Preview only show first 10 pages with watermark. For full document please download

Ethernet Evolution: What`s New And What`s Next

   EMBED


Share

Transcript

Ethernet evolution: what’s new and what’s next Greg Hankins European Peering Forum 2016 1 © Nokia 2016 Public EPF 2016 2016/09/19 I’ve been giving presentations about Ethernet developments for over 10 years... Thanks for listening ! Cutting edge: 24 x 10 GE switch 2 © Nokia 2016 Public Ethernet evolution over 40+ years Driven by new diverse market requirements • Market requirements for Ethernet are changing for different applications based on its success - Speed - Distance - Media - Cost • Six new Ethernet speeds are coming to market to address these different requirements - Same amount as in the past 30 years • New standards for existing speeds are also in development - Newer technology, lower cost - Automotive and industrial applications - Passive optical networks (PON) Roadmap courtesy of the Ethernet Alliance: http://www.ethernetalliance.org/roadmap/ 3 © Nokia 2016 Public Recent IEEE 802.3 Ethernet standards • 803.3bw-2015: 100BASE-T1 • 802.3by-2016: 25 Gb/s Ethernet • 803.2bq-2016: 25/40GBASE-T • 802.3bp-2016: 1000BASE-T1 • 802.3br-2016: Interspersing Express Traffic (IET) IEEE 802.3 Ethernet Working Group: http://www.ieee802.org/3/status/index.html 4 © Nokia 2016 Public IEEE 802.3 Ethernet Working Group projects There’s a lot going on here... • P802.3bn: EPON Protocol over Coax (EPoC) Task Force • P802.3bs: 200 Gb/s and 400 Gb/s Ethernet Task Force • P802.3bt: DTE Power via MDI over 4-Pair Task Force • P802.3bu: 1-Pair Power over Data Lines (PoDL) Task Force • P802.3bv: Gigabit Ethernet Over Plastic Optical Fiber Task Force • P802.3bz: 2.5G/5GBASE-T Task Force • P802.3ca: 25 Gb/s, 50 Gb/s, and 100 Gb/s Ethernet Passive Optical Networks Task Force • P802.3cb: 2.5 Gb/s and 5 Gb/s Backplane and Copper Cables Task Force • P802.3cc: 25 Gb/s Ethernet over Single-Mode Fiber Task Force • P802.3cd: 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force • P802.3-2015/Cor 1: (IEEE 802.3ce) Multilane timestamping • 802.3 YANG Data Model(s) Study Group • 802.3 10 Mb/s Single Twisted Pair Ethernet Study Group • Multi-Gig Automotive Ethernet PHY Call for Interest (for discussion at the November 2016 Plenary) IEEE 802.3 Ethernet Working Group: http://www.ieee802.org/3/ 5 © Nokia 2016 Public Higher speed Ethernet target applications Key application drivers 100 GE 50 GE 25 GE 100 GE 50 GE 25 GE 50 GE 25 GE 200 GE 50 GE 200 GE 100 GE 200 GE 400 GE 100 GE 25/50/100/200 GE applications 200 GE • • • • Data center aggregation and core Data center access Server NICs Metro/campus core 50/100/200 GE applications 400 GE • Service provider aggregation and core • Data center core • Metro core 200/400 GE applications 25 GE 6 © Nokia 2016 50 GE 100 GE 200 GE 25 GE Public 50 GE 100 GE 200 GE • Service provider core • Large data center core • Large metro core Agenda • What’s new: 2.5 GE and 5 GE (don’t have time, grab http://ix.br/pttforum/9/slides/ixbr9-ethernet.pdf for an intro) 1. What’s new: 25 GE (grab http://ix.br/pttforum/9/slides/ixbr9-ethernet.pdf for background info) • What’s new: 40 GE (no new development, see reference slides in back) 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE • What’s new: detailed optical developments (don’t have time, grab http://www.ausnog.net/sites/default/files/ausnog2016/presentations/2.3_Christian_Urricariet_AusNOG2016.pdf for an overview) 7 © Nokia 2016 Public Market drivers for 25 Gb/s signaling and 25 GE • Provide a connection speed faster than 10 GE that is optimized for cost, throughput and efficiency • Use a single 25 Gb/s signaling lane based on existing 25 Gb/s technology that is used in other Ethernet speeds and in pluggable modules • Connections to switch ASICs is limited by SerDes count and bandwidth - Single higher speed 25 Gb/s lanes maximize bandwidth and switch fabric utilization vs. 4 x 10 Gb/s lanes • A single higher speed lane per physical port maximizes the number of connections per switch • Initially for server to access switch connections, expanded for longer reaches Image courtesy of the SFF Committee. 8 © Nokia 2016 Public SFP28 pluggable module (same size as SFP and SFP+) 25 GE developments • IEEE P802.3cc 25 Gb/s Ethernet over Single-Mode Fiber Task Force started in May 2016 - 25GBASE-LR: 1 x 25 Gb/s over 10 km duplex SMF (based on 100GBASE-LR4 with RS-FEC) - 25GBASE-ER: 1 x 25 Gb/s over 40 km duplex SMF (based on ITU-T 4L1-9D1F ER4-lite with RS-FEC) - Optional Energy Efficient Ethernet (EEE) support (fast wake mode only) • Generated Draft 1.0 for Task Force review • Standard expected in October 2017 • Interfaces expected on the market in 2017+ • Task Force web page http://www.ieee802.org/3/cc/ 9 © Nokia 2016 Public 25 GE technology reference Physical layer reach 1m backplane 3m copper cable 5m copper cable 30 m twisted-pair 70 m OM3 / 100 m OM4 10 km SMF 40 km SMF Name 25GBASE-KR-S 25GBASE-KR 25GBASE-CR-S 25GBASE-CR 25GBASE-T 25GBASE-SR 25GBASE-LR 25GBASE-LR Standard June 2016 IEEE 802.3by June 2016 IEEE 802.3by June 2016 IEEE 802.3by June 2016 IEEE 802.3bq June 2016 IEEE 802.3by October 2017 IEEE 802.3cc October 2017 IEEE 802.3cc Electrical signaling (Gb/s) 1 x 25 1 x 25 1 x 25 1 x 25 1 x 25 1 x 25 1 x 25 Media signaling (Gb/s) 1 x 25 1 x 25 1 x 25 1 x 25 1 x 25 850 nm λ 1 x 25 1310 nm λ 1 x 25 1310 nm λ Media type Backplane Twinax copper Twinax copper Cat 8 Duplex MMF Duplex SMF Duplex SMF Module type Backplane SFP28 SFP28 RJ45 SFP28 SFP28 SFP28 Market availability 2016+ 2016+ 2016+ 2016+ 2016+ 2017+ 2017+ 10 © Nokia 2016 Public 25 GE details IEEE Std 802.3bq-2016 • 25GBASE-T: 1 x 25 Gb/s over 30 m Cat 8 4-pair twisted-pair copper cabling (ISO/IEC JTC1 SC25 WG3 and TIA TR-42.7) • Optional Energy Efficient Ethernet (EEE) support 11 © Nokia 2016 Public 25 GE details IEEE Std 802.3by-2016 • 25GBASE-KR-S: 1 x 25 Gb/s over 1 m Megtron 6 backplane (no FEC, BASE-R FEC) • 25GBASE-KR: 1 x 25 Gb/s over 1 m Megtron 6 backplane (no FEC, BASE-R FEC, RS-FEC) • 25GBASE-CR-S: 1 x 25 Gb/s over 3 m copper twinax cable (no FEC, BASE-R FEC, RS-FEC) • 25GBASE-CR: 1 x 25 Gb/s over 5 m copper twinax cable (RS-FEC) • 25GBASE-SR: 1 x 25 Gb/s over 70 m OM3 and 100 m OM4 duplex MMF • Auto-negotiation between copper interface types and FECs • Passive direct attach cable (DAC) types - CA-N (2 m; no FEC, BASE-R FEC, RS-FEC) - CA-S (3 m; no FEC, BASE-R FEC, RS-FEC) - CA-L (5 m; RS-FEC) • Optional Energy Efficient Ethernet (EEE) support *The latency added by FEC is insignificant for links > 500 m. 12 © Nokia 2016 Public Forward Error Correction (FEC) Added latency* (ns) Bit Error Rate (BER) None 0 10-12 BASE-R (Clause 74) 82 10-8 RS (Clause 91) 250 10-5 Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE 13 © Nokia 2016 Public Market drivers for 50 Gb/s signaling and 50 GE • A faster base signaling rate is needed to for higher capacities - Rack sizes, rack units and front panels on devices must stay the same size - This means we have to go faster to support higher capacity networks • Similar to 25 GE, 50 GE extends existing common network topologies for higher speeds - Reuses existing leaf/spine network architectures - Reuses existing 1 x up / 4 x down architecture • The server and data center market requirements vary widely - Variety of CPU architectures, clock speeds, number of cores, and CPUs per system - Different applications have different IO and compute power requirements - Need a variety of low and high speed options to meet bandwidth requirements CFI: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 14 © Nokia 2016 Public 50 Gb/s maximizes bandwidth and efficiency • ToR switch ASICs are designed to support 128 I/O lanes Port speed (GE) Lane speed (Gb/s) Lanes / port Usable ports Total capacity (Tb/s) 10 10 1 128 1.28 25 25 1 128 3.2 • Single higher speed 50 Gb/s lanes maximize bandwidth and switch fabric utilization 50 25 2 64 3.2 50 50 1 128 6.4 100 50 2 64 6.4 • A single lane per physical port maximizes utilization and total interconnect bandwidth 200 50 4 32 6.4 • Connections to switch ASICs is limited by SerDes count and bandwidth Source: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 15 © Nokia 2016 Public 128 lane switch capacities Now Future 50 GE pluggable modules Higher speeds in common sizes • New 50 GE pluggable modules in same common form factor sizes • SFP56 - Extension of SFF-8402 - 1 x 50 Gb/s for 1 x 50 GE SFP56 pluggable module (same size as SFP, SFP+, SFP28) • QSFP56 - Extension of SFF-8665 - 4 x 50 Gb/s for 4 x 50 GE breakout - 4 x 50 Gb/s for 1 x 200 GE • Enables common higher speed port density combinations - 2012: 32 x QSFP+ ports support 4 x 10 GE down and 40 GE up - 2016: 32 x QSFP28 ports support 4 x 25 GE down and 100 GE up - 2020: 32 x QSFP56 ports support 4 x 50 GE down and 200 GE up Images courtesy of the SFF Committee. 16 © Nokia 2016 Public QSFP56 pluggable module (same size as QSFP, QSFP+, QSFP28) 50 GE developments • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 50GBASE-KR: 1 x 50 Gb/s over 1 m Megtron 6 backplane - 50GBASE-CR: 1 x 50 Gb/s over 3 m copper twinax cable - 50GBASE-SR: 1 x 50 Gb/s over 70 m OM3 and 100 m OM4 duplex MMF - 50GBASE-FR: 1 x 50 Gb/s over 2 km duplex SMF - 50GBASE-LR: 1 x 50 Gb/s over 10 km duplex SMF - Optional Energy Efficient Ethernet (EEE) • Standard expected in September 2018 • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/ 17 © Nokia 2016 Public 50 GE technology reference Physical layer reach 1m backplane 1m backplane 5m copper cable 5m copper cable 70 m OM3 / 100 m OM4 2 km SMF 10 km SMF Name 50GBASE-KR 50GBASE-KR2 50GBASE-CR 50GBASE-CR2 50GBASE-SR 50GBASE-FR 50GBASE-LR Standard September 2018 IEEE 802.3cd September 2014 25G Ethernet Consortium September 2018 IEEE 802.3cd September 2014 25G Ethernet Consortium September 2018 IEEE 802.3cd September 2018 IEEE 802.3cd September 2018 IEEE 802.3cd Electrical signaling (Gb/s) 1 x 50 2 x 25 1 x 50 2 x 25 1 x 50 1 x 50 1 x 50 Media signaling (Gb/s) 1 x 50 2 x 25 1 x 50 2 x 25 1 x 50 850 nm λ 1 x 50 1310 nm λ 1 x 50 1310 nm λ Media type Backplane Backplane Twinax copper Twinax copper Duplex MMF Duplex SMF Duplex SMF Module type Backplane Backplane SFP56, QSFP56 TBD SFP56, QSFP56 SFP56, QSFP56 SFP56, QSFP56 Market availability 2018+ TBD 2018+ TBD 2018+ 2018+ 2018+ 18 © Nokia 2016 Public Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE 19 © Nokia 2016 Public 100 GE technology adoption lifecycle 2nd generation 100 GE crossed the chasm 802.3cd Chasm 1M 100 GE ports projected in 2016 by Dell’Oro 100 GE at 2 x 50 Gb/s 3.2 Tb/s 6.4 Tb/s OSFP Innovators 2010-2013 1 - 4 premium ports/slot CXP and CFP 1st generation Early adopters Early majority 2014-2015 2015-2018 4 – 8 high cost ports/slot CFP2 32+ lower cost ports/slot QSFP28 and CFP4 2nd generation Pluggable module images courtesy of Finisar. microQSFP image courtesy of the microQSFP MSA. 20 © Nokia 2016 Public Late majority 2018+ High density low cost ports OSFP and microQSFP Laggards 2020+ High density commodity ports Future SFP112 and QSFP112 3rd generation 100 GE pluggable module evolution Graphical view of module form factors XFP (10 GE) CFP4 CFP2 CFP CFP vs. iPhone 6 CFP2 vs. iPhone 6 CFP4 vs. iPhone 6 XFP(10 GE) CFP4 CFP2 CFP CFP CFP2 CFP4 QSFP28* CFP images courtesy of the CFP MSA. QSFP28 image courtesy of the SFF Committee. *Not quite to scale. 21 © Nokia 2016 Public 100 GE pluggable module evolution microQSFP • Designed for high density, shorter reach and lower power requirements - Provides QSFP functionality in an SFP-sized form factor supporting up to >3.5 W - Can support DAC, MMF and SMF cabling • Features four electrical channels - 25 Gb/s data rates support 100 GE or 4 x 25 GE breakout - Expected to support 50 Gb/s data rates • Maximum 1 RU densities of - 48 ports (4.8 Tb/s) - 72 ports in 3 rows (7.2 Tb/s) • Increase in port density of - 4 x SFP - 1.5 x QSFP Images courtesy of the microQSFP MSA. 22 © Nokia 2016 Public 100 GE developments • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 100GBASE-KR2: 2 x 50 Gb/s over 1 m Megtron 6 backplane - 100GBASE-CR2: 2 x 50 Gb/s over 3 m copper twinax cable - 100GBASE-SR2: 2 x 50 Gb/s over 70 m OM3, 100 m OM4 and 150 m WBMMF duplex MMF - 100GBASE-DR2: 2 x 50 Gb/s over 500 m parallel SMF (TBD) - 100GBASE-FR2: 2 x 50 Gb/s over 2 km duplex SMF (TBD) - Optional Energy Efficient Ethernet (EEE) • Standard expected in September 2018 • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/ 23 © Nokia 2016 Public 100 GE IEEE technology reference Physical layer reach 1m backplane 1m backplane 3m copper cable 5m copper cable 7m copper cable 70 m OM3 / 100 m OM4 70 m OM3 / 100 m OM4 / 150 m WBMMF 100 m OM3 / 150 m OM4 500 m SMF 2m SMF 10 km SMF 40 km SMF Name 100GBASEKP4 100GBASEKR4 100GBASEKR2 100GBASECR2 100GBASECR4 100GBASECR10 100GBASESR4 100GBASESR2 100GBASESR10 100GBASEDR2 100GBASEDF2 100GBASELR4 100GBASEER4* Standard June 2014 IEEE 802.3bj Sep 2018 IEEE 802.3cd Sep 2018 IEEE 802.3cd June 2014 IEEE 802.3bj June 2010 IEEE 802.3ba Feb 2015 Sep 2018 IEEE 802.3bm IEEE 802.3cd June 2010 IEEE 802.3ba Sep 2018 IEEE 802.3cd Sep 2018 IEEE 802.3cd June 2010 IEEE 802.3ba June 2010 IEEE 802.3ba Electrical signaling (Gb/s) 4 x 25 2 x 50 2 x 50 4 x 25 10 x 10 4 x 25 2 x 50 10 x 10 2 x 50 2 x 50 10 x 10 10 x 10 Media signaling (Gb/s) 4 x 25 NRZ or PAM-4 2 x 50 2 x 50 4 x 25 10 x 10 4 x 25 850 nm λs 2 x 50 850 nm λ 900 nm λ 10 x 10 850 nm λs 2 x 50 2 x 50 4 x 25 1550 nm λs 4 x 25 1550 nm λs Media type Backplane Backplane Twinax Twinax Twinax Parallel MMF (MPO12) Duplex MMF Parallel MMF (MPO24) Parallel SMF (MPO12) Duplex SMF Duplex SMF Duplex SMF Module type Backplane Backplane QSFP28 CFP2, CFP4, QSFP28 CXP, CFP2, CFP4, QSFP28 CFP2, CFP4, CPAK, QSFP28 QSFP28 CFP, CFP2, CFP4, CPAK, CXP, QSFP28 QSFP28 QSFP28 CFP, CFP2, CFP4, CPAK, QSFP28 CFP, CFP2 Market availability None known 2018+ 2018+ 2014 2010 2015 2018+ 2012 2018+ 2018+ 2010 2012 *100GBASE-ER4-lite (ITU-T application code 4L1-9D1F) has different optical specifications and uses the RS-FEC. 24 © Nokia 2016 Public 100 GE MSA technology reference Physical layer reach 70 m OM3 / 100 m OM4 500 m SMF 2 km SMF 2 km SMF 2 km SMF 2 km SMF 10 km SMF 40 km SMF Name SWDM4 PSM4 10x10-2km CWDM4 CLR4 OpenOptics 10x10-10km 10x10-40km Standard September Future 2014 SWDM4 Alliance 100G PSM4 MSA March 2011 10x10 MSA November 2015 CWDM4 MSA Group March 2015 100G CLR4 Alliance March 2014 OpenOptics MSA August 2011 10x10 MSA August 2011 10x10 MSA Electrical signaling (Gb/s) 4 x 25 4 x 25 10 x 10 4 x 25 4 x 25 4 x 25 10 x 10 10 x 10 Media signaling (Gb/s) 4 x 25 850 nm λs 4 x 25 1310 nm λs 10 x 10 1310 nm λs 4 x 25 1310 nm λs 4 x 25 1310 nm λs 4 x 25 1550 nm λs 10 x 10 1310 nm λs 10 x 10 1310 nm λs Media type Duplex MMF Parallel SMF (MPO12) Duplex SMF Duplex SMF Duplex SMF Duplex SMF Duplex SMF Duplex SMF Module type QSFP28 CFP4, QSFP28 CFP CFP2, CFP4, QSFP28 QSFP28 QSFP28 CFP CFP Market availability 2017 2016 2011 2016 TBD TBD 2011 2012 Non-IEEE media signaling standards that comply to the IEEE electrical signaling interface. “MSA” means Multisource Agreement. 25 © Nokia 2016 Public Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE 26 © Nokia 2016 Public Market drivers for 200 GE • Similar to 25 GE and 50 GE, 200 GE extends existing common network topologies for higher speeds - Reuses existing leaf/spine network architectures - Reuses industry investment in 50 Gb/s technology - Reuses existing 1 x up / 4 x down architecture • Network backbone links need to scale to higher, cost effective speeds to match growing server speeds at the edge - Servers migrating from 10 GE to 25 GE, 40 GE and 50 GE • Investment in MMF cabling infrastructure can support 40 GE to 100 GE to 200 GE capacity upgrades - Same {40,100, 200}GBASE-SR4 technologies with MPO12 connector - 4 x 850 nm λs TX, 4 x 850 nm λs RX CFI: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 27 © Nokia 2016 Public 200 GE maximizes aggregation bandwidth Total capacity (Tb/s) 100 GE ports, 25 Gb/s lanes 200 GE ports, 50 Gb/s lanes 400 GE ports, 50 Gb/s lanes 3.2 32 16 8 4.8 48 24 12 6.4 64 32 16 9.6 72 48 24 12.8 72 64 32 Greater than current port densities Less than current port densities ToR switch port densities • Current leaf/spine network architectures are designed around 32 x 100 GE ToR switches • 200 GE interfaces in a leaf/spine switch provide higher port density at a lower ASIC bandwidth than 400 GE Source: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 28 © Nokia 2016 Public 200 and 400 GE pluggable module evolution QSFP-DD (Quad Small Form-factor Pluggable - Double Density) • Designed for high speed and high density requirements QSFP-DD • Slightly deeper form factor than QSFP28 supporting >7 W (target up to 10 W) QSFP28 - Backwards compatible with QSFP28 - Can support DAC, MMF and SMF cabling • Features eight electrical channels - 25 Gb/s and 50 Gb/s data rates - Supports 200 GE and 400 GE - 1 x or 4 x breakout • Maximum 1 RU density of 36 x QSFP-DD (14.4 Tb/s) Images courtesy of the QSFP-DD MSA. 29 © Nokia 2016 Public 2 x 1 stacked integrated cage and connector 200 GE developments Copper and fiber optic cables • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 200GBASE-KR4: 4 x 50 Gb/s over 1 m Megtron 6 backplane - 200GBASE-CR4: 4 x 50 Gb/s over 3 m copper twinax cable - 200GBASE-SR4: 4 x 50 Gb/s over 70 m OM3 and 100 m OM4 parallel MMF - Optional Energy Efficient Ethernet (EEE) • Working towards Draft 1.0 • Standard expected in September 2018 • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/ 30 © Nokia 2016 Public 200 GE developments Fiber optic cables • IEEE P802.3bs 400 Gb/s Ethernet Task Force adopted 200 GE objectives in May 2016, and became the IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force - 200GBASE-DR4: 4 x 50 Gb/s over 500 m parallel SMF - 200GBASE-FR4: 4 x 50 Gb/s over 2 km duplex SMF - 200GBASE-LR4: 4 x 50 Gb/s over 10 km duplex SMF - Optional Energy Efficient Ethernet (EEE) • Generated Draft 1.5 for Task Force review • Standard expected in December 2017 (no change in standard schedule due to 200 GE) • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/bs/ 31 © Nokia 2016 Public 200 GE technology reference 32 Physical layer reach 1m backplane 3m copper cable 70 m OM3 / 100 m OM4 500 m SMF 2 km SMF 10 km SMF Name 200GBASE-KR4 200GBASE-CR4 200GBASE-SR4 200GBASE-DR4 200GBASE-FR4 200GBASE-LR4 Standard September 2018 IEEE 802.3cd September 2018 IEEE 802.3cd September 2018 IEEE 802.3cd December 2017 IEEE 802.3bs December 2017 IEEE 802.3bs December 2017 IEEE 802.3bs Electrical signaling (Gb/s) 4 x 50 4 x 50 8 x 25 4 x 50 8 x 25 4 x 50 8 x 25 4 x 50 8 x 25 4 x 50 8 x 25 Media signaling (Gb/s) 4 x 50 4 x 50 4 x 50 850 nm λs 4 x 50 1310 nm λs 4 x 50 1310 nm λs 4x 50 1310 nm λs Media type Backplane Twinax Parallel MMF (MPO12) Parallel SMF (MPO12) Duplex SMF Duplex SMF Module type Backplane QSFP56, QSFP-DD QSFP56, QSFP-DD QSFP56, QSFP-DD QSFP56, QSFP-DD QSFP56, QSFP-DD Market availability 2018+ 2018+ 2018+ 2018+ 2018+ 2018+ © Nokia 2016 Public Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE 33 © Nokia 2016 Public 400 GE developments • IEEE P802.3bs 400 Gb/s Ethernet Task Force started in March 2014 • Adopted 200 GE objectives in May 2016, and became the IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force - 400GBASE-SR16: 16 x 25 Gb/s over 70 m OM3, 100 m OM4 and 150 m WBMMF (TBD) parallel MMF - 400GBASE-DR4: 4 x 100 Gb/s over 500 m parallel SMF - 400GBASE-FR8: 8 x 50 Gb/s over 2 km duplex SMF - 400GBASE-LR8: 8 x 50 Gb/s over 10 km duplex SMF - Electrical interfaces: 25 Gb/s (NRZ) and 50 Gb/s (PAM-4) - Optional Energy Efficient Ethernet (EEE) • Generated Draft 1.5 for Task Force review • Standard expected in December 2017 (no change in standard schedule due to 200 GE) • First interfaces expected to be available in 2018+ • Task Force web page http://www.ieee802.org/3/bs/ 34 © Nokia 2016 Public 400 GE pluggable module evolution estimates Each module increases density, while reducing cost and power 1st generation Electrical signaling (Gb/s) 16 x 25 8 x 50 2nd generation 3rd generation 8 x 50 4 x 100 CFP16 (~CFP4 size), Module type Market availability estimate CFP8 (~CFP2 size) OSFP, QSFP-DD CFP16, Future QSFP112 2016 2018+ 2020+ CFP8 image courtesy Finisar. 35 © Nokia 2016 Public Ethernet at terabit speeds becomes feasible 400 GE technology reference 36 © Nokia 2016 Physical layer reach 70 m OM3 / 100 m OM4/WBMMF 500 m SMF 2 km SMF 10 km SMF Name 400GBASE-SR16 400GBASE-DR4 400GBASE-FR8 400GBASE-LR8 Standard December 2017 IEEE 802.3bs December 2017 IEEE 802.3bs December 2017 IEEE 802.3bs December 2017 IEEE 802.3bs Electrical signaling (Gb/s) 16 x 25 8 x 50 16 x 25 8 x 50 16 x 25 8 x 50 16 x 25 8 x 50 Media signaling (Gb/s) 16 x 25 850 nm λs 4 x 100 1310 nm λs 8 x 50 1310 nm λs 8 x 50 1310 nm λs Media type Parallel MMF (MPO32) Parallel SMF (MPO12) Duplex SMF Duplex SMF Module type CFP8, OSFP, QSFP-DD CFP8, OSFP, QSFP-DD CFP8, OSFP, QSFP-DD CFP8, OSFP, QSFP-DD Market availability 2018+ 2018+ 2018+ 2018+ Public Ethernet evolution futures • Ethernet continues to evolve to meet new and diverse market requirements • Different new speeds are needed for different new applications • Old 10 x performance for 3 x cost model doesn’t work anymore as we get to higher speeds - 10 ME  100 ME  1 GE  10 GE  100 GE • Current best technical and economic solutions are multiples of the highest lane rate - 2 x 50 Gb/s for 100 GE - 4 x 50 Gb/s for 200 GE - 8 x 50 Gb/s for 400 GE • New technology based on 50 Gb/s is the basis of a new generation of speeds 37 © Nokia 2016 Public Ethernet evolution summary • 2.5 GE and 5 GE is coming soon for higher speed Cat 5e/6 applications • 10 GE is widely deployed in every part of the network • 25 GE is available now for server and ToR aggregation • 40 GE is widely deployed in data center networks • 50 GE is in development for server and ToR aggregation • 100 GE has transitioned to 2nd generation technology with CFP2, CFP4 and QSFP28 - New interfaces based on 25 Gb/s and 50 Gb/s signaling - New OSFP and microQSFP pluggable modules - 100 Gb/s serial signaling for longer reaches is still a challenge • 200 GE is in development for server and ToR aggregation - New QSFP-DD pluggable modules • 400 GE is in development for core networks • Ethernet at Terabit speeds is still unfeasible in the near future, but we’ll get there eventually (2020+) 38 © Nokia 2016 Public References • IEEE P802.3cc 25 Gb/s Ethernet over Single-Mode Fiber Task Force - http://www.ieee802.org/3/cc/ • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force - http://www.ieee802.org/3/cd • IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force - http://www.ieee802.org/3/bs/ • CDFP MSA - http://www.cdfp-msa.com/ • CFP MSA - http://www.cfp-msa.org/ • COBO - http://cobo.azurewebsites.net/ • microQSFP MSA - http://www.microqsfp.com/ • QSFP-DD MSA - http://www.qsfp-dd.com/ • SFF Committee - http://www.sffcommittee.com/ 39 © Nokia 2016 Public Questions? Acknowledgements: Scott Kipp, Brocade Samuel Liu, Nokia Steve Trowbridge, Nokia Christian Urricariet, Finisar Some older and reference slides are next... 40 © Nokia 2016 Public MPO cable assemblies High density parallel fiber cabling • 40 GE and 100 GE short reach pluggable modules use a Multifiber Push-On (MPO) cable assembly to interconnect network devices - MPO12 connector Also called MTP by US Conec • Widely available in a variety of high density multimode fiber (MMF) and single-mode fiber (SMF) cabling options for data centers - MPO to MPO - MPO cassette for patch panels with into LC, SC, etc - Keyed connectors maintain correct transmit/receive orientation • 40GBASE-SR4 uses a 12-fiber OM3 or OM4 MMF MPO12 cable - 8 fibers used, left 4 for transmit and right 4 for receive - 4 middle fibers are unused • 100GBASE-SR10 uses a 24-fiber OM3 or OM4 MMF MPO24 cable 42 - 20 fibers used, top middle 10 for receive and bottom middle 10 for transmit - 2 fibers on each end are unused © Nokia 2016 10 x receive 10 x transmit 100GBASE-SR10 CXP 40 GE transmission Multimode and single-mode fiber • Multimode ribbon fiber - Used for distances of 100 m on OM3 and 150 m on OM4 MMF - Data is sent using multiple 850 nm lasers transmitting over multiple parallel fibers - MPO cables provide multiple separate transmit and receive strands of multimode fiber in a ribbon cable assembly 4 x 10 Gb/s over parallel MMF 40GBASE-SR4 • Single-mode duplex fiber - Used for distances of 2 km, 10 km and 40 km on standard duplex SMF - WDM component in the pluggable module multiplexes four transmit λs over one strand of fiber and four receive λs over the other strand of fiber in the 1310 nm CWDM band for 40GBASE-LR4 and 40GBASE-ER4 - 40 Gb/s serial transmit over one strand of fiber and receive over the other strand of fiber on one 1550 nm λ is used for 40GBASE-FR 43 © Nokia 2016 Public 4 x 10 Gb/s over duplex SMF 40GBASE-LR4 and 40GBASE-ER4 100 GE transmission Multimode and single-mode fiber • Multimode ribbon fiber - Used for distances of 100 m on OM3 and 150 m on OM4 MMF - Data is sent using multiple 850 nm lasers transmitting over multiple parallel fibers 10 x 10 Gb/s over parallel MMF 100GBASE-SR10 - MPO cables provide multiple separate transmit and receive strands of multimode fiber in a ribbon cable assembly • Single-mode duplex fiber - Used for distances of 2 km, 10 km and 40 km on standard duplex SMF 10 x 10 Gb/s over duplex SMF 10x10-2km, 10x10-10km and 10x10-40km - WDM component in the pluggable module multiplexes all transmit λs over one strand of fiber and all receive λs over the other strand of fiber 44 • 10x10 MSA standards use 10 x 10 Gb/s λs in the 1550 nm DWDM band • IEEE standards use 4 x 25 Gb/s λs in the 1310 nm CWDM band © Nokia 2016 Public 4 x 25 Gb/s over duplex SMF 100GBASE-LR4 and 100GBASE-ER4 40 Gb/s QSFP+ modules overview Quad Small Form-factor Pluggable+ • Created for high density interfaces primarily short reach interfaces for data center applications - Small compact form factor enables low power consumption and high density - Also used for longer reach 40 GE 40GBASE-SR4 • Used for a variety of Ethernet, Fibre Channel and InfiniBand applications - 40 GE uses 4 x 10 Gb/s bidirectional channels • Supports a variety of copper and fiber 40 GE interfaces - Breakout from 40 GE to 4 x 10 GE • Same faceplate size as an XFP but slightly shorter Images courtesy of Finisar. 45 © Nokia 2016 Public 40GBASE-LR4 40 GE QSFP+ pluggable modules Physical layer reach Data center server and access: native 40 GE and 4 x 10 GE breakout Aggregation and core: native 40 GE 10 m passive copper cable 100 m OM3/OM4 7 m passive copper cable 100 m OM3/ 150 m OM4 10 km SMF 40 km SMF 10GSFP+Cu 10GBASE-SR 40GBASE-CR4 40GBASE-SR4 40GBASE-LR4 40GBASE-ER4 Integrated twinax (QSFP+ to 4 x SFP+) Parallel MMF (MPO to 4 x Duplex LC) Integrated twinax (QSFP+ to QSFP+) Parallel MMF (MPO12) Duplex SMF (LC) Duplex SMF (LC) July 2009 SFF-8431 June 2002 IEEE 802.3ae June 2010 IEEE 802.3ba June 2010 IEEE 802.3ba June 2010 IEEE 802.3ba February 2015 IEEE 802.3bm Pluggable module Media Standard 40GBASE-SR4, 40GBASE-LR4, and 40GBASE-ER4 QSFP+ images courtesy of Finisar. 46 © Nokia 2016 Public 40 GE technology reference Physical layer reach 1m backplane 7m copper cable 30 m twisted-pair 100 m OM3 / 150 m OM4 2 km SMF 10 km SMF 40 km SMF Name 40GBASE-KR4 40GBASE-CR4 40GBASE-T 40GBASE-SR4 40GBASE-FR 40GBASE- LR4 40GBASE-ER4 Standard June 2010 IEEE 802.3ba June 2010 IEEE 802.3ba June 2016 IEEE 802.3bq June 2010 IEEE 802.3ba March 2011 IEEE 802.3bg June 2010 IEEE 802.3ba February 2015 IEEE 802.3bm Electrical signaling (Gb/s) 4 x 10 4 x 10 4 x 10 4 x 10 4 x 10 4 x 10 4 x 10 1 x 40 1310 nm λ (RX) 1550 nm λs (TX, RX) 4 x 10 1310 nm λs 4 x 10 1310 nm λs Media signaling (Gb/s) 4 x 10 4 x 10 4 x 10 4 x 10 850 nm λs Media type Backplane Twinax Cat 8 Parallel MMF (MPO12) Duplex SMF Duplex SMF Duplex SMF Module type Backplane QSFP+ RJ45 CFP, QSFP+ CFP CFP, QSFP+ QSFP+ Market availability None known 2010 2016 2010 2012 CFP 2010 QSFP+ 2011 2015 Note: there are a few 40 GE MSA standards that are not shown. 47 © Nokia 2016 Public 1st generation 100 GE limitations Electrical signaling • Fundamental 1st generation technology constraints limit higher 100 GE density and lower cost • Electrical signaling to the CFP - 100 Gb/s Attachment Unit Interface (CAUI) uses 10 x 10 Gb/s lanes (CAUI-10) • Optical signaling on the media 118.90 cm2 Optical signaling - 100GBASE-SR10: 10 x 10 Gb/s parallel - 10x10 MSA: 10 x 10 Gb/s λs - 100GBASE-LR4 and 100GBASE-ER4: 4 x 25 Gb/s λs • CFP module size, complexity and power consumption • 2nd generation modules based on 4 x 25 Gb/s electrical signaling are available now Image courtesy of Finisar. 48 © Nokia 2016 Public 100 GE 1st generation vs 2nd generation 100 GE signaling 1st generation 100 GE 10 x 10 Gb/s electrical and 4 x 25 Gb/s optical 10 Gb/s electrical signaling and 10:4 gearbox adds complexity, cost, space, and consumes power Diagram source: http://grouper.ieee.org/groups/802/3/ba/public/jul08/cole_03_0708.pdf 49 © Nokia 2016 Public 2nd generation 100 GE 4 x 25 Gb/s electrical and optical CFP comparison Images courtesy of the CFP MSA. 50 © Nokia 2016 Public