Preview only show first 10 pages with watermark. For full document please download

Fernqvist

   EMBED


Share

Transcript

“When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science.” William Thomson, Lord Kelvin, 1824-1907 CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 1 High Precision Measurements • • • • • • Precision Precision power converters Voltage transducers Current transducers Calibration infrastructure Integration CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 2 Precision • Precision is a qualitative term • Accuracy and Uncertainty are quantitative terms • Device imperfections, measurement errors and measurement uncertainty • ISO GUM defines terms and methods to express uncertainty in a standardised way CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 3 Precision Power Converters • User specifications – – – – – – Voltage output or current output ? Pulsed or DC ? Type of load Performance Reliability etc • System (=converter) design specifications – Configuration – Power topology • Component specifications CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 4 Analogue converter control To magnet load D/A converter Regulation electronics Power part DCCT 1 Control DCCT electronics interface Output amplifier DCCT electronics A/D converter Output amplifier CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN DCCT 2 5 LHC converter control To magnet load CONTROL ELECTRONICS Digital regulation loop D/A converter Power part Fieldbus DCCT 1 Control interface Σ−∆ filter Σ-∆ modulator DCCT electronics cal wdg DCCT electronics cal wdg Output amplifier Σ−∆ filter Σ−∆ modulator Output amplifier CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN DCCT 2 6 Accuracy budget Device spec ppm of value Stability 1/2 hr 20 3 50 10 0 0 0 0 10 40 3 0 0 0 0 10 10 100 5 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 3 0 10 0 10 0 25 10 0 15 20 3 50 10 0 0 100 50 0 40 30 20 73 303 0 10 0.4 0 0 0 0 0 0 0 10 0 0.5 0 10 0.2 0 3 45 10 0 0 100 20 0 50 6 10.4 23.7 231 5 10 100 35.4 50 106.7 100 634 1000 0 5 10 Device DCCT 120 A Zero uncertainty (hyst etc.) Repeatability Uncomp non-linearity LF noise, 0.1-10 Hz Stability 1/2 hr, 1-100 mHz Gain drift 24 hr Gain drift 1 year Gain Temp Coeff Offset drift 24 hr Offset drift 1 year Offset Temp Coeff DCCT total A/D converter, 16 bit succ. approx. Uncomp non-linearity LF noise, 0.1-10 Hz Stability 1/2 hr, 1-100 mHz Gain drift 24 hr Gain drift 1 year Gain Temp Coeff Offset drift 24 hr Offset drift 1 year Offset Temp Coeff A/D total Miscellaneous Total LHC committment Conditions Temp change (K) No special temp ctrl CAS2004 LHC machine impact Reproducibility Accuracy 1-day 1 year ppm of FS 45 10 0 0 0 0 0.2 50 0.6 0 0 0.4 0.5 100 2 0 0 0 High Precision Measurements - Gunnar Fernqvist/CERN 7 vs. actual performance … Device performance ppm of FS Device DCCT 120 A Zero uncertainty (hyst etc.) Settling after change Repeatability Uncomp non-linearity LF noise, 0.1-10 Hz Stability 1/2 hr, 1-100 mHz Gain drift 24 hr Gain drift 1 year Gain Temp Coeff Offset drift 24 hr Offset drift 1 year Offset Temp Coeff ppm of value Spec Real 50 3 3 50 0 10 Spec Real 0 30 3 50 3 15 10 100 5 10 40 3 10 100 10 10 40 2 DCCT total A/D converter, 16 bit succ. approx. Uncomp non-linearity LF noise, 0.1-10 Hz Stability 1/2 hr, 1-100 mHz Gain drift 24 hr Gain drift 1 year Gain Temp Coeff Offset drift 24 hr Offset drift 1 year Offset Temp Coeff A/D total Miscellaneous Total LHC committment Conditions Temp change (K) No special temp ctrl CAS2004 60 60 240 60 30 100 3 10 50 0.6 10 50 1 30 100 3 1/2 hr Stability Spec Real LHC machine impact Reproducibility 1 day Accuracy 1 year Spec Real Spec Real 0 0 0 0 50 3 0 0 0 10 0 0 0 0 0 0 0 0 3 15 0 0 0 0 0 0 3 0 0 10 10 0 25 10 0 15 3 0 3 15 10 0 50 10 0 10 3 50 0 10 0 100 50 0 40 30 3 50 3 15 0 100 100 0 40 20 10 18 73 101 333 334 0 60 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 60 0 30 0 15 10 0 3 0 60 0 30 0 15 10 0 5 60 60 0 0 100 30 0 50 6 240 60 0 0 100 30 0 50 10 60 60 118 120 306 490 5 5 10 10 100 100 75 50 83 50 201 100 231 100 739 1000 924 1000 0 0 5 5 10 10 High Precision Measurements - Gunnar Fernqvist/CERN 8 Specifications 1 • Stability – Noise – – – – – – – – – Ground noise - Common mode rejection Power supply noise - rejection Interference, conducted or radiated (Charroy) 50 Hz pickup Modulation residues Amplifier noise Reference noise Humidity influence – Leakage paths Contact resistance and emf’s • Resolution CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 9 Specifications 2 Out • Accuracy – Offset – Gain – Linearity • Temperature behaviour – – – – – CAS2004 In Offset and gain change Amplifiers Resistors Capacitors Instability/Oscillations High Precision Measurements - Gunnar Fernqvist/CERN 10 Specifications 3 • Settling behaviour – Bandwidth related – Thermally related • Repeatability and reproducibility • Long term drift – Material ageing or stress modification – Resistors, amplifiers – Humidity CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 11 Voltage transducers • Problems you may face: – Isolation – High voltage – High frequency performance • Solutions: – – – – Isolation amplifiers High voltage dividers Precision resistors easily available Compensation for stray capacitance • Relatively easy to verify performance CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 12 LEM Voltage Transducer Accuracy range: 0.2 – 1 % CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 13 Current Transducers, Principles • Current measuring resistors – – – – Current range: 0 - 20 kA Accuracy range: 10-2 - 10-6 No isolation DC up to MHz with low inductance design – – – – Accuracy: 10-2 to 10-3 for 1-50 kA Needs magnetising energy Limited bandwidth, no DC Good isolation, kV easy • AC passive current transformers • Optical fibres – Accuracy: 10-2 to 10-3 – Excellent isolation CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 14 Magnetic Flux Principle • Measure field around conductor – Hall probe – open loop system • Flux compensation around conductor, sense zero flux – Hall effect sensor • 10-3 accuracy – magnetic modulation • • • • Second harmonic detector Peak current sensing Separate DC and AC loops 10-6 accuracy achievable in current ratio – Burden resistor/output amplifier CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 15 LEM Current Transducer 1 Accuracy range: 1–2% CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 16 LEM Current Transducer 2 Accuracy range: 0.2 – 1 % Linearity error: < 0.1 % CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 17 DCCT Principle I comp Ip Current output Oscillator Power amplifier Burden resistor Zero-flux detector Optional output amplifier CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 18 DCCTs on the Market CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 19 Zero-flux transducer performance • Current ratio accuracy – 0.1 – 10 ppm • Current/voltage conversion accuracy – 1 – 1000 ppm • Accuracy vs. frequency – Loop gain important – Difficult to measure • Noise and sources of noise • Hysteresis CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 20 Current measuring resistors 1 • Resistance is defined as R=U/I • It is a material property, not a constant • It changes with temperature, humidity, pressure, mechanical stress • Cu, Al, Ag, Au etc. ~ 4000 ppm/K • Good materials are NiCr, Manganin, Zeranin, Evanohm – 1-100 ppm/K • Packaging is crucial to performance CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 21 Current measuring resistors 2 • Four terminals are compulsory for low value resistors • Cooling can be by air, oil, grease etc. CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 22 Current measuring resistors 3 • The output voltage is a trade-off between noise/thermal emf’s and power dissipation • Temperature coefficient measured at low power • Power coefficient measured at one temperature • Hysteresis CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 23 Calibration infrastructure 1 Standards • Standards – – – – Voltage, 10 V zener based Resistance, 1 Ω - 10 kΩ Current, 10 mA Accuracy 10-6 • Reference DCCTs CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 24 Calibration infrastructure 2 • Current calibrator – Principle: inverted DCCT, multiplies current up to max 10 A – Calibrates DCCTs with special winding – Calibrates burden/output amp directly – Fully computer controlled • DCCT testbeds – Calibrates DCCTs by providing the full primary current with a known value CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 25 The current calibrator principle 10.00000 mA 10 mA current source Ext calib. 1 1 2 4 1024 2048 0-10 mA 16 bit DAC 1 Toroidal core Zero-flux detector Power amplifier CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 0-10 A output Range switching 26 The transfer scheme from the Standards lab Primary bank O F M E T On-site standard Current standard Current standard Current standard 10mA 10mA 10mA Automated voltage divider mV mV 10V 10mA 10mA Volt standard Current standard CERN standards lab CAS2004 0-10A Current calibrator Standard resistor B E R N 10mA Portable standard Current standard LHC control point High Precision Measurements - Gunnar Fernqvist/CERN 27 The Current Calibrator CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 28 DCCT testbeds 6 kA CAS2004 20 kA High Precision Measurements - Gunnar Fernqvist/CERN 29 Integration and other problems • • • • • • • • • Grounding – Distance DCCT to electronics Common mode voltages Power supply noise – rejection “Negligible” resistance 4 wire configuration - not always a solution Avoid resistive loading – use buffer amps Insufficient amplifier gain Instrumentation amplifiers Amplifier stability – Decoupling – Power amplifiers – Cascade amplifiers • Load problem – dR/dt => dI/dt @ V= const • External field sensitivity CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 30 1kΩ 10kΩ 1A + 1Ω 1kΩ A Hi 10kΩ Rg1 1mΩ Hi sense Output signal Lo sense Lo Analog common Rg2 Power common CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 31 EMC problems in high precision • Symptoms – Non-linearity – Unusual and unstable offset • Tests – – – – Use oscilloscope frequently – your best friend RF exposure Burst generator Diagnose coupling mechanism • Remedies – Grounding and Shielding – Filters – Consultants CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 32 CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN Time (h:mm:ss) 33 1:22:49 1:20:56 1:19:03 1:17:10 1:15:17 1:13:24 1:11:31 1:09:38 1:07:45 1:05:52 1:04:00 1:02:07 1:00:14 0:58:21 0:56:28 0:54:35 0:52:42 0:50:49 0:48:56 0:47:03 0:45:10 0:43:17 0:41:24 0:39:31 0:37:39 0:35:46 0:33:53 0:32:00 0:30:07 0:28:14 0:26:21 0:24:28 0:22:35 0:20:42 0:18:49 0:16:56 0:15:03 0:13:10 0:11:18 0:09:25 0:07:32 0:05:39 0:03:46 0:01:53 0:00:00 Output (ppm) Offset drift after power-up 10.0 5.0 0.0 -5.0 -10.0 -15.0 -20.0 -25.0 Stability test of a DCCT CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 34 Conclusions • Discourage exaggerated accuracy requests – direct and hidden costs • Build conservative, with good margins • Watch out for specmanship and quality control in industrial products • Test in the lab, not in the machine • Switch mode converters increase EMC problems at least an order of magnitude • Presumption is the mother of all screwups CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 35 References • ISO, Guide to the expression of uncertainty in measurements (GUM), 1995 • Ott, Noise reduction techniques in electronic systems, 2nd ed. 1988 • Horowitz, Hill, The art of electronics, 2nd ed., 1989 • Bendat, Piersol, Random data analysis and measurement procedures, 3rd ed. 2000 • Ramirez, The FFT-fundamentals and concepts, 1985 • Fernqvist et al, A novel current calibration system up to 20 kA, IEEE Trans. Instrum. Meas., vol. 52, Apr. 2003 • Moore, Miljanic, The current comparator, 1988 • Appelo et al., The zero flux DC current transformer – A high-precision bipolar wide-band measuring device, IEEE Trans. Nucl. Sci., Vol NS-24, No 3, June 1977 CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 36 Future challenges • Create a better burden resistor • Create a better current-to-voltage converter • Create a truly digital DCCT CAS2004 High Precision Measurements - Gunnar Fernqvist/CERN 37