Preview only show first 10 pages with watermark. For full document please download

Ground Segment Contents Frequencies Large

   EMBED


Share

Transcript

CONTENTS • Types of Ground Stations • Architecture • Subsystems – – – – GROUND SEGMENT Antenna, Tracking Station Parameters: G/T, EIRP Polarisation Components of Ground Stations Otto Koudelka • Very Small Aperture Terminals (VSATs) • TV Receive-only Terminals Institute of Communication Networks and Satellite Communications Graz University of Technology, Austria • Topologies [email protected] ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 1 FREQUENCIES • • • • TYPES OF GROUND STATIONS C-Band: 4 / 6 GHz X-Band: 8 / 10 GHz Ku-Band: 11 / 14, 12 / 14 GHz Ka-Band: 20 / 30 GHz • Large stations (operators’ head-ends, TV feeder links, hub stations) • VSATs (very small aperture terminals) – one-way – interactive • TV Receive-Only (TVRO) • Always higher uplink frequency (efficiency reasons) ERASMUS-IP Professor Horst Cerjak, 19.12.2005 2 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 3 MEDIUM-SIZED STATIONS LARGE STATIONS • INTELSAT-A • TV, telephony, data • up to 32 m ERASMUS-IP Professor Horst Cerjak, 19.12.2005 4 • VSAT hubs • TV uplinks • up to 9.5 m antenna diameter Satellite Communications Systems 5 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 6 1 VSATs FIXED MEDIUM-SIZE STATIONS Very Small Aperture Terminals • up to 3.7 m antennas • typically 1.2...1.8 m ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 7 LOW-COST TERMINAL 8 TRANSPORTABLE STATIONS Trailer-mounted Terminal Satellite News Gathering Terminal ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 9 NOMADIC TERMINAL ERASMUS-IP Professor Horst Cerjak, 19.12.2005 10 MOBILE TERMINAL Satellite Communications Systems 11 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 12 2 MOBILE ANTENNA TV RECEIVE ONLY (TVRO) • 35...120 cm (Ku) • 3 m (C) ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 13 ARCHITECTURE 14 RX: 12.5 GHz Receiver Low Noise 12.5 GHz Amplifier (LNA) Antenna 14 GHz 1st IF= 750 MHz 2nd IF= 70 MHz BW=40 MHz 70 / 140 MHz or 950…2050 MHz Frequency Downconverter Polarisation OMT separation High Power Amplifier DOWNCONVERTER LNA Demodulator FEC Decoder DEMOD Data out OMT LO1R: 11.75 GHz HPA Driver BW=40 MHz Transmitter 70 / 140 MHz or 950…2050 MHz Frequency Upconverter FEC Encoder Modulator ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Data in Satellite Communications Systems LO2R: 680 MHz UPCONVERTER MOD TX: 14.0 GHz LO2T: 13.25 GHz LO1T: 680 MHz ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 15 12.5 GHz TEST TRANSLATOR 16 12.5 GHz LNA TEST TRANSLATOR LNA DOWNCONVERTER DOWNCONVERTER OMT OMT 1.5 GHz 1.5 GHz UPCONVERTER 14.0 GHz ERASMUS-IP Professor Horst Cerjak, 19.12.2005 UPCONVERTER 14.0 GHz HPA Satellite Communications Systems 17 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 HPA Satellite Communications Systems 18 3 DOWNCONVERTER DEMOD 1 12 GHz x ANTENNAS • Horn antenna UPCONVERTER MOD 1 diplexing OMT 14 GHz SIMULTANEOUS OPERATIONS UPCONVERTER y MOD 2 12 GHz 12 GHz 20 GHz DOWNCONVERTER transport of electromagnetic energy DEMOD 2 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Waveguide (“transmission line” for microwaves) Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 19 20 PARABOLIC ANTENNAS OFFSET ANTENNA • Primary focus feed Primary focus offset Offsetantenne hier Primärfokus und asymmetrischer Reflektor • With subreflector – Cassegrain – Gregory – Advantage: feed close to RF equipment Offset - CassegrainAntenne Offset-Cassegrain Subreflektor Offset - GregoryOffset-Gregory Antenne Offset-Gregory Subreflektor ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 21 22 OFFSET ANTENNAS ANTENNA PATTERN • • • higher efficiency, less shielding • antenna angle steeper, less risk of snow remaining in dish • electrical elevation angle is not mechanical elevation angle (subtract antenna offset ~20° !) Gain plotted versus azimuth (or elevation) angle Antenna sidelobes below certain mask – G= 29-25logΘ Main lobe Gain Reduction [dB] Azimuth angle ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 23 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 24 4 ANTENNA GAIN DUAL POLARISATION • Depends on diameter, wavelength, efficiency • G…antenna gain [dB] λ...wave lenghth [m] , λ = c/f η...efficiency (depends on surface accuracy, shielding) • Orthogonal polarizations used, same frequency can be used twice – Horizontal / vertical (linear) – Left-hand / right-hand (circular) • Ortho-mode Transducer (OMT) separates polarised waves – must have a good cross-polar discrimination (XPD) – 25 dB minimum – 30...35 dB (@1 deg. off boresight) • Otherwise cross-talk, interference to other users • Proper alignment of OMT vital Example: D = 2.4 m, f = 14 GHz, η = 60 % ⎞ ⎛ ⎟ ⎜ 2 2 ⎛ π 2 D2 ⎞ ⎜ π 2.4 ⎟ G = 10 log⎜⎜η = 48.7 dB 2⎟ ⎟⎟ = 10 log⎜ 0.6 λ2 ⎠ ⎝ ⎛ 3E 8 ⎞ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎝ 14 E 9 ⎠ ⎠ ⎝ ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 25 26 OMT EIRP • Effective isotropic radiated power: power emitted by an isotropic antenna to produce same peak power density (in far field) as a (directional) antenna in the direction of maximum gain Low-cost OMT XPD: 25 dB receive port • EIRP [dBW] = P[dBW] + G[dB] antenna port High-performance OMT XPD: 48 dB transmit port antenna port ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 27 FIGURE OF MERIT 28 ANTENNA POINTING • Relationship between antenna gain and receiver noise temperature • G/T [in dB/K] • G/T [dB/K] = G [dB] – 10 log T [K] • manual • motor-driven (can be used for tracking) • Good value for a 2.4 m antenna with 80 K LNA : 28 dB/K • Receive signal/noise ratio derived from link budget: • beacon signal from satellite used to optimize pointing Eb No = EIRP[ dBW ] − Lall [ dB ] + (G / T ) [ dB / K ] – azimuth – elevation – polarization − k [ dBJ / K ] − B[ dBHz ] L…sum of all losses, k…Boltzman constant, B…bandwidth ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 29 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 30 5 1) determine local position (GPS) 2) calculate azimuth, elevation, polarisation angles 3) adjust elevation angle (inclinometer) 4) coarse alignment of azimuth (compass, GPS) 5) search for beacon (spectrum analyzer) 6) fine adjustment of elevation, azimuth for maximum signal level 7) adjust polarisation ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems TRACKING • for larger earth stations – compensation of small half-power beamwidth – satellite movement – compensation of wind force • inclined-orbit satellites ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 31 METHODS 32 PROGRAM TRACK • program track • step-track • monopulse system • employ orbit calculations • enter spacecraft orbital elements • beacon signal to find maximum RX signal strength • calculate azimuth, elevation • use data to control azimuth/ elevation actuators ERASMUS-IP Professor Horst Cerjak, 19.12.2005 – updated regularly – after orbital maneuver Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 33 STEP TRACK 34 ANTENNA MOUNTS • simple algorithm • antenna moved a discrete step • stable • withstand wind load • non-penetrating mount with frame for semi-permanent installations • should have azimuth/ elevation reading – if signal increases, carry on in this direction – if signal decreases, go back • satisfactory for most applications • grounding! ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 35 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 36 6 ANTENNA HEATING COMPONENTS • surface heated by foils • remove ice, snow – high attenuation – distortion of antenna diagram Mixer: analogue multiplier • control system to keep temperature constant Phase-locked oscillator XTAL reference oscillator Waveguide switch Amplifier ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 37 38 VSAT VERY SMALL APERTURE TERMINALS -VSATs LNA Downconverter DE MOD • RF Front-end cost-optimised • Small outdoor unit, directly mounted on or near feed of antenna OMT – Low noise downconverter block (LNB) – Upconverter and high-power amplifier OUTDOOR UNIT HPA 2nd Down converter 1st IF= 950... 2050 MHz INDOOR UNIT Upconverter MOD 1st Upconverter ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 39 LOW NOISE AMPLIFIER • • • • • • Solid-state GaAs-FET, HEMT High gain Low noise power T= 65, 80, 120, 160 K (Ku) T = 30 K (C) 40 HIGH POWER AMPLIFIER (HPA) • SSPA (solid state power amplifiers) – 1,2,4,8,16,40, 80, 100 W for Ku-band – up to 300 W for C-band • Higher power: – Travelling Wave Tube TWTA (100 W...kW) • bandwidth: 0.7 GHz (Ku), 3 GHz (Ka) – Klystrons (very high power: up to 3 kW) LNA • bandwidth: 150 MHz ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 41 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 42 7 HIGH POWER AMPLIFIER TV RECEIVE-ONLY (TVRO) • • • • • simple low-cost outdoor mount water-tight receiver unit single cable for intermediate frequency, power, control High-Power Amplifier 16 W Upconverter / Driver ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 43 44 LOW-NOISE BLOCK TVRO 950...2050 MHz Feed Mixer POLAR SELECT Filter LNB Dielectric Resonator Oscillator ERASMUS-IP Professor Horst Cerjak, 19.12.2005 SET-TOP BOX Amplifier LNA Low Noise Block Antenna 950..2050 MHz TUNER Power for LNB via RF cable DEMOD TV DECOD Control signals: - Polarisation - Selection of Band 9.75, 10, 10.75, 11.3 GHz Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 45 Satellite Communications Systems 46 LNB / SET-TOP BOX TOPOLOGIES ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 47 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 48 8 STAR POINTTOPOINT Central Hub Station: responsible for capacity assignment network management Internet ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 49 50 STAR / MESH • Star topology suitable if data flow is always to/from central site (e.g. Internet via satellite) • If satellite terminals need to communicate with each other, traffic has to be routed via central hub station • Double satellite hop (ca. 500 ms) prohibits interactive applications (voice, video conference,…) MESHED MODE • In mesh mode only single hop (250 ms) • Any terminal can communicate with any other terminal without a hub ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 51 ERASMUS-IP Professor Horst Cerjak, 19.12.2005 Satellite Communications Systems 52 9