Preview only show first 10 pages with watermark. For full document please download

Evb-lan9353 Evaluation Board User’s Guide  2015 Microchip Technology Inc.

   EMBED


Share

Transcript

EVB-LAN9353 Evaluation Board User’s Guide  2015 Microchip Technology Inc. DS50002393A Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-63277-587-0 QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == DS50002393A-page 2 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.  2015 Microchip Technology Inc. EVB-LAN9353 Evaluation Board User’s Guide Object of Declaration: EVB-LAN9353  2015 Microchip Technology Inc. DS50002393A-page 3 EVB-LAN9353 Evaluation Board User’s Guide NOTES:  2015 Microchip Technology Inc. DS50002393A-page 4 EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Table of Contents Preface ........................................................................................................................... 7 Introduction............................................................................................................ 7 Document Layout .................................................................................................. 7 Conventions Used in this Guide ............................................................................ 8 The Microchip Web Site ........................................................................................ 9 Development Systems Customer Change Notification Service ............................ 9 Customer Support ................................................................................................. 9 Document Revision History ................................................................................. 10 Chapter 1. Overview 1.1 Introduction ................................................................................................... 11 1.1.1 References ................................................................................................ 13 1.1.2 Terms and Abbreviations .......................................................................... 14 Chapter 2. Board Details 2.1 Board Details ................................................................................................ 15 2.1.1 Power ........................................................................................................ 15 2.1.2 Power-on Reset ......................................................................................... 15 2.1.3 Clock .......................................................................................................... 16 Chapter 3. Board Configuration 3.1 Strap Options ............................................................................................... 17 3.1.1 Jumpers J4:J15 ......................................................................................... 17 3.1.1.1 GPIO/LED POL/LED Configurations ......................................... 18 3.1.1.2 Serial Management Mode Configuration ................................... 19 3.1.1.3 EEPROM Size Configuration ..................................................... 19 3.1.1.4 Energy-Efficient Ethernet Configuration .................................... 19 3.1.1.5 1588 Enable Configuration ........................................................ 20 3.1.1.6 PHY Address Configuration ....................................................... 20 3.1.2 GPIO 6 & GPIO 7 Input and Output Configurations .................................. 20 3.1.3 Jumper Settings for CONFIG 9 or CONFIG 10 ......................................... 21 3.1.4 Link Partner Duplex/Speed Configurations ............................................... 21 3.1.5 P0/P1 Configurations ................................................................................ 22 3.1.6 RMII RX Clock Configurations ................................................................... 24 3.1.7 GPIO Header ............................................................................................. 24 3.1.8 I2C Aardvark Header ................................................................................. 25 3.1.9 Copper and Fiber Mode Selections ........................................................... 25 3.1.9.1 Copper Mode ............................................................................. 25 3.1.9.2 Fiber Mode ................................................................................ 25 3.1.9.3 FX-LOS Fiber Mode Strap ......................................................... 26 3.2 LEDs ............................................................................................................. 26 3.3 Test Points ................................................................................................... 27  2015 Microchip Technology Inc. DS50002393A-page 5 EVB-LAN9353 Evaluation Board User’s Guide 3.4 Mechanicals ................................................................................................. 27 Appendix A. EVB-LAN9353 Evaluation Board A.1 Introduction .................................................................................................. 28 Appendix B. EVB-LAN9353 Evaluation Board Schematics B.1 Introduction .................................................................................................. 29 Appendix C. Bill of Materials (BOM) C.1 Introduction .................................................................................................. 39 Wordwide Sales and Service ......................................................................................43 DS50002393A-page 6  2015 Microchip Technology Inc. EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Preface NOTICE TO CUSTOMERS All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available. Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document. For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files. INTRODUCTION This chapter contains general information that will be useful to know before using the EVB-LAN9353. Items discussed in this chapter include: • • • • • • Document Layout Conventions Used in this Guide The Microchip Web Site Development Systems Customer Change Notification Service Customer Support Document Revision History DOCUMENT LAYOUT This document describes how to use the EVB-LAN9353 Evaluation Board as a development tool for the LAN9353 three-port 10/100 managed Ethernet switch. The manual layout is as follows: • Chapter 1. “Overview” – Shows a brief description of the EVB-LAN9353 Evaluation Board. • Chapter 2. “Getting Started” – Includes instructions on how to get started with the EVB-LAN9353 Evaluation Board. • Chapter 3. “Board Configuration” – Provides information about the EVB-LAN9353 Evaluation Board battery charging features. • Appendix A. “EVB-LAN9353 Evaluation Board” – This appendix shows the EVB-LAN9353 Evaluation Board. • Appendix B. “EVB-LAN9353 Evaluation Board Schematics” – This appendix shows the EVB-LAN9353 Evaluation Board schematics. • Appendix C. “Bill of Materials (BOM)” – This appendix includes the EVB-LAN9353 Evaluation Board Bill of Materials (BOM).  2015 Microchip Technology Inc. DS50002393A-page 7 EVB-LAN9353 Evaluation Board User’s Guide CONVENTIONS USED IN THIS GUIDE This manual uses the following documentation conventions: DOCUMENTATION CONVENTIONS Description Arial font: Italic characters Represents Referenced books Emphasized text A window A dialog A menu selection A field name in a window or dialog A menu path MPLAB® IDE User’s Guide ...is the only compiler... the Output window the Settings dialog select Enable Programmer “Save project before build” A dialog button A tab A number in verilog format, where N is the total number of digits, R is the radix and n is a digit. A key on the keyboard Click OK Click the Power tab 4‘b0010, 2‘hF1 Italic Courier New Sample source code Filenames File paths Keywords Command-line options Bit values Constants A variable argument Square brackets [ ] Optional arguments Curly brackets and pipe character: { | } Ellipses... Choice of mutually exclusive arguments; an OR selection Replaces repeated text #define START autoexec.bat c:\mcc18\h _asm, _endasm, static -Opa+, -Opa0, 1 0xFF, ‘A’ file.o, where file can be any valid filename mcc18 [options] file [options] errorlevel {0|1} Initial caps Quotes Underlined, italic text with right angle bracket Bold characters N‘Rnnnn Text in angle brackets < > Courier New font: Plain Courier New Represents code supplied by user DS50002393A-page 8 Examples File>Save Press , var_name [, var_name...] void main (void) { ... }  2015 Microchip Technology Inc. Preface THE MICROCHIP WEB SITE Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. The Development Systems product group categories are: • Compilers – The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB C compilers; all MPLAB assemblers (including MPASM assembler); all MPLAB linkers (including MPLINK object linker); and all MPLAB librarians (including MPLIB object librarian). • Emulators – The latest information on Microchip in-circuit emulators.This includes the MPLAB REAL ICE and MPLAB ICE 2000 in-circuit emulators. • In-Circuit Debuggers – The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit 3 debug express. • MPLAB IDE – The latest information on Microchip MPLAB IDE, the Windows Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features. • Programmers – The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART Plus and PIC-kit 2 and 3. CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support  2015 Microchip Technology Inc. DS50002393A-page 9 EVB-LAN9353 Evaluation Board User’s Guide Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://www.microchip.com/support DOCUMENT REVISION HISTORY Revision A (July 2015) • Initial Release of this Document. DS50002393A-page 10  2015 Microchip Technology Inc. EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Chapter 1. Overview 1.1 INTRODUCTION The LAN9353 is a fully featured, three-port 10/100 managed Ethernet switch designed for industrial and embedded applications where performance, flexibility, ease of integration and system cost control are required. The LAN9353 combines all the functions of a 10/100 switch system, including the switch fabric, packet buffers, buffer manager, media access controllers (MACs), PHY transceivers, and serial management. IEEE 1588v2 is supported via the integrated IEEE 1588v2 hard-ware time stamp unit, which supports end-to-end and peer-to-peer transparent clocks. The LAN9353 complies with the IEEE 802.3 (full/half-duplex 10BASE-T and 100BASE-TX) Ethernet protocol, IEEE 802.3az Energy Efficient Ethernet (EEE) (100Mbps only), and 802.1D/802.1Q management protocol specifications, enabling compatibility with industry standard Ethernet and Fast Ethernet applications. 100BASE-FX is supported via an external fiber transceiver and cable diagnostics (short, open and length) is included on the internal twisted pair copper interface. The EVB-LAN9353 is an Evaluation Board (EVB) that utilizes the LAN9353 to provide a fully-functional three-port Ethernet switch with Single MII/RMII/Turbo MII or Dual RMII. The EVB-LAN9353 provides one fully integrated MAC/PHY internet port (Port 2) via on-board RJ45 connectors. Port 0 and Port 1 provides two MII port connectors which support the following: • An external “Dual RMII –Capable or singleMII / RMII / Turbo MII”-Capable MAC (with LAN9353 in PHY mode), via the on-board 40-pin male MII connector • An external “Dual RMII –Capable or singleMII / RMII / Turbo MII”-Capable PHY (with LAN9353 in MAC mode), via the on-board 40-pin female MII connector Power is supplied to the board via a +5V external wall mount power supply. The EVB-LAN9353 includes a 64K x 8 I2C EEPROM that may be used to automatically load configuration settings from the EEPROM into the device at reset. An I2C host adapter interface header (10-pin, 2x5) is provided to simplify I2C based configuration. A simplified block diagram of the EVB LAN9353 can be seen in Error! Reference source not found and LAN9353 supports for CONFIG 9 or CONFIG 10. CONFIG 9: used to configure the LAN9353 in Dual RMII mode for external ports. CONFIG 10: used to configure the LAN9353 in Single MII/RMII/TMII mode for external port.  2015 Microchip Technology Inc. DS50002393A-page 11 EVB-LAN9353 Evaluation Board User’s Guide FIGURE 1-1: EVB-LAN9353 BLOCK DIAGRAM (CONFIG 9) To External MAC To External PHY To External PHY To External MAC 40 pin MII Connector (Male) 40 pin MII Connector (Female) 40 pin MII Connector (Female) 40 pin MII Connector (Male) RMII Mode Switch I2C EEPROM Straps Jumpers RMII Port 1 Port 0 Power Supply Module Microchip LAN9353 5V Reset Crystal Port 2 10/100 Ethernet Magnetics & RJ45 Fiber Transceiver (SFP) Ethernet DS50002393A-page 12  2015 Microchip Technology Inc. FIGURE 1-2: EVB-LAN9353 BLOCK DIAGRAM (CONFIG 10) To External PHY To External MAC 40 pin MII Connector (Female) 40 pin MII Connector (Male) MII/RMII/TMII Port 0 Mode Switch Microchip LAN9353 I2C EEPROM Straps Jumpers Fiber Transceiver (SFP) 5V Reset Crystal Port 1 Port 2 10/100 Ethernet Magnetics & RJ45 10/100 Ethernet Magnetics & RJ45 Ethernet 1.1.1 Power Supply Module Fiber Transceiver (SFP) Ethernet References Concepts and material available in the following documents may be helpful when reading this document. Visit www.microchip.com for the latest documentation. Document LAN9353 datasheet Location Visit www.microchip.com AN8-13 Suggested Mag- http://www.microchip.com/wwwApnetics pNotes/AppNotes.aspx?appnote=en562793 EVB-LAN9353 Evaluation Board Schematic  2015 Microchip Technology Inc. Visit www.microchip.com DS50002393A-page 13 EVB-LAN9353 Evaluation Board User’s Guide 1.1.2 • • • • • • • • • • DS50002393A-page 14 Terms and Abbreviations EVB - Evaluation Board DNP - Do Not Populate 100BASE-TX - 100 Mbps Fast Ethernet, IEEE802.3u Compliant GPIO - General Purpose I/O MII - Media Independent Interface RMII - Reduced Media Independent Interface EEE - Energy-Efficient Ethernet SFP - Small Form-factor Pluggable SFF - Small Form Factor SMI - Serial Management Interface  2015 Microchip Technology Inc. EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Chapter 2. Board Details 2.1 BOARD DETAILS The following sections describe the various board features, including jumpers, LEDs, test points, system connections, and switches. A top view of the EVB-LAN9353 is shown in Figure 2-1. FIGURE 2-1: LAN9353 BOARD REV-A EEPROM Strap Mode Switch Power Reset Port 1** (Female) MII Connector Port 0 (Female) MII Connector Port 1** (Male) MII Connector Port 0 (Male) MII Connector Microchip LAN9353 Port 1** (with integrated magnetics & LEDs) Note: 2.1.1 Port 2 (with integrated magnetics & LEDs) Config 10: Port 1 and Port 2 both are Internal, Port 0 External. Config 9: Only Port 2 Internal, Port 0 and Port 1 are External. Power DC 5V is applied through (J1) DC Socket, powered by a +5V external wall adapter. switch (SW1) need to be ON position for the 5V to reach the 3.3V regulator. Glowing of Green LED (D1) indicates successful generation of 3.3V o/p. This Power is supplied to the LAN9353 and it has internal 1.2 V regulator which supplies power to the internal core logic. 2.1.2 Power-on Reset A power-on reset occurs whenever power is initially applied to the LAN9353 or if the power is removed and reapplied to the LAN9353. This event resets all circuitry within the LAN9353. After initial power-on, the LAN9353 can be reset by pressing the reset switch (SW2). The reset LED D2 will assert (red) when the LAN9353 is in reset condition.  2015 Microchip Technology Inc. DS50002393A-page 15 EVB-LAN9353 Evaluation Board User’s Guide For stability, a delay of approximately 180ms is added from the +3.3V o/p to reset release. 2.1.3 Clock The LAN9353 requires a fixed-frequency 25 MHz clock (±50 ppm) source for use by the internal clock oscillator and PLL. This is typically provided by attaching a 25 MHz crystal to the OSCI and OSCO pins. Optionally, this clock can be provided by driving the OSCI input pin with a single-ended 25 MHz clock source. DS50002393A-page 16  2015 Microchip Technology Inc. EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Chapter 3. Board Configuration 3.1 STRAP OPTIONS The following tables describe the default settings and jumper descriptions for the EVB-LAN9353. These defaults are the recommended configurations for evaluation of the LAN9353. These settings may be changed as needed, however, any deviation from the defaults settings should be approached with care and knowledge of the schematics and datasheet. An incorrect jumper setting may disable the board. 3.1.1 Jumpers J4:J15 Jumpers J4 through J15 set various functions of the LAN9353. They can also be used as GPIOs, LED drivers. When used as LED drivers, as they are on the EVB-LAN9353, they are connected a specific way to set the strap value to a “1”, and another way to set the strap value to a “0” Figure 3-1 illustrates the schematics connections with the D3 circuit as a pull-up, and the D4 circuit as a pull-down. To illuminate D3, the LAN9353 will drive the cathode of the D3 low. To illuminate D4, the LAN9353 will drive the cathode of the D4 high. The J4 - J15 jumpers must be configured in pairs to identical settings in order to realize the D3 circuit or the D4 circuit. The pairings are as follows: - J4 & J7 J6 & J9 J5 & J8 J11 & J14 J10 & J13 J12 & J15 The following subsections detail the jumper pair settings, their associated strap settings, and the functional effects of setting the straps. All strap values are read during power-up and on the rising edge of nRST signal. Once the strap value is set, the LAN9353 will drive the LED’s high or low for illumination according the strap value. For other designs which may use these pins as GPIOs refer to LAN9353 datasheet for additional information. In those cases, internal default straps must be changed by an I2C or SMI master or through EEPROM fields.  2015 Microchip Technology Inc. DS50002393A-page 17 EVB-LAN9353 Evaluation Board User’s Guide FIGURE 3-1: 3.1.1.1 LED STRAP CIRCUIT GPIO/LED POL/LED CONFIGURATIONS: GPIO/LED POL/LED configuration straps are used to configure the default polarity of LEDs, GPIOs through jumpers as shown below in Table 3-1. TABLE 3-1: GPIO/LED POL/LED CONFIGURATIONS Header Pin Settings Signal Name Strap Value Description J4 & J7 1-2(default) LEDPOL0 /GPIO0 /LED0 1 The LED (D3) is set as active LOW. 0 The LED (D3) is set as active HIGH. 1 The LED (D4) is set as active LOW. 0 The LED (D4) is set as active HIGH. 1 The LED (D5) is set as active LOW. 0 The LED (D5) is set as active HIGH. 1 The LED (D6) is set as active LOW. 0 The LED (D6) is set as active HIGH. 2 -3 J5 & J8 1-2(default) LEDPOL1 /GPIO1 /LED1 2 -3 J6 & J9 1-2(default) LEDPOL2 /GPIO2 /LED2 2 -3 J10 & J13 1-2(default) 2 -3 DS50002393A-page 18 LEDPOL3 /GPIO3 /LED3  2015 Microchip Technology Inc. TABLE 3-1: GPIO/LED POL/LED CONFIGURATIONS (CONTINUED) Header Pin Settings Signal Name Strap Value Description J11 & J14 1-2(default) LEDPOL4 /GPIO4 /LED4 1 The LED (D7) is set as active LOW. 0 The LED (D7) is set as active HIGH. 1 The LED (D8) is set as active LOW. 0 The LED (D8) is set as active HIGH. 2 -3 J12 & J15 1-2(default) LEDPOL5 /GPIO5 /LED5 2 -3 3.1.1.2 SERIAL MANAGEMENT MODE CONFIGURATION Serial Management Mode selection strap (MNGT0) is used to configure the default value of the Serial Management Mode Strap hard-strap (serial_mngt_mode_strap) through jumpers as shown below in Table 3-2. TABLE 3-2: Header SERIAL MANAGEMENT MODE CONFIGURATION Pin Settings serial_mngt_mode_ strap Description J4 & J7 2-3 0 SMI Managed Mode J4 & J7 1-2 (default) 1 I2C Managed Mode 3.1.1.3 EEPROM SIZE CONFIGURATION: The EEPROM size configuration strap (J6 & J9) determines the supported EEPROM size range. A low selects 1Kbits (128 x 8) through 16Kbits (2K x 8)_24C16. A high selects 32Kbits (4K x 8) through 512Kbits (64K x 8) or 4Mbits (512K x 8)_24C512 as shown below in Table 3-3. TABLE 3-3: EEPROM SIZE CONFIGURATION Header Pin Settings eeprom_size_strap Value J6 & J9 1-2 (default) 1 EEPROM size = 32K bits (4k x 8) through 512K bits (64K x 8) 2 -3 0 EEPROM size = 1K bits (128 x 8) through 16K bits (2K x 8) 3.1.1.4 Description ENERGY-EFFICIENT ETHERNET CONFIGURATION EEE_EN configuration strap is used to configure the default value of the EEE Enable 2-1 soft-straps (EEE_enable_strap_[2:1]) through jumpers as shown below in Table 3-4. Note:  2015 Microchip Technology Inc. “EEE_enable_strap_1” strap is used for the LAN9353 when in Port 1 internal PHY mode. DS50002393A-page 19 EVB-LAN9353 Evaluation Board User’s Guide TABLE 3-4: EEE_EN CONFIGURATION Header Pin Settings EEE_enable_strap_[ 2:1] Value J10 & J13 1-2(default) 1 EEE Enable 2 -3 0 EEE Disable 3.1.1.5 Description 1588 ENABLE CONFIGURATION Energy Efficient Ethernet configuration strap is used to configure the default value of the 1588 Enable soft-strap (1588_enable_strap) through jumpers as shown below in Table 3-5. TABLE 3-5: 1588 ENABLE CONFIGURATION Header Pin Settings 1588_enable_strap Value J11 & J14 1-2 (default) 1 1588 Enable 2 -3 0 1588 Disable 3.1.1.6 Description PHY ADDRESS CONFIGURATION PHY Address selection strap is used to configure the default value of the Switch PHY Address Select soft-strap (phy_addr_sel_strap) through jumpers as shown below in Table 3-6. TABLE 3-6: PHY ADDRESSING VIRTUAL PHY 0 AND 1 PHY_ADDR_SEL DEFAULT _STRAP Value ADDRESS VALUE PHY A DEFAULT ADDRESS VALUE PHY B DEFAULT ADDRESS VALUE Header Pin Settings J12 & J15 1-2 1 1 2 3 2-3 (default) 0 0 1 2 3.1.2 GPIO 6 & GPIO 7 Input and Output Configurations GPIO 6 & 7 configuration straps are used to configure the default input value of the GPIO 6 and 7 through jumpers as shown below in Table 3-7 and Table 3-8. TABLE 3-7: Header Pin Settings Input J20 1-2 1 J21 TABLE 3-8: 2-3 0 1-2 1 2-3 0 Signal Name GPIO6 GPIO7 GPIO 6 & 7 OUTPUT CONFIGURATION Header Pin Output J20 2 Push Pull GPIO6 J21 2 Push Pull GPIO7 Note: DS50002393A-page 20 GPIO 6 & 7 INPUT CONFIGURATION Signal Name By default, the jumpers settings for J20 & J21 will be OPEN.  2015 Microchip Technology Inc. 3.1.3 Jumper Settings for CONFIG 9 or CONFIG 10 CONFIG 9: Used to configure the LAN9353 in Dual RMII mode by using jumpers as shown below in Table 3-9. Port 0: RMII PHY, RMII MAC modes Port 1: RMII MAC, RMII PHY modes Port 2: Internal PHY CONFIG 10: Used to configure the LAN9353 in Single MII/RMII/TMII mode by using jumpers as shown below in Table 8 Port 0: MII MAC, MII PHY, RMII PHY, RMII MAC, TMII MAC, TMII PHY modes Port 1: Internal PHY Port 2: Internal PHY TABLE 3-9: CONFIG 9 OR CONFIG 10 SETTINGS SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 Mode Configurations 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 2 RMII CONFIG 9 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1xMII/RMII/T MII (DEFAULT) CONFIG 10 Note: 3.1.4 For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. Link Partner Duplex/Speed Configurations CONFIG 9 or CONFIG 10 must be configured before Link partner Duplex/Speed configurations. For a detailed jumper settings for CONFIG 9 or CONFIG 10 refer to section 3.1.3. The “duplex_strap_0” strap from J28 is used to determine the link partners duplex ability when in Port 0 MII MAC and RMII MAC modes as shown below in Table 3-10. The “speed_strap_0” strap from J29 is used to determine the link partners speed ability and to determine the parallel detect speed when in Port 0 “MII MAC and RMII MAC” modes as shown below in Table 3-10. TABLE 3-10: J28 (P0_DUPLEX) EMULATED LINK PARTNER DEFAULT ADVERTISED ABILITY FOR PORT 0 J29 (P0_SPEED) duplex_strap_0 speed_strap_0 ADVERTISED LINK PARTNER ABILITY 1-2 2-3 1 0 10BASE-T full-duplex (0010) 1-2 1-2 1 1 100BASE-X full-duplex (1000) 2-3 2-3 0 0 10BASE-T half-duplex (0001) 2-3 1-2 0 1 100BASE-X half-duplex (0100) Note:  2015 Microchip Technology Inc. For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. DS50002393A-page 21 EVB-LAN9353 Evaluation Board User’s Guide The “duplex_strap_1” strap from J30 is used to determine the link partners duplex ability when in Port 1 RMII MAC mode as shown below in Table 10. The “speed_strap_1” strap from J31 is used to determine the link partners speed ability and to determine the parallel detect speed when in Port 1 “RMII MAC” mode as shown below in Table 3-11. TABLE 3-11: J30 (P1_DUPLEX) EMULATED LINK PARTNER DEFAULT ADVERTISED ABILITY FOR PORT 1 J31 (P1_SPEED) duplex_strap_1 ADVERTISED LINK PARTNER ABILITY speed_strap_1 1-2 2-3 1 0 10BASE-T full-duplex (0010) 1-2 1-2 1 1 100BASE-X full-duplex (1000) 2-3 2-3 0 0 10BASE-T half-duplex (0001) 2-3 1-2 0 1 100BASE-X half-duplex (0100) Note: 3.1.5 For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. Port 0/Port 1 Mode Configurations CONFIG 9 or CONFIG 10 must be configured before P0/P1 mode configurations. For a detailed jumper settings for CONFIG 9 or CONFIG 10 refer to section 3.1.3 P0 Mode configuration straps (SW5, SW6, SW7 & SW8) are used to configure the hard-straps such as Switch Port 0 Mode Strap (P0_mode_strap[1:0]), Switch Port 0 RMII Clock Direction Strap (P0_rmii_clock_dir_strap) and Switch Port 0 Clock Strength Strap (P0_clock_strength_strap) as shown below in Table 3-12. TABLE 3-12: P1_ INTPHY (J5 & J8) DS50002393A-page 22 PORT 0 MODE STRAP MAPPING P0_MODE3 P0_MODE2 P0_MODE1 P0_MODE0 (SW8) (SW9) (SW7) (SW5) MODE 1-2 1-3 1-3 X X MII MAC 1-2 1-3 1-2 1-3 X MII PHY 1-2 1-3 1-2 1-2 1-3 Turbo MII PHY 12 ma 1-2 1-3 1-2 1-2 1-2 Turbo MII PHY 16 ma 2-3 X 1-3 1-3 X 1-2 1-2 1-3 1-2 1-3 RMII MAC clock out 12ma 1-3 1-2 1-2 RMII MAC clock out 16ma 1-2 1-3 X 2-3 X 1-2 1-2 2-3 X 1-2 1-2 2-3 X 1-2 1-2 RMII MAC clock in (default) RMII PHY clock in  2015 Microchip Technology Inc. TABLE 3-12: P1_ INTPHY (J5 & J8) PORT 0 MODE STRAP MAPPING (CONTINUED) P0_MODE3 P0_MODE2 P0_MODE1 P0_MODE0 (SW8) (SW9) (SW7) (SW5) 2-3 X 1-2 1-2 2-3 X 1-2 1-2 MODE 1-2 1-2 1-3 RMII PHY clock out 12ma 1-2 1-2 1-2 RMII PHY clock out 16ma Note: For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. Note: SW8 will be used for Port 0 when LAN9353 is configured in Single MII/TMII/RMII Mode and SW8 will be ignored when LAN9353 is in Dual RMII mode. P1 Mode configuration straps (SW10, SW8, SW6 & J5/J8) are used to configure the hard-straps such as Switch Port 1 Mode Strap (P1_mode_strap[1:0]), Switch Port 1 RMII Clock Direction Strap (P1_rmii_clock_dir_strap) and Switch Port 1 Clock Strength Strap (P1_clock_strength_strap) as shown below in Table 3-13. TABLE 3-13: PORT 1 MODE STRAP MAPPING P1_INTPHY (J5 & J8) P1_MODE2 (SW10) P1_MODE1 (SW8) P1_MODE0 (SW6) 2-3 1-3 1-3 X 2-3 1-3 1-2 1-3 RMII MAC clock out 12ma 2-3 1-3 1-2 1-2 RMII MAC clock out 16ma 2-3 1-2 1-3 X 2-3 1-2 1-2 1-3 RMII PHY clock out 12ma 2-3 1-2 1-2 1-2 RMII PHY clock out 16ma 1-2 X X X MODE RMII MAC clock in (default) RMII PHY clock in Internal PHY Note: For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. Note: SW8 will be used for Port 1 when LAN9353 is configured in Dual RMII Mode and SW8 will be ignored when LAN9353 is in Single MII/TMII/RMII mode.  2015 Microchip Technology Inc. DS50002393A-page 23 EVB-LAN9353 Evaluation Board User’s Guide 3.1.6 RMII RX Clock Configurations When LAN9353 is in MAC/PHY mode the reference clock routed either through TX or RX Clock as shown in Table 3-14 for Port 0 and Table 3-15 for Port 1. TABLE 3-14: RX CLOCK CONFIGURATIONS FOR PORT 0 Switch Settings DESCRIPTION Mode SW23 (1-3) (Default) TX Clock used as a Reference Clock RMII MAC SW23 (1-2) RX Clock used as a Reference Clock RMII MAC SW24 (1-3) (Default) Reference clock used as a TX RMII PHY clock SW24 (1-2) Reference clock used as a RX RMII PHY clock Note: When Port 0 configured in RMII mode, short Jumper J25 (1-2). TABLE 3-15: RMII RX CLOCK CONFIGURATIONS FOR PORT 1 Switch Settings DESCRIPTION Mode SW25 (1-3) (Default) TX Clock used as a Reference Clock RMII MAC SW25 (1-2) RX Clock used as a Reference Clock RMII MAC SW26 (1-3) (Default) Reference clock used as a TX RMII PHY clock SW26 (1-2) Reference clock used as a RX RMII PHY clock Note: External PHY considered LAN8742. Note: For Switches to short 1-3, Knob Position should be at 1-2 and vice versa. 3.1.7 GPIO Header J27 header is used for GPIO. Pin details are given below in Table 3-16. TABLE 3-16: DS50002393A-page 24 PIN NAMES FOR GPIO HEADER Signal Name Pin Number GPIO0 J27.1 GPIO1 J27.2 GPIO2 J27.3 GPIO3 J27.4 GPIO4 J27.5 GPIO5 J27.6 GPIO6 J27.7 GPIO7 J27.8  2015 Microchip Technology Inc. 3.1.8 I2C Aardvark® Header J16 connector is used for I2C Aardvark header. Respective pin details are given below in Table 3-17. TABLE 3-17: 3.1.9 PIN NAMES FOR I2C AARDVARK HEADER Signal Name Pin Number I2C2_SCL J16.1 I2C2_SDA J16.3 GND J16.2 & J16.10 Copper and Fiber Mode Selections The LAN9353 supports 100BASE-TX (Copper) and 100BASE-FX (Fiber) modes. In 100BASE-FX operation, the presence of the receive signal is indicated by the external transceiver as either an open-drain, CMOS level, Loss of Signal (SFP) or a LVPECL Signal Detect (SFF). This EVB supports 100BASE-TX (Copper) and 100BASE-FX (Fiber) in SFP mode. By default Copper Mode is active. Fiber Mode is supported as an assembly option. To select the Copper or Fiber Mode, the respective strap and signal routing resister assembly options must to be configured. Note: 3.1.9.1 Vendor part number for SFP Transceiver: Finisar/FTLF1217P2. COPPER MODE The EVB-LAN9353 is set to Copper Mode by default. Table 3-18 details the required strap resistors settings for Copper Mode operation. TABLE 3-18: Resistors R79 (10K) COPPER MODE STRAP RESISTORS Signal Names FXLOSEN Description Copper twisted pair for ports A and B further determined by FXSDENA and FXSDENB R76, R80 (10K) FXSDA/FXSDB Configures Port 0 and Port 1 to Copper Mode Note: R75, R77, and R78 must not be populated (DNP). Additionally, the signal routing resistors detailed in Table 3-19 must be assembled for Copper Mode operation. TABLE 3-19: COPPER MODE SIGNAL ROUTING RESISTORS Resistors Description R17, R19, R21, R23 Port 0 Copper mode is Enabled R31, R33, R35, R37 Port 1 Copper mode is Enabled Note: 3.1.9.2 R16, R18, R20, R22, R30, R32, R34, and R36 (0402 package) must not be populated (DNP). FIBER MODE The LAN9353 supports SFP type 100BASE-FX mode. To enable Fiber Mode, the respective strap and signal routing resisters must be configured. Note:  2015 Microchip Technology Inc. Copper Mode related resistors must be DNP while Fiber Mode is active (See Section 3.1.9.1 “Copper Mode”). DS50002393A-page 25 EVB-LAN9353 Evaluation Board User’s Guide Table 3-20 details the required strap resistor settings for Fiber Mode operation. TABLE 3-20: FIBER MODE STRAP RESISTORS Resistors Description R77 (10K) Configures Port 0 & 1 to FX_LOS Mode R75, R78 (10K) Configures Port 0 & 1 to Fiber mode, respectively Note: R76, R79, and R80 must not be populated (DNP). Additionally, the signal routing resistors detailed in Table 3-21 must be assembled for Fiber Mode operation. TABLE 3-21: FIBER MODE SIGNAL ROUTING RESISTORS Resistors Description R16, R18, R20, R22 Port 0 Fiber mode Enabled R30, R32, R34, R36 Port 1 Fiber mode Enabled Note: 3.1.9.3 R17, R19, R21, R23, R31, R33, R35, and R37 (0402 package) must not be populated (DNP). FX-LOS FIBER MODE STRAP FX-LOS strap details are shown in Table 3-22. These strap settings determine if the ports are to operate in FX-LOS Fiber Mode or FX-SD/Copper Mode. TABLE 3-22: FX-LOS MODE STRAP SETTINGS Reference Voltage (v) R77 (10K) R79 (10K) Populate DNP 3.3 A level above 2V selects FX-LOS for Port 0 and Port 1 Populate Populate 1.5 A level of 1.5V selects FX-LOS for Port 0 and FX-SD / Copper twisted pair for Port 1, further determined by FXSDB DNP Populate 0 (Default) A level of 0V selects FX-SD / Copper twisted pair for Ports 0 and 1, further determined by FXSDA, FXSDB Note: 3.2 Function The above strap details describe the LAN9353 function. This EVB does not support SFF Fiber Mode. Therefore, FX-SD related straps are not applicable. LEDS Table 3-23 describes the different LED references and their corresponding colors and indications TABLE 3-23: LEDS Reference Indication D1 Green 3.3V Power active D2 Red LAN9353 is in reset condition D4 Green Full-duplex / Collision Port 1 D7 Green Full-duplex / Collision Port 2 Note: DS50002393A-page 26 Color Assumes the LED_FUN field of the LED_CFG register is 00b.  2015 Microchip Technology Inc. 3.3 TEST POINTS Table 3-24 describes the different test points and their corresponding connections. TABLE 3-24: Test Points 3.4 TEST POINTS Description Connection TP1 Single pin populated 5V 5V_EXT TP2 Single pin populated 3V3 3V3 TP3 Single pin unpopulated VDDCR VDDCR TP4 Single pin unpopulated IRQ IRQ TP5 Single pin unpopulated P0_MDC P0_MDC TP6 Single pin unpopulated P0_MDIO P0_MDIO TP7 Single pin unpopulated P1_MDC P1_MDC TP8 Single pin unpopulated P1_MDIO P1_MDIO TP9 Single pin populated GND GND TP10 Single pin populated GND GND MECHANICALS Figure 3-2 displays details for EVB-LAN9353 mechanical dimensions. Dimension are in mm. FIGURE 3-2:  2015 Microchip Technology Inc. LAN9353 EVB MECHANICAL DIMENSIONS DS50002393A-page 27 EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Appendix A. EVB-LAN9353 Evaluation Board A.1 INTRODUCTION This appendix shows the EVB-LAN9353 Evaluation Board. FIGURE A-1: EVB-LAN9353 EVALUATION BOARD  2015 Microchip Technology Inc. DS50002393A-page 28 EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Appendix B. EVB-LAN9353 Evaluation Board Schematics B.1 INTRODUCTION This appendix shows the EVB-LAN9353 Evaluation Board Schematics.  2015 Microchip Technology Inc. DS50002393A-page 29 EVB-LAN9353 EVALUATION BOARD SCHEMATIC 1 EVB-LAN9353 Block Diagram (Config 10) 40 Pin MII Connector (Male) 40 Pin MII Connector (Female) EVB-LAN9353 Block Diagram (Config 9) 40 Pin MII Connector (Male) MII/RMII/TMII Mode Switch I2C EEPROM/ Header Microchip LAN9353 Straps Jumpers Port 1 Fiber Trasnceiver(SFP) Port 1 10/100 Ethernet Magnetics & RJ45 Mode Switch Reset Switch I2C EEPROM/ Header Crystal Straps Jumpers Port 2 10/100 Ethernet Magnetics & RJ45 40 Pin MII Connector (Female) 40 Pin MII Connector (Male) RMII RMII Power Supply Module Port 0 40 Pin MII Connector (Female) Port 1 Port 0 Power Supply Module Microchip LAN9353 Reset Switch Crystal Port 2 Fiber Trasnceiver(SFP) Port 2 10/100 Ethernet Magnetics & RJ45 Fiber Trasnceiver(SFP) Port 2 EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 30 FIGURE B-1:  2015 Microchip Technology Inc. EVB-LAN9353 EVALUATION BOARD SCHEMATIC 2 POWER SUPPLY FB1 2 5V_SW 3 R1 0 2A/0.05DCR 2 J1 Switch, SPDT, Slide P/N:1101M2S3CQE2 C2 10uF 25V 3-$+ EN12_1 2 1 VIN ENABLE VOUT TRIM 3_Amp GND C3 0.1uF 4 5 R2 1K VOUT_3V3 C1 3 OKR-T/3-W12-C R3 3.30K 1% (Ra) R4 470E 1% (Rb) R4A 33E 1% C4 C5 10uF 4.7uF DNP 1 1 A 5V_EXT 3 3V3 3V3 0.1uF D1 GRN C 1 TP2 ORANGE 3 .3V REGULATOR, 3A ( 3V3 fixed when Rb=503e) U1 2 TP1 RED 5V SW1 "3V3 Present"  2015 Microchip Technology Inc. FIGURE B-2: 3V3 3V3 3V3 RESET 3 R8 1K 2 NDS355AN_NMOS 1 D RST# Q1 1 G 5 RESET# 3 VDD 3V3 MR# 2 4 5 U2 2 1/10W 1% S 74LVC1G14 1 3 Reset Generator TP10 BLACK 4 TPS3125 SOT23_5 Threshold = 2.64V Delay = 180ms TP9 BLACK RED U3 2 R9 2.2K 1 A D2 "Reset" C 2 DS50002393A-page 31 EVB-LAN9353 Evaluation Board User’s Guide sw_pb_2P 1 R7 100 GND SW2 R5 4.75K 1% 0.1uF 2 1 C6 R6 10.0K 1/10W 1% EVB-LAN9353 EVALUATION BOARD SCHEMATIC 3 3V3 Power Supply Filtering VDD33TXRX1 FB2 3V3 2A/0.05DCR VDDCR VDD12TX1 VDD12TX2 0.1uF VDD33TXRX1 VDD33TXRX2 BLM18EG221SN1D FB5 2A/0.05DCR 12.1K 1% RBIAS RST# TP4 WHITE DNP IRQ ATEST/FXLOSEN 7 57 11 44 8 41 I2C2_SCL I2C2_SDA 43 42 GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 48 46 45 34 18 17 13 12 RBIAS RST# IRQ ATEST/FXLOSEN TESTMODE I2CSCL/EESCL/TCK I2CSDA/EESDA/TMS 56 59 VDD12TX1 VDD12TX2 6 24 38 TXNA TXPA RXNA RXPA TXNB TXPB RXNB RXPB FXSDENB/FXSDB/FXLOSB GPIO0/LED0/TDO/LEDPOL0/MNGT0 GPIO1/LED1/TDI/LEDPOL1/P1_INTPHY GPIO2/LED2/LEDPOL2/E2PSIZE GPIO3/LED3/LEDPOL3/EEEEN GPIO4/LED4/LEDPOL4/1588EN GPIO5/LED5/LEDPOL5/PHYADD GPIO6 GPIO7 LAN9353 VDDCR_1 VDDCR_2 VDDCR_3 14 20 32 37 47 VDDIO_1 VDDIO_2 VDDIO_3 VDDIO_4 VDDIO_5 58 5 REG_EN GND REG_EN R10  2015 Microchip Technology Inc. 65 18pF FXSDENA/FXSDA/FXLOSA INT PORT0 C27 OSCVDD12 OSCI OSCO OSCVSS INT PORT1 1 3 1 2 4 OTHER SIGNALS OSCI OSCO 3V3 OSC POWER 25.000MHz 25ppm Y1 I2C 18pF 2 C26 VDD33BIAS VDD33 U4A Note: OSCVSS need to connect to Chip gnd. VDD33TXRX1 VDD33TXRX2 51 64 VDD12TX1 VDD12TX2 0.1uF C25 9 FXSDA/FXLOSA 52 53 54 55 TXNA TXPA RXNA RXPA 63 62 61 60 TXNB TXPB RXNB RXPB 10 FXSDB/FXLOSB C20 C21 C22 0.1uF 0.1uF 1uF C18 0.1uF C16 C14 C15 C13 C12 DNP C11 C17 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF TP3 SMT VDDCR 470pF 3V3 Low ESR C19 3V3 2A/0.05DCR C24 1.0uF 3V3 FB4 C23 1.0uF DNP 0.1uF C9 2A/0.05DCR C10 0.1uF VDD33TXRX2 0.1uF FB3 C8 DNP 1.0uF C7 1.0uF DNP EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 32 FIGURE B-3: EVB-LAN9353 EVALUATION BOARD SCHEMATIC 4 /,1.$&7 330E LED2_ANODE 0E DNP R16 R17 0 0 FX_SFP-TXPA TXNA DNP R18 R19 0 0 FX_SFP-TXNA RXPA DNP R20 R21 0 0 RXNA DNP R22 R23 0 0 R12 49.9 1/10W 1% R13 49.9 1/10W 1% R14 49.9 1/10W 1% 9 C R11 49.9 1/10W 1% 10 T1 Pulse J0011D01BNL R15 0 GRN 1 COP-TXPA 4 2 COP-TXNA A FB6 3257 TXPA R61 LED2_CATHODE VDD33TXRX1 RJ45 XMIT TD+ 75 75 1 TXCT 4&5 TD- 2 'HIDXOWDVVHPEO\ LED1 (Green) = LINK/ACT 8 50V 10% 6 RD- 1000 pF NC 2 kV CHS GND R62 R24 330E LED0_CATHODE 0 LED0_ANODE 63((' RES1210 /,1.$&7 VDD33TXRX2 R102 330E LED5_ANODE LED5_CATHODE 0 0 DNP R32 R33 0 0 FX_SFP-TXNB RXPB DNP R34 R35 0 0 FX_SFP-RXPB RXNB DNP R36 R37 0 0 TXNB FX_SFP-TXPB R26 49.9 1/10W 1% R27 49.9 1/10W 1% R28 49.9 1/10W 1% 9 C R25 49.9 1/10W 1% 10 T2 Pulse J0011D01BNL DNP R30 R31 TXPB 0E R29 0 GRN 1 COP-TXPB 4 2 COP-TXNB A 3257 FB7 RJ45 XMIT TD+ 75 75 1 TXCT 4&5 TD- 2 LED1 (Green) = LINK/ACT Note: Capacitors C10 through C13 are optional for EMI purposes and are not populated on the LAN8740/41 evaluation board. These capacitors are required for operation in an EMI constrained environment. 2 kV CHS GND A1 YEL C1 8 6 1000 pF NC 12 DS50002393A-page 33 1RWH)%DQG)%WREH]HURRKPV 50V 10% 7 11 C36 10pF 50V 5% DNP MTG1 C35 10pF 50V 5% DNP MTG C34 10pF 50V 5% DNP 3 7&8 RD- 16 C33 10pF 50V 5% DNP 75 RXCT 15 6 C37 0.022uF GND1 COP-RXNB 75 GND FX_SFP-RXNB LED2 (Yellow) = SPEED RD+ 14 5 13 3 COP-RXPB RCV R103 R38 0 RES1210 LED3_CATHODE 63((' 330E LED3_ANODE EVB-LAN9353 Evaluation Board User’s Guide Note: Capacitors C10 through C13 are optional for EMI purposes and are not populated on the LAN8740/41 evaluation board. These capacitors are required for operation in an EMI constrained environment. YEL A1 7 12 C31 10pF 50V 5% DNP C1 C30 10pF 50V 5% DNP GND C29 10pF 50V 5% DNP 13 C28 10pF 50V 5% DNP 3 7&8 11 6 C32 0.022uF 75 MTG1 COP-RXNA LED2 (Yellow) = SPEED 75 RXCT MTG FX_SFP-RXNA RCV RD+ 16 5 15 3 COP-RXPA GND1 FX_SFP-RXPA 14  2015 Microchip Technology Inc. FIGURE B-4: EVB-LAN9353 EVALUATION BOARD SCHEMATIC 5 3V3 R39 82 R40 82 R41 49.9 R42 49.9 Note:Place capacitors, and resistors close to FOT C38 0.1uF C40 0.1uF 3V3 Fiber Port 1 :SFP Interface R43 82 R44 82 R45 49.9 R46 49.9 Note:Place capacitors, and resistors close to FOT Assemble 0E at C38,C40,C42,C44 FX_SFP-RXNA Fiber Port 2 :SFP Interface Assemble 0E at C39,C41,C43,C45 C39 0.1uF C41 0.1uF C43 0.1uF C45 R48 100 DNP 0.1uF FX_SFP-RXNB FX_SFP-RXPA FX_SFP-RXPB C42 FX_SFP-TXPA 0.1uF FX_SFP-TXPB 3V3 R47 100 DNP 3V3 SFP_VCCT C44 L2 SFP_VCCR FX_SFP-TXNA 1uH C49 0.1uF R51 130 R52 130 SFP_RD2+ SFP_RD2- C48 + 10uF 16V C47 0.1uF SFP_TD2SFP_TD2+ SFP_RD+ SFP_RD- SFP_TDSFP_TD+ R50 130 C46 + 10uF 16V DNP L1 C50 + 10uF 16V DNP C51 0.1uF C56 + 31 10uF 30 16V 29 28 27 26 25 24 23 22 21 C57 0.1uF L3 1uH R53 4.7K R54 4.7K C55 0.1uF VeeT1 TDTD+ VeeT2 VccT VccR VeeR2 RD+ RDVeeR3 C54 + 10uF 16V Note:Place resistors close to ASIC J3 FTLF1217P2 SFP_VCCT2 1 2 3 4 5 6 7 8 9 10 SFP_VCCT 31 30 29 28 27 26 25 24 23 22 21 R55 4.7K R56 4.7K R57 4.7K FXSDA/FXLOSA VeeT TXFault TX Disable MOD-DEF(2) MOD-DEF (1) MOD-DEF (0) Rate Select LOS VeeR VeeR1 J2 FTLF1217P2 31 30 29 28 27 26 25 24 23 22 21 1 2 3 4 5 6 7 8 9 10 Note:Place resistors close to ASIC VeeT TXFault TX Disable MOD-DEF(2) MOD-DEF (1) MOD-DEF (0) Rate Select LOS VeeR VeeR1 VeeT1 TDTD+ VeeT2 VccT VccR VeeR2 RD+ RDVeeR3 20 19 18 17 16 15 14 13 12 11 20 19 18 17 16 15 14 13 12 11 L4 R58 4.7K R59 4.7K R60 4.7K FXSDB/FXLOSB  2015 Microchip Technology Inc. Note: Fiber mode related components are Not Populated on EVB (Default) 1uH SFP_VCCR2 FX_SFP-TXNB 0.1uF R49 130 SFP_VCCT2 31 30 29 28 27 26 25 24 23 22 21 C52 + 10uF 16V 1uH C53 0.1uF EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 34 FIGURE B-5: EVB-LAN9353 EVALUATION BOARD SCHEMATIC 6 GPIO [0:5] & LED_POL_Strap 3V3 I2C EEPROM GPIO3 GPIO5 1 R82 10.0K 1 2 3 R83 10.0K 7 A0 A1 A2 GPIO2 R86 0E GPIO4 GPIO3 I2C2_SDA 6 I2C2_SCL Note: U5: IC DIP Socket. Different sizes can be mounted I2C EEPROM Lower size Below 16K(2K X 8) 3 1 J15 3 3 1 3 1 J13 1 J14 GPIO1 5 I2C EEPROM Higher size Above 16K(2K X 8) [Default-512KBIT] 2 2 2 R85 0E J8 3 1 J9 3 1 J7 GPIO0 R84 1K 2 R74 1K 2 2 R73 0E SDA SCL WP 2 2 2 LED3_CATHODE LED5_CATHODE 2 VCC 4.7K 24FC512-I/P R72 0E 0.1uF 3 1 2 R66 LED3_ANODE LED5_ANODE 1 R81 10.0K LED1_CATHODE LED4_CATHODE 2 LED0_CATHODE LED2_CATHODE 3 1 1 3 2 J12 2 LED1_ANODE LED4_ANODE R71 10.0K 1 R70 10.0K 1 1 1 LED0_ANODE LED2_ANODE R69 10.0K J10 2 J11 2 J5 2 J6 3 1 3 1 3 1 U5 J4 R68 GPIO4 R67 GPIO1 3V3 C58 3V3 2K GPIO2 3V3 2K GPIO0 3V3 8 3V3 GND 3V3 4 3V3 2  2015 Microchip Technology Inc. FIGURE B-6: GPIO5 FX_Mode_Strap_1 & 2 3V3 Port 2 LEDs Port 1 LEDs LED0_ANODE LED0_CATHODE LED1_ANODE LED1_CATHODE DNP SPEED 2 D3 1 GRN A C LED3_ANODE LED3_CATHODE FULL DUPLEX / Collision 2 D4 1 GRN A C LED3_ANODE LED3_CATHODE LED4_ANODE LED4_CATHODE DNP SPEED D6 1 C GRN A 3257 J16 2 I2C2_SCL I2C2_SDA FULL DUPLEX / Collision 2 D7 1 C GRN A 1 3 5 7 9 2 4 6 8 10 3257 3257 HEADER 5X2 LED2_ANODE LED2_CATHODE LED2_ANODE LED2_CATHODE DNP LINK/ACT 2 D5 1 C GRN A LED5_ANODE LED5_CATHODE LED5_ANODE LED5_CATHODE DNP LINK/ACT 2 D8 1 GRN A C 02'( 3RXSXODWH &RSSHU 5 'HIDXOW )LEHU 5 &RSSHU 'HIDXOW 5 )LEHU 5 FXSDA/FXLOSA R75 DNP 10K R76 10K R78 DNP 10K R80 10K 3V3 FXSDB/FXLOSB 3V3 1 Strap Name Logic Connector LED Polarity Strap 0 J4,J7 (2&3) The LED is set as active high. 1 J4,J7 (1&2) (Default) The LED is set as active low, 0 J5,J8 (2&3) The LED is set as active high. 1 J5,J8 (1&2) (Default) The LED is set as active low, 0 J6,J9 (2&3) The LED is set as active high. EEPROM Size=1K bits (128 x 8) through 16K bits (2K x 8) 1 J6,J9 (1&2) (Default) The LED is set as active low, EEPROM Size=32K bits (4K x 8) through 512K bits (64K x 8) or 4Mbits (512K x 8) (LAN9252 only) 0 J10,J13 (2&3) The LED is set as active high. EEE Disable 1 J10,J13 (1&2) (Default) The LED is set as active low, EEE Enable 0 J11,J14 (2&3) The LED is set as active high. 1588 Disable 1 J11,J14 (1&2) The LED is set as active low, (Default) 1588 Enable 0 J12,J15 (2&3) (Default) The LED is set as active high. PHYADD=0,1,2 J12,J15 (1&2) The LED is set as active low, PHYADD =1,2,3 GPIO6 R99 2 3 10K FX_Los_Strap_1 & 2 J20 LED0/GPIO0/MNGT0 3V3 5 5 3RXSXODWH '13 5HI9ROWDJH 9 $ERYH9VHOHFWV);/26IRUSRUWVDQG 9 /HYHORI9VHOHFWV);/26IRUSRUWDQG );6'FRSSHUWZLVWHGSDLUIRUSRUW IXUWKHUGHWHUPLQHGE\);6'% 1 LED1/GPIO1 LED2/GPIO2/E2PSIZE LED3/GPIO3/EEEEN LED4/GPIO4/1588EN DS50002393A-page 35 LED5/GPIO5/PHYADD 1 GPIO7 R100 2 3 10K 3RXSXODWH 3RXSXODWH J21 R77 10K DNP ATEST/FXLOSEN '13 3RXSXODWH  'HIDXOW 'HIDXOW 'HIDXOW GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 3V3 )XQFWLRQ 1 2 3 4 5 6 7 8 J27 HEADER 8 /HYHORI96HOHFWV);6'FRSSHUWZLVWHGSDLU IRUSRUWV$DQG% IXUWKHUGHWHUPLQHGE\);6'$DQG);6'% R79 10K EVB-LAN9353 Evaluation Board User’s Guide LED0_CATHODE LED0_ANODE Aardvark - I2C Connector EVB-LAN9353 EVALUATION BOARD SCHEMATIC 7 3V3 3V3 P0_OUT/REF_CLK_MODE0 R104 SW5 10.0K 1 2 P0_MODE0 3 SW6 P1_REFCLK_MODE0/P0_INCLK R105 10.0K Config 10 Port 0 : External (MII/RMII/TMII) Port 1 and Port 2 : Internal 2 1 P1_MODE0 3 JS102011CQN JS102011CQN 3V3 SW7 P0_OUTD0_MODE1 R106 10.0K 3V3 2 1 P0_MODE1 3 P1_OUTD0_MODE1/P0_OUTD2_MODE3 SW8 R107 10.0K 2 1 P0_MODE3 & P1_MODE1 3 JS102011CQN JS102011CQN 3V3 P0_OUTD1_MODE2 SW9 R108 10.0K 3V3 2 1 3 P0_MODE2 P1_OUTD1_MODE2/P0_OUTD3 SW10 R109 10.0K 2 1 3 JS102011CQN JS102011CQN Note: For Switches to short 1-3, Knob Position should be at 1-2 and vice versa . Note: CONFIG9 or CONFIG 10 must be configured before P0/P1 mode configurations Config 9 : Port 0 and Port 1 : External (RMII) and Port 2 : Internal WŽƌƚϭ;ZD//ͿDK^dZWDĂƉƉŝŶŐ  2015 Microchip Technology Inc. Wϭͺ/EdW,z͗ :ϱĂŶĚ:ϴ Ϭ ^ŚŽƌƚϮͲϯ Ϭ ^ŚŽƌƚϮͲϯ Ϭ ^ŚŽƌƚϮͲϯ Ϭ ^ŚŽƌƚϮͲϯ Ϭ ^ŚŽƌƚϮͲϯ Ϭ ^ŚŽƌƚϮͲϯ ϭ ^ŚŽƌƚϭͲϮ WϭͺDKϮ ^tϭϬ Ϭ ^ŚŽƌƚϭͲϯ Ϭ ^ŚŽƌƚϭͲϯ Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ dž ŽƉĞŶ WϭͺDKϭ ^tϴ Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ dž ŽƉĞŶ WϭͺDKϬ ^tϲ dž ŽƉĞŶ Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ dž ŽƉĞŶ Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ dž ŽƉĞŶ WŽƌƚϭDŽĚĞ ZD//DĐůŽĐŬŝŶ ;ZD//ƉŝŶƌĞŵĂƉŵŽĚĞͿ ZD//DĐůŽĐŬŽƵƚϭϮŵĂ ZD//DĐůŽĐŬŽƵƚϭϲŵĂ ZD//W,zĐůŽĐŬŝŶ P1_MODE2 WŽƌƚϬDK^dZWDĂƉƉŝŶŐ Wϭͺ/EdW,z͗ WϬͺDKϯ WϬͺDKϮ WϬͺDKϭ WϬͺDKϬ :ϱĂŶĚ:ϴ ^tϴ ^tϵ ^tϳ ^tϱ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ Ϭ ϭ ^ŚŽƌƚϮͲϯ Ϭ ϭ ^ŚŽƌƚϮͲϯ Ϭ ϭ ^ŚŽƌƚϮͲϯ Ϭ ϭ ^ŚŽƌƚϮͲϯ Ϭ ϭ ^ŚŽƌƚϮͲϯ Ϭ ϭ Ϭ ^ŚŽƌƚϭͲϯ Ϭ ^ŚŽƌƚϭͲϯ Ϭ ^ŚŽƌƚϭͲϯ Ϭ ^ŚŽƌƚϭͲϯ dž ϭ ^ŚŽƌƚϭͲϮ dž ϭ ^ŚŽƌƚϭͲϮ dž ϭ ^ŚŽƌƚϭͲϮ dž ϭ ^ŚŽƌƚϭͲϮ dž ϭ ^ŚŽƌƚϭͲϮ dž ϭ ZD//W,zĐůŽĐŬŽƵƚϭϮŵĂ ZD//W,zĐůŽĐŬŽƵƚϭϲŵĂ /ŶƚĞƌŶĂůW,z P1_REFCLK_MODE0/P0_INCLK P1_OUTD1_MODE2/P0_OUTD3 P1_OUTD0_MODE1/P0_OUTD2_MODE3 P0_OUTD1_MODE2 P0_OUTD0_MODE1 P0_OUT/REF_CLK_MODE0 Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ dž E Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ ϭ ^ŚŽƌƚϭͲϮ dž E dž E Ϭ ^ŚŽƌƚϭͲϯ ϭ ^ŚŽƌƚϭͲϮ Ϭ Ϭ dž ^ŚŽƌƚϭͲϯ ^ŚŽƌƚϭͲϯ E Ϭ ϭ Ϭ ^ŚŽƌƚϭͲϯ ^ŚŽƌƚϭͲϮ ^ŚŽƌƚϭͲϯ Ϭ ϭ ϭ ^ŚŽƌƚϭͲϯ ^ŚŽƌƚϭͲϮ ^ŚŽƌƚϭͲϮ ϭ Ϭ dž ^ŚŽƌƚϭͲϮ ^ŚŽƌƚϭͲϯ E ϭ ϭ Ϭ ^ŚŽƌƚϭͲϮ ^ŚŽƌƚϭͲϮ ^ŚŽƌƚϭͲϯ ϭ ϭ Ž DK D//D D//W,z dƵƌďŽD//W,zϭϮŵĂ dƵƌďŽD//W,zϭϲŵĂ ZD//DĐůŽĐŬŝŶ ZD//DĐůŽĐŬŽƵƚϭϮŵĂ ZD//DĐůŽĐŬŽƵƚϭϲŵĂ ZD//W,zĐůŽĐŬŝŶ ZD//W,zĐůŽĐŬŽƵƚϭϮŵĂ ZD//W,zĐůŽĐŬŽƵƚϭϲŵĂ EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 36 FIGURE B-7:  2015 Microchip Technology Inc. FIGURE B-8: EVB-LAN9353 EVALUATION BOARD SCHEMATIC 8 Jumper settings for CONFIG 9 or CONFIG 10 2 P0_INCLK P1_REFCLK_MODE0 SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 Mode Configuration 2 RMII 1 MII/RMII/TMII (Default) CONFIG 9 CONFIG 10 8 Jumpers Config9(2RMII) = 2-3 Short (1-2 - open) Config10 = 1-2 Short (2-3 - open) (Default) SW11 JS102011CQN 1 3 SW12 2 P0_IND3 1 JS102011CQN 3 P1_IND1 P0_IND2 P1_IND0 2 SW13 JS102011CQN 1 P0_REFCLK/P0_MODE0[P0_OUTCLK/P0_REFCLK/P0_MODE0] SW14 Note: For Switches to short 1-3, Knob Position should be at 1-2 and vice versa . P0_INER P1_INDV 2 JS102011CQN 3 U4B LAN9353 3 P1_REFCLK_MODE0/P0_INCLK R117 P1_IND1/P0_IND3 R144 R145 P1_IND0/P0_IND2 P1_INDV/P0_INER 1 R146 P1_OUTD1_MODE2/P0_OUTD3 P1_OUTD0_MODE1/P0_OUTD2_MODE3R147 1 P1_OUTDV SW15 2 P0_OUTD3 JS102011CQN 1 3 P1_OUTD1_MODE2 SW16 2 P0_OUTD2 1 JS102011CQN 3 P1_OUTD0_MODE1 SW17 2 P0_CRS JS102011CQN 1 3 P1_MDC_DUPLEX SW18 2 P0_COL 1 JS102011CQN 3 P1_MDIO_SPEED 33 33 33 29 31 30 33 33 33 2 J22 15 16 35 P1_MDC_DUPLEX/P0_CRS P1_MDIO_SPEED/P0_COL 49 50 P1_REFCLK/P1_MODE0[P0_INCLK] P1_IND1[P0_IND3] P1_IND0[P0_IND2] P1_INDV[P0_INER] P1_OUTD1/P1_MODE2[P0_OUTD3] P1_OUTD0/P1_MODE1[P0_OUTD2/P0_MODE3] P1_OUTDV[RESERVED] P1_DUPLEX/P1_MDC[P0_CRS] P1_SPEED/P1_MDIO[P0_COL] CONFIG9[CONFIG10] P0_IND1 P0_IND0 P0_INDV P0_OUTD1/P0_MODE2 P0_OUTD0/P0_MODE1 P0_OUTDV P0_DUPLEX P0_SPEED[P0_OUTER/P0_SPEED] P0_MDC P0_MDIO 25 R116 33 28 27 26 R122 R123 21 22 23 R124 R125 P0_OUT/REF_CLK_MODE0 33 33 P0_IND1 P0_IND0 P0_INDV 33 P0_OUTD1_MODE2 33 P0_OUTD0_MODE1 P0_OUTDV 36 19 P0_DUPLEX P0_OUTER_SPEED 39 40 P0_MDC P0_MDIO CONFIG9 = 2RMII CONFIG10 = 1 MII/RMII(Default) J28 P1_MDC_DUPLEX/P0_CRS R120 2 P0_DUPLEX R118 J30 3V3 1 J29 Default -Open J31 3V3 1 2 Duplex Strap_0 3 3 10.0K Emulated Link Partner Default Advertised Ability for Port 0 J29 (P0_SPEED) 3V3 1 2 P1_MDIO_SPEED/P0_COL R121 10.0K Default -Open Default (1-2) J28 (P0_DUPLEX) 3 10.0K 3 10.0K Default (1-2) P0_OUTER_SPEED R119 3V3 1 2 Speed ADVERTISED LINK PARTNER ABILITY Strap_0 (Bits 8,7,6,5) DS50002393A-page 37 1-2 2-3 1 0 10BASE-T full-duplex (0010) 1-2 1-2 1 1 100BASE-X full-duplex (1000) (Default) 2-3 2-3 0 0 10BASE-T half-duplex (0001) 2-3 1-2 0 1 100BASE-X half-duplex (0100) Emulated Link Partner Default Advertised Ability for Port 1 J30 (P1_DUPLEX) J31 (P1_SPEED) Duplex Strap_1 Speed ADVERTISED LINK PARTNER ABILITY Strap_1 (Bits 8,7,6,5) 1-2 2-3 1 0 10BASE-T full-duplex (0010) 1-2 1-2 1 1 100BASE-X full-duplex (1000) 2-3 2-3 0 0 10BASE-T half-duplex (0001) 2-3 1-2 0 1 100BASE-X half-duplex (0100) P0_INER P0_INCLK P0_INDV P0_IND0 P0_IND1 P0_IND2 P0_IND3 P0_COL P0_CRS P0_MDIO P0_MDC P0_OUTD3 P0_OUTD2 P0_OUTD1_MODE2 P0_OUTD0_MODE1 P0_OUTDV P0_OUT/REF_CLK_MODE0 P0_OUTER_SPEED P1_REFCLK_MODE0/P0_INCLK P1_OUTD1_MODE2/P0_OUTD3 P1_OUTD0_MODE1/P0_OUTD2_MODE3 P0_OUTD1_MODE2 P0_OUTD0_MODE1 P0_OUT/REF_CLK_MODE0 EVB-LAN9353 Evaluation Board User’s Guide P1_MDIO_SPEED P1_MDC_DUPLEX P1_IND1 P1_IND0 P1_INDV P1_REFCLK_MODE0 P1_OUTDV P1_OUTD0_MODE1 P1_OUTD1_MODE2 EVB-LAN9353 EVALUATION BOARD SCHEMATIC 9 MII Male for External MAC Board AMP - 6-5174218-2 MII_RA 5V 10uF 0.1uF MII Female for External PHY Board C59 C61 Port 0 - RMII RX Clock Configurations 5V FEMALE MII CONN AMP - 749069-4 C60 SW23 10uF 0.1uF R126 R127 0E 0E MAC_TXCLK0 MAC_RXCLK0 +5V[3] MDIO MDC RXD3 RXD2 RXD1 RXD0 RX_DV RX_CLK RX_ER TX_ER TX_CLK TX_EN TXD0 TXD1 TXD2 TXD3 COL CRS +5V[4] +5V[1] COMMON[1] COMMON[2] COMMON[3] COMMON[4] COMMON[5] COMMON[6] COMMON[7] COMMON[8] COMMON[9] COMMON[10] COMMON[11] COMMON[12] COMMON[13] COMMON[14] COMMON[15] COMMON[16] COMMON[17] COMMON[18] +5V[2] Chassis2 Chassis1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MAC_RXCLK0 3 Default Short 2-3 JS102011CQN SW24 2 PHY_RXCLK0 J23 P0_MDIO P0_MDC P0_OUTD3 P0_OUTD2 P0_OUTD1_MODE2 P0_OUTD0_MODE1 P0_OUTDV P0_OUT/REF_CLK_MODE0 P0_OUTER_SPEED P0_INER P0_INCLK P0_INDV P0_IND0 P0_IND1 P0_IND2 P0_IND3 P0_COL P0_CRS 2 MAC_TXCLK0 1 C62 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 P0_INCLK P0_MDIO P0_MDC P0_IND3 P0_IND2 P0_IND1 P0_IND0 P0_INDV 0E PHY_RXCLK0 P0_INER 0E TXER0 0E PHY_TXCLK0 P0_OUTDV P0_OUTD0_MODE1 P0_OUTD1_MODE2 P0_OUTD2 P0_OUTD3 P0_COL P0_CRS R128 P0_OUTER_SPEED DNP P0_OUT/REF_CLK_MODE0 R129 R130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 PHY_TXCLK0 1 3 J24 Default (1-3) JS102011CQN Switch Settings 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Description Mode SW23 (1-3) Default TX Clock used as a Reference Clock RMII MAC SW23 (1-2) RX Clock used as a Reference Clock RMII MAC SW24 (1-3) Default Reference clock used as a TX clock RMII PHY SW24 (1-2) Reference clock used as a RX clock RMII PHY Note: 1. For Switches to short 1-3, Knob Position should be at 1-2 and vice versa . 2. External PHY considered LAN8742 PORT 0 MII Male for External MAC Board AMP - 6-5174218-2 MII_RA PORT 1 5V 10uF 0.1uF MII Female for External PHY Board C63 5V FEMALE MII CONN AMP - 749069-4 C64 C65 Port 1 - RMII RX Clock Configurations 10uF SW25 C66 0.1uF 2 MAC_RXCLK1 3 Default Short 2-3 MAC_TXCLK1 1 P1_MDIO_SPEED P1_MDC_DUPLEX P1_OUTD1_MODE2 P1_OUTD0_MODE1 P1_OUTDV P1_REFCLK_MODE0 R135 0E MAC_TXCLK1 MAC_RXCLK1 P1_INDV P1_IND0 P1_IND1 P1_CRS  2015 Microchip Technology Inc. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 +5V[3] MDIO MDC RXD3 RXD2 RXD1 RXD0 RX_DV RX_CLK RX_ER TX_ER TX_CLK TX_EN TXD0 TXD1 TXD2 TXD3 COL CRS +5V[4] +5V[1] COMMON[1] COMMON[2] COMMON[3] COMMON[4] COMMON[5] COMMON[6] COMMON[7] COMMON[8] COMMON[9] COMMON[10] COMMON[11] COMMON[12] COMMON[13] COMMON[14] COMMON[15] COMMON[16] COMMON[17] COMMON[18] +5V[2] Chassis2 Chassis1 J18 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 P1_MDIO_SPEED P1_MDC_DUPLEX P1_IND1 P1_IND0 P1_INDV PHY_TXCLK1 P1_REFCLK_MODE0 R136 0E PHY_RXCLK1 P1_OUTDV P1_OUTD0_MODE1 P1_OUTD1_MODE2 P1_CRS P1_INDV P1_CRS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 JS102011CQN SW26 2 PHY_RXCLK1 J19 PHY_TXCLK1 1 3 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Switch Settings Pullup for MDIO(common for all PHY) signal TP7 TP8 J25 P0_INDV 1 2 Short option for RXDV & CRS for RMII mode P1_MDIO_SPEED 1.5K P1_MDC_DUPLEX 10K R137 R138 3V3 TP6 3V3 P0_MDIO P0_MDC 2 1 J26 R133 10K P0_OUTDV R139 10K P1_OUTDV 3V3 J26 = Default open P0_CRS 1.5K R131 10K R132 DNP TX Clock used as a Reference Clock SW25 (1-2) RX Clock used as a Reference Clock SW26 (1-3) Default Reference clock used as a TX clock Reference clock used as a RX clock Mode RMII MAC RMII MAC RMII PHY RMII PHY Note: 1. For Switches to short 1-3, Knob Position should be at 1-2 and vice versa . 2. External PHY considered LAN8742 Pullup for MDIO(common for all PHY) signal TP5 3V3 Description SW25 (1-3) Default SW26 (1-2) For RMII J28 = Default open Short for RMII mode Default (1-3) JS102011CQN R134 49.9K DNP TXER0 EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 38 FIGURE B-9: EVB-LAN9353 EVALUATION BOARD USER’S GUIDE Appendix C. Bill of Materials (BOM) C.1 INTRODUCTION This appendix includes the EVB-LAN9353 Evaluation Board Bill of Materials (BOM).  2015 Microchip Technology Inc. DS50002393A-page 39 TABLE C-1: Item EVB-LAN9353 EVALUATION BOARD BILL OF MATERIALS Qty Reference Designator(s) Part PCB Footprint Manufacturer Manufacturer Part Number 1 2 C2,C4 10uF CAP0805 Murata GRM21BR61E106KA73L 2 21 C3,C5,C6,C8,C10,C11,C13,C14,C15,C16,C17 0.1uF ,C18,C21,C22,C24,C25,C58,C61,C62,C64,C6 6 CAP0603 Murata GRM155R61E104KA7D 3 1 C19 1uF CAP0603 Murata GRM188R61C105KA93D 4 1 C20 470pF CAP0603 Murata GRM033R71E471KA01D 5 2 C26,C27 18pF CAP0603 Murata GRM1885C1H180JA01D 6 2 C32,C37 0.022uF CAP0603 Kemet C0603C223K5RACTU 7 4 C59,C60,C63,C65 10uF CAP0603 TDK C1608X5R0J106K080AB 8 3 D1,D4,D7 GRN LED0603 Wurth electronics 150 060 GS7 500 0 9 1 D2 RED LED0603 Wurth electronics 150 060 RS7 500 0 Murata 10 5 FB1,FB2,FB3,FB4,FB5 2A/0.05DCR RES0603 11 1 J1 SKT_PWR_2R0mm_4A_THRU_R A th_conn_pwrjack_dc-210_rt Cui Stack PJ-002AH BLM18EG221SN1D 12 18 J4,J5,J6,J7,J8,J9,J10,J11,J12,J13,J14,J15,J2 0,J21,J28,J29,J30,J31 HDR_1x3 TH_CONN_1X3P FCI 68000-103HLF 13 1 J16 HEADER 5X2 th_conn_2x5p_BOX FCI 67997-210HLF 14 2 J18,J23 MII_RA TH_CONN_TE-5173278_40P TE 5173278-2-ND 15 2 J19,J24 FEMALE MII CONN TH_CONN_MII-749069-4 TE 749069-4-ND  2015 Microchip Technology Inc. 16 3 J22,J25,J26 CONN_2P th_conn_1x2p FCI 68000-102HLF 17 1 J27 CONN_8P th_conn_1x8p FCI 68000-108HLF 18 1 Q1 NDS355AN_NMOS sot23-NDS Fairchild NDS355AN 19 15 R1,R15,R29,R126,R127,R128,R130,R135,R1 36,FB6,FB7,R72,R73,R85,R86 0E RES0603 Panasonic ERJ-3GEY0R00V 20 4 R2,R8,R74,R84 1K RES0603 Panasonic ERJ-3GEYJ102V 21 1 R3 3.30K RES0603 Yageo America 9C06031A3301FKHFT 22 1 R4 470E RES0603 BOURNS CR0603-FX-4700ELF 23 1 R4A 33E RES0603 BOURNS CR0603-FX-33R0ELF 24 1 R5 4.75K RES0603 Panasonic ERJ-3EKF4751V 25 25 R6,R69,R70,R71,R81,R82,R83,R76,R79,R80, 10.0K R99,R100,R133,R138,R139,R104,R105,R106 ,R107,R108,R109,R118,R119,R120,R121 RES0603 Panasonic ERJ-3EKF1002V EVB-LAN9353 Evaluation Board User’s Guide DS50002393A-page 40 Configuration: Config 10: Two internal copper mode with higher size EEPROM (24FC512)  2015 Microchip Technology Inc. TABLE C-1: EVB-LAN9353 EVALUATION BOARD BILL OF MATERIALS (CONTINUED) Item Qty Reference Designator(s) Part PCB Footprint Manufacturer Manufacturer Part Number 26 1 R7 100E RES0603 Panasonic 27 1 R9 2.2K RES0603 Panasonic ERJ-3GEYJ222V 28 1 R10 12.1K RES0603 Rohm MCR01MZPF1202 9C06031A49R9FKHFT ERJ-3EKF1000V 29 8 R11,R12,R13,R14,R25,R26,R27,R28 49.9E RES0603 Yageo America 30 8 R17,R19,R21,R23,R31,R33,R35,R37 0 RES0402 Panasonic ERJ-2GE0R00X 31 2 R24,R38 0 RES1210 Vishay CRCW12100000Z0EA 32 4 R61,R62,R102,R103 330E RES0603 Panasonic ERJ-3GEYJ331V 33 2 R67,R68 2K RES0603 Panasonic ERJ-3GEYJ202V 34 10 R116,R117,R122,R123,R124,R125,R144,R14 5,R146,R147 33E RES0603 BOURNS CR0603-FX-33R0ELF 35 2 R131,R137 1.5K RES0603 Panasonic ERJ-3GEYJ152V 36 1 SW1 SW-SPDT-SLIDE sw_ck_1101m2s3cqe2 C&K 1101M2S3CQE2 37 1 SW2 sw_pb_2P sw_pb_2P Panasonic 38 18 SW5,SW6,SW7,SW8,SW9,SW10,SW11,SW1 2,SW13,SW14,SW15,SW16,SW17,SW18,SW 23,SW24,SW25,SW26 450301014042 TH_SW_SPST_3P_10x2p5 Wurth electronics 450301014042 39 1 TP1 RED TH_TP_60D40 Keystone 5000 40 1 TP2 ORANGE TH_TP_60D40 Keystone 5003 TP9,TP10 BLACK TH_TP_60D40 Keystone 5001 Pulse Electronics 553-1483-ND 41 EVQ-PJU04K 42 2 T1,T2 Pulse - J0011D01BNL th_conn_pulse_rj45_j0026 43 1 U1 3_Amp TH_DC-DC_VERT_5PIN_P Murata 67 OKR-T/3-W12-C 44 1 U2 TPS3125 SOT23_5 TI TPS3125L30DBVR DS50002393A-page 41 45 1 U3 74LVC1G14 SOT23_5 TI SN74LVC1G14DCKR 46 1 U4 LAN9353 IC_QFN64 Microchip LAN9353 47 1 U5 Round Base IC_DIP8_300 Assmann AR08-HZL-TT-R 48 1 U5 24FC512 IC_DIP8_300 Microchip 24FC512-I/P 49 4 D3,D5,D6,D8 GRN LED0603 Wurth electronics 150 060 GS7 500 0 50 1 Y1 25.000MHz XTAL_HCM49 Cardinal Components Inc. CSM1Z-A5B2C5-40-25.0D18-F EVB-LAN9353 Evaluation Board User’s Guide NOTES: DS50002393A-page 42  2015 Microchip Technology Inc. Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Germany - Dusseldorf Tel: 49-2129-3766400 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 Austin, TX Tel: 512-257-3370 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 China - Dongguan Tel: 86-769-8702-9880 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Kaohsiung Tel: 886-7-213-7828 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Pforzheim Tel: 49-7231-424750 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 01/27/15 DS50002393A-page 43  2015 Microchip Technology Inc.