured  value  (A).   5. 100   µL   of   substrate   was   then   added   to   the   cuvette   and   incubated   10   minutes   at   room   temperature.     6. The  cuvette  was  run  on  the  Luminometer,  which  gave  a  measured  value  (B).     7. The  ratio  between  A  and  B  (B/A)  should  be  lower  than  0.9  for  a  negative  test.     Cell  Cultures   Cell  Types     Two  cell  types  were  used  in  the  experiments,  J774A.1  (ATCC,  TIB-­‐67)  macrophages  obtained  from   reticulum  cell  sarcoma  from  female  mice  (stain  BALB/cN)  (Figure  15a)  and  human  adenocarcinoma   alveolar  basal  epithelial  type  II  cell  line  A549  (ATCC,  CCL-­‐185)  (Figure  15b).  In  humans  are  epithelial   type  II  cells  responsible  for  diffusion  of  water  and  electrolyte  over  the  alveoli  of  the  lungs.         28   a)   b)     Figure15.  Pictures  of  the  J774A.1  cells  (a)  and  A549  cells  (b).  Both  pictures  w ere  taken  with  10  x   optic  zoom.     Culturing     A549  and  J774A.1  cells  were  seeded  at  6*105  cells  in  culture  flasks  (Nunc,  Denmark)  with  surface   areas  of  150  cm2  (T150).  To  the  culture  flask  was  added  30  ml  of  cell  media  (Table  4).  J774A.1  cells   were  cultured  in  Dulbecco`s  Modified  Eagle  culture  medium  (DMEM)  (ATCC,  30-­‐2002™)  and  A549   cells  were  cultured  in  F12  nutrient  mix  (HAM  (1x))  cell  culture  media  (Table  4)  (Life  technologies,   11765-­‐054).     Cells   were   grown   in   a   CO2   incubator   of   37°C,   5   %   CO2   and   95%   humidity.   Culture   media  was  changed  twice  a  week  to  ensure  proper  growing  conditions.     Table  4.  Preparation  of  cell  culture  media.       Fetal  Bovine  Serum   (FBS)    Penicillin  10000   IU/ml/Streptomycin   10000  µg/ml   (Pen/Strep)         Per  500  ml   of    DMEM   media    (ml)   10  %       (not  heat   inactivated)   1  %     Per  500  ml  of     HAM  (1x)   media     10%   (heat   inactivated)   1%   29   The  cells  were  subcultured  when  they  had  reached  80-­‐90  %  of  confluence.  Confluence  of  80-­‐90%   for  J774A.1  cells  was  obtained  after  7  days  and  for  A549  cells  after  4  days.     Steps  in  Subculturing     1. The  culture  media  was  removed  from  the  flask  and  the  cells  were  washed  twice  with  5ml  of   phosphate  buffered  saline  (PBS).     2. The  J774A.1  cells  were  loosened  by  scraping  with  a  sterile  cell  scraper  (Sigma-­‐Aldrich,  C5981-­‐ 100EA).   3. The  A549  cells  were  loosened  by  trypsinization:     3.1. To  the  culture  flask  was  added  3-­‐5  ml  of  trypsin/EDTA  (trypsin  0.05%-­‐EDTA  0.02%)     (In  vitro,  BI-­‐03-­‐053-­‐1B)  and  incubated  for  3-­‐5  minutes.   3.2. The  cells  were  loosened  from  the  surface  by  placing  a  few  horizontal  slaps  to  the  flask.     3.3. To   the   culture   flask   was   added   10   ml   of   cell   culture   media,   which   inhibits   the   effect   of   the   trypsin.   4. Cell  count  and  viability  was  measured  on  the  Nucleocounter  2000  (Chemometec).     5. In  new  T150  culture  flasks  were  seeded  6*105  cells  and  placed  in  incubator.     Cell  Exposures     Setup     The  culture  flasks  (Nunc,  Denmark)  were  harvested  according  to  section  3  (Steps  in  Subculturing).     The   cells   were   seeded   in   the   concentration   1*105   cells   in   24-­‐wells   plates   (Nunc)   with   a   surface   area   of   1.9   cm2   (Thermo   Scientific,   142475).   However,   because   of   a   too   low   RNA   yield   after   purification   the   experiment   was   optimized   and   5*105   cells   were   grown   in   6-­‐well   culture   plates   (Nunc)  with  a  surface  area  of  9.5  cm2  (Thermo  Scientific,  140685)  (Figure  16).    The  culture  plates   were  incubated  for  24  hours.                 30     5 Figure   16.   Example   of   sample   setup   in   6-­‐well   culture   plate.   J774A.1  cells  were  seeded  in  concentration  5*10  in  6-­‐ well   culture   plates   and   exposed   to   three   different   concentrations:   0,   100,   and   200   µg/ml   of   printex-­‐90.   Each     concentration  was  set  in  duplicates.   Exposure     After   incubation,   the   medium   was   removed   from   the   wells   and   different   concentrations   of   NMs   were  added  (Table  5).  LPS  was  used  as  the  positive  control.  The  treatment  was  done  in  duplicates   and   the   same   amount   of   sonicated   medium   was   added   to   each   well   (Table   5).   Cells   were   after   exposure  incubated  for  24  hours.       Table  5.  Example  of  exposure  design.     Conc.Nano   (µg/ml)   0   50   100   200   Conc.  LPS   (µg/ml)   5   Media  (µl)   Sonicated  nano   (µl)   2500   -­‐-­‐-­‐   2500   125   2500   250   2500   500   Media  (µl)   LPS  (µl)   493.75   6.25   Sonicated   media  (µl)   500   375   250   -­‐-­‐-­‐-­‐   Sonicated   medium   500   Total  volume   (µl)   3000   3000   3000   3000   Total   volume   (µl)   3000   Harvest     The  supernatant  was  collected  from  wells  and  stored  at  -­‐   80oC  for  SAA  protein  quantification  with   ELISA.   The   surfaces   of   the   wells   were   either   scraped   or   trypsinized   (section   2-­‐3,   Steps   in   Subculturing)   and   1000   µl   of   culture   media   was   added   to   every   well.   The   1000   µl   of   media,   containing   the   cells,   were   removed   to   a   1.5   ml   Eppendorf   tube.   The   cell   count   and   viability   were   measured   by   the   Nucleocounter   2000   (Chemotec).   The   Eppendorf   tubes   containing   the   cell   suspension  were  used  for  RNA  purification  for  further  qRT-­‐PCR  analysis.           31   Time  Experiment1   To   confirm   that   the   optimal   incubation   time   after   exposure   was   24   hours   [36,84,91,92]   a   time   experiment  was  performed.  A549  and  J774A.1  cells  were  seeded  at  5*105  in  6-­‐well  culture  plates   and   grown   for   24   hours   according   to   section   1-­‐3   (Steps   in   Subculturing).   After   24   hours   of   incubation   the   cells   were   exposed   to   NMs   in   concentration:   100µg/ml   and   LPS   5   µg/ml,   according   to  Table  3.  The  wells  were  harvested  after  2,  4,  6,  and  24  hours  of  incubation.  All  concentrations   were  set  in  duplicates.       Priming  with  LPS   Previous  studies  have  reported  that  priming  with  LPS  in  samples  exposed  to  NMs  could  induce  a   higher  inflammatory  response  than  the  same  concentration  of  LPS  alone  [93,94,95].     J774A.1   cells   were   seeded   and   harvested   according   to   section   1-­‐3   (steps   in   subculturing).   Cells   were  after  24  hours  of  incubation  exposed  to  UV-­‐TiO2  and  primed  with  1µg/ml  LPS  (Table  6).       Table  6.  Setup  design  for  priming  experiment.     Nanomaterial   (µg/ml)   Media  (µl)   LPS  (µl)  (1µg/ml)   Sonicated  media   +  Nano  (µl)   Sonicated  media   (µl)   Total  volume           0     50   100   2498.75   1.25   LPS   (µg/ml)   Media  (µl)   LPS  (µl)   2498.75   1.25     500   2498.75   1.25   1   2498.75   1.25   125   250   -­‐-­‐-­‐-­‐-­‐   -­‐-­‐-­‐-­‐   -­‐-­‐-­‐   375   250   500   3000   3000   3000   Sonicated   media  (µl)   Total   volume   3000     32   ELISA     ELISA  analysis  (Merck  Millipore,  EZMSAA3-­‐12K)  was  used  for  measuring  of  mouse  SAA3  protein  in   supernatant  collected  from  exposed  samples.       Reagents     The  kit  was  run  on  a  96-­‐well  microplate  using  the  reagents  listed  in  Table  7.       Table  7  Reagents  for  ELISA  analysis.       Reagent     10  X  HRP  wash  buffer   concentrate       Mouse  SAA3  standard       Substrate   10   x   concentrate   of   50mM   Tris   Buffered  Saline  containing  Tween  20     Recombinant   GST-­‐tagged   mouse   SAA3,   Lyophilized   Mouse   SAA3   Quality   control   1   Mouse  SAA3  at  two  different  levels   and  2   Assay  Buffer   0.05M  PBS,  pH  7.4,  containing  0.025M   EDTA,  0.08%Sodium  Azide,  1%  BSA  and   0.05%  Triton  X-­‐100   Mouse  SAA3  Detection  Antibody     Pre-­‐titered   Biotinylated   Mouse   SAA3   Antibody   Enzyme  Solution   Streptavidin-­‐Horseradish   Peroxidase   conjugate  in  buffer   Substrate     3,3`5,5`-­‐tetramethylbenzidine     Stop  solution   0.3  HCL     LOT  number       EWB-­‐HRP   E8012-­‐K   E6012-­‐K   EABTR   E1012   EHRP   ESS-­‐TMB   ET-­‐TMB   Mouse  SAA3  control  1  and  2  preparation   To  each  of  mouse  SAA3  quality  control  was  added  0.25mL  of  distilled  water  and  mixed  by  inverting.     Standard  Curve   A   standard   curve   was   made   by   serial   dilutions   of   SAA3   standards.   To   each   SAA3   standard   0.25   mL   of  distilled  water  was  added  (reconstituted  standard)  and  0.1  mL  assay  buffer  was  added  to  the  six   tubes.   The   serial   dilutions   were   prepared   by   adding   0.1   mL   of   reconstituted   standard   to   tube   1.   The  rest  of  the  serial  dilutions  were  made  according  to  Table  8.     Table  8.  Serial  dilution  of  SAA3.         Tube  #   Tube  1   Volume  of  assay  buffer   To  add   0.1  mL   Tube  2   Tube  3   Tube  4   Tube  5   Tube  6   0.1  mL   0.1  mL   0.1  mL   0.1  mL   0.1  mL       Volume  of  Standard     To  add   0.1  mL    of  reconstituted   standard   0.1  mL  of  tube  1   0.1  mL  of  tube  2   0.1  mL  of  tube  3   0.1  mL  of  tube  4   0.1  mL  of  tube  5   Standard  concentration     (µg/mL)   X/2   X/4   X/8   X/16   X/32   X/64   33   Assay  Procedure     1. The  wash  buffer  (10x  concentrate  of  50  mM  tris  Buffered  Saline  containing  tween  20)  was   diluted  10  fold  with  distilled  water.     2. 300  µL  of  the  diluted  wash  buffer  was  added  to  the  wells.     3. The   wash   buffer   was   decanted   and   90   µl   of   Assay   buffer   (0,05M   PBS,   pH   7.4,   containing   0.025M  EDTA,  0.08%  sodium  azide,  1  %  BSA  and  0.05  %  Triton  X-­‐100)  was  added  to  every   well.     4.  100  µl  of  assay  buffer  was  added  to  the  two  blank  wells.  The  assay  buffer  was  not  decanted   and   10µL   of   the   SAA3   mouse   standards,   the   quality   controls   and   the   samples   were   added   in   duplicates.       5. The   plate   was   incubated   at   room   temperature   in   two   hours   on   an   orbital   microtiter   plate   shaker  (400-­‐500  rpm).     6. The  content  of  the  wells  was  removed,  after  incubation,  and  the  wells  were  washed  three   times   with   300   µl   of   wash   buffer.   The   wash   buffer   was   decanted   after   each   wash   to   remove   residual  buffer.   7. 100  µl  of  detection  antibody  was  added  to  the  wells  and  incubated  at  room  temperature  for   one  hour  on  an  orbital  microtiter  plate  shaker  (400-­‐500  rpm).     8. The   wells   were   washed,   after   incubation,   three   times   with   300   µl   of   wash   buffer   and   decanted  after  each  wash.     9. 100  µl  of  enzyme  solution  was  added  to  the  wells.     10. The  plate  was  placed  on  microtiter  plate  shaker  (400-­‐500  rpm)  at  room  temperature.     11. After  30  minutes  the  residual  fluid  was  removed  and  wells  were  washed  six  times  with  300  µl   of  wash  buffer.     12. 100   µl   of   substrate   solution   to   the   wells   and   the   plate   was   placed   on   the   microtiter   plate   shaker  for  5-­‐20  minutes.   13.  A   blue   color   was   formed,   after   5-­‐20   minutes,   in   the   wells   of   SAA3   standard   with   intensity   proportional   to   increasing   concentrations   of   SAA3.   When   the   blue   color   was   observed   the   plate  was  taken  of  the  microtiter  plate  shaker.     14. 100  µl  of  stop  solution  was  added  to  the  wells  and  the  plate  was  shaken  by  hand  to  ensure   proper  mixing  of  solution  in  all  wells.     15. The  absorbance  was  read  at  450  nm  and  590  nm  in  a  plate  reader.         34   RNA  purification     Maxwell  16  LEV  simplyRNA  purification  cells  kit  (Promega,  AS1270)  was  used  for  assessment  of  total   RNA  extraction.  The  samples  were  run  on  AS2000  Maxwell  16  instrument.     Preparation  of  reagents     The  reagents  for  RNA  purification  are  listed  in  Table  9.     Table  9.  Reagents  for  RNA  purification.   Reagent   Homogenization  solution     Lysis  buffer   1-­‐Thioglycerol     DNase  -­‐1     Per  ml  of  homogenization  solution  was  added  20  µL  of  1-­‐thioglycerol  and  stored  on  ice.  To  the   lyophilized  DNase  were  added  275  µl  of  nuclease-­‐free  water  and  5  µl  of  blue  dye.  To  the  elution   tubes  were  added  50  µL  of  nuclease  free  water.   RNA  Purification  Steps     1. Eppendorf  tubes,  containing  cells,  were  spun  down  in  5  minutes  at  300g  and  the  supernatant   was  removed.       2. The  pellet  was  dissolved  in  200  µl  of  homogenization  solution.     3. 200  µl  of  lysis  buffer  were  added  to  the  samples  and  vortexed  for  15  seconds.     4. 400  µl  of  lysate  was  added  to  well  1.   5. To  well  4  (Figure  6a)  was  added  5µl  of  DNase  I  solution.     6. The  machine  was  run  for  60  minutes.     7. RNA   concentrations   (ng/µl)   were   determined   using   a   NanoDrop   2000C   Spectrometer   (Thermo  Scientific).   8. 1  µl  of  the  purified  RNA  was  placed  under  the  arm  and  the  optical  density  (OD),  at  260  nm,   was  measured  to  determine  the  RNA  concentration.   9. An  OD260/OD280  close  to  2.0  was  general  considered  as  being  pure  for  RNA.     10. The  samples  were  stored  at  -­‐  80°C  until  use  in  cDNA  synthesis.           35   cDNA  Synthesis   The  purified  RNA  was  reverse  transcribed  into  cDNA.  To  prepare  cDNA  synthesis  a  master  mix  was   made  with  reverse  transcription  reagents  kit  (ThermoFisher,  N8080234)  (Table  10).   Table  10.  Reagent  distribution  for  Master  Mix   Reagent   10X  RT  buffer   Per  sample  (µl)    LOT  number     1.8   P14192        MgCl2  (25  mM)   3.9   S17272     dNTP  mix  (10  mM)   3.6   T03667     Random  hexamers   0.9   T03166     0.4   T04144     0.4   T03635       0000117791      (50  mM)   RNA`se  inhibitor     (20  units/µl)   Reverse  transcriptase   (50  units/µl)   Nuclease  free  water             cDNA  Synthesis  Steps   1. 11  µl  of  the  master  mix  was  added  to  tubes  corresponding  to  the  total  number  of  samples.     2. A  total  of  7  µl  of  RNA  and  Milli-­‐Q  water  was  added  to  obtain  the  concentration  100ng/10µl   for  every  sample.     3. Two  negative  controls  were  made:  NTC  and  NRT.   4. The  samples  were  mixed  by  inverting  and  run  in  a  PTC-­‐100,  programmed  thermal  controller   (MJ  research  INC).  The  program  runs  three  steps:  25oC  in  10  minutes,  48oC  in  30  minutes  and   95oC  in  5  minutes.       5. The  samples  were  stored  at  -­‐20°C.               36   qRT-­‐PCR   For  assessment  of  SAA1,  Saa3  and  Mcp-­‐1  mRNA  levels  qRT-­‐PCR  analysis  was  preformed.     Table  11.  Reagents  for  qRT-­‐PCT  analysis   Reagents     Sequence     Manufacture  ,  Lot  number     2*PCR  mix     -­‐-­‐-­‐-­‐-­‐-­‐   LifeTechnologies,  4364338   Mili-­‐Q  water   -­‐-­‐-­‐-­‐-­‐-­‐   -­‐-­‐-­‐   Primer/probe:     -­‐-­‐-­‐   Human   SAA1   primer/probe   -­‐-­‐-­‐-­‐-­‐-­‐   LifeTechnologies,  HS00761940-­‐S1   mix   Mouse  Saa3    Reverse  primer     5`TGC  TCC  ATG  TCC  CGT  GAA  C  3`   TAG,  Copenhagen,  140909   Mouse  Saa3  Forward  primer     5`GCC  TGG  GCT  GCT  AAA  GTC  AT  3`   TAG,  Copenhagen  ,  140909   Mouse  Saa3  probe     5`-­‐FAM-­‐  TCT  GAA  CAG  CCT  CTC   TAG,  Copenhagen   TGG  CAT  CGCT  –TAMRA`3   Mouse   Mcp-­‐1   primer/probe   -­‐-­‐-­‐-­‐-­‐-­‐-­‐   Applied  biosystems,   mix   Mm99999056_m1   Reference  gene:     -­‐-­‐-­‐   Human  18S  rRNA   -­‐-­‐-­‐-­‐-­‐-­‐-­‐   LifeTechnologies,  4333760T   Mouse  18S  rRNA   -­‐-­‐-­‐-­‐-­‐-­‐-­‐   Applied   Biosystems,   4310893E-­‐ 1405055   Steps  in  qRT-­‐PCR     1.  A  master  mix  was  made  by  adding  41.9  µl  of  2*PCR  mix  per  sample  and  mixed  with  33.1  µl   of  Mili-­‐Q  water  per  sample.     2.  To  every  PCR  tube,  corresponding  to  the  number  of  samples  was  transferred  75  µl  of  the   master  mix.     3. 10  µl  of  cDNA  were  added  to  the  tubes.     4. The  content  of  the  PCR  tubes  were  split  into  two  portions  of  36  µl,  one  for  the  target  gene   and  one  for  the  reference  gene  (Table  11).     5. 1.8  µl  of  the  primer/probe  mix  was  added  to  the  tubes  for  the  target  gene.     6. 1.8  µl  of  18S  rRNA  was  added  to  the  tubes  for  the  reference  gene.     7. The  PCR  analyses  were  run  on  a  384-­‐well  optical  reaction  plate  (Thermofisher,  4309849)  in   triplicates  (3  x  10µl).   8. For  every  run  were  used  three  controls:  NCT,  NRT  and  a  plate  control.         37   Cell  cycle  analysis   Cell  cycle  analysis  was  performed  by  the  use  of  the  Nucleocounter  NC-­‐250  machine  (Chemometec,   900-­‐0251).  The  Nucleocounter  NC-­‐250  quantifies  the  DNA  content  of  the  cells  to  determine  G0/G1,   S  and  G2/M  cell  cycle  phases.     Preparation  of  Reagents     The  reagents  used  in  cycle  analysis  are  listed  in  Table  12.   Table  12.Reagents  for  cell  cycle  analysis.   Reagent     PBS   Lysis  buffer     Stabilization   buffer     DAPI   Lot  number     -­‐-­‐-­‐-­‐   910-­‐0003   910-­‐0002   910-­‐3012             Prior  to  analysis,  20  µl  of  DAPI  was  added  to  980  µl  of  Lysis  buffer  and  mixed.     Steps  in  Cell  Cycle  Analysis     1.  An  Eppendorf  tube,  containing  5*105-­‐4*106   cells,  was  centrifuged  down  for  5  minutes  at   400  g  in  room  temperature.   2. The  supernantant  was  discarded  and  the  pellet  was  washed  with  PBS.     3.  The  cell  pellet  was  resuspended  in  250  μl  and  10  μg/ml  of  DAPI.       4. The  cell  suspension  was  incubated  at  37°C  in  5  minutes.       5. 250  μl  of  stabilization  buffer  was  added  after  incubation.     6. 30  μl  of  the  cell  suspension  was  loaded  on  a  NC-­‐slide  and  run  on  the  Nucleocounter  NC-­‐250   machine  (Chemoetec).     Statistics   All  statistics  were  done  with  Minitab15.  Comparisons  of  groups  were  done  with  a  parametric  one-­‐ way  ANOVA  with  a  post  hoc  Dunnett`s  test  comparison.    Not  normally  distributed  data  were  log-­‐ transformed  to  reach  normality.       38   Results     Cell  culture     Human  alveolar  A549  cells  and  mouse  alveolar  J774A.1  cells  were  in  the  beginning  grown  in  24-­‐ well   culture   plates,   but   because   of   too   low   RNA   yield,   below   30ng/μl   (data   not   shown),   the   experiment  was  scaled  up  and  cells  were  grown  in  6-­‐well  culture  plates.     Both  cell  lines  were  to  begin  with  subcultured  by  trypsinization.  J774A.1  cells  adhere  very  firmly  to   the  bottom  of  the  flask  and  the  trypsin  was  not  effective  enough  to  detach  the  cells.  The  cell  count   after   trypsinization   was   too   low   to   be   detected   by   the   Nucleocounter2000.   Cell   scraping   was   chosen  as  the  alternative  subculturing  method  for  J774A.1  cells.   Experiment  1  (Pilot  Experiment)   A   pilot   experiment   was   performed   to   see   if   there   was   any   SAA1   or   Saa3   mRNA   response   when   A549   and   J774A.1   cells   were   exposed   to   different   concentrations   of   UV-­‐TiO2   or   LPS.   5*105   cells   were  seeded  in  6-­‐well  culture  plates  and  exposed  to  UV-­‐TiO2  in  five  different  concentrations:  12.5,   25,  50,  100,  and  200µg/ml.  For  LPS,  cells  were  exposed  to  the  following  concentrations:  0.1,  0.5,  1,   5,   and   10µg/ml.     After   24   hours   of   exposure,   cells   were   harvest   and   the   Nucleocounter   2000   measured  cell  count  and  viability  in  each  sample.  The  experiment  was  repeated  two  times.                           39   Proliferation  and  Viability   Before   qRT-­‐PCR   measurements,   the   viability   and   proliferation   were   respectively   measured   and   calculated.  The  proliferation  was  calculated  on  the  basis  of  the  total  cell  count.   Viability     The  percentage  of  living  cells,  after  24  hours  of  exposure  to  UV-­‐TiO2,  is  illustrated  in  Figure  17-­‐18   (a-­‐b).       100   50   0     Viability  (%)   Viability  (%)   100   a)   0   0.1   0.5   1   LPS  (µg/ml)   5   10   50   0   b)   0   12.5   25   50   100   200   UV-­‐TiO2  (µg/ml)     Figure  17  (a-­‐b).  A549  cells  showed  no  statistically  significant  decrease  in  viability  when  exposed  to  UV-­‐TiO2  or  LPS.   (Red=  experiment  1,  blue=  experiment  2).  Viability  of  A549  cells  stimulated  with  LPS  (a):  0.1,  0.5,  1,  5,  and  10  µg/ml   or  UV-­‐TiO2  (b):  12.5,  25,  50,  100,  and  200µg/ml.  No  statistically  significant  difference  in  viability  in  cells  exposed  to  LPS   or  UV-­‐TiO2,  when  compared  to  the  unexposed  control  values.  Every  dot  represents  a  mean  of  two  samples.  n=2.   The  viability  of  the  A549  cells  was  close  to  100  %  for  all  the  concentrations  of  both  UV-­‐TiO2  and   LPS  exposed  cells  (Figure  17(a-­‐b)).  No  statistically  significant  difference  in  viability  was  observed,   when   compared   to   the   unexposed   samples.   In   contrast,   the   viability   of   both   exposed   and   unexposed   J774A.1   cells   was   under   50   %   (Figure   18   (a-­‐b)).   Since   there   is   no   statistically   significant   difference   between   the   exposed   and   unexposed   samples,   for   UV-­‐TiO2   or   LPS,   the   low   viability   values  are  likely  to  be  linked  to  difference  in  subculturing.  J774A.1  cells  are  subcultured  by  use  of  a   cell   scraper,   whereas   A549   cells   are   subcultured   by   trypsinization.   The   risk   of   damaging   cells   is   greater  when  using  a  cell  scraper  compared  to  trypsin.               40   100   Viability  (%)   Viability  (%)   100   50   0   a)   50   0   0 0.1   0.5     1 5   10   0 12.5   25     50   100   200   b)   LPS  (  µg/ml)   UV-­‐TiO2  (  µg/ml)   Figure   18   (a-­‐b).   Decrease   in   viability   for   J774A.1   cells   exposed   to   LPS   or   UV-­‐TiO2.   (Red=   experiment   1,   blue=   experiment   2).   J774A.1  cells  were  stimulated  with  LPS  (a):  0.1,  0.5,  1,  5,  and  10  µg/ml  or  UV-­‐TiO2  (b):  12.5,  25,  50,  100,   and  200µg/ml.  No  statistically  significant  decrease  in  viability  compared  to  unexposed  samples.  Every  dot  represents  a   mean  of  two  samples.  n=2.       Proliferation     Proliferation   was   calculated   based   on   the   measured   cell   count   values.   The   control   values   were   set   to  100%.   200,00   Proliferaoon  (%)   Proliferaoon  (%)   200,00   100,00   0,00   a)   100,00   0   0.1   0.5   1   LPS  (µg/ml)   5   10   0,00   b)   0   12.5   25   50   100   200   UV-­‐TiO2  (µg/ml)   Figure  19.  A549  cells  showed  no  statistically  significant  decrease  or  increase  in  the  proliferation  when  exposed  to   LPS  or  UV-­‐TiO2.  (Red=  experiment  1,  blue=  experiment  2).    A549  cells  were  exposed  to  LPS  (a):  0,  0.1,  0.5,  1,  5,  and   10µg/ml  or  UV-­‐TiO2  (b):  0,  12.5,  25,  50,  100,  and  200µg/ml.  No  statistically  significant  decrease  or  increase,  compared   to  the  unexposed  samples,  was  observed.  The  control  values  were  set  to  100  %.  Every  dot  represents  a  mean  of  two   samples.  n=2.     No  statistically  significant  effect  was  observed  on  the  proliferation  for  both  A549  and  J774A.1  cells   when   exposed   to   UV-­‐TiO2   or   LPS   (figure   19   (a-­‐b)   &   figure   20   (a-­‐b)).   No   increase   or   decrease   in   the   proliferation  was  observed  when  compared  to  the  unexposed  control  values.       41     200   Proliferaoon  (%)   Proliferaoon  (%)   200   100   0   0   0.1   0.5   1   5   10   LPS  (µg/ml)   100   0   b)   0 12.5   25     50   100   200   UV-­‐TiO2(µg/ml)   Figure  20  (a-­‐b):  J774A.1  cells  showed  no  statistically  significant  decrease  or  increase  in  proliferation  after  exposure   LPS  or  UV-­‐TiO2.  (Red=  experiment  1,  blue=  experiment  2).  The  proliferation  of  J774A.1  cells  exposed  to  LPS  (a):  0,  0.1,   0.5,  1,  5  and  10µg/ml  or  UV-­‐TiO2  (b):  0,  12.5,  25,  50,  100  and  200µg/ml.  No  statistically  significant  decrease  or  increase   in  proliferation  after  exposure  compared  to  the  unexposed  control  values.  The  control  values  were  set  to  100  %.  Every   dot  represents  a  mean  of  two  samples.  n=2.   qRT-­‐PCR   qRT-­‐PCR  measurements  were  preformed  to  evaluate  the  expression  level  of  SAA1  and  Saa3  mRNA   in  respectively  J774A.1  and  A549  cells.  The  results  are  given  as  a  fold  change  in  relative  SAA1  or   Saa3  mRNA  expression  level  when  compared  to  the  unexposed  control  value.  The  fold  change  was   calculated  based  on  the  normalized  Ct-­‐values.  All  data  was  normalized  with  18S  as  reference  gene.     The  experiment  was  repeated  twice.   A549     A549   cells   showed   a   statistically   significant   increase   in   the   relative   SAA1   mRNA   expression   level   when   exposed   to   LPS   (Figure   21).   The   highest   concentration   of   LPS   (10µg/ml)   surprisingly   didn’t   show   a   statistically   significant   increase   in   the   fold   change,   after   exposure.   A   dose-­‐response   relationship  was  expected  when  exposed  to  LPS.  The  response  levels  for  A549  cells  exposed  to  LPS   were  low  compared  to  J774A.1  cells  (Figure  21  &  Figure  23).       42   Fold  Change  (Relaove  SAA1  mRNA)   20   *   *   *   10   *   0   0   2   4   6   8   10   12   LPS  (µg/ml)     Figure  21.  A  statistically  significant  correlation  between  SAA1  mRNA  fold  change  and  different  LPS  concentrations.   A549   cells   were   exposed   to   LPS:     0.1,   0.5,   1,   5,   and   10   µg/ml.   All   the   concentrations,   besides   10µg/ml,   showed   a   statistically   significant   increase   in   fold   change   values   when   compared   to   the   unexposed   control   value.   Data   were   normalized   to   18S   reference   gene.   The   unexposed   control   value   was   set   to   1   on   the   y-­‐axis.   Every   dot   represents   a   mean  of  four  samples.  *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.  n=2.  The  error  bars  represent  the  SD.       A549   cells   showed   no   statistically   significant   relationship   between   the   relative   SAA1   mRNA   expressions  levels  and  different  concentrations  of  UV-­‐TiO2  (Figure  22).  The  fold  change  was  close   to  zero,  compared  to  the  unexposed  control  value.  This  indicates  that  A549  cells  didn’t  response   to  UV-­‐TiO2  on  a  SAA1  mRNA  level.           43   Fold  change  (Relaove  SAA1  mRNA)   20   10   0   0   50   100   150   200   UV-­‐TiO2     Figure  22.  No  statistically  significant  correlation  between  the  relative  SAA1  mRNA  expression  levels  when  exposed   to   different   concentrations   of   UV-­‐TiO2.   A549   cells   were   exposed   to   UV-­‐TiO2:   12.5,   25,   50,   100,   and   200µg/ml.   No   observed  statistically  significant  correlation  between  different  concentrations  of  UV-­‐TiO2,  compared  to  the  unexposed   control  value.  Data  was  normalized  to  18S  reference  gene.  The  unexposed  control  value  was  set  to  1  on  the  y-­‐axis.   Every  dot  represents  a  mean  of  four  samples.  n=2.  The  error  bars  represent  the  SD.     J774A.1     J774A.1  cells  were  exposed  to  different  concentration  of  LPS  or  UV-­‐TiO2.  A  statistically  significant   upregulation  of  the  relative  Saa3  mRNA  expression  level  in  J774A.1  cells  was  observed.  Figure  22   shows   a   correlation   tendency   between   the   different   concentrations   of   LPS   and   the   Saa3   mRNA   fold   change.   In   particular   the   concentrations   0.1   and   0.5µg/ml   showed   a   very   high   increase   on   35000-­‐fold  compared  to  the  unexposed  control  value  (Figure  23).  All  the  fold  change  values  were   statistically  significantly  different  compared  to  the  unexposed  sample.           44   Fold  change  (Relaove  Saa3  mRNA)   40000   ***   ***   ***   20000   ***   ***   0   0   2   4   6   LPS  (µg/ml)   8   10   12     Figure   23.   A   statistically   significant   upregulation   of   Saa3   mRNA   in   J774A.1   cells   after   LPS   exposure.   J774A.1   cells   were  exposed  to  LPS  in  different  concentrations:  0.1,  0.5,  1,  5,  and  10µg/ml.  A  statically  significant  increase  in  the  fold   change   values,   when   compared   to   the   unexposed   control,   was   observed.   Every   dot   represents   a   mean   of   four   samples.   Data   were   normalized   to   18S   reference   gene.   The   unexposed   control   value   was   set   to   1   on   the   y-­‐axis.   *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.  n=2.  Error  bars  represent  the  SD.  The  SD  values  were  too  small  to  be  seen  on  the   graph.     The   normalized   Ct-­‐values   for   J774A.1   cells   exposed   to   UV-­‐TiO2   were   all   high,   indicating   that   the   amount   of   Saa3   mRNA   was   very   low.   Although   a   low   amount   of   Saa3   mRNA,   a   statistically   significant   tendency   was   observed   (Figure   24).   All   concentrations   had   a   statistically   significant   increase  in  the  relative  Saa3  mRNA  level,  when  compared  to  the  control  value,  besides  the  lowest   concentration  12.5µg/ml.         45   Fold  change  (Relative  Saa3  mRNA)     20   10   *   *   * * 0   0   50   100   150   UV-­‐TiO  (µg/ml)   200   250     Figure   24.   A   statistically   significant   increase   in   the   fold   change   values   of   relative   Saa3   mRNA   in   J774A.1   after   exposure   to   UV-­‐TiO2.  J774A.1  cells  were  exposed  to  five  different  concentrations  of  UV-­‐TiO2:  12.5,  25,  50,  100,  and   200µg/ml.  A   statistically  significant  tendency  was  observed  for  all  concentrations  besides  12.5µg/ml,  compared  to  the   unexposed  control  value.  The  unexposed  control  value  was  set  to  1  on  the  y-­‐axis.  Every  dot  represents  a  mean  of  four   samples.   *=P≤0.05,   **=P≤0.01,   ***=P≤   0.001.   n=2.   All   values   were   normalized   to   18S   reference   gene.   Error   bars   represent  the  SD.   Conclusion  (Experiment  1)   Because  of  a  low  relative  SAA1  mRNA  expression  level  in  A549  cells,  exposed  to  either  UV-­‐TiO2  or   LPS,  compared  to  the  unexposed  samples,  only  J774A.1  cells  were  used  for  ELISA  analysis.     Furthermore,   J774A.1   cells   were   primed   with   LPS   to   investigate   if   it   could   induce   a   higher   Saa3   mRNA   expression   or   SAA3   concentration   in   J774A.1   cells   exposed   to   UV-­‐TiO2,   than   the   same   concentration  of  LPS  alone.           46   ELISA     The  greatly  induced  Saa3  mRNA  levels  (Figure  25),  as  a  consequence  of  exposure  to  LPS,  indicate   that   a   high   response   in   protein   level   may   also   be   observed.   ELISA   analyzes   were   therefore   preformed  to  measure  the  level  of  SAA3  protein  after  exposure  to  UV-­‐TiO2  or  LPS.        SAA3  (µg/ml)     5   2,5   ***   ***   ***   ***   ***   0   0   2   4   6   LPS  (µg/ml)   8   10   12     Figure  25.  The  ELISA  analysis  showed  a  statistically  significant  high  secretion  of  SAA3  proteins  when  stimulated  with   LPS.   J774A.1  cells  exposed  to  LPS:  0.1,  0.5,  1,  5,  and10µg/ml,  showed  a  statistically  significant  correlation  between  the   amount  of  SAA3  (µg/ml)  and  increasing  LPS  concentrations.  Every  dot  represents  a  mean  of  four  samples.  *=P≤0.05,   **=P≤0.01,  ***=P≤  0.001.  n=2.  Error  bars  represent  the  SD.       LPS  treated  samples  showed  a  statistically  significant  correlation,  which  reaches  a  plateau  after  5   µg/ml,   between   LPS   concentrations   and   SAA3   (µg/ml)   levels   in   supernatant   from   exposed   J774A.1   cells.       When   analyzing   the   SAA3   protein   level   in   samples   exposed   to   UV-­‐TiO2   only   the   three   highest   concentrations   were   chosen:   50,   100,   and   200µg/ml.   It   was   hypothesized   that   the   highest   response  of  SAA3  would  be  found  in  those  samples.         47   SAA3(µg/ml)   5   2,5   0   0   50   100   150   200   250   UV-­‐TiO2  (µg/ml)     Figure  26.  No  SAA3  proteins  detected  by  ELISA  analysis.  J774A.1  cells  exposed  to  different  concentrations  of     UV-­‐TiO2:   50,   100,   and   200µg/ml,   didn’t   show   any   detection   of   SAA3   protein.   Every   dot   represents   a   mean   of   four   samples.  n=2.       The   absorbance   values   for   the   samples   stimulated   with   UV-­‐TiO2   all   were   lower   than   the   blank   values  and  therefore  set  to  0.0µg/ml  SAA3  (Figure  26).    In  “reality”  the  samples  may  contain  a  very   little  amount  of  SAA3  and  not  precisely  0.0  µg/ml.                     48   Priming  with  LPS   The   priming   experiment   was   analyzed   both   on   protein   and   mRNA   level.   For   ELISA,   J774A.1   cells   exposed   to   UV-­‐TiO2   in   the   two   highest   concentrations:   100   and   200µg/ml,   were   primed   with   1µg/ml  of  LPS.  qRT-­‐PCR  is  considered  a  more  sensitive  testing  method  than  ELISA,  therefore  some   lower  concentrations  of  UV-­‐TiO2  were  chosen  as  well:  12.5,  25,  50,  100,  and  200µg/ml.     SAA3  (µg/ml)   2   100  (UV-­‐TiO2)+  1  (LPS)   1   200  (UV-­‐TIO2)+1(LPS)   1(LPS)   0   µg/ml     Figure  27.  Priming  with  LPS  showed  no  statistically  significant  decrease  or  increase  in  the  amount  of  SAA3  protein.   J774A.1  cells  exposed  to  UV-­‐TiO2  in  two  different  concentrations:  100  and  200  µg/ml  and  primed  with  1µg/ml  LPS.  The   values  were  compared  to  samples  only  treated  with  1  µg/ml  LPS.  Every  bar  represents  a  mean  of  four  samples.  n=2.   Error  bars  represent  the  SD.  The  SD  values  were  too  low  to  be  seen  on  the  graph.     No  statistically  significant  increase  in  the  SAA3  protein  concentrations  and  the  relative  Saa3  mRNA   fold  change  values  when  priming  with  LPS  was  observed  (Figure  27  &  Figure  28).           49   Fold  changes  (relaove  Saa3  mRNA)     40000   12.5  (TiO2+LPS)   25  (TiO2  +LPS)   50  (TiO2  +LPS)   20000   100  (TiO2  +LPS)   200  (TiO2  +LPS)   1  (LPS)   0   µg/ml     Figure  28.  Priming  with  LPS  showed  no  effect  on  Saa3  mRNA  response  level.  J774A.1  cells  exposed  to  UV-­‐TiO2:  12.5,   25,   50,   100,   and   200µg/ml,   were   primed   with   1µg/ml   LPS.   No   statistically   significant   decrease   or   increase   in   Saa3   mRNA   expression   level   was   observed   in   J774A.1   cells,   compared   to   samples   only   stimulated   with   only   1µg/ml   LPS.   Every  bar  represents  a  mean  of  four  samples.  All  values  were  normalized  to  18S  reference  gene.  *=P≤0.05,  **=P≤0.01,   ***=P≤  0.001.    n=2.  Error  bars  represent  the  SD.  The  SD  values  were  too  low  to  be  seen  on  the  graph.     Conclusion  (ELISA)   ELISA  assay  is  not  sensitive  enough  for  this  study  design.  Therefore  it  was  decided  to  only  use  qRT-­‐ PCR  in  further  experiments.   Experiment  2         Three   new   NMs   were   tested:   Printex-­‐90,   Mitsui   and   GO.   The   cells   were   exposed   to   the   NMs   in   only   the   three   highest   concentrations:   50,   100,   and   200µg/ml.   5   µg/ml   of   LPS   were   used   as   positive  control  in  all  the  experiments  (Appendix,  Table  15).  All  experiments  were  repeated  twice.   Time  Experiment   First   a   time   experiment   was   conducted   to   make   sure   that   the   most   optimal   was   24   hours   of   incubation   after   exposure.   Cells   were   exposed   to   Printex-­‐90,   Mitsui   and   GO   in   concentration   100µg/ml  and  harvested  after  3,  6,  and  24  hours.           50   10   Graphene  oxide   5   0   0   a)   Printex-­‐90   Mitsui   Fold  change  (Relaove  Saa3  mRNA)   Fold  change  (Relaove  SAA1  mRNA)   Printex-­‐90   5   10   15   Time  (hours)   20   25     10   Mitsui   Graphene  oxide   5   0   0   b)   10   20   Time  (hours)     Figure  29(a-­‐b).  A549  (a)  and  J774A.1  (b)  cells  exposed  to  Printex-­‐90,  Mitsui,  and  GO.  The  cells  were  harvested  at  3,  6,   and   24   hours   after   exposure   to   the   100   µg/ml   of   different   NMs.   No   statistically   significant   difference   was   found   between  the  different  time  points,  compared  to  the  unexposed  control  values.  The  unexposed  control  values  were  set   to  1  on  the  y-­‐axis.  The  experiments  were  run  with  5µg/ml  of  LPS  as  the  positive  control  (Appendix,  Table  15).  Values   were  normalized  to  18S  reference  gene.  All  values  are  a  mean  of  4  samples.  n=2.  Error  bars  represent  SD.     No   statistically   significant   difference   in   fold   change   values   were   found   at   the   different   time   points   compared   to   the   unexposed   control   values.   Although   not   statistically   significant,   SAA1   and   Saa3   mRNA   yield   was   in   general   higher   for   samples   harvest   24   hours   after   exposure   (Figure   29).   Therefore  it  was  decided  to  proceed  with  24  hours  of  incubation  time  after  exposure.               51   Viability  and  Proliferation     The   viability   and   proliferation   were   measured   and   calculated   for   A549   and   J774A.1   cells   after   exposure.  The  cells  were  exposed  to  Printex-­‐90,  Mitsui  and  GO.     100   ***   50   ***   ***   Viability  (%)   Viability  (%)     100   50   0   0   50   100   150   *   50   100   *   0   200   Printex-­‐90  (µg/ml)   a)   *   b)   0   150   200   Mitsui  (µg/ml)   Viability  (%)   100   50   0   c)   0   50   100   150   200   GO  (µg/ml)     Figure   30(a-­‐c).   A   decrease   in   viability   for   J774A.1   cells   after   exposure   to   NMs.   (Blue=Experiment   1,   Red=Experiment2).  J774A.1  cells  exposed  to  Printex-­‐90  (a)  and  Mitsui  (b)  showed  a  statistically  significant  decrease  in   viability   compared   to   the   unexposed   control   values.   J774A.1   cells   exposed   to   GO   showed   no   statistically   significant   decrease  in  the  viability  compared  to  the  unexposed  control  values.   NMs  were  given  in  three  different  concentrations:   50,   100,   and   200µg/ml.   5   µg/ml   of   LPS   were   used   as   the   positive   control   (Appendix,   Table   16).   Every   dot   represents   a   mean  of  two  samples.  n=2.  *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.     The  viability  of  J774A.1  cells  decreased  statistically  significantly  for  cells  exposed  to  Printex-­‐90  and   Mitsui   compared   to   the   unexposed   control   values   (Figure   30   (a-­‐b)).   No   statistically   significant       52   decrease   was   observed   when   cells   were   exposed   to   GO   (Figure   30   (c)).   A   statistically   significant   decrease  in  the  proliferation  was  also  observed  after  exposure  (Figure  31(a-­‐c)).   100   ***   50,00   ***   ***   Proliferaoon  (%)   Proliferaoon  (%)   100,00   0,00   0   a)   50   100   150   **   50   **   **   0   200   b)   Printex-­‐90  (µg/ml)   0   50   100   150   200   Mitsui  (µg/ml)   Proliferaoon  (%)     100   ***   50   ***   ***   0   0   c)   50   GO  (µg/ml)   100   150   200     Figure  31  (a-­‐c).    The  proliferation  of  J774A.1  cells  was  statistically  significantly  decreased  when  exposed  to  NMs.     (Blue=Experiment   1,   Red=Experiment2).   J774A.1   stimulated   with   Printex-­‐90   (a)   showed   a   significant   decrease   in   proliferation  compared  to  control  values.  b)  J774A.1  cells  exposed  to  Mitsui  showed  a  statistically  significant  decrease   in   proliferation.   c)   J774A.1   cells   exposed   to   GO   showed   a   statistically   significant   decrease   in   the   proliferation   compared   to   the   unexposed   control   values.   NMs   were   given   in   three   different   concentrations:   50,   100,   and   200   (µg/ml).  The  experiments  were  run  with  LPS  (5  µg/ml)  as  the  positive  control  (Appendix,  Table  16).  The  control  value   was  set  to  100%.  Every  dot  represents  a  mean  of  2  samples.  n=2.  *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.     In  contrast  to  the  J774A.1  cells,  A549  cells  didn’t  alter  proliferation  rates  or  viability  when  exposed   to   the   different   NMs   (Table   13).   This   finding   is   in   correlation   with   the   results   from   the   pilot   experiment,  where  A549  cells  were  stimulated  with  UV-­‐TiO2  (Figure  17  (a-­‐b)  &  Figure  19  (a-­‐b)).           53   Table  13.  No  statistically  significant  decrease  in  viability  or  proliferation  for  A549  cells  exposed  to  NMs.  A549  cells   were   exposed   to   three   different   NMs:   Printex-­‐90,   Mitsui,   and   GO.   No   statistically   significant   difference   was   found   either  for  viability  or  proliferation,  when  compared  to  the  unexposed  control.  The  experiments  were  run  with  5  µg/ml   of   LPS   as   the   positive   control.   The   values   are   a   mean   of   4   samples.   The   control   values   for   the   proliferations   data   were   set  to  100%.  n=2.   NMs   Printex-­‐90         LPS     Mitsui         LPS   GO           LPS   Concentration   (µg/ml)   0   50   100   200   5   0   50   100   200   5   0   50   100   200   5   Mean  viability     (%)   87.1   77.7   84.2   85.0   87.9   85.0   81.0   86.3   88.0   88.7   89.3   91.2   94.7   93.4   97.5   SD     (Viability)   3.3   3.7   1.3   0.9   1.2   3.0   4.6   7.5   1.4   0.6   0.8   1.3   3.9   1.4   0.8   Mean   proliferation  (%)   100.0   117.9   91.5   93.8   94.2   100.0   90.4   94.2   110.1   97.2   100.0   104.8   75.9   89.2   89.1   SD   (Proliferation)   0.6   6.3   1.6   3.4   2.5   0.9   3.3   1.1   6.5   2.4   1.4   3.2   4.3   1.6   0.3     qRT-­‐PCR   A549  cells  exposed  to  Printex-­‐90,  Mitsui,  and  GO  showed  no  statistically  significant  increase  in  the   relative  expression  level  of  SAA1  mRNA  (Figure  32).  In  general  the  fold  change  values  for  J774A.1   cells   were   higher   compared   to   fold   changes   values   for   A549   cells,   which   also   was   observed   in   experiment  1  (Figure  22  &  Figure  24).       54   Fold  chamge  (SAA1  mRNA)   10   Printex-­‐90   5   Mitsui   Graphene  oxide   0   0   50   100   150   200   µg/ml     Figure   32.   A549   cells   showed   no   statistically   significant   increase   in   the   fold   change   compared   to   the   unexposed   samples.   A549   cells   were   exposed   to   Pritex-­‐90,   Mitsui   and   GO   in   concentrations:   50,   100,   and   200µg/ml.   No   statistically  significant  increase  in  the  fold  change  compared  to  the  unexposed  samples.  The  unexposed  control  values   were  set  to  1  on  the  y-­‐axis.  The  experiment  was  run  with  5  µg/ml  of  LPS  as  the  positive  control  (Appendix,  Table  17).   Every   dot   represents   a   mean   of   four   samples.   All   values   were   normalized   to   18S   reference   gene.   n=2.   Error   bars   represent  the  SD.     Of  the  three  tested  NMs  only  Mitsui  statistically  significantly  induced  an  increase  in  Saa3  mRNA   expression   in   the   J774A.1   cells   at   concentrations   100   and   200µg/ml.   The   fold   change   was   increased  five  times  compared  to  the  control  value  (Figure  33).  The  fold  increase  seems  to  reach   plateau   between   100   and   200µg/ml,   none   of   the   other   concentrations   or   NMs   showed   a   statistically  significant  fold  change  compared  to  the  unexposed  samples.                 55   Fold  change  (relaove  Saa3  mRNA)     10   * * 5   Printex-­‐90   Mitsui   Graphene  oxide   0   0   50   100   150   200   µg/ml     Figure  33.  Only  J774A.1  cells  exposed  to  Mitsui  had  a  statistically  significant  increase  in  fold  change.  J774A.1  cells   were  exposed  to  Printex-­‐90,  Mitsui,  and  GO.  Only  cells  exposed  to  Mitsui  in  the  concentrations:  100  and  200µg/ml,   showed   a   statistically   significant   increase   in   the   fold   change   compared   to   the   unexposed   control   values.   The   unexposed   control   values   were   set   to   1   on   the   y-­‐axis.   The   experiments   were   run   with   LPS   (5   µg/ml)   as   the   positive   control  (Appendix,  Table  17).    *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.   Every  dot  represents  a  mean  of  four  samples.  All   values  were  normalized  to  18S  reference  gene.  n=2.  Error  bars  represent  the  SD.   Conclusion  (Experiment  2):     Despite   the   generally   low   expression   levels,   J774A.1   cells   showed   a   positive   tendency   after   exposure   compared   to   the   unexposed   samples.   Further   experiments   with   A549   cells   were   therefore  stopped  due  to  a  general  low  SAA1  mRNA  expression  level.     J774A.1  cells  were  tested  for  Mcp-­‐1  mRNA  expression  level  after  exposure  to  the  four  NMs.     Mcp-­‐1     Mcp-­‐1,   like   Saa,   has   been   implicated   in   the   pathogenesis   of   atherosclerosis   [136].   I   therefore   measured   Mcp-­‐1   in   J774A.1   cells   after   exposure   to:   Printex-­‐90,   Mitsui,   GO,   and   UV-­‐TiO2   (Figure   34).    5µg/ml  of  LPS  was  used  as  the  positive  control  (Appendix,  Table  17).           56   Fold  change  (Mcp-­‐1  mRNA)   10   Printex-­‐90   Mitsui   Graphene  oxide   5   TiO2   0   0   50   100   µg/ml   150   200     Figure  34.  No  statistically  significant  increase  in  the  expression  of  Mcp-­‐1  mRNA  after  exposure.  J774A.1  cells  were   exposed  to:  Printex-­‐90,  Mitsui,  GO,  and  UV-­‐TiO2.  The  NMs  were  given  in  three  different  concentrations:  50,  100,  and   200µg/ml.   No   statistically   significant   difference   in   the   fold   change   values   of   relative   Mcp-­‐1   mRNA   compared   to   the   unexposed  samples  for  all  NMs.   The  unexposed  control  values  were  set  to  1  on  the  y-­‐axis.  The  experiment  was  run   with   5   µg/ml   of   LPS   as   the   positive   control   (Appendix,   17).   Every   dot   represents   a   mean   of   four   samples.   All   values   were  normalized  to  18S  reference  gene.  n=2.  The  error  bars  represent  SD.  The  SD  values  were  too  low  to  be  seen  on   the  graph.     No  statistically  significant  increase  or  decrease  in  the  Mpc-­‐1  fold  change  was  found  after  exposure   to  all  four  NMs  (Figure  34).  For   GO  and  UV-­‐TiO2  there  was  a  decrease  in  the  fold  change  values   after  exposure.  Although  not  statistically  significant,  this  tendency  was  also  observed  for  GO  when   testing  for  Saa3  mRNA  fold  change  (Figure  33).     The  normalized  Ct-­‐values  for  Mcp-­‐1  were  all  quite  low,  meaning  that  there  was  generally  a  high   Mcp-­‐1   mRNA   expression   level   in   the   cells.   The   unexposed   and   the   exposed   samples   all   had   the   same  normalized  Ct-­‐  values  indicating  that  the  exposure  of  NMs  was  not  the  reason  for  the  high   expression  level.  The  positive  control  had  a  10.2-­‐fold,  fold  change  in  J774A.1  cells  compared  to  the   unexposed  values  (Appendix,  Table  17).             57   Cell  Cycle  Analysis     Due   to   a   limited   access   to   the   cell   cycle   machine   (Nucleocounter   NC-­‐250)   only   the   A549   and   J774A.1  cells  exposed  to  Printex-­‐90  and  Mitsui  at  concentration  100  µg/ml  were  analyzed.     Printex-­‐90  and  Mitsui  were  chosen  because  of  a  statistically  significant  decrease  in  both  viability   and  proliferation  after  exposure  in  J774A.1  cells  (Figure  30(a-­‐b)  &  Figure  31(a-­‐b)).        Figure   35.   J774A.1   cells   exposed   to   Printex-­‐90   and   Mitsui   stop   dividing.   J774A.1  cells  were  exposed  to  Printex-­‐90   (CB)   and   Mitsui   (CNT)   in   the   concentration   100µg/ml.     A   stop   in   cell   cycle   was   observed   when   exposed   to   NMs   compared  to  the  unexposed  sample.  n=1.       An   alteration   in   the   cell   cycle   was   seen   when   cells   were   exposed  to   Printex-­‐90   or   Mitsui   (Figure   35).   No   new   cells   started   dividing   after   the   exposure.   The   result   is   in   correlation   with   the   statistically   significant   decrease   in   proliferation   and   viability,   observed   in   J774A.1   cells   after   exposure  (Figure  30(a-­‐b)  &  Figure  31  (a-­‐b)).       58   In  contrast,  A549  cells  didn’t  show  any  alterations  in  the  cell  cycle.  After  exposure,  they  were  not   affected   by   the   NMs   on   a   cell   cycle   level   (Figure   36).   This   finding   was   also   in   correlation   with   observed   proliferation   and   viability   data   form   A549   cells   (Table   13),   where   no   statistically   significant  difference  in  the  proliferation  was  observed  when  exposed  to  NMs.     Figure  36.  Cell  cycle  analysis  showed  no  alternations  in  the  cell  cycle  after  exposure  of  Printex-­‐90  and  Mitsui  in  A549   cells.   A549  cells  were  exposed  to  Printex-­‐90  (CB)  and  Mitsui  (CNT)  in  the  concentration  100  µg/ml.  The  NMs  had  no   effect  on  the  cell  cycle  of  A549  cells.  n=1.                   59   Discussion     Previous  studies  have  linked  the  exposure  of  particles  to  the  risk  of  the  development  of  CVD  [2-­‐4].   Inhalation  of  NMs  has  been  reported  to  induce  a  strong  pulmonary  APR  associated  with  increasing   levels  of  SAA  [14-­‐16].  SAA  is  considered  a  risk  marker  for  the  development  of  atherosclerosis,  but   the  cellular  origin  of  SAA  is  still  not  understood     The  high  production  volume  of  many  different  NMs  has  presented  a  problem  in  risk  assessment.   Risk   assessment   of   NMs   in   vivo   is   both   costly   in   time   and   money   [17].   Although   in   vitro   experiments  are  less  time-­‐consuming  and  expensive,  poor  accordance  between  the  two  systems   has  been  reported  [36,96,97].  Development  of  an  in  vitro  assay,  which  predicts  the  effect  of  NMs   in   vivo,   could   save   time,   money,   and   laboratory   animals.   Due   to   this,   I   wanted   to   the   measure   the   expression   levels   of   SAA1,   Saa3   and   Mcp-­‐1   mRNA   after   exposure   to   different   NMs.   Furthermore,   I   wanted  to  rank  the  NMs  according  to  their  effect  on  SAA1,  Saa3,  and  Mcp-­‐1  mRNA  levels,  which   were  considered  biomarkers  for  CVD.     LPS-­‐Induced  mRNA  Expression  Levels   Throughout  my  experiments,  LPS  was  used  as  the  positive  control  based  on  previous  studies  that   have  reported  it  to  be  a  potent  inducer  of  SAA  and  MCP-­‐1  in  vitro  [86-­‐88,98].  In  general,  A549  and   J774A.1  cells  showed  large  differences`  in  mRNA  expression  levels  after  exposure  to  LPS  (Figure  21   &   Figure   23).   Previous   studies   have   reported   LPS   to   be   a   potent   inducer   of   SAA3   secretion   in   macrophages  [86-­‐88].  I  obtained  similar  results,  showing  a  high  upregulation  of  both  Saa3  mRNA   and   SAA3   protein   levels   after   exposure   to   LPS   in   J774A.1   cells,   compared   to   the   unexposed   samples.  As  with  Saa3,  Mcp-­‐1  mRNA  expression  levels  were  also  statistically  significantly  increased   after  exposure  to  LPS  in  J774A.1  cells  (Appendix,  Table  17).  My  result  is  in  agreement  with  other   studies   that   have   reported   LPS   as   inducing   the   transcription   of   Mcp-­‐1   both   in   vivo   and   in   vitro   [99,100].   In  my  experiments,  the  SAA1  mRNA  expression  levels  after  exposure  to  LPS  were  modest  in  A549   cells  compared  to  J774A.1  cells.  It  has  been  reported  that  10  µg/ml  of  LPS  induces  necrotic  insult   in  A549  cells,  which  was  in  contrast  to  my  findings  where  no  changes  in  viability  were  observed   (Figure   17a).   Bozinovski   et   al.   (2011)   [101]   reported   that   A549   cells   stimulated   with   10-­‐9   M   of   SAA   had  a  statistically  significant  increase  in  IL-­‐8  production.  If  I  were  to  carry  out  further  experiments,   I  would  grow  A549  and  J774A.1  cells  in  co-­‐cultures  to  assess  whether  LPS-­‐induced  release  of  SAA3       60   from   J774A.1   cells   could   stimulate   A549   cells   to   secrete   IL-­‐8,   which   in   turn   enhances   the   pro-­‐ inflammatory  response.     I  observed  a  difference  in  Saa3  mRNA  expression  levels  between  J774A.1  cells  exposed  to  LPS  or   NMs   (Figure   23,   Figure   24,   and   Figure   33).   This   indicates   that   LPS   and   NMs   may   induce   pulmonary   APR   through   different   receptors.   It   is   well   established   that   LPS   stimulates   an   immune   response   by   interacting   with   tools   like   receptor   4   (TLR4)   on   the   cell   surface   membrane   [102].   Poulsen   et   al.   (2015)  [85]  reported  an  up-­‐regulated  expression  of  many  different  receptors,  including  Tlr2,  Tlr5,   and   Tlr13,   in   lung   tissue   from   mice   after   exposure   to   MWCNT.   This   indicates   that   the   NM-­‐induced   pulmonary   APR   is   more   likely   to   be   mediated   through   several   different   receptors   and   not   just   TLR4.       NM-­‐induced  mRNA  Expression  Levels     In  general,  the  normalized  Ct-­‐values  for  SAA1  and  Saa3  were  high,  in  both  A549  and  J774A.1  cells,   indicating  a  low  expression  level  of  mRNA  after  exposure.  Analysing  the  SAA3  protein  levels,  the   protein   concentrations   were   too   low   to   be   detected   by   ELISA   (Figure   26)   after   exposure   to   UV-­‐ TiO2.   The   ability   of   qRT-­‐PCR   to   detect   a   signal   compared   to   ELISA   reflects   differences   in   the   sensitivity  of  the  two  methods.     The   average   mRNA   fold   change   values   were   approximately   3-­‐fold   higher   compared   to   the   unexposed  samples,  with  only  J774A.1  cells  exposed  to  UV-­‐TiO2  and  Mitsui  showing  a  statistically   significant  increase  (Figure  24  &  Figure  33).  A549  cells  showed  no  statistically  significant  effect  on   SAA1   mRNA   level   after   exposure   compared   to   the   unexposed   samples   (Figure   22   &   Figure   32).   Mitsui   and   UV-­‐TiO2   were   the   only   NMs   that   gave   a   statistically   significant   increased   Saa3   mRNA   fold   change   value   in   J774A.1   cells.   The   statistically   significant   highest   fold   change   values   were   obtained  after  exposure  to  UV-­‐TiO2  (figure  24).  I  had  expected  Mitsui  to  be  the  most  toxic  because   of   it   being   a   high-­‐aspect   to   ratio   NMs   (HARN),   which   have   a   structural   composition   similar   to   asbestos  [103].  In  general,  previous  studies  have  reported  that  the  Mitsui-­‐induced  response  was   greater   compared   to   other   NMs   in   vivo   [15,104].   Saber   et   al.   (2013)   [15]   exposed   mice   by   intratracheal  instillation  to  several  NMs,  including  Mitsui,  UV-­‐TiO2,  and  Printex-­‐90.  The  NMs  were   given   in   three   different   concentrations:   18,   54,   or   162   µg/animal,   and   pulmonary   RNA   was   assessed   1,   3,   and   28   days   after   instillation.   All   the   NMs   increased   pulmonary   Saa3   mRNA   expression   level   in   a   time-­‐   and   dose-­‐dependent   manner.   Table   14   lists   the   mean   fold   change       61   values  obtained  in  my  experiments  compared  to  Saber  et  al.  (2013)  [15].  At  the  early  time  points   and  at  concentration  162  µg/animal,  Mitsui  and  UV-­‐TiO2  gave  the  strongest  response  with  600-­‐fold   and   400-­‐fold   increases   in   pulmonary   Saa3   mRNA   expression,   respectively.   Although   my   results   also  indicated  that  Mitsui  and  UV-­‐TiO2  induced  the  highest  Saa3  mRNA  expression  level  in  J774A.1   cells,  the  magnitude  of  the  response  was  almost  240  times  higher  in  vivo.  The  difference  in  Saa3   mRNA  expression  levels  observed  in  my  experiments  compared  to  Saber  et  al.’s  (2013)  [15]  results   illustrates  the  difficulties  in  mimicking  in  vivo  conditions  in  vitro.   Table  14.  Comparison  of  fold  change  values  in  vitro  and  in  vivo  [15].     NMs   Fold  change  values,   Difference  in   Fold  change   SAA1  (mean)   Saa3  (mean)   fold  change     values,  Saa3   (my  experiments,  A549   (my  experiments,   (in  vitro(mean)   (Saber  et  al.   cells)   J774A.1  cells)   vs.  in  vivo)   (2013),  in  vivo)   Mitsui   0.93   4.02   240   600   UV-­‐TiO2   1.53   5.04   125   400   Printex-­‐90   1.98   1.51   56.88   >100   GO   0.73   0.58   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐       Fold  change  values,     The  little  correlation  between  fold  change  values  found  in  my  experiments  compared  to  Saber  et   al.’s   (2013)   [15]   is   similar   to   previous   studies   that   have   investigated   NMs   in   vivo   and   in   vitro   [96,97].   Poulsen   et   al.   (2013)   [36]   investigated   the   effect   of   Mitsui   in   vivo   and   in   vitro.   They   exposed   mice   for   18,   54,   or   162   µg   of   Mitsui/animal   and   MutaTM   mouse   lung   epithelial   cell   line   (FE1)  for  12.5,  25,  and  100  µg  Mitsui/ml  medium.  Samples  were  collected  24  hours  post-­‐exposure.   The   dose   162   µg/animal   showed   a   statistically   significant   45.6-­‐fold   upregulation   of   Saa3   mRNA   and  a   statistically  significant   4-­‐fold  upregulation  of  Mcp-­‐1.  The  genes  were  upregulated  in  a  dose-­‐ dependent  manner.  In  contrast  to  their  in  vivo  observations,  no  statistically  significant  increase  in   Saa3  and  Mcp-­‐1  mRNA  expression  levels  were  found  in  vitro.  Boucetta  et  al.  (2013)  [104]  tested   the  effect  of  GO  in  vivo  and  in  vitro.  A549  cells  were  exposed  to  0-­‐125  µg/ml  of  GO  and  mice  were   intraperitoneally  injected  with  50  µg  of  GO  in  0.5  ml  0.5  %  BSA/saline  and  compared  to  pristine   MWCNT.  They  reported  no  statistically  significant  increase  in  the  inflammatory  response  in  vitro  or   in   vivo.   Only   mice   exposed   to   MWCNTs   showed   and   enhanced   inflammatory   response.   These   results   are   in   agreement   with   my   observations   in   J774A.1   cells.   J774A.1   cells   exposed   to   GO       62   showed   no   statistically   significant   increase   in   Saa3   mRNA   expression   levels,   compared   to   the   unexposed   cells,   whereas   Mitsui   exposure   resulted   in   a   statistically   significant   increase.   In   agreement   with   my   findings,   both   Poulsen   et   al.   (2013)   [36]   and   Boucetta   et   al.   (2013)   [104]   reported  no  statistically  significant  increase  in  pro-­‐inflammatory  cytokines  in  epithelial  cells  after   exposure   to   either   Mitsui   or   GO.   This   indicates   that   epithelial   cells   might   play   a   more   indirect   role   and  may  not  be  a  good  cell  model  for  NM-­‐induced  pulmonary  APR  when  grown  in  monocultures.     Studies   have   reported   that   inhalation   of   NMs   in   vivo   induced   a   pulmonary   APR   and   close   to   no   hepatic   APR   [14,15].   Weydahl   (2015)   [105]   investigated   the   pulmonary   and   hepatic   APR   after   exposure  to  Mitsui,  UV-­‐TiO2,  Printex-­‐90,  and  GO  in  vivo.  She  found  that  MWCNTs  in  particular  was   prone   to   induce   both   a   hepatic   and   pulmonary   APR   in   a   dose-­‐   and   time-­‐dependent   manner.   Furthermore,   the   hepatic   APR   was   correlated   with   neutrophil   influx   in   the   lungs,   indicating   that   the  pulmonary  exposure  to  MWCNTs  triggers  an  induction  of  hepatic  APR.  Weydahl  (2015)  [105]   results   indicate   that   the   NM-­‐induced   APR   may   be   a   very   complex   process   with   interactions   between   cells   from   both   liver   and   lungs.   Mimicking   of   this   in   vitro   would   be   very   complicated.     J774A.1  cells  have  been  shown  to  release  IL-­‐6  in  response  to  exposure  of  NMs  [106],  which  in  turn   may  activate  a  hepatic  APR.  Although  it`s  a  very  simple  setup,  it  could  be  interesting  to  investigate   if  exposure  of  alveolar  macrophages  stimulated  with  MWCNT  could  induce  hepatocytes  to  secrete   SAA,  when  grown  in  co-­‐culture.     NM-­‐induced  Cytotoxicity     Although   the   NMs   showed   a   modest   effect   on   Saa3   and   Mcp-­‐1   mRNA   expression   levels,   the   viability   and   proliferation   were   statistically   significantly   decreased   in   J774A.1   cells   in   a   dose-­‐ dependent  manner  (Figure  30  &Figure  31).  All  the  NMs,  besides  UV-­‐TiO2  (Figure  18b  &  Figure  20b),   had  a  cytotoxic  effect  on  J774A.1  cells,  with  Printex-­‐90  being  the  most  potent  (Figure  29a  &  Figure   30a).   A549   cells   exposed   to   NMs   showed   no   cytotoxic   effect   (Figure   17b,   Figure   19b,   and   Table   13).   The   variation   in   cytotoxic   effect   of   NMs   between   A549   and   J774A.1   cells   may   reflect   the   difference  in  sensitivity  to  NMs.  This  was  tested  by  Kroll  et  al.  (2008)  [107]  who  investigated  the   effect   of   23   different   NMs   in   ten   different   cell   lines,   including   A549   cells.   They   found   a   big   difference   in   cytotoxic   effect   across   cell   lines,   indicating   the   necessity   in   testing   different   cell   lines   in  risk  assessments  of  NMs.         63   Being   cancer   cell   lines,   I   had   expected   both   A549   and   J774A.1   cells   to   be   more   resistant   to   the   cytotoxic  effect  of  NMs  since  they  have  defects  in  cell  death  and  cell  cycle-­‐related  pathways.  Feliu   et   al.   (2014)   [108]   compared   the   cytotoxic   effect   of   cationic   NMs   in   primary   human   bronchial   epithelial  cells  (PBECs)  and  A549  cells.  They  observed  that  the  cationic  NMs  only  had  a  cytotoxic   effect   on   PBECs   and   not   A549   cells.   Primary   cells   may   be   more   representative   of   the   in   vivo   system,   but   their   heterogeneity   and   finite   lifespan   represent   a   major   challenge   when   constructing   a  quantitative  assay.       Study  Design     The   large   difference   in   magnitude,   of   the   fold   change   values,   between   my   observations   in   vitro   and   previously   published   in   vivo   results   is   most   likely   due   to   difficulties   in   replicating   the   complexities  of  the  in  vivo  system.  In  general,  the  relative  mRNA  expression  levels  were  too  low  to   conduct  an  actual  quantitative  assay  that  ranks  the  NMs  according  to  their  effect  on  SAA1,  Saa3,   and  Mcp-­‐1  mRNA  levels.     The   following   will   be   a   discussion   of   different   aspects   of   the   study   design,   which   could   be   optimized.       Choice  of  Cell  Line   Alveolar   type   II   epithelial   and   alveolar   macrophages   cell   lines   were   chosen   as   cell   models   because   they   are   considered   as   being   potential   early   targets   of   inhaled   NMs   in   the   lungs   [25,109,110].   Inhaled  NMs  will,  due  to  their  small  size,  deposit  in  the  alveolar  region  of  the  lungs,  where  they   will   encounter   alveolar   macrophages.   Alveolar   macrophages   are   the   first   line   of   defence   in   the   lungs.   If   the   concentrations   of   NMs   in   the   alveoli   exceed   the   capacity   of   the   macrophages   to   phagocytize,  translocation  from  the  lung  into  the  bloodstream  can  occur.  NMs  have  been  reported   to   reach   the   systemic   circulation   [111,112].   Considering   that   alveoli   have   the   most   permeable   epithelial  layer  of  all,  it  might  be  the  route  of  entry  for  NMs  to  go  into  circulation  from  the  lungs.     Furthermore,   alveolar   type   II   cells   and   tissue   macrophages   have   both   been   reported   to   express   SAA,  which  is  considered  a  risk  marker  for  development  of  atherosclerosis  [113-­‐115].  Besides  their   potential  role  in  the  NM-­‐induced  pulmonary  APR,  macrophages  are  reported  to  play  a  key  role  in   the   development   of   atherosclerosis   [116,117].   Macrophage-­‐derived   foam   cells   are   a   key   component   of   atherosclerotic   plaque   [118,119].   Lee   et   al.   (2013)   [57]   investigated   the   effect   of   SAA   on   foam   cell   formation   by   stimulating   Raw264.7   cells   with   LDL   and   SAA.   They   found   that   SAA       64   statistically  significantly  increased  foam  cell  formation  in  a  concentration-­‐dependent  manner.  This   indicates   that   the   NM-­‐induced   release   of   SAA   from   alveolar   macrophages   in   turn   also   could   stimulate   foam   cell   formation.   Suzuki   et   al.   (2014)   [120]   exposed   human   monocytic   leukemia   cells   (THP-­‐1)  to  metal  oxide  NP.  The  metal  oxide  NP  increased  the  uptake  of  cholesterol  by  upregulating   the  expression  of  SR-­‐BI  resulting  in  foam  cell  formation.  This  was  also  shown  by  Cao  et  al.  (2014)   [121]   who   exposed   THP-­‐1a   cells   for   Printex-­‐90,   which   significantly   increased   the   lipid   accumulation.   Based   on   Cao   et   al.   (2014)   [121]   and   Suzuki   et   al.   (2014)   [120]   observations   I   would   hypothesize  that  exposure  of  NMs  to  macrophages  could  stimulate  the  release  of  SAA,  which  in   turn  could  bind  to  SR-­‐BI  and  inhibit  the  cellular  cholesterol  efflux  resulting  in  increased  foam  cell   formation.     Dose  Selection  and  Exposure     I   hypothesized,   based   on   in   vivo   publications   that   higher   concentrations   of   NMs   would   induce   a   more   potent   mRNA   response   in   vitro,   but   I   didn’t   observe   this.   Redoing   my   experiments   with   higher   in   vitro   concentrations   to   get   a   higher   Saa   mRNA   yield   may   result   in   increased   cytotoxicity.   Exposing  J774A.1  cells  to  higher  concentrations  than  200  µg/ml  might  result  in  viability  lower  than   20  %.  A  low  viability  may  also  affect  the  Saa  mRNA  expression  levels.  Besides  the  low  viability,  a   general  problem  of  using  high  in  vitro  doses  is  that  it  is  unrealistic  compared  to  in  vivo  doses.  Table   2   compares   the   in   vitro   doses   used   in   my   studies   with   those   most   commonly   used   in   in   vivo   doses   [15,84,85,122].  The  highest  dose  in  vitro,  200  µg/ml,  is  almost  32  times  higher  than  the  highest  in   vivo   dose   100  µg/animal.   Although   the   in   vitro   doses   are   much   higher,   observed   Saa   mRNA   expression   levels   of   target   genes   were   low   compared   to   previous   published   in   vivo   studies.   This   reflects  the  difficultly  in  establishing  an  in  vitro  model  that  predicts  the  in  vivo  results.  The  lack  of   different  cell-­‐cell  interactions  and  cell  signalling  in  vitro  represents  a  big  challenge.     The   use   of   lower   doses   and   longer   incubation   times   would   be   a   more   realistic   exposure.   Only   a   limited  number  of  studies  have  compared  the  effect  of  lower  doses  of  NMs  and  longer  exposure   times   [105,123].   Comfort   et   al.   (2014)   [124]   investigated   the   effect   of   very   low   doses   (0.4-­‐ 400  pg/ml)  of  Ag-­‐NP  in  keratinocyte  cells  (HaCaTs).  To  mimic  the  occupational  exposure  scenario,   cells   were   exposed   for   8   hours   a   day,   5   days   a   week,   for   14   weeks.   The   amount   of   pro-­‐ inflammatory  cytokines,  IL-­‐6  and  TNF-­‐α,  was  analysed  with  ELISA.  They  observed  that  Ag-­‐NP  didn’t   statistically  significantly  increase  the  pro-­‐inflammatory  cytokines  after  14  weeks  when  compared       65   to   24   hours   of   exposure.   Although   they   observed   no   statistically   significant   increase   in   pro-­‐ inflammatory  cytokines  after  14  weeks  compared  to  24  hours  of  exposure,  the  results  can  vary  a   lot   according   to   the   use   of   different   NMs   and   different   cell   lines.   It   could   be   interesting   to   investigate  the  effect  of  longer  exposure  times  and  lower  doses  in  order  to  construct  a  screening   assay   that   is   more   realistic   to   the   in   vivo   doses.   Even   though   the   in   vitro   doses   are   in   general   considered   high   compared   to   in   vivo,   a   major   challenge   lays   in   the   submerged   exposure.   Determining  the  actually  cellular  dose,  after  adding  the  NMs  directly  to  the  bottom  of  the  well,  is   difficult  because  only  a  fraction  may  actually  reach  the  cells.  Cells  do  in  general  respond  to  NMs  by   internalization  and  not  to  materials  that  remain  suspended  in  media  [125,126].  Processes  such  as   diffusion  and  sedimentation,  which  are  depending  on  size,  shape,  and  density,  can  have  an  effect   on   the   actual   cellular   dose.   Smaller   NMs   (≤40  nm)   are   primarily   driven   by   diffusion,   while   larger   NMs   (≥40  nm)   are   mostly   driven   by   sedimentation.   Larger   materials   (1000  nm)   will,   because   of   gravity,  sediment  more  rapidly  [125,127].  Teeguarden  et  al.  (2007)  [126]  calculated  that  1  nm  NMs   are,  in  respect  to  transport  rate,  10  times  more  potent  than  10-­‐  and  100  nm  NMs,  but  10  times   less  potent  than  1000  nm  materials.  In  my  experiments,  LPS  was  a  more  potent  inducer  of  Saa3   mRNA   expression   than   NMs.   The   average   size   of   LPS   particles   are   235-­‐860  nm   [128],   indicating   that   LPS   particles   will   more   rapidly   sediment   than   NMs.   LPS   and   nano-­‐TiO2   have   both   been   shown   to   promote   an   inflammatory   response   through   TLR4   [129,130].   Hypothesizing   that   all   four   NMs   bind  to  TLR4,  the  difference  in  magnitude  of  response  may  be  an  indication  of  a  low  cellular  dose   when  compared  to  LPS.  As  mentioned,  NMs  are  likely  to  bind  to  several  different  TLRs,  indicating   that   the   low   SAA1,   Saa3,   and   Mcp-­‐1   mRNA   expression   levels   in   A549   and   J774A.1   cells   after   exposure   to   NMs   is   due   to   many   different   factors   and   cannot   be   narrowed   down   to   just   the   cellular  dose.     Culturing     Besides   the   different   aspects   already   mentioned,   the   culturing   method   may   constitute   a   big   limitation.   A549   and   J774A.1   cells   were   grown   in   single-­‐cell   cultures,   which   is   the   simplest   culturing   method   to   be   used.   At   present,   although   the   complexity   of   the   lungs   cannot   be   fully   mimicked  by  artificial  cell  cultures,  a  co-­‐culture  gives  a  more  realistic  mimic  of  the  situation.     Müller   et   al.   (2010)   [131]   investigated   the   difference   in   cellular   response   in   monocultures   with   A549  cells,  human  monocyte-­‐derived  macrophages  (MDMs)  as  well  as  human  monocyte-­‐derived       66   dendritic   cells   (MDDCs),   and   in   triple-­‐cell   co-­‐cultures   composed   of   all   three   cell   types   after   exposure  to  SWCNTs  and  NP-­‐TiO2.  They  found  a  statistically  significantly  higher  production  of  TNF-­‐ α   in   the   triple-­‐culture   compared   to   the   monocultures.   In   the   monocultures,   only   TNF-­‐α   was   expressed   by   the   MDDCs,   indicating   that   growing   cells   in   monocultures   could   give   misleading   results.     Although   co-­‐cultures   can   be   used   for   assessing   the   possible   cell-­‐cell   interactions,   they   still   have   some  limitation.  Adding  the  NMs  suspensions  directly  to  the  culture  plates  is  an  unrealistic  way  of   exposure.   The   disadvantages   of   submerged   exposure   are:   the   random   diffusion   of   NM   and   the   tendency   of   NMs   to   form   agglomerates.   An   alternative   is   the   air–liquid   interface   cell   exposure   system  (ALICE)  exposure  system,  which  is  a  better  method  for  mimicking  the  inhalation  exposure   conditions  in  the  lungs.  ALICE  has  been  shown  to  be  effective  for  controlling  the  cellular  dose  but   still  represents  some  challenge  in  the  complexity  of  generating  an  aerosol  [132,133].     Conclusion     In  summary,  little  correlation  was  found  between  the  in  vivo  and  in  vitro  fold  change  values  for  the   three   target   genes.   Mitsui   and   UV-­‐TiO2   exposed   cells   gave   the   highest   increase   in   fold   change,   which   was   in   correlation   with   published   in   vivo   results.   In   general,   the   mRNA   expression   levels   were   too   low   to   conduct   a   quantitative   assay   that   ranks   the   NMs   according   to   their   effect   on   SAA1,  Saa3,  and  Mcp-­‐1  mRNA  expression  levels.             67   Perspective     The  results  of  this  thesis  indicate  to  me  that,  at  the  present  time,  it  was  not  possible  to  exchange   in   vivo   with   in   vitro   experiments   for   risk   assessment   of   Printex-­‐90,   Mitsui,   UV-­‐TiO2,   and   GO   according  to  their  effect  on  SAA1,  Saa3  and  Mcp-­‐1  mRNA  expression  level.  The  lack  of  proper  in   vitro  culturing  methods  poses  a  major  limitation.  The  lung  consists  of  approximately  40  different   highly  specialized  cells,  whose  interactions  are  lost  when  grown  in  monocultures  [131].  The  NM-­‐ induced   pulmonary   APR   is   most   likely   a   very   complex   process   with   interactions   between   many   different   cells   in   the   lungs.   Although   co-­‐culturing   assesses   the   cell-­‐cell   interactions   it   still   represents  a  simple  cell  model  when  compared  to  reality.     If  I  was  to  carry  out  further  experiments,  I  would  seed  A549  and  J774A.1  cells  in  a  co-­‐culture  to   establish   the   possible   interactions   between   them.   To   investigate   if   the   release   of   SAA3   from   J774A.1   cells,   exposed   to   NMs,   could   stimulate   A549   cells   to   secrete   IL-­‐8   and   thus   creating   a   positive  feedback  loop.  Besides  testing  the  interaction  between  A549  and  J774A.1  cells,  it  would   be  interesting  to  test  the  effect  of  lower  doses  of  NMs  and  longer  incubation  times.     Although  the  co-­‐culture  might  be  good  for  assessing  cell-­‐cell  interactions,  the  submerged  exposure   still  represents  a  problem.  If  the  co-­‐culturing  experiment  of  A549  and  J774A.1  cells  resulted  in  high   Saa3  mRNA  yield,  the  system  could  be  transferred  to  ALICE  in  order  to  control  the  actual  cellular   dose.   An   alternative   for   in   vitro   toxicological   assessment   of   NMs   in   the   future   would   be   by   modelling/in   silico   approaches.   The   quantitative   structure–activity   relationship   (QSAR)   method   is   created   on   understanding  the  physicochemical  properties  of  the  NMs,  which  might  predict  its  effect  in  vitro   [134].       Despite  the  novel  developments  of  the  in  vitro  systems,  they  still  represent  some  major  limitations   and  challenges  for  toxicological  screening  of  NMs.  To  date,  the  results  of  the  in  vitro  experiments   are   still   conflicting   with   the   in   vivo   findings   [36,135]   and   have   therefore   not   earned   widespread   acceptance.   The   simplicity   of   the   in   vitro   system   and   the   lack   of   characterization   of   the   in   vitro   dose  have  contributed  to  this  problem.             68   References     1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.     WHO.  http://www.who.int/cardiovascular_diseases/en/.  Assessed  01.10.15.     Dockery   DW,   Pope   CA,   Xu   X,   Spengler   JD,   Ware   JH,   Fay   ME,   et   al.   An   association   between   air   pollution   and   mortality   in   six   U.S.   cities.   N   Engl   J   Med   1993   Dec   9;   329(24):1753-­‐1759.     Clancy  L,  Goodman  P,  Sinclair  H,  Dockery  D,  W.  Effect  of  air-­‐pollution  control  on  death   rates  in  Dublin,  Irland:  an  intervention  study.  Lancet  2002:1210-­‐1214.     Rydman  EM,  Ilves  M,  Koivisto  AJ,  Kinaret  PA,  Fortino  V,  Savinko  TS,  et  al.  Inhalation  of   rod-­‐like   carbon   nanotubes   causes   unconventional   allergic   airway   inflammation.   Part   Fibre  Toxicol  2014  Oct  16;11:48-­‐014-­‐0048-­‐2.     Han   SG,   Kim   JK,   Shin   JH,   Hwang   JH,   Lee   JS,   Kim   TG,   et   al.   Pulmonary   Responses   of   Sprague-­‐Dawley   Rats   in   Single   Inhalation   Exposure   to   Graphene   Oxide   Nanomaterials.   Biomed  Res  Int  2015;2015:376756.     Oberdorster   G,   Maynard   A,   Donaldson   K,   Castranova   V,   Fitzpatrick   J,   Ausman   K,   et   al.   Principles   for   characterizing   the   potential   human   health   effects   from   exposure   to   nanomaterials:  elements  of  a  screening  strategy.  Part  Fibre  Toxicol  2005  Oct  6;2:8.     Oberdorster   G,   Oberdorster   E,   Oberdorster   J.   Nanotoxicology:   an   emerging   discipline   evolving  from  studies  of  ultrafine  particles.  Environ  Health  Perspect  2005  Jul;113(7):823-­‐ 839.     Gustafson   HH,   Holt   DC,   Grainger   DW,   Ghandehria   H.   Nanoparticle   uptake:   the   phagocyte  problem.  2015;Nano  Today.     Ward  JR,  Wilson  HL,  Francis  SE,  Crossman  DC,  Sabroe  I.  Translational  mini-­‐review  series   on   immunology   of   vascular   disease:   inflammation,   infections   and   Toll-­‐like   receptors   in   cardiovascular  disease.  Clin  Exp  Immunol  2009  Jun;156(3):386-­‐394.     Libby   P,   Ridker   PM,   Hansson   GK.   Progress   and   challenges   in   translating   the   biology   of   atherosclerosis.  Nature  2011  May  19;473(7347):317-­‐325.     Ridker   PM,   Hennekens   CH,   Buring   JE,   Rifai   N.   C-­‐reactive   protein   and   other   markers   of   inflammation  in  the  prediction  of  cardiovascular  disease  in  women.  N  Engl  J  Med  2000   Mar  23;342(12):836-­‐843.     Johnson  BD,  Kip  KE,  Marroquin  OC,  Ridker  PM,  Kelsey  SF,  Shaw  LJ,  et  al.  Serum  amyloid   A  as  a  predictor  of  coronary  artery  disease  and  cardiovascular  outcome  in  women:  the   National   Heart,   Lung,   and   Blood   Institute-­‐Sponsored   Women's   Ischemia   Syndrome   Evaluation  (WISE).  Circulation  2004  Feb  17;109(6):726-­‐732.   69     13. 14. 15. 16. Targonska-­‐Stepniak   B,   Majdan   M.   Serum   amyloid   A   as   a   marker   of   persistent   inflammation  and  an  indicator  of  cardiovascular  and  renal  involvement  in  patients  with   rheumatoid  arthritis.  Mediators  Inflamm  2014;2014:793628.     Saber  AT,  Halappanavar  S,  Folkmann  JK,  Bornholdt  J,  Boisen  AM,  Moller  P,  et  al.  Lack  of   acute   phase   response   in   the   livers   of   mice   exposed   to   diesel   exhaust   particles   or   carbon   black  by  inhalation.  Part  Fibre  Toxicol  2009  Apr  20;6:12-­‐8977-­‐6-­‐12.     Saber   AT,   Lamson   JS,   Jacobsen   NR,   Ravn-­‐Haren   G,   Hougaard   KS,   Nyendi   AN,   et   al.   Particle-­‐induced   pulmonary   acute   phase   response   correlates   with   neutrophil   influx   linking  inhaled  particles  and  cardiovascular  risk.  PLoS  One  2013  Jul  24;8(7):e69020.     Bourdon   JA,   Saber   AT,   Jacobsen   NR,   Jensen   KA,   Madsen   AM,   Lamson   JS,   et   al.   Carbon   black   nanoparticle   instillation   induces   sustained   inflammation   and   genotoxicity   in   mouse  lung  and  liver.  Part  Fibre  Toxicol  2012  Feb  2;9:5-­‐8977-­‐9-­‐5.     17. 18. 19. 20. 21. 22. Stone   V,   Pozzi-­‐Mucelli   S,   Tran   L,   Aschberger   K,   Sabella   S,   Vogel   U,   et   al.   ITS-­‐NANO-­‐-­‐ prioritising   nanosafety   research   to   develop   a   stakeholder   driven   intelligent   testing   strategy.  Part  Fibre  Toxicol  2014  Feb  13;11:9-­‐8977-­‐11-­‐9.     Tornqvist  E,  Annas  A,  Granath  B,  Jalkesten  E,  Cotgreave  I,  Oberg  M.  Strategic  focus  on  3R   principles   reveals   major   reductions   in   the   use   of   animals   in   pharmaceutical   toxicity   testing.  PLoS  One  2014  Jul  23;9(7):e101638.     Griffin  G,  Clark  JM,  Zurlo  J,  Ritskes-­‐Hoitinga  M.  Scientific  uses  of  animals:  harm-­‐benefit   analysis   and   complementary   approaches   to   implementing   the   three   Rs.   Rev   Sci   Tech   2014  Apr;33(1):265-­‐272.     Saptarshi   SR,   Duschl   A,   Lopata   AL.   Interaction   of   nanoparticles   with   proteins:   relation   to   bio-­‐reactivity  of  the  nanoparticle.  J  Nanobiotechnology  2013  Jul  19;11:26-­‐3155-­‐11-­‐26.     Zarogoulidis  P,  Darwiche  K,  Yarmus  L,  Spyratos  D,  Secen  N,  Hohenforst-­‐Schmidt  W,  et  al.   Defense   mechanisms   of   the   respiratory   system   and   aerosol   production   systems.   Med   Chem  2014  Mar;10(2):123-­‐136.     Saber   AT.   Particle-­‐induced   inflammation   and   DNA   damage   in   mouse   models.   Ph.D.   thesis.     23.     Anderson   DS,   Patchin   ES,  Silva   RM,   Uyeminami   DL,  Sharmah   A,  Guo   T,   et   al.   Influence   of   particle  size  on  persistence  and  clearance  of  aerosolized  silver  nanoparticles  in  the  rat   lung.  Toxicol  Sci  2015  Apr;144(2):366-­‐381.     70   24. 25. Strum  R.  Clearance  of  carbon  nanotubes  in  the  human  respiratory  tract—a  theoretical   approach  approach.  Annals  of  translational  medicine  2014.     Kuhn   DA,   Vanhecke   D,   Michen   B,   Blank   F,   Gehr   P,   Petri-­‐Fink   A,   et   al.   Different   endocytotic   uptake   mechanisms   for   nanoparticles   in   epithelial   cells   and   macrophages.   Beilstein  J  Nanotechnol  2014  Sep  24;5:1625-­‐1636.     26. 27. Kobler  C,  Poulsen  SS,  Saber  AT,  Jacobsen  NR,  Wallin  H,  Yauk  CL,  et  al.  Time-­‐dependent   subcellular  distribution  and  effects  of  carbon  nanotubes  in  lungs  of  mice.  PLoS  One  2015   Jan  23;10(1):e0116481.     Boyles  MS,  Young  L,  Brown  DM,  MacCalman  L,  Cowie  H,  Moisala  A,  et  al.  Multi-­‐walled   carbon   nanotube   induced   frustrated   phagocytosis,   cytotoxicity   and   pro-­‐inflammatory   conditions   in   macrophages   are   length   dependent   and   greater   than   that   of   asbestos.   Toxicol  In  Vitro  2015  Oct;29(7):1513-­‐1528.     28. 29. Donaldson   K,   Stone   V,   Clouter   A,   Renwick   L,   MacNee   W.   Ultrafine   particles.   Occup   Environ  Med  2001  Mar;58(3):211-­‐6,  199.     Chono  S,  Tanino  T,  Seki  T,  Morimoto  K.  Influence  of  particle  size  on  drug  delivery  to  rat   alveolar   macrophages   following   pulmonary   administration   of   ciprofloxacin   incorporated   into  liposomes.  J  Drug  Target  2006  Sep;14(8):557-­‐566.     30. 31. 32. 33. 34. Yang   W,  Peters   JI,   Williams  OR.  Inhaled   nanoparticles—A   current   review.   International   journal  of  Pharmaceutics  2008:239-­‐247.     Pope   CA,   Thun   MJ,   Namboodiri   MM,   Dockery   DW,   Evans   JS,   Speizer   FE.   Particulate   air   pollution   as   a   predictor   of   mortality   in   a   prospective   study   of   U.S.   adults.   American   Journal  of  Respiratory  and  Critical  Care  Medicine  1995;150:669-­‐674.     Clancy   L,   Goodman   P,   Sinclair   H,   Dockery   DW.   Effect   of   air-­‐pollution   on   death   rates   in   Dublin,  Irland:  an  intervention  study.  Lancet  2002;360(9341):1210-­‐1214.     King  VL,  Thompson  J,  Tannock  LR.  Serum  amyloid  A  in  atherosclerosis.  Curr  Opin  Lipidol   2011  Aug;22(4):302-­‐307.     Kyjovska  ZO,  Jacobsen  NR,  Saber  AT,  Bengtson  S,  Jackson  P,  Wallin  H,  et  al.  DNA  damage   following   pulmonary   exposure   by   instillation   to   low   doses   of   carbon   black   (Printex   90)   nanoparticles  in  mice.  Environ  Mol  Mutagen  2015  Jan;56(1):41-­‐49.             71   35. 36. 37. 38. 39. 40. 41. Jackson   P,   Halappanavar   S,   Hougaard   KS,   Williams   A,   Madsen   AM,   Lamson   JS,   et   al.   Maternal  inhalation  of  surface-­‐coated  nanosized  titanium  dioxide  (UV-­‐Titan)  in  C57BL/6   mice:   effects   in   prenatally   exposed   offspring   on   hepatic   DNA   damage   and   gene   expression.  Nanotoxicology  2013  Feb;7(1):85-­‐96.     Poulsen  SS,  Jacobsen  NR,  Labib  S,  Wu  D,  Husain  M,  Williams  A.  Transcriptomic  analysis   reveals   novel   mechanistic   insight   into   murine   biological   responses   to   multi-­‐walled   carbon   nanotubes   in   lungs   and   cultured   lung   epithelial   cells.   PLoS   One   2013   Nov   19;8(11):e80452.     Yadav   A,   Saini   V,   Arora   S.   MCP-­‐1:   chemoattractant   with   a   role   beyond   immunity:   a   review.  Clin  Chim  Acta  2010  Nov  11;411(21-­‐22):1570-­‐1579.     Wood  P.  Understanding  immunology.  Pearson,  Third  edition.     Gruys  E,  Toussaint  MJM.  Monitoring  Animal  Hygiene,  Welfare  and  Health  by  Analytes  of   the  Acute  Phase  Reaction;  Non-­‐specific  Assessment  of  Infection,  Inflammation,  Bruising,   Stress  and  Starvation.  Proceedings  19th  ESVP  Meeting;  Thessaloniki,  Greece.  2001.  pp.   113–131.     Cray   C,   Zaias   J,   Altman   NH.   Acute   phase   response   in   animals:   a   review.   Comp   Med   2009   Dec;59(6):517-­‐526.     Malle  E,  De  Beer  FC.  Human  serum  amyloid  A  (SAA)  protein:  a  prominent  acute-­‐phase   reactant  for  clinical  practice.  Eur  J  Clin  Invest  1996  Jun;26(6):427-­‐435.     42. Yamada  M,  Kim  S,  Egashira  K,  Takeya  M,  Ikeda  T,  Mimura  O,  et  al.  Molecular  mechanism   and   role   of   endothelial   monocyte   chemoattractant   protein-­‐1   induction   by   vascular   endothelial  growth  factor.  Arterioscler  Thromb  Vasc  Biol  2003  Nov  1;23(11):1996-­‐2001.   43. Jackson  P,  Vogel  U,  Wallin  H,  Hougaard  KS.  Prenatal  exposure  to  carbon  black  (printex   90):   effects   on   sexual   development   and   neurofunction.   Basic   Clin   Pharmacol   Toxicol   2011  Dec;109(6):434-­‐437.     Kyjovska  ZO,  Jacobsen  NR,  Saber  AT,  Bengtson  S,  Jackson  P,  Wallin  H,  et  al.  DNA  damage   following   pulmonary   exposure   by   instillation   to   low   doses   of   carbon   black   (Printex   90)   nanoparticles  in  mice.  Environ  Mol  Mutagen  2015  Jan;56(1):41-­‐49.     Nelken  NA,  Coughlin  SR,  Gordon  D,  Wilcox  JN.  Monocyte  chemoattractant  protein-­‐1  in   human  atheromatous  plaques.  J  Clin  Invest  1991  Oct;88(4):1121-­‐1127.     Krishack   PA,   Bhanvadia   CV,   Lukens   J,   Sontag   TJ,   De   Beer   MC,   Getz   GS,   et   al.   Serum   Amyloid  A  Facilitates  Early  Lesion  Development  in  Ldlr-­‐/-­‐  Mice.  J  Am  Heart  Assoc  2015   Jul  17;4(7):10.1161/JAHA.115.001858.     44. 45. 46.     72   47. 48. 49. 50.   Tsun   JG,   Shiu   SW,   Wong   Y,   Yung   S,   Chan   TM,   Tan   KC.   Impact   of   serum   amyloid   A   on   cellular   cholesterol   efflux   to   serum   in   type   2   diabetes   mellitus.   Atherosclerosis   2013   Dec;231(2):405-­‐410.     Medicine  &  Health.  http://mednhealth.com/atherosclerosis.html.  Assessed  27/10/16.      Cruz   PM,   Mo   H,   Mcconathy   H,   SABNIS   WJ,   LACKO   AG.   The   role   of   cholesterol   metabolism  and  cholesterol  transport  in  carcinogenesis:  a  review  of  scientific   findings,   relevant  to  future  cancer  therapeutics.  Frontiers  in  pharmacology  2013.       Ohashi  RH,  Mu  X,  Wang  Q,  Yao  CC.  Reverse  cholesterol  transport  and  cholesterol  efflux   in  atherosclerosis.  QJM  2005;  845-­‐856.     51. Kisilevsky   R,   Manley   PN.   Acute-­‐phase   serum   amyloid   A:   perspectives   on   its   physiological   and  pathological  roles.  Amyloid  2012  Mar;19(1):5-­‐14.   52. Lusis  J.  A.  Atherosclerosis  Nature  2000:233-­‐241.     Kotani   K,   Yamada   T,   Gugliucci   A.   Paired   Measurements   of   Paraoxonase   1   and   Serum   Amyloid  A  as  Useful  Disease  Markers.  BioMed  Research  International  2013;2013.     Lee  HY,  Kim  SD,  Shim  JW,  Lee  SY,  Lee  H,  Cho  KH,  et  al.  Serum  amyloid  A  induces  CCL2   production  via  formyl  peptide  receptor-­‐like  1-­‐mediated  signaling  in  human  monocytes.  J   Immunol  2008  Sep  15;181(6):4332-­‐4339.      Villiers   DW,   Smart   EJ.   Macrophage   scavenger   receptors   and   foam   cell   formation.J   Leukoc  Biol.  1999  Nov;66(5):740-­‐6.     Trpkovic   A,   Resanovic   I,   Stanimirovic   J,   Radak   D,   Mousa   SA,   Cenic-­‐Milosevic   D,   Jevremovic   D,   Isenovic   ER.   Oxidized   low-­‐density   lipoprotein   as   a   biomarker   of   cardiovascular  diseases.  Crit  Rev  Clin  Lab  Sci.  2014:1–16.     Lee  HY,  Kim  SD,  Baek  SH,  Choi  JH,  Cho  KH,  Zabel  BA,  et  al.  Serum  amyloid  A  stimulates   macrophage  foam  cell  formation  via  lectin-­‐like  oxidized  low-­‐density  lipoprotein  receptor   1  upregulation.  Biochem  Biophys  Res  Commun  2013  Mar  29;433(1):18-­‐23.     Zewinger  S,  Drechsler  C,  Kleber  ME,  Dressel  A,  Riffel  J,  Triem  S,  et  al.  Serum  amyloid  A:   high-­‐density  lipoproteins  interaction  and  cardiovascular  risk.  Eur  Heart  J  2015  Aug  6.     Hill   SA,   McQueen   MJ.   Reverse   cholesterol   transport-­‐-­‐a   review   of   the   process   and   its   clinical  implications.  Clin  Biochem.  1997  Oct;30(7):517-­‐25.       53. 54. 55. 56. 57. 58. 59.     73   60. 61. 62. 63. 64. 65. 66. 67. 68. 69. Cuchel   M,   Rader   DJ.   Macrophage   reverse   cholesterol   transport:   key   to   the   regression   of   atherosclerosis?  Circulation  2006  May  30;113(21):2548-­‐2555.     Lindhorst   E,   Young   D,   Bagshaw   W,   Hyland   M,   Kisilevsky   R.   Acute   inflammation,   acute   phase   serum   amyloid   A   and   cholesterol   metabolism   in   the   mouse.   Biochim.   Biophys.   Acta,  1339  (1997),  pp.  143–154.     Heinecke   W,   J.   The   not-­‐so-­‐simple   HDL   story:   A   new   era   for   quantifying   HDL   and   cardiovascular  risk?  Nature  2012;18:1346-­‐1347.     Cai  L,  de  Beer  MC,  de  Beer  FC,  van  der  Westhuyzen  DR.  Serum  amyloid  A  is  a  ligand  for   scavenger   receptor   class   B   type   I   and   inhibits   high   density   lipoprotein   binding   and   selective  lipid  uptake.  J  Biol  Chem  2005  Jan  28;280(4):2954-­‐2961.     Philippeos  C,  Hughes  DR,  Dhawan  A,  Mitry  RR.  Introduction  to  cell  culture.  Methods  Mol   Biol.  2012;806:1-­‐13.     Microbiologymeasure.http://microbiologymeasure.tumblr.com/post/31838792040/chr onicsci-­‐bacterial-­‐growth-­‐curve-­‐notes-­‐1.  Assessed  01.11.15.       Sur  K,  McFall  SM,  Yeh  ET,  Jangam  SR,  Hayden  MA,  Stroupe  SD,  et  al.  Immiscible  phase   nucleic   acid   purification   eliminates   PCR   inhibitors   with   a   single   pass   of   paramagnetic   particles  through  a  hydrophobic  liquid.  J  Mol  Diagn  2010  Sep;12(5):620-­‐628.     Promega  protocol.  Accessible  from:  https://dk.promega.com/products/dna-­‐and-­‐rna-­‐ purification/rna-­‐purification/maxwell-­‐16-­‐system-­‐rna-­‐purification-­‐kits/maxwell-­‐16-­‐cell-­‐ lev-­‐total-­‐rna-­‐purification-­‐kit/.  Assessed  28.11.15.     Derveaux   S,   Vandesompele   J,   Hellemans   J.   How   to   do   successful   gene   expression   analysis  using  real-­‐time  PCR.  Methods  2010  Apr;50(4):227-­‐230.     Llera-­‐Herrera   R,   Garcia-­‐Gasca   A,   Huvet   A,   Ibarra   AM.   Identification   of   a   tubulin-­‐alpha   gene  specifically  expressed  in  testis  and  adductor  muscle  during  stable  reference  gene   selection   in   the   hermaphrodite   gonad   of   the   lion's   paw   scallop   Nodipecten   subnodosus.   Mar  Genomics  2012  Jun;6:33-­‐44.     70. 71. 72.     Gibthai.  http://www.gibthai.com/services/technical_detail.php?ID=12.  Assessed   29.10.15.     Life  Technologies,  Real-­‐time  PCR  handbook.  Accessible  from:   https://www.thermofisher.com/dk/en/home/life-­‐science/pcr/real-­‐time-­‐pcr/qpcr-­‐ education/real-­‐time-­‐pcr-­‐handbook.html.  Assessed  02.09.15     Kozera  B,  Rapacz  M.  Reference  genes  in  real-­‐time  PCR.  J  Appl  Genet.  2013;  54(4):  391– 406.   74   73. 74. 75. 76. 77. 78. 79. 80.   EMD  Milipore  Corporation  protocol,  accessible  from:   http://www.merckmillipore.com/DK/en/product/Mouse-­‐SAA-­‐3-­‐ELISA,MM_NF-­‐ EZMSAA3-­‐12K?cid=BIOS-­‐C-­‐EPDF-­‐1003-­‐1301-­‐DS&bd=1.  Assessed  15.10.15.     Aydin   S.   A   short   history,   principles,   and   types   of   ELISA,   and   our   laboratory   experience   with  peptide/protein  analyses  using  ELISA.  Peptides  2015  Apr  20.     Komabiotech.http://www.komabiotech.co.kr/www/techniques/immunodection/elisaPr otocol.html.  Assessed  04.11.15.     Chemotec,  protocol;  Accessible  from:  http://chemometec.com/cell-­‐counters/nc3000-­‐ cell-­‐analyzer-­‐image-­‐cytometer/.  Assessed  10.10.15     Graphenea.  http://www.graphenea.com/products/graphene-­‐oxide.  Assessed  28.11.15.     Poulsen   SS.   Comparison   of   carbon   nanotube   induced   gene   expression   profiles   in   vivo   and  in  vitro.  Thesis,  2011.       Kurantowicz   N,   Strojny   B,   Sawosz   E,   Jaworski   S,   Kutwin   M,   Grodzik   M,   et   al.   Biodistribution  of  a  High  Dose  of  Diamond,  Graphite,  and  Graphene  Oxide  Nanoparticles   After  Multiple  Intraperitoneal  Injections  in  Rats.  Nanoscale  Res  Lett  2015  Dec;10(1):398-­‐ 015-­‐1107-­‐9.       Long  CM,  Nascarella  MA,  Valberg  PA.  Carbon  black  vs.  black  carbon  and  other  airborne   materials   containing   elemental   carbon:   physical   and   chemical   distinctions.   Environ   Pollut  2013  Oct;181:271-­‐286.       81. 82. 83. 84. Zhang  X,  Li  W,  Yang  Z.  Toxicology  of  nanosized  titanium  dioxide:  an  update.  Arch  Toxicol   2015  Sep  21.     Luttrell  T,  Halpegamage  S,  Tao  J,  Kramer  A,  Sutter  E,  Batzill  M.  Why  is  anatase  a  better   photocatalyst   than   rutile?-­‐-­‐Model   studies   on   epitaxial   TiO2   films.   Sci   Rep   2014   Feb   10;4:4043.     Livak   KJ,   Schmittgen   TD.   Analysis   of   relative   gene   expression   data   using   real-­‐time   quantitative   PCR   and   the   2(-­‐Delta   Delta   C(T))   Method.   Methods   2001   Dec;25(4):402-­‐ 408.     Hamilton   RF   ,   Xiang   C,   Li   M,   Ka   I,   Yang   F,   Ma   D,   et   al.   Purification   and   sidewall   functionalization   of   multiwalled   carbon   nanotubes   and   resulting   bioactivity   in   two   macrophage  models.  Inhal  Toxicol  2013  Mar;25(4):199-­‐210.           75   85. 86. 87. 88. 89.   Poulsen   SS,   Saber   AT,   Mortensen   A,   Szarek   J,   Wu   D,   Williams   A,   et   al.   Changes   in   cholesterol   homeostasis   and   acute   phase   response   link   pulmonary   exposure   to   multi-­‐ walled   carbon   nanotubes   to   risk   of   cardiovascular   disease.   Toxicol   Appl   Pharmacol   2015   Mar  15;283(3):210-­‐222.     Migita   K,   Abiru   S,   Nakamura   M,   Komori   A,   Yoshida   Y,   Yokoyama   T,   et   al.   Lipopolysaccharide   signaling   induces   serum   amyloid   A   (SAA)   synthesis   in   human   hepatocytes  in  vitro.  FEBS  Lett  2004  Jul  2;569(1-­‐3):235-­‐239.     Meek   RL,   Eriksen   N,   Benditt   EP.   Murine   serum   amyloid   A3   is   a   high   density   apolipoprotein   and   is   secreted   by   macrophages.   Proc   Natl   Acad   Sci   U   S   A   1992   Sep   1;89(17):7949-­‐7952.     Min   D,   Moore   G,A.,   Bain   A,   M.,   Breit   N,   S.,   Lyons   j,   G.   Activation   og   macrophages   promatrix   metalloproteinase-­‐9   by   lipopoysaccharider-­‐associated   protinases.   Journal   of   immunology  2002  :2449-­‐2455.     Ishida   T,   Matsuura   K,   Setoguchi   M,   Higuchi   Y,   Yamamoto   S.   Enhancement   of   murine   serum  amyloid  A3  mRNA  expression  by  glucocorticoids  and  its  regulation  by  cytokines.  J   Leukoc  Biol  1994  Dec;56(6):797-­‐806.     90. Prasad   RY,   Chastain   PD,   Nikolaishvili-­‐Feinberg   N,   Smeester   L,   Kaufmann   WK,   Fry   RC.   Titanium   dioxide   nanoparticles   activate   the   ATM-­‐Chk2   DNA   damage   response   in   human   dermal  fibroblasts.  Nanotoxicology  2013  Sep;7(6):1111-­‐1119.       91. Choi  SJ,  Oh  JM,  Choy  JH.  Toxicological  effects  of  inorganic  nanoparticles  on  human  lung   cancer  A549  cells.  J  Inorg  Biochem  2009  Mar;103(3):463-­‐471.     92. Jackson  P,  Kling  K,  Jensen  KA,  Clausen  PA,  Madsen  AM,  Wallin  H,  et  al.  Characterization   of   genotoxic   response   to   15   multiwalled   carbon   nanotubes   with   variable   physicochemical   properties   including   surface   functionalizations   in   the   FE1-­‐Muta(TM)   mouse  lung  epithelial  cell  line.  Environ  Mol  Mutagen  2015  Mar;56(2):183-­‐203.     Kojima   S,   Negishi   Y,   Tsukimoto   M,   Takenouchi   T,   Kitani   H,   Takeda   K.   Purinergic   signaling   via   P2X7   receptor   mediates   IL-­‐1beta   production   in   Kupffer   cells   exposed   to   silica   nanoparticle.  Toxicology  2014  Jul  3;321:13-­‐20.       93. 94.     Taylor   AJ,   McClure   CD,   Shipkowski   KA,   Thompson   EA,   Hussain   S,   Garantziotis   S,   et   al.   Atomic   layer   deposition   coating   of   carbon   nanotubes   with   aluminum   oxide   alters   pro-­‐ fibrogenic  cytokine  expression  by  human  mononuclear  phagocytes  in  vitro  and  reduces   lung  fibrosis  in  mice  in  vivo.  PLoS  One  2014  Sep  12;9(9):e106870.     76     95. Reisetter   AC,   Stebounova   LV,   Baltrusaitis   J,   Powers   L,   Gupta   A,   Grassian   VH,   et   al.   Induction  of  inflammasome-­‐dependent  pyroptosis  by  carbon  black  nanoparticles.  J  Biol   Chem  2011  Jun  17;286(24):21844-­‐21852.     96. Sayes  CM,  Reed  KL,  Warheit  DB.  Assessing  toxicity  of  fine  and  nanoparticles:  comparing   in   vitro   measurements   to   in   vivo   pulmonary   toxicity   profiles.   Toxicol   Sci   2007   May;97(1):163-­‐180.       97. Cho   WS,   Duffin   R,   Bradley   M,   Megson   IL,   MacNee   W,   Lee   JK,   et   al.   Predictive   value   of   in   vitro   assays   depends   on   the   mechanism   of   toxicity   of   metal   oxide   nanoparticles.   Part   Fibre  Toxicol  2013  Oct  25;10(1):55-­‐8977-­‐10-­‐55.       98. Anand  RA,  Bradley  R,  Ganjua  KR.  LPS-­‐induced  MCP-­‐1  Expression  in  Human  Microvascular   Endothelial   Cells   is   mediated   by   the   tyrosine   kinase,   Pyk2   via   the   p38   MAPK/NF-­‐κB   dependent  pathway.  Mol  Immunol.  2009  Feb;  46(5):  962–968.     99. Takahashi  M,  Galligan  C,  Tessarollo  L,  Yoshimura  T.  Monocyte  chemoattractant  protein-­‐ 1  (MCP-­‐1),  not  MCP-­‐3,  is  the  primary  chemokine  required  for  monocyte  recruitment  in   mouse   peritonitis   induced   with   thioglycollate   or   zymosan   A.   J   Immunol   2009   Sep   1;183(5):3463-­‐3471.     100. Pattison   MJ,   MacKenzie   KF,   Elcombe   SE,   Arthur   JS.   IFNbeta   autocrine   feedback   is   required   to   sustain   TLR   induced   production   of   MCP-­‐1   in   macrophages.   FEBS   Lett   2013   May  21;587(10):1496-­‐1503.     101. Bozinovski  S,  Uddin  M,  Vlahos  R,  Thompson  M,  McQualter  JL,  Merritt  AS,  et  al.  Serum   amyloid  A  opposes  lipoxin  A(4)  to  mediate  glucocorticoid  refractory  lung  inflammation   in   chronic   obstructive   pulmonary   disease.   Proc   Natl   Acad   Sci   U   S   A   2012   Jan   17;109(3):935-­‐940.     102. Mano   SS,   Kanehira   K,   Taniguchi   A.   Comparison   of   cellular   uptake   and   inflammatory   response   via   toll-­‐like   receptor   4   to   lipopolysaccharide   and   titanium   dioxide   nanoparticles.  Int  J  Mol  Sci  2013  Jun  26;14(7):13154-­‐13170.     103. Rotoli  BM,  Guidi  P,  Bonelli  B,  Bernardeschi  M,  Bianchi  MG,  Esposito  S,  et  al.  Imogolite:   an   aluminosilicate   nanotube   endowed   with   low   cytotoxicity   and   genotoxicity.   Chem   Res   Toxicol  2014  Jul  21;27(7):1142-­‐1154.       77     104. Ali-­‐Boucetta   H,   Bitounis   D,   Raveendran-­‐Nair   R,   Servant   A,   Van   den   Bossche   J,   Kostarelos   K.  Purified  graphene  oxide  dispersions  lack  in  vitro  cytotoxicity  and  in  vivo  pathogenicity.   Adv  Healthc  Mater  2013  Mar;2(3):433-­‐441.     105. Weydahl   KI.   A   study   of   the   pulmonary   and   heptatic   acute   phase   response   after   pulmonary  exposure  to  carbon  nanotubes  in  mice.  Thesis  ,2015.     106. Naha   C,   P.,   Davoren   D,   Lyng   M,   F.,   Byrne   J,   B.   Reactive   Oxygen   Species   induced   cytokine   production   and   cytotoxicity   of   PAMAM   dendrimers   in   J774A.1   cells.     Toxicology   and   Applied  Pharmacology  2010;246(1):91-­‐99.       107. Kroll  A,  Dierker  C,  Rommel  C,  Hahn  D,  Wohlleben  W,  Schulze-­‐Isfort  C,  Göbbert  C,  Voetz   M,   Hardinghaus   F,   Schnekenburger   J.   Cytotoxicity   screening   of   23   engineered   nanomaterials  using  a  test  matrix  of  ten  cell  lines  and  three  different  assays.  Particle  and   Fibre  Toxicology  2011.     108. Feliu   N,   Kohonen   P,   Ji   J,   Zhang   Y,   Karlsson   HL,   Palmberg   L,   et   al.   Next-­‐generation   sequencing  reveals  low-­‐dose  effects  of  cationic  dendrimers  in  primary  human  bronchial   epithelial  cells.  ACS  Nano  2015  Jan  27;9(1):146-­‐163.     109. Kumarathasan  P,  Breznan  D,  Das  D,  Salam  A,  S.,  Siddiqui  Y,  Christine  MacKinnon-­‐Roy1  G,   J.,  et  al.  Cytotoxicity  of  carbon  nanotube  variants:  A  comparative  in  vitro  exposure  study   with  A549  epithelial  cells  and  J774  macrophage  cells  Nanotoxicology  2014.     110. Breznan  D,  Das  D,  MacKinnon-­‐Roy  C,  Simard  B,  Kumarathasan  P,  Vincent  R.  Non-­‐specific   interaction   of   carbon   nanotubes   with   the   resazurin   assay   reagent:   impact   on   in   vitro   assessment  of  nanoparticle  cytotoxicity.  Toxicol  In  Vitro  2015  Feb;29(1):142-­‐147.     111. Choi   HS,   Ashitate   Y,   Lee   JH,   Kim   SH,   Matsui   A,   Insin   N,   et   al.   Rapid   translocation   of   nanoparticles   from   the   lung   airspaces   to   the   body.   Nat   Biotechnol   2010   Dec;28(12):1300-­‐1303.     112. Semmler-­‐Behnke   M,   Kreyling   WG,   Lipka   J,   Fertsch   S,   Wenk   A,   Takenaka   S,   et   al.   Biodistribution  of  1.4-­‐  and  18-­‐nm  gold  particles  in  rats.  Small  2008  Dec;4(12):2108-­‐2111.         78   113. Ramadori  G,  Rieder  H,  Sipe  J,  Shirahama  T,  Meyer  zum  Buschenfelde  KH.  Murine  tissue   macrophages   synthesize   and   secrete   amyloid   proteins   different   to   amyloid   A   (AA).   Eur   J   Clin  Invest  1989  Jun;19(3):316-­‐322.     114. Tomita  T,  Sakurai  Y,  Ishibashi  S,  Maru  Y.  Imbalance  of  Clara  cell-­‐mediated  homeostatic   inflammation  is  involved  in  lung  metastasis.  Oncogene  2011  Aug  4;30(31):3429-­‐3439.       115. Paoletti  R,  Gotto  AM,Jr,  Hajjar  DP.  Inflammation  in  atherosclerosis  and  implications  for   therapy.  Circulation  2004  Jun  15;109(23  Suppl  1):III20-­‐6.       116. Smith  JD,  Trogan  E,  Ginsberg  M,  Grigaux  C,  Tian  J,  Miyata  M.  Decreased  atherosclerosis   in  mice  deficient  in  both  macrophage  colony-­‐stimulating  factor  (op)  and  apolipoprotein   E.  Proc  Natl  Acad  Sci  U  S  A  1995  Aug  29;92(18):8264-­‐8268.     117. Galkina   E,   Ley   K.   Immune   and   inflammatory   mechanisms   of   atherosclerosis   (*).   Annu   Rev  Immunol  2009;27:165-­‐197.     118. Gui   T,   Shimokado   A,   Sun   Y,   Akasaka   T,   Muragaki   Y.   Diverse   roles   of   macrophages   in   atherosclerosis:  from  inflammatory  biology  to  biomarker  discovery.  Mediators  Inflamm   2012;2012:693083.     119. Dickhout   JG,   Basseri   S,   Austin   RC.   Macrophage   function   and   its   impact   on   atherosclerotic  lesion  composition,  progression,  and  stability:  the  good,  the  bad,  and  the   ugly.  Arterioscler  Thromb  Vasc  Biol  2008  Aug;28(8):1413-­‐1415.     120. Suzuki   Y,   Tada-­‐Oikawa   S,   Ichihara   G,   Yabata   M,   Izuoka   K,   Suzuki   M,   et   al.   Zinc   oxide   nanoparticles   induce   migration   and   adhesion   of   monocytes   to   endothelial   cells   and   accelerate  foam  cell  formation.  Toxicol  Appl  Pharmacol  2014  Jul  1;278(1):16-­‐25.     121. Cao   Y,   Roursgaard   M,   Danielsen   PH,   Moller   P,   Loft   S.   Carbon   black   nanoparticles   promote  endothelial  activation  and  lipid  accumulation  in  macrophages  independently  of   intracellular  ROS  production.  PLoS  One  2014  Sep  3;9(9):e106711.     122. Kyjovska  ZO,  Jacobsen  NR,  Saber  AT,  Bengtson  S,  Jackson  P,  Wallin  H,  et  al.  DNA  strand   breaks,   acute   phase   response   and   inflammation   following   pulmonary   exposure   by   instillation   to   the   diesel   exhaust   particle   NIST1650b   in   mice.   Mutagenesis   2015   Jul;30(4):499-­‐507.         79   123. Kim  JA,  Aberg  C,  de  Carcer  G,  Malumbres  M,  Salvati  A,  Dawson  KA.  Low  dose  of  amino-­‐ modified  nanoparticles  induces  cell  cycle  arrest.  ACS  Nano  2013  Sep  24;7(9):7483-­‐7494.     124. Comfort  KK,  Braydich-­‐Stolle  LK,  Maurer  EI,  Hussain  SM.  Less  Is  More:  Long-­‐Term  in  Vitro   Exposure  to  Low  Levels  of  Silver  Nanoparticles  Provides  New  Insights  for  Nanomaterial   Evaluation.  ACS  Nano.  2014  Apr  22;8(4):3260-­‐71.     125. Lison   D,   Huaux   F.   In   vitro   studies:   Ups   and   downs   of   cellular   uptake.   Nat   Nanotechnol   2011  Jun  6;6(6):332-­‐333.     126. Teeguarden   JG,   Hinderliter   PM,   Orr   G,   Thrall   BD,   Pounds   JG.   Particokinetics   in   vitro:   dosimetry  considerations  for  in  vitro  nanoparticle  toxicity  assessments.  Toxicol  Sci  2007   Feb;95(2):300-­‐312.     127. Hayes  WA,  Kruger  LC.  Hayes  Principles  and  Methods  of  Toxicology.  Sixth  Edition,  2014.     128. Mangoni   L,   M.,   Epand   F,   E.,   Rosenfeld   Y,   Peleg   A,   Barra   D,   Epand   M,   R.,   et   al.     Lipopolysaccharide,   a   Key   Molecule   Involved   in   the   Synergism   between   Temporins   in   Inhibiting   Bacterial   Growth   and   in   Endotoxin   Neutralization.   The   journal   of   biological   chemistry  2008;283:22907-­‐22917.     129. Mano   SS,   Kanehira   K,   Taniguchi   A.   Comparison   of   cellular   uptake   and   inflammatory   response   via   toll-­‐like   receptor   4   to   lipopolysaccharide   and   titanium   dioxide   nanoparticles.  Int  J  Mol  Sci  2013  Jun  26;14(7):13154-­‐13170.     130. Muller   L,   Riediker   M,   Wick   P,   Mohr   M,   Gehr   P,   Rothen-­‐Rutishauser   B.   Oxidative   stress   and   inflammation   response   after   nanoparticle   exposure:   differences   between   human   lung   cell   monocultures   and   an   advanced   three-­‐dimensional   model   of   the   human   epithelial  airways.  J  R  Soc  Interface  2010  Feb  6;7  Suppl  1:S27-­‐40.     131. França   A,   Aggarwal   P,   Barsov   V,   E.,   Kozlov   V,   Z.,   Dobrovolskaia   A,   M.,   González-­‐ Fernández  A.  Macrophage  scavenger  receptor  A  mediates  the  uptake  of  gold  colloids  by   macrophages  in  vitro.  Nanomedicine  2014:1175-­‐1188.     132. Paur   H,   R.,   Cassee   R,   F.,   Teeguarden   J,   Fissan   H,   Diabate   S,   Aufderheide   M,   et   al.     In-­‐vitro  celle  xposure  studies  for  the  assessment  of  nanoparticle  toxicity  in  the  lung  —A   dialog  between  aerosol  science  and  biology.  Journal  of  areasol  biology  2011:668-­‐692.         80   133. Holder   AL,   Marr   LC.   Toxicity   of   silver   nanoparticles   at   the   air-­‐liquid   interface.   Biomed   Res  Int  2013;2013:328934.     134. Richarza  A,  N.,  Madden  C,  J.,  Robinson,L.,  M.,  R.,  Lubiński  K,  Mokshinac  E,  Urbaszek  P,  et   al.   Development   of   computational   models   for   the   prediction   of   the   toxicity   of   nanomaterials  Perspective  in  science  2014;3:27-­‐29.     135. Seagrave   J,   Mauderly   JL,   Seilkop   SK.   In   vitro   relative   toxicity   screening   of   combined   particulate  and  semivolatile  organic  fractions  of  gasoline  and  diesel  engine  emissions.  J   Toxicol  Environ  Health  A  2003  Jun  27;66(12):1113-­‐1132.     136. Gosling  J,  Slaymaker  S,  Gu  L,  Tseng  S,  Zlot  CH,  Young  SG,  et  al.  MCP-­‐1  deficiency  reduces   susceptibility   to   atherosclerosis   in   mice   that   overexpress   human   apolipoprotein   B.   J   Clin   Invest  1999  Mar;103(6):773-­‐778.           81   Appendix     Table  15.  Fold  change  values  for  positive  control  (LPS:  5  µμg/ml).     Cells       A549     Mean  fold  change   value   12.2  *   J774A.1     22456.4***   Statistical  significant  when  compared  to  unexposed  values.  *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.  n=2.     Table  16.  Viability  and  proliferation  for  positive  control  (LPS:  5  µμg/ml).     J774A.1       Printex-­‐90   Mean  viability    (%)   65.2   Mean   proliferation  (%)   102.1   Mitsui   62.6   98.1   GO   59.1   110.6   n=2     Table  17.  Fold  change  values  for  positive  control  (LPS:  5  µμg/ml).     Target  gene   SAA1  (A549)   Saa3  (J774A.1)   Mcp-­‐1  (J774A.1)   Mean  fold  change   value   12.2*   20839.1***   10.2  *   Statistical  significant  when  compared  to  unexposed  values.  *=P≤0.05,  **=P≤0.01,  ***=P≤  0.001.  n=2.           82