Transcript
Ethernet evolution: what’s new and what’s next Greg Hankins European Peering Forum 2016
1
© Nokia 2016
Public EPF 2016 2016/09/19
I’ve been giving presentations about Ethernet developments for over 10 years... Thanks for listening !
Cutting edge: 24 x 10 GE switch
2
© Nokia 2016
Public
Ethernet evolution over 40+ years Driven by new diverse market requirements • Market requirements for Ethernet are changing for different applications based on its success -
Speed
-
Distance
-
Media
-
Cost
• Six new Ethernet speeds are coming to market to address these different requirements -
Same amount as in the past 30 years
• New standards for existing speeds are also in development -
Newer technology, lower cost
-
Automotive and industrial applications
-
Passive optical networks (PON)
Roadmap courtesy of the Ethernet Alliance: http://www.ethernetalliance.org/roadmap/ 3
© Nokia 2016
Public
Recent IEEE 802.3 Ethernet standards • 803.3bw-2015: 100BASE-T1 • 802.3by-2016: 25 Gb/s Ethernet • 803.2bq-2016: 25/40GBASE-T • 802.3bp-2016: 1000BASE-T1 • 802.3br-2016: Interspersing Express Traffic (IET)
IEEE 802.3 Ethernet Working Group: http://www.ieee802.org/3/status/index.html 4
© Nokia 2016
Public
IEEE 802.3 Ethernet Working Group projects There’s a lot going on here... •
P802.3bn: EPON Protocol over Coax (EPoC) Task Force
•
P802.3bs: 200 Gb/s and 400 Gb/s Ethernet Task Force
•
P802.3bt: DTE Power via MDI over 4-Pair Task Force
•
P802.3bu: 1-Pair Power over Data Lines (PoDL) Task Force
•
P802.3bv: Gigabit Ethernet Over Plastic Optical Fiber Task Force
•
P802.3bz: 2.5G/5GBASE-T Task Force
•
P802.3ca: 25 Gb/s, 50 Gb/s, and 100 Gb/s Ethernet Passive Optical Networks Task Force
•
P802.3cb: 2.5 Gb/s and 5 Gb/s Backplane and Copper Cables Task Force
•
P802.3cc: 25 Gb/s Ethernet over Single-Mode Fiber Task Force
•
P802.3cd: 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force
•
P802.3-2015/Cor 1: (IEEE 802.3ce) Multilane timestamping
•
802.3 YANG Data Model(s) Study Group
•
802.3 10 Mb/s Single Twisted Pair Ethernet Study Group
•
Multi-Gig Automotive Ethernet PHY Call for Interest (for discussion at the November 2016 Plenary)
IEEE 802.3 Ethernet Working Group: http://www.ieee802.org/3/ 5
© Nokia 2016
Public
Higher speed Ethernet target applications Key application drivers 100 GE
50 GE
25 GE
100 GE
50 GE 25 GE
50 GE
25 GE
200 GE
50 GE
200 GE
100 GE
200 GE
400 GE
100 GE
25/50/100/200 GE applications 200 GE
• • • •
Data center aggregation and core Data center access Server NICs Metro/campus core
50/100/200 GE applications
400 GE
• Service provider aggregation and core • Data center core • Metro core
200/400 GE applications 25 GE
6
© Nokia 2016
50 GE
100 GE
200 GE 25 GE
Public
50 GE
100 GE
200 GE
• Service provider core • Large data center core • Large metro core
Agenda •
What’s new: 2.5 GE and 5 GE (don’t have time, grab http://ix.br/pttforum/9/slides/ixbr9-ethernet.pdf for an intro)
1.
What’s new: 25 GE (grab http://ix.br/pttforum/9/slides/ixbr9-ethernet.pdf for background info)
•
What’s new: 40 GE (no new development, see reference slides in back)
2.
What’s next: 50 GE
3.
What’s new: 100 GE
4.
What’s next: 200 GE
5.
What’s next: 400 GE
•
What’s new: detailed optical developments (don’t have time, grab http://www.ausnog.net/sites/default/files/ausnog2016/presentations/2.3_Christian_Urricariet_AusNOG2016.pdf for an overview)
7
© Nokia 2016
Public
Market drivers for 25 Gb/s signaling and 25 GE • Provide a connection speed faster than 10 GE that is optimized for cost, throughput and efficiency • Use a single 25 Gb/s signaling lane based on existing 25 Gb/s technology that is used in other Ethernet speeds and in pluggable modules • Connections to switch ASICs is limited by SerDes count and bandwidth - Single higher speed 25 Gb/s lanes maximize bandwidth and switch fabric utilization vs. 4 x 10 Gb/s lanes
• A single higher speed lane per physical port maximizes the number of connections per switch • Initially for server to access switch connections, expanded for longer reaches Image courtesy of the SFF Committee. 8
© Nokia 2016
Public
SFP28 pluggable module (same size as SFP and SFP+)
25 GE developments • IEEE P802.3cc 25 Gb/s Ethernet over Single-Mode Fiber Task Force started in May 2016 - 25GBASE-LR: 1 x 25 Gb/s over 10 km duplex SMF (based on 100GBASE-LR4 with RS-FEC) - 25GBASE-ER: 1 x 25 Gb/s over 40 km duplex SMF (based on ITU-T 4L1-9D1F ER4-lite with RS-FEC) - Optional Energy Efficient Ethernet (EEE) support (fast wake mode only)
• Generated Draft 1.0 for Task Force review • Standard expected in October 2017 • Interfaces expected on the market in 2017+
• Task Force web page http://www.ieee802.org/3/cc/
9
© Nokia 2016
Public
25 GE technology reference Physical layer reach
1m backplane
3m copper cable
5m copper cable
30 m twisted-pair
70 m OM3 / 100 m OM4
10 km SMF
40 km SMF
Name
25GBASE-KR-S 25GBASE-KR
25GBASE-CR-S
25GBASE-CR
25GBASE-T
25GBASE-SR
25GBASE-LR
25GBASE-LR
Standard
June 2016 IEEE 802.3by
June 2016 IEEE 802.3by
June 2016 IEEE 802.3by
June 2016 IEEE 802.3bq
June 2016 IEEE 802.3by
October 2017 IEEE 802.3cc
October 2017 IEEE 802.3cc
Electrical signaling (Gb/s)
1 x 25
1 x 25
1 x 25
1 x 25
1 x 25
1 x 25
1 x 25
Media signaling (Gb/s)
1 x 25
1 x 25
1 x 25
1 x 25
1 x 25 850 nm λ
1 x 25 1310 nm λ
1 x 25 1310 nm λ
Media type
Backplane
Twinax copper
Twinax copper
Cat 8
Duplex MMF
Duplex SMF
Duplex SMF
Module type
Backplane
SFP28
SFP28
RJ45
SFP28
SFP28
SFP28
Market availability
2016+
2016+
2016+
2016+
2016+
2017+
2017+
10
© Nokia 2016
Public
25 GE details IEEE Std 802.3bq-2016 • 25GBASE-T: 1 x 25 Gb/s over 30 m Cat 8 4-pair twisted-pair copper cabling (ISO/IEC JTC1 SC25 WG3 and TIA TR-42.7) • Optional Energy Efficient Ethernet (EEE) support
11
© Nokia 2016
Public
25 GE details IEEE Std 802.3by-2016 • 25GBASE-KR-S: 1 x 25 Gb/s over 1 m Megtron 6 backplane (no FEC, BASE-R FEC) • 25GBASE-KR: 1 x 25 Gb/s over 1 m Megtron 6 backplane (no FEC, BASE-R FEC, RS-FEC) • 25GBASE-CR-S: 1 x 25 Gb/s over 3 m copper twinax cable (no FEC, BASE-R FEC, RS-FEC) • 25GBASE-CR: 1 x 25 Gb/s over 5 m copper twinax cable (RS-FEC)
• 25GBASE-SR: 1 x 25 Gb/s over 70 m OM3 and 100 m OM4 duplex MMF • Auto-negotiation between copper interface types and FECs • Passive direct attach cable (DAC) types -
CA-N (2 m; no FEC, BASE-R FEC, RS-FEC)
-
CA-S (3 m; no FEC, BASE-R FEC, RS-FEC)
-
CA-L (5 m; RS-FEC)
• Optional Energy Efficient Ethernet (EEE) support
*The latency added by FEC is insignificant for links > 500 m. 12
© Nokia 2016
Public
Forward Error Correction (FEC)
Added latency* (ns)
Bit Error Rate (BER)
None
0
10-12
BASE-R (Clause 74)
82
10-8
RS (Clause 91)
250
10-5
Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE
13
© Nokia 2016
Public
Market drivers for 50 Gb/s signaling and 50 GE • A faster base signaling rate is needed to for higher capacities - Rack sizes, rack units and front panels on devices must stay the same size - This means we have to go faster to support higher capacity networks
• Similar to 25 GE, 50 GE extends existing common network topologies for higher speeds - Reuses existing leaf/spine network architectures - Reuses existing 1 x up / 4 x down architecture
• The server and data center market requirements vary widely - Variety of CPU architectures, clock speeds, number of cores, and CPUs per system - Different applications have different IO and compute power requirements - Need a variety of low and high speed options to meet bandwidth requirements
CFI: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 14
© Nokia 2016
Public
50 Gb/s maximizes bandwidth and efficiency • ToR switch ASICs are designed to support 128 I/O lanes
Port speed (GE)
Lane speed (Gb/s)
Lanes / port
Usable ports
Total capacity (Tb/s)
10
10
1
128
1.28
25
25
1
128
3.2
• Single higher speed 50 Gb/s lanes maximize bandwidth and switch fabric utilization
50
25
2
64
3.2
50
50
1
128
6.4
100
50
2
64
6.4
• A single lane per physical port maximizes utilization and total interconnect bandwidth
200
50
4
32
6.4
• Connections to switch ASICs is limited by SerDes count and bandwidth
Source: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 15
© Nokia 2016
Public
128 lane switch capacities
Now
Future
50 GE pluggable modules Higher speeds in common sizes • New 50 GE pluggable modules in same common form factor sizes • SFP56 - Extension of SFF-8402 - 1 x 50 Gb/s for 1 x 50 GE SFP56 pluggable module (same size as SFP, SFP+, SFP28)
• QSFP56 - Extension of SFF-8665 - 4 x 50 Gb/s for 4 x 50 GE breakout - 4 x 50 Gb/s for 1 x 200 GE
• Enables common higher speed port density combinations - 2012: 32 x QSFP+ ports support 4 x 10 GE down and 40 GE up - 2016: 32 x QSFP28 ports support 4 x 25 GE down and 100 GE up
- 2020: 32 x QSFP56 ports support 4 x 50 GE down and 200 GE up Images courtesy of the SFF Committee. 16
© Nokia 2016
Public
QSFP56 pluggable module (same size as QSFP, QSFP+, QSFP28)
50 GE developments • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 50GBASE-KR: 1 x 50 Gb/s over 1 m Megtron 6 backplane - 50GBASE-CR: 1 x 50 Gb/s over 3 m copper twinax cable - 50GBASE-SR: 1 x 50 Gb/s over 70 m OM3 and 100 m OM4 duplex MMF
- 50GBASE-FR: 1 x 50 Gb/s over 2 km duplex SMF - 50GBASE-LR: 1 x 50 Gb/s over 10 km duplex SMF - Optional Energy Efficient Ethernet (EEE)
• Standard expected in September 2018 • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/
17
© Nokia 2016
Public
50 GE technology reference Physical layer reach
1m backplane
1m backplane
5m copper cable
5m copper cable
70 m OM3 / 100 m OM4
2 km SMF
10 km SMF
Name
50GBASE-KR
50GBASE-KR2
50GBASE-CR
50GBASE-CR2
50GBASE-SR
50GBASE-FR
50GBASE-LR
Standard
September 2018 IEEE 802.3cd
September 2014 25G Ethernet Consortium
September 2018 IEEE 802.3cd
September 2014 25G Ethernet Consortium
September 2018 IEEE 802.3cd
September 2018 IEEE 802.3cd
September 2018 IEEE 802.3cd
Electrical signaling (Gb/s)
1 x 50
2 x 25
1 x 50
2 x 25
1 x 50
1 x 50
1 x 50
Media signaling (Gb/s)
1 x 50
2 x 25
1 x 50
2 x 25
1 x 50 850 nm λ
1 x 50 1310 nm λ
1 x 50 1310 nm λ
Media type
Backplane
Backplane
Twinax copper
Twinax copper
Duplex MMF
Duplex SMF
Duplex SMF
Module type
Backplane
Backplane
SFP56, QSFP56
TBD
SFP56, QSFP56
SFP56, QSFP56
SFP56, QSFP56
Market availability
2018+
TBD
2018+
TBD
2018+
2018+
2018+
18
© Nokia 2016
Public
Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE
19
© Nokia 2016
Public
100 GE technology adoption lifecycle 2nd generation 100 GE crossed the chasm 802.3cd
Chasm
1M 100 GE ports projected in 2016 by Dell’Oro
100 GE at 2 x 50 Gb/s
3.2 Tb/s
6.4 Tb/s
OSFP
Innovators 2010-2013
1 - 4 premium ports/slot CXP and CFP
1st generation
Early adopters
Early majority
2014-2015
2015-2018
4 – 8 high cost ports/slot CFP2
32+ lower cost ports/slot QSFP28 and CFP4
2nd generation
Pluggable module images courtesy of Finisar. microQSFP image courtesy of the microQSFP MSA. 20
© Nokia 2016
Public
Late majority 2018+
High density low cost ports OSFP and microQSFP
Laggards 2020+
High density commodity ports
Future SFP112 and QSFP112
3rd generation
100 GE pluggable module evolution Graphical view of module form factors
XFP (10 GE) CFP4
CFP2
CFP
CFP vs. iPhone 6
CFP2 vs. iPhone 6
CFP4 vs. iPhone 6
XFP(10 GE) CFP4 CFP2 CFP
CFP
CFP2
CFP4
QSFP28*
CFP images courtesy of the CFP MSA. QSFP28 image courtesy of the SFF Committee. *Not quite to scale. 21
© Nokia 2016
Public
100 GE pluggable module evolution microQSFP • Designed for high density, shorter reach and lower power requirements -
Provides QSFP functionality in an SFP-sized form factor supporting up to >3.5 W
-
Can support DAC, MMF and SMF cabling
• Features four electrical channels -
25 Gb/s data rates support 100 GE or 4 x 25 GE breakout
-
Expected to support 50 Gb/s data rates
• Maximum 1 RU densities of -
48 ports (4.8 Tb/s)
-
72 ports in 3 rows (7.2 Tb/s)
• Increase in port density of -
4 x SFP
-
1.5 x QSFP
Images courtesy of the microQSFP MSA. 22
© Nokia 2016
Public
100 GE developments • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 100GBASE-KR2: 2 x 50 Gb/s over 1 m Megtron 6 backplane - 100GBASE-CR2: 2 x 50 Gb/s over 3 m copper twinax cable - 100GBASE-SR2: 2 x 50 Gb/s over 70 m OM3, 100 m OM4 and 150 m WBMMF duplex MMF
- 100GBASE-DR2: 2 x 50 Gb/s over 500 m parallel SMF (TBD) - 100GBASE-FR2: 2 x 50 Gb/s over 2 km duplex SMF (TBD) - Optional Energy Efficient Ethernet (EEE)
• Standard expected in September 2018 • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/
23
© Nokia 2016
Public
100 GE IEEE technology reference Physical layer reach
1m backplane
1m backplane
3m copper cable
5m copper cable
7m copper cable
70 m OM3 / 100 m OM4
70 m OM3 / 100 m OM4 / 150 m WBMMF
100 m OM3 / 150 m OM4
500 m SMF
2m SMF
10 km SMF
40 km SMF
Name
100GBASEKP4 100GBASEKR4
100GBASEKR2
100GBASECR2
100GBASECR4
100GBASECR10
100GBASESR4
100GBASESR2
100GBASESR10
100GBASEDR2
100GBASEDF2
100GBASELR4
100GBASEER4*
Standard
June 2014 IEEE 802.3bj
Sep 2018 IEEE 802.3cd
Sep 2018 IEEE 802.3cd
June 2014 IEEE 802.3bj
June 2010 IEEE 802.3ba
Feb 2015 Sep 2018 IEEE 802.3bm IEEE 802.3cd
June 2010 IEEE 802.3ba
Sep 2018 IEEE 802.3cd
Sep 2018 IEEE 802.3cd
June 2010 IEEE 802.3ba
June 2010 IEEE 802.3ba
Electrical signaling (Gb/s)
4 x 25
2 x 50
2 x 50
4 x 25
10 x 10
4 x 25
2 x 50
10 x 10
2 x 50
2 x 50
10 x 10
10 x 10
Media signaling (Gb/s)
4 x 25 NRZ or PAM-4
2 x 50
2 x 50
4 x 25
10 x 10
4 x 25 850 nm λs
2 x 50 850 nm λ 900 nm λ
10 x 10 850 nm λs
2 x 50
2 x 50
4 x 25 1550 nm λs
4 x 25 1550 nm λs
Media type
Backplane
Backplane
Twinax
Twinax
Twinax
Parallel MMF (MPO12)
Duplex MMF
Parallel MMF (MPO24)
Parallel SMF (MPO12)
Duplex SMF
Duplex SMF
Duplex SMF
Module type
Backplane
Backplane
QSFP28
CFP2, CFP4, QSFP28
CXP, CFP2, CFP4, QSFP28
CFP2, CFP4, CPAK, QSFP28
QSFP28
CFP, CFP2, CFP4, CPAK, CXP, QSFP28
QSFP28
QSFP28
CFP, CFP2, CFP4, CPAK, QSFP28
CFP, CFP2
Market availability
None known
2018+
2018+
2014
2010
2015
2018+
2012
2018+
2018+
2010
2012
*100GBASE-ER4-lite (ITU-T application code 4L1-9D1F) has different optical specifications and uses the RS-FEC. 24
© Nokia 2016
Public
100 GE MSA technology reference Physical layer reach
70 m OM3 / 100 m OM4
500 m SMF
2 km SMF
2 km SMF
2 km SMF
2 km SMF
10 km SMF
40 km SMF
Name
SWDM4
PSM4
10x10-2km
CWDM4
CLR4
OpenOptics
10x10-10km
10x10-40km
Standard
September Future 2014 SWDM4 Alliance 100G PSM4 MSA
March 2011 10x10 MSA
November 2015 CWDM4 MSA Group
March 2015 100G CLR4 Alliance
March 2014 OpenOptics MSA
August 2011 10x10 MSA
August 2011 10x10 MSA
Electrical signaling (Gb/s)
4 x 25
4 x 25
10 x 10
4 x 25
4 x 25
4 x 25
10 x 10
10 x 10
Media signaling (Gb/s)
4 x 25 850 nm λs
4 x 25 1310 nm λs
10 x 10 1310 nm λs
4 x 25 1310 nm λs
4 x 25 1310 nm λs
4 x 25 1550 nm λs
10 x 10 1310 nm λs
10 x 10 1310 nm λs
Media type
Duplex MMF
Parallel SMF (MPO12)
Duplex SMF
Duplex SMF
Duplex SMF
Duplex SMF
Duplex SMF
Duplex SMF
Module type
QSFP28
CFP4, QSFP28
CFP
CFP2, CFP4, QSFP28
QSFP28
QSFP28
CFP
CFP
Market availability
2017
2016
2011
2016
TBD
TBD
2011
2012
Non-IEEE media signaling standards that comply to the IEEE electrical signaling interface. “MSA” means Multisource Agreement. 25
© Nokia 2016
Public
Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE
26
© Nokia 2016
Public
Market drivers for 200 GE • Similar to 25 GE and 50 GE, 200 GE extends existing common network topologies for higher speeds - Reuses existing leaf/spine network architectures - Reuses industry investment in 50 Gb/s technology
- Reuses existing 1 x up / 4 x down architecture
• Network backbone links need to scale to higher, cost effective speeds to match growing server speeds at the edge - Servers migrating from 10 GE to 25 GE, 40 GE and 50 GE
• Investment in MMF cabling infrastructure can support 40 GE to 100 GE to 200 GE capacity upgrades - Same {40,100, 200}GBASE-SR4 technologies with MPO12 connector - 4 x 850 nm λs TX, 4 x 850 nm λs RX CFI: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 27
© Nokia 2016
Public
200 GE maximizes aggregation bandwidth Total capacity (Tb/s)
100 GE ports, 25 Gb/s lanes
200 GE ports, 50 Gb/s lanes
400 GE ports, 50 Gb/s lanes
3.2
32
16
8
4.8
48
24
12
6.4
64
32
16
9.6
72
48
24
12.8
72
64
32
Greater than current port densities
Less than current port densities
ToR switch port densities
• Current leaf/spine network architectures are designed around 32 x 100 GE ToR switches • 200 GE interfaces in a leaf/spine switch provide higher port density at a lower ASIC bandwidth than 400 GE Source: http://www.ieee802.org/3/cfi/1115_1/CFI_01_1115.pdf 28
© Nokia 2016
Public
200 and 400 GE pluggable module evolution QSFP-DD (Quad Small Form-factor Pluggable - Double Density) • Designed for high speed and high density requirements
QSFP-DD
• Slightly deeper form factor than QSFP28 supporting >7 W (target up to 10 W)
QSFP28
- Backwards compatible with QSFP28 - Can support DAC, MMF and SMF cabling
• Features eight electrical channels - 25 Gb/s and 50 Gb/s data rates
- Supports 200 GE and 400 GE - 1 x or 4 x breakout
• Maximum 1 RU density of 36 x QSFP-DD (14.4 Tb/s) Images courtesy of the QSFP-DD MSA. 29
© Nokia 2016
Public
2 x 1 stacked integrated cage and connector
200 GE developments Copper and fiber optic cables • IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force started in May 2016 - 200GBASE-KR4: 4 x 50 Gb/s over 1 m Megtron 6 backplane - 200GBASE-CR4: 4 x 50 Gb/s over 3 m copper twinax cable - 200GBASE-SR4: 4 x 50 Gb/s over 70 m OM3 and 100 m OM4 parallel MMF
- Optional Energy Efficient Ethernet (EEE)
• Working towards Draft 1.0 • Standard expected in September 2018
• Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/cd/
30
© Nokia 2016
Public
200 GE developments Fiber optic cables • IEEE P802.3bs 400 Gb/s Ethernet Task Force adopted 200 GE objectives in May 2016, and became the IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force - 200GBASE-DR4: 4 x 50 Gb/s over 500 m parallel SMF - 200GBASE-FR4: 4 x 50 Gb/s over 2 km duplex SMF
- 200GBASE-LR4: 4 x 50 Gb/s over 10 km duplex SMF - Optional Energy Efficient Ethernet (EEE)
• Generated Draft 1.5 for Task Force review • Standard expected in December 2017 (no change in standard schedule due to 200 GE) • Interfaces expected on the market in 2018+ • Task Force web page http://www.ieee802.org/3/bs/
31
© Nokia 2016
Public
200 GE technology reference
32
Physical layer reach
1m backplane
3m copper cable
70 m OM3 / 100 m OM4
500 m SMF
2 km SMF
10 km SMF
Name
200GBASE-KR4
200GBASE-CR4
200GBASE-SR4
200GBASE-DR4
200GBASE-FR4
200GBASE-LR4
Standard
September 2018 IEEE 802.3cd
September 2018 IEEE 802.3cd
September 2018 IEEE 802.3cd
December 2017 IEEE 802.3bs
December 2017 IEEE 802.3bs
December 2017 IEEE 802.3bs
Electrical signaling (Gb/s)
4 x 50
4 x 50 8 x 25
4 x 50 8 x 25
4 x 50 8 x 25
4 x 50 8 x 25
4 x 50 8 x 25
Media signaling (Gb/s)
4 x 50
4 x 50
4 x 50 850 nm λs
4 x 50 1310 nm λs
4 x 50 1310 nm λs
4x 50 1310 nm λs
Media type
Backplane
Twinax
Parallel MMF (MPO12)
Parallel SMF (MPO12)
Duplex SMF
Duplex SMF
Module type
Backplane
QSFP56, QSFP-DD
QSFP56, QSFP-DD
QSFP56, QSFP-DD
QSFP56, QSFP-DD
QSFP56, QSFP-DD
Market availability
2018+
2018+
2018+
2018+
2018+
2018+
© Nokia 2016
Public
Agenda 1. What’s new: 25 GE 2. What’s next: 50 GE 3. What’s new: 100 GE 4. What’s next: 200 GE 5. What’s next: 400 GE
33
© Nokia 2016
Public
400 GE developments • IEEE P802.3bs 400 Gb/s Ethernet Task Force started in March 2014 • Adopted 200 GE objectives in May 2016, and became the IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force -
400GBASE-SR16: 16 x 25 Gb/s over 70 m OM3, 100 m OM4 and 150 m WBMMF (TBD) parallel MMF
-
400GBASE-DR4: 4 x 100 Gb/s over 500 m parallel SMF
-
400GBASE-FR8: 8 x 50 Gb/s over 2 km duplex SMF
-
400GBASE-LR8: 8 x 50 Gb/s over 10 km duplex SMF
-
Electrical interfaces: 25 Gb/s (NRZ) and 50 Gb/s (PAM-4)
-
Optional Energy Efficient Ethernet (EEE)
• Generated Draft 1.5 for Task Force review • Standard expected in December 2017 (no change in standard schedule due to 200 GE) • First interfaces expected to be available in 2018+ • Task Force web page http://www.ieee802.org/3/bs/ 34
© Nokia 2016
Public
400 GE pluggable module evolution estimates Each module increases density, while reducing cost and power 1st generation Electrical signaling (Gb/s)
16 x 25 8 x 50
2nd generation
3rd generation
8 x 50
4 x 100
CFP16 (~CFP4 size),
Module type
Market availability estimate
CFP8 (~CFP2 size)
OSFP, QSFP-DD
CFP16, Future QSFP112
2016
2018+
2020+
CFP8 image courtesy Finisar. 35
© Nokia 2016
Public
Ethernet at terabit speeds becomes feasible
400 GE technology reference
36
© Nokia 2016
Physical layer reach
70 m OM3 / 100 m OM4/WBMMF
500 m SMF
2 km SMF
10 km SMF
Name
400GBASE-SR16
400GBASE-DR4
400GBASE-FR8
400GBASE-LR8
Standard
December 2017 IEEE 802.3bs
December 2017 IEEE 802.3bs
December 2017 IEEE 802.3bs
December 2017 IEEE 802.3bs
Electrical signaling (Gb/s)
16 x 25 8 x 50
16 x 25 8 x 50
16 x 25 8 x 50
16 x 25 8 x 50
Media signaling (Gb/s)
16 x 25 850 nm λs
4 x 100 1310 nm λs
8 x 50 1310 nm λs
8 x 50 1310 nm λs
Media type
Parallel MMF (MPO32)
Parallel SMF (MPO12)
Duplex SMF
Duplex SMF
Module type
CFP8, OSFP, QSFP-DD
CFP8, OSFP, QSFP-DD
CFP8, OSFP, QSFP-DD
CFP8, OSFP, QSFP-DD
Market availability
2018+
2018+
2018+
2018+
Public
Ethernet evolution futures • Ethernet continues to evolve to meet new and diverse market requirements • Different new speeds are needed for different new applications • Old 10 x performance for 3 x cost model doesn’t work anymore as we get to higher speeds - 10 ME 100 ME 1 GE 10 GE 100 GE
• Current best technical and economic solutions are multiples of the highest lane rate - 2 x 50 Gb/s for 100 GE - 4 x 50 Gb/s for 200 GE - 8 x 50 Gb/s for 400 GE
• New technology based on 50 Gb/s is the basis of a new generation of speeds
37
© Nokia 2016
Public
Ethernet evolution summary • 2.5 GE and 5 GE is coming soon for higher speed Cat 5e/6 applications • 10 GE is widely deployed in every part of the network • 25 GE is available now for server and ToR aggregation • 40 GE is widely deployed in data center networks
• 50 GE is in development for server and ToR aggregation • 100 GE has transitioned to 2nd generation technology with CFP2, CFP4 and QSFP28 -
New interfaces based on 25 Gb/s and 50 Gb/s signaling
-
New OSFP and microQSFP pluggable modules
-
100 Gb/s serial signaling for longer reaches is still a challenge
• 200 GE is in development for server and ToR aggregation -
New QSFP-DD pluggable modules
• 400 GE is in development for core networks
• Ethernet at Terabit speeds is still unfeasible in the near future, but we’ll get there eventually (2020+) 38
© Nokia 2016
Public
References • IEEE P802.3cc 25 Gb/s Ethernet over Single-Mode Fiber Task Force - http://www.ieee802.org/3/cc/
• IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force - http://www.ieee802.org/3/cd
• IEEE P802.3bs 200 Gb/s and 400 Gb/s Ethernet Task Force - http://www.ieee802.org/3/bs/
• CDFP MSA - http://www.cdfp-msa.com/
• CFP MSA - http://www.cfp-msa.org/
• COBO - http://cobo.azurewebsites.net/
• microQSFP MSA - http://www.microqsfp.com/
• QSFP-DD MSA - http://www.qsfp-dd.com/
• SFF Committee - http://www.sffcommittee.com/ 39
© Nokia 2016
Public
Questions? Acknowledgements: Scott Kipp, Brocade Samuel Liu, Nokia Steve Trowbridge, Nokia Christian Urricariet, Finisar Some older and reference slides are next... 40
© Nokia 2016
Public
MPO cable assemblies High density parallel fiber cabling • 40 GE and 100 GE short reach pluggable modules use a Multifiber Push-On (MPO) cable assembly to interconnect network devices -
MPO12 connector
Also called MTP by US Conec
• Widely available in a variety of high density multimode fiber (MMF) and single-mode fiber (SMF) cabling options for data centers -
MPO to MPO
-
MPO cassette for patch panels with into LC, SC, etc
-
Keyed connectors maintain correct transmit/receive orientation
• 40GBASE-SR4 uses a 12-fiber OM3 or OM4 MMF MPO12 cable -
8 fibers used, left 4 for transmit and right 4 for receive
-
4 middle fibers are unused
• 100GBASE-SR10 uses a 24-fiber OM3 or OM4 MMF MPO24 cable
42
-
20 fibers used, top middle 10 for receive and bottom middle 10 for transmit
-
2 fibers on each end are unused
© Nokia 2016
10 x receive
10 x transmit
100GBASE-SR10 CXP
40 GE transmission Multimode and single-mode fiber • Multimode ribbon fiber - Used for distances of 100 m on OM3 and 150 m on OM4 MMF - Data is sent using multiple 850 nm lasers transmitting over multiple parallel fibers
- MPO cables provide multiple separate transmit and receive strands of multimode fiber in a ribbon cable assembly
4 x 10 Gb/s over parallel MMF 40GBASE-SR4
• Single-mode duplex fiber - Used for distances of 2 km, 10 km and 40 km on standard duplex SMF
- WDM component in the pluggable module multiplexes four transmit λs over one strand of fiber and four receive λs over the other strand of fiber in the 1310 nm CWDM band for 40GBASE-LR4 and 40GBASE-ER4 - 40 Gb/s serial transmit over one strand of fiber and receive over the other strand of fiber on one 1550 nm λ is used for 40GBASE-FR 43
© Nokia 2016
Public
4 x 10 Gb/s over duplex SMF 40GBASE-LR4 and 40GBASE-ER4
100 GE transmission Multimode and single-mode fiber • Multimode ribbon fiber - Used for distances of 100 m on OM3 and 150 m on OM4 MMF - Data is sent using multiple 850 nm lasers transmitting over multiple parallel fibers
10 x 10 Gb/s over parallel MMF 100GBASE-SR10
- MPO cables provide multiple separate transmit and receive strands of multimode fiber in a ribbon cable assembly
• Single-mode duplex fiber - Used for distances of 2 km, 10 km and 40 km on standard duplex SMF
10 x 10 Gb/s over duplex SMF 10x10-2km, 10x10-10km and 10x10-40km
- WDM component in the pluggable module multiplexes all transmit λs over one strand of fiber and all receive λs over the other strand of fiber
44
•
10x10 MSA standards use 10 x 10 Gb/s λs in the 1550 nm DWDM band
•
IEEE standards use 4 x 25 Gb/s λs in the 1310 nm CWDM band
© Nokia 2016
Public
4 x 25 Gb/s over duplex SMF 100GBASE-LR4 and 100GBASE-ER4
40 Gb/s QSFP+ modules overview Quad Small Form-factor Pluggable+ • Created for high density interfaces primarily short reach interfaces for data center applications - Small compact form factor enables low power consumption and high density - Also used for longer reach 40 GE
40GBASE-SR4
• Used for a variety of Ethernet, Fibre Channel and InfiniBand applications - 40 GE uses 4 x 10 Gb/s bidirectional channels
• Supports a variety of copper and fiber 40 GE interfaces - Breakout from 40 GE to 4 x 10 GE
• Same faceplate size as an XFP but slightly shorter
Images courtesy of Finisar. 45
© Nokia 2016
Public
40GBASE-LR4
40 GE QSFP+ pluggable modules Physical layer reach
Data center server and access: native 40 GE and 4 x 10 GE breakout
Aggregation and core: native 40 GE
10 m passive copper cable
100 m OM3/OM4
7 m passive copper cable
100 m OM3/ 150 m OM4
10 km SMF
40 km SMF
10GSFP+Cu
10GBASE-SR
40GBASE-CR4
40GBASE-SR4
40GBASE-LR4
40GBASE-ER4
Integrated twinax (QSFP+ to 4 x SFP+)
Parallel MMF (MPO to 4 x Duplex LC)
Integrated twinax (QSFP+ to QSFP+)
Parallel MMF (MPO12)
Duplex SMF (LC)
Duplex SMF (LC)
July 2009 SFF-8431
June 2002 IEEE 802.3ae
June 2010 IEEE 802.3ba
June 2010 IEEE 802.3ba
June 2010 IEEE 802.3ba
February 2015 IEEE 802.3bm
Pluggable module
Media
Standard
40GBASE-SR4, 40GBASE-LR4, and 40GBASE-ER4 QSFP+ images courtesy of Finisar. 46
© Nokia 2016
Public
40 GE technology reference Physical layer reach
1m backplane
7m copper cable
30 m twisted-pair
100 m OM3 / 150 m OM4
2 km SMF
10 km SMF
40 km SMF
Name
40GBASE-KR4
40GBASE-CR4
40GBASE-T
40GBASE-SR4
40GBASE-FR
40GBASE- LR4
40GBASE-ER4
Standard
June 2010 IEEE 802.3ba
June 2010 IEEE 802.3ba
June 2016 IEEE 802.3bq
June 2010 IEEE 802.3ba
March 2011 IEEE 802.3bg
June 2010 IEEE 802.3ba
February 2015 IEEE 802.3bm
Electrical signaling (Gb/s)
4 x 10
4 x 10
4 x 10
4 x 10
4 x 10
4 x 10
4 x 10
1 x 40 1310 nm λ (RX) 1550 nm λs (TX, RX)
4 x 10 1310 nm λs
4 x 10 1310 nm λs
Media signaling (Gb/s)
4 x 10
4 x 10
4 x 10
4 x 10 850 nm λs
Media type
Backplane
Twinax
Cat 8
Parallel MMF (MPO12)
Duplex SMF
Duplex SMF
Duplex SMF
Module type
Backplane
QSFP+
RJ45
CFP, QSFP+
CFP
CFP, QSFP+
QSFP+
Market availability
None known
2010
2016
2010
2012
CFP 2010 QSFP+ 2011
2015
Note: there are a few 40 GE MSA standards that are not shown. 47
© Nokia 2016
Public
1st generation 100 GE limitations
Electrical signaling
• Fundamental 1st generation technology constraints limit higher 100 GE density and lower cost • Electrical signaling to the CFP - 100 Gb/s Attachment Unit Interface (CAUI) uses 10 x 10 Gb/s lanes (CAUI-10)
• Optical signaling on the media
118.90 cm2 Optical signaling
- 100GBASE-SR10: 10 x 10 Gb/s parallel - 10x10 MSA: 10 x 10 Gb/s λs
- 100GBASE-LR4 and 100GBASE-ER4: 4 x 25 Gb/s λs
• CFP module size, complexity and power consumption • 2nd generation modules based on 4 x 25 Gb/s electrical signaling are available now Image courtesy of Finisar. 48
© Nokia 2016
Public
100 GE
1st generation vs 2nd generation 100 GE signaling 1st generation 100 GE 10 x 10 Gb/s electrical and 4 x 25 Gb/s optical
10 Gb/s electrical signaling and 10:4 gearbox adds complexity, cost, space, and consumes power Diagram source: http://grouper.ieee.org/groups/802/3/ba/public/jul08/cole_03_0708.pdf 49
© Nokia 2016
Public
2nd generation 100 GE 4 x 25 Gb/s electrical and optical
CFP comparison
Images courtesy of the CFP MSA. 50
© Nokia 2016
Public