Transcript
High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADL5811 VPIF
IFGM
NC
IFOP
IFON
NC
IFGD
COMM
FUNCTIONAL BLOCK DIAGRAM 32
31
30
29
28
27
26
25 24 NC
NC 1 RFCT 2
ADL5811
NC 3
23 NC 22 NC
RFIN 4
21 LOIP
NC 5
20 LOIN
NC 6
19 LE
SERIAL PORT INTERFACE
BIAS GEN
NC 7
18 DATA
NC 8 13
14
15
16
COMM
VLO1
COMM
09912-001
12
VLO2
11
COMM
10
VLO3
17 CLK 9
VLO4
RF frequency: 700 MHz to 2800 MHz continuous LO frequency: 250 MHz to 2800 MHz, high-side or low-side inject IF range: 30 MHz to 450 MHz Power conversion gain of 7.5 dB at 1900 MHz SSB noise figure of 10.7 dB at 1900 MHz Input IP3 of 27.5 dBm at 1900 MHz Input P1dB of 12.7 dBm at 1900 MHz Typical LO drive of 0 dBm Single-ended, 50 Ω RF port Single-ended or balanced LO input port Single-supply operation: 3.6 V to 5.0 V Serial port interface control on all functions Exposed paddle 5 mm × 5 mm, 32-lead LFCSP package
COMM
FEATURES
Figure 1.
APPLICATIONS Multiband/multistandard cellular base station receivers Wideband radio link diversity downconverters Multimode cellular extenders and broadband receivers
GENERAL DESCRIPTION The ADL5811 uses revolutionary new broadband, square wave limiting, local oscillator (LO) amplifiers to achieve an unprecedented radio frequency (RF) bandwidth of 700 MHz to 2800 MHz. Unlike conventional narrow-band sine wave LO amplifier solutions, this permits the LO to be applied either above or below the RF input over an extremely wide bandwidth. Because energy storage elements are not used, the dc current consumption also decreases with decreasing LO frequency. The ADL5811 uses highly linear, doubly balanced, passive mixer cores along with integrated RF and LO balancing circuits to allow single-ended operation. The ADL5811 incorporates programmable RF baluns, allowing optimal performance over a 700 MHz to 2800 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO-to-RF and LO-toIF leakages, excellent RF-to-IF isolation, and excellent intermodulation performance over the full RF bandwidth. The balanced mixer cores also provide extremely high input linearity, allowing the device to be used in demanding
wideband applications where in-band blocking signals may otherwise result in the degradation of dynamic range. Blocker noise figure performance is comparable to narrow-band passive mixer designs. High linearity IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of 7.5 dB, and can be used with a wide range of output impedances. For low voltage applications, the ADL5811 is capable of operation at voltages down to 3.6 V with substantially reduced current. Two logic bits are provided to power down (<1.5 mA) the circuit when desired. All features of the ADL5811 are controlled via a 3-wire serial port interface, resulting in optimum performance and minimum external components. The ADL5811 is fabricated using a BiCMOS high performance IC process. The device is available in a 32-lead, 5mm × 5mm, LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is also available.
Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
ADL5811 TABLE OF CONTENTS Features .............................................................................................. 1
RF Subsystem.............................................................................. 20
Applications....................................................................................... 1
LO Subsystem ............................................................................. 21
Functional Block Diagram .............................................................. 1
Applications Information .............................................................. 22
General Description ......................................................................... 1
Basic Connections...................................................................... 22
Revision History ............................................................................... 2
IF Port .......................................................................................... 22
Specifications..................................................................................... 3
Bias Resistor Selection ............................................................... 22
Timing Characteristics ................................................................ 4
VGS Programming .................................................................... 22
Absolute Maximum Ratings............................................................ 5
Low-Pass Filter Programming.................................................. 23
ESD Caution.................................................................................. 5
RF Balun Programming ............................................................ 23
Pin Configuration and Function Descriptions............................. 6
Register Structure ........................................................................... 24
Typical Performance Characteristics ............................................. 7
Evaluation Board ............................................................................ 25
3.6 V Performance...................................................................... 16
Outline Dimensions ....................................................................... 28
Spurious Performance................................................................ 17
Ordering Guide .......................................................................... 28
Circuit Description......................................................................... 20
REVISION HISTORY 7/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 28
ADL5811 SPECIFICATIONS VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. Table 1. Parameter RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range OUTPUT INTERFACE Output Impedance IF Frequency Range DC Bias Voltage 1 LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept Input Second-Order Intercept Input 1 dB Compression Point LO-to-IF Output Leakage LO-to-RF Input Leakage RF-to-IF Output Isolation IF/2 Spurious IF/3 Spurious POWER INTERFACE Supply Voltage, VS Quiescent Current Power-Down Current 1
Test Conditions/Comments
Min
Tunable to >20 dB broadband via serial port
Typ
Max
Unit
2800
dB Ω MHz
15 50 700
Differential impedance, f = 200 MHz
260||1.0 30
Externally generated
450 VS
−6
Low-side or high-side LO
250
Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential 5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz, each RF tone at −10 dBm fRF1 = 1900 MHz, fRF2 = 2000 MHz, fLO = 1697 MHz, each RF tone at −10 dBm Unfiltered IF output
−10 dBm input power −10 dBm input power 3.6 Resistor programmable IF current
Supply voltage must be applied from external circuit through choke inductors.
Rev. 0 | Page 3 of 28
0 13 50
+10
2800
Ω||pF MHz V dBm dB Ω MHz
7.5 13.9 10.7 20.7
dB dB dB dB
27.5
dBm
62
dBm
12.7 −40 −25 26 −73 −75
dBm dBm dBm dB dBc dBc
5 185 1.4
5.5
V mA mA
ADL5811 TIMING CHARACTERISTICS Low logic level ≤ 0.4 V, and high logic level ≥ 1.4 V. Table 2. Serial Interface Timing Parameter t1 t2 t3 t4 t5 t6 t7
Limit 20 10 10 25 25 10 20
Unit ns minimum ns minimum ns minimum ns minimum ns minimum ns minimum ns minimum
Test Conditions/Comments LE setup time DATA-to-CLK setup time DATA-to-CLK hold time CLK high duration CLK low duration CLK-to-LE setup time LE pulse width
Timing Diagram t4
t5
CLK
t2 DATA
DB23 (MSB)
t3 DB22
DB2 (CONTROL BIT C3)
DB1 (CONTROL BIT C2)
DB0 (LSB) (CONTROL BIT C1)
t7
t1 09912-002
t6 LE
Figure 2. Timing Diagram
Rev. 0 | Page 4 of 28
ADL5811 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage, VPOS CLK, DATA, LE IF Output Bias RF Input Power LO Input Power Internal Power Dissipation θJA (Exposed Paddle Soldered Down) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range
Rating 5.5 V 5.5 V 6.0 V 20 dBm 13 dBm 1.1 W 25°C/W 150°C −40°C to +85°C −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. 0 | Page 5 of 28
ADL5811
32 31 30 29 28 27 26 25
VPIF IFGM NC IFOP IFON NC IFGD COMM
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1 2 3 4 5 6 7 8
ADL5811 TOP VIEW (Not to Scale)
24 23 22 21 20 19 18 17
NC NC NC LOIP LOIN LE DATA CLK
NOTES 1. NC = NO CONNECT. CAN BE GROUNDED. 2. EXPOSED PAD MUST BE CONNECTED TO GROUND.
09912-003
VLO4 COMM VLO3 COMM VLO2 COMM VLO1 COMM
9 10 11 12 13 14 15 16
NC RFCT NC RFIN NC NC NC NC
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions Pin No. 1, 3, 5 to 8, 22 to 24, 27, 30 2 4 9, 11, 13, 15 10, 12, 14, 16, 25 17, 18, 19 20 21 26 28, 29
Mnemonic NC RFCT RFIN VLO4, VLO3, VLO2, VLO1 COMM CLK, DATA, LE LOIN LOIP IFGD IFOP, IFON
31 32
IFGM VPIF EPAD
Description No Connect. Can be grounded. RF Balun Center Tap (AC Ground). RF Input. Should be ac-coupled. Positive Supply Voltages for LO Amplifier. Ground. Serial Port Interface Control. Ground Return for LO Input. LO Input. Should be ac-coupled. Supply Return for IF Amplifier. Must be grounded. IF Differential Open-Collector Outputs. Should be pulled up to VCC using external inductors. IF Amplifier Bias Control. Supply Voltage for IF Amplifier. Exposed pad must be connected to ground.
Rev. 0 | Page 6 of 28
ADL5811 TYPICAL PERFORMANCE CHARACTERISTICS VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. 220 210
90
TA = –40°C TA = +25°C TA = +85°C
80
TA = –40°C TA = +25°C TA = +85°C
70 190
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
200
180 170 160
60 50 40
150
30 140
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
10 700
09912-004
120 700
RF FREQUENCY (MHz)
Figure 7. Input IP2 vs. RF Frequency
Figure 4. Supply Current vs. RF Frequency 10 9
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-007
20
130
20
TA = –40°C TA = +25°C TA = +85°C
18
TA = –40°C TA = +25°C TA = +85°C
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
16 8 7 6 5
14 12 10 8 6
4
4 3
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
0 700
RF FREQUENCY (MHz)
Figure 8. Input P1dB vs. RF Frequency
Figure 5. Power Conversion Gain vs. RF Frequency 45 40
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-008
2 09912-005
2 700
16
TA = –40°C TA = +25°C TA = +85°C
15
TA = –40°C TA = +25°C TA = +85°C
14
NOISE FIGURE (dB)
30 25 20
13 12 11 10 9 8
15
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
6 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 9. SSB Noise Figure vs. RF Frequency
Figure 6. Input IP3 vs. RF Frequency
Rev. 0 | Page 7 of 28
09912-009
10 700
7 09912-006
INPUT IP3 (dBm)
35
ADL5811 RF = 1900MHz
225
70
205
65
INPUT IP2 (dBm)
215
195 185 175
55 50 45
155
40
145
35
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
30 –40 –30 –20 –10
RF = 1900MHz
10
20
30
40
50
60
70
80
Figure 13. Input IP2 vs. Temperature 20
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
9.5
0
TEMPERATURE (°C)
Figure 10. Supply Current vs. Temperature 10.0
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
60
165
135 –40 –30 –20 –10
RF = 1900MHz
75
09912-010
SUPPLY CURRENT (mA)
80
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
09912-013
235
RF = 1900MHz
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
18 16
8.5
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
9.0
8.0 7.5 7.0 6.5
14 12 10 8
6.0
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
4 –40 –30 –20 –10
09912-011
5.0 –40 –30 –20 –10
RF = 1900MHz
20
30
40
50
60
70
80
Figure 14. Input P1dB vs. Temperature 15
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
33
10
TEMPERATURE (°C)
Figure 11. Power Conversion Gain vs. Temperature 35
0
09912-014
6
5.5
RF = 1900MHz
VPOS = 4.75V VPOS = 5.00V VPOS = 5.25V
14
SSB NOISE FIGURE (dB)
31
27 25 23 21
13 12 11 10
19
15 –40 –30 –20 –10
0
10
20
30
40
50
TEMPERATURE (°C)
60
70
80
8 –40 –30 –20 –10
0
10
20
30
40
50
60
TEMPERATURE (°C)
Figure 12. Input IP3 vs. Temperature
Figure 15. SSB Noise Figure vs. Temperature
Rev. 0 | Page 8 of 28
70
80
09912-015
9
17 09912-012
INPUT IP3 (dBm)
29
ADL5811 200 195
TA = 25°C
70
190 185 180 175
50 40 30
170
20
165
10
160 30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
0 30
RF = 900MHz RF = 1900MHz RF = 2500MHz
80
18
8 7 6
430
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
12 10 8
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
2 30
09912-017
80
180
230
280
330
380
430
Figure 20. Input P1dB vs. IF Frequency 20
RF = 900MHz RF = 1900MHz RF = 2500MHz
39
130
IF FREQUENCY (MHz)
Figure 17. Power Conversion Gain vs. IF Frequency
TA = 25°C
80
09912-020
4
4 30
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
18
SSB NOISE FIGURE (dB)
28 27 26 25 24 23
16 14 12 10 8
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
4 30
80
130
180
230
280
330
380
IF FREQUENCY (MHz)
Figure 21. SSB Noise Figure vs. IF Frequency
Figure 18. Input IP3 vs. IF Frequency
Rev. 0 | Page 9 of 28
430
09912-021
6 09912-018
INPUT IP3 (dBm)
380
6
5
22
330
14
9
30
280
16
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
10
230
Figure 19. Input IP2 vs. IF Frequency
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
180
IF FREQUENCY (MHz)
Figure 16. Supply Current vs. IF Frequency 11
130
09912-019
INPUT IP2 (dBm)
60
09912-016
SUPPLY CURRENT (mA)
80
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
ADL5811 10 9
7 6
14 12 10
5
8
4
6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
4 –6
–45 –50
29
–55
IF/2 SPURIOUS (dBc)
INPUT IP3 (dBm)
–40
31
27 25 23 21
4
6
8
10
LO POWER (dBm)
–90 700
09912-023
2
60
–65
IF/3 SPURIOUS (dBc)
–60
50 40 30
–4
–2
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
TA = –40°C TA = +25°C TA = +85°C
–70 –75 –80 –85
RF = 900MHz RF = 1900MHz RF = 2500MHz
0
2
4
6
LO POWER (dBm)
8
10
09912-024
INPUT IP2 (dBm)
–55
70
10 –6
TA = –40°C TA = +25°C TA = +85°C
Figure 26. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm
TA = 25°C
20
10
RF FREQUENCY (MHz)
Figure 23. Input IP3 vs. LO Power 80
8
–75
–85
0
6
–70
–80
–2
4
–65
17
–4
2
–60
19
15 –6
0
Figure 25. Input P1dB vs. LO Power
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
–2
LO POWER (dBm)
Figure 22. Power Conversion Gain vs. LO Power
33
–4
09912-026
3 –6
09912-025
INPUT P1dB (dBm)
16
8
35
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
18
09912-022
CONVERSION GAIN (dB)
20
RF = 900MHz RF = 1900MHz RF = 2500MHz
TA = 25°C
–90 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 27. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm
Figure 24. Input IP2 vs. LO Power
Rev. 0 | Page 10 of 28
09912-027
11
ADL5811
RESISTANCE (Ω)
PERCENTAGE (%)
80
60
40
20
7.3
7.5
7.7
7.9
CONVERSION GAIN (dB)
300
6
200
4
100
2
0 30
80
130
180
230
280
330
380
430
0
IF FREQUENCY (MHz)
Figure 31. IF Output Impedance (R Parallel C Equivalent) 0
MEAN: 27.5 SD: 0.36%
TA = +25°C
–5
RF PORT RETURN LOSS (dB)
80 PERCENTAGE (%)
10
8
Figure 28. Conversion Gain Distribution 100
RF = 900MHz RF = 1900MHz RF = 2500MHz
400
09912-028
0 7.1
TA = 25°C
CAPACITANCE (pF)
500
MEAN: 7.5 SD: 0.12%
09912-031
100
60
40
20
–10 –15 –20 –25 –30
25.5
27.5
29.5
31.5
INPUT IP3 (dBm)
–40 700
09912-029
0 23.5
RF FREQUENCY (MHz)
Figure 32. RF Port Return Loss, Fixed IF vs. RF Frequency
Figure 29. Input IP3 Distribution 100
0
MEAN: 11.68 SD: 0.36%
TA = 25°C
–3
LO RETURN LOSS (dB)
80
60
40
20
–6 –9 –12 –15 –18
0 10.5
11.0
11.5
12.0
INPUT P1dB (dBm)
12.5
–24 500
700
900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz)
Figure 33. LO Return Loss
Figure 30. Input P1dB Distribution
Rev. 0 | Page 11 of 28
09912-033
–21
09912-030
PERCENTAGE (%)
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-032
–35
ADL5811
–30 –40 –50 –60
–20 –30 –40 –50
–10
TA = –40°C TA = +25°C TA = +85°C
–30 –40 –50 –60
–30 –40 –50 –60
LO FREQUENCY (MHz)
–80 500
900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz)
Figure 38. 3XLO Leakage vs. LO Frequency
Figure 35. LO-to-IF Leakage vs. LO Frequency
–10
700
14
TA = –40°C TA = +25°C TA = +85°C
16
TA = +25°C
15
13
14
CONVERSION GAIN (dB)
–30 –40 –50 –60
11
NOISE FIGURE
12
9
11
8
10 9
7
GAIN
6 5
–80 500
4 700
700
900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz)
Figure 36. LO-to-RF Leakage vs. LO Frequency
13
10
–70
09912-036
LO-TO-RF LEAKAGE (dBm)
12
–20
VGS = 0 VGS = 1
VGS = 2 VGS = 3
SSB NOISE FIGURE (dB)
900 1100 1300 1500 1700 1900 2100 2300 2500
09912-035
700
09912-038
–70
–70
0
TA = 25°C
3LO-TO-IF 3LO-TO-RF
–20
3XLO LEAKAGE (dBm)
LO-TO-IF LEAKAGE (dBm)
Figure 37. 2XLO Leakage vs. LO Frequency
–20
–80 500
900 1100 1300 1500 1700 1900 2100 2300 2500 LO FREQUENCY (MHz)
Figure 34. RF-to-IF Isolation vs. RF Frequency
–10
700
09912-037
–70 500
09912-034
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
0
TA = 25°C
–60
–70 –80 700
2LO-TO-IF 2LO-TO-RF
–10
–20
2XLO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dB)
–10
0
TA = –40°C TA = +25°C TA = +85°C
8 VGS = 4 VGS = 5
VGS = 6 VGS = 7
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
7 09912-0139
0
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for All VGS Settings
Rev. 0 | Page 12 of 28
ADL5811
INPUT IP3
27
240
24
220
RF = 900MHz RF = 1900MHz RF = 2500MHz
21
20
18
15
15
10
12
5
9
120
6
100 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
INPUT P1dB 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
INPUT P1dB (dBm)
25
0 700
RF FREQUENCY (MHz)
200 180 160 140
IF BIAS RESISTOR VALUE (Ω)
Figure 40. Input IP3 and Input P1dB vs. RF Frequency for All VGS Settings
30
RF = 900MHz RF = 1900MHz RF = 2500MHz
25 20 15 10 5
TA = +25°C
–25
–20
–15
–10
–5
0
5
BLOCKER POWER (dBm)
Figure 41. SSB Noise Figure vs. 10 MHz Offset Blocker Level
10
09912-141
0 –30
Figure 42. Supply Current vs. IF Bias Resistor Value
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
35
SSB NOISE FIGURE (dB)
TA = 25°C
09912-042
TA = +25°C
VGS = 6 VGS = 7
20 18
TA = 25°C
INPUT IP3
32 28 24
16 14
RF = 900MHz RF = 1900MHz RF = 2500MHz
NOISE FIGURE
20
12
16
10
12
8
GAIN
6
INPUT IP3 (dBm)
VGS = 4 VGS = 5
09912-140
INPUT IP3 (dBm)
30
VGS = 2 VGS = 3
8 4
4 0 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
IF BIAS RESISTOR VALUE (Ω)
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias Resistor Value
Rev. 0 | Page 13 of 28
09912-043
VGS = 0 VGS = 1
SUPPLY CURRENT (mA)
35
ADL5811 17 16 15
7 6 5 4
12 11
2
9
RF FREQUENCY (MHz)
8 700
RF FREQUENCY (MHz)
30
TA = +25°C
15 14
28 27 26 25
13
9
7
RF FREQUENCY (MHz)
TA = +25°C
11
23
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
0 1 2 3 4 5 6 7
10
8
22 700
RFB = RFB = RFB = RFB = RFB = RFB = RFB = RFB =
12
24
09912-045
INPUT IP3 (dBm)
29
0 1 2 3 4 5 6 7
SSB NOISE FIGURE (dB)
31
16 RFB = RFB = RFB = RFB = RFB = RFB = RFB = RFB =
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Figure 46. Input P1dB vs. RF Frequency for All RFB Settings
Figure 44. Conversion Gain vs. RF Frequency for All RFB Settings 32
TA = +25°C
13
10
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
0 1 2 3 4 5 6 7
14
3
1 700
RFB = RFB = RFB = RFB = RFB = RFB = RFB = RFB =
09912-046
8
18
TA = +25°C
09912-044
CONVERSION GAIN (dB)
9
0 1 2 3 4 5 6 7
6 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 47. SSB Noise Figure vs. RF Frequency for All RFB Settings
Figure 45. Input IP3 vs. RF Frequency for All RFB Settings
Rev. 0 | Page 14 of 28
09912-047
10
RFB = RFB = RFB = RFB = RFB = RFB = RFB = RFB =
INPUT P1dB (dBm)
11
ADL5811 12
LPF LPF LPF LPF
21
TA = +25°C
19
RFB0
6
RFB7
4 2
TA = +25°C
RFB0
15 13 11 RFB7
RF FREQUENCY (MHz)
5 700
09912-048
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 50. Input P1dB vs. RF Frequency for All LPF Settings at RFB7 and RFB0
Figure 48. Conversion Gain vs. RF Frequency for All LPF Settings at RFB7 and RFB0
20
TA = +25°C
33
18
RFB0
31
SSB NOISE FIGURE (dB)
27 25 23
RFB7
21
TA = +25°C
RFB0
14 12 10 8
RFB7
=0 =1 =2 =3
4
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 49. Input IP3 vs. RF Frequency for All LPF Settings at RFB7 and RFB0
Rev. 0 | Page 15 of 28
2 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 51. SSB Noise Figure vs. RF Frequency for All LPF Settings at RFB7 and RFB0
09912-051
15 700
=0 =1 =2 =3
6
LPF LPF LPF LPF
09912-049
17
LPF LPF LPF LPF
16
29
19
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-050
7
–2 700
INPUT IP3 (dBm)
=0 =1 =2 =3
9
0
35
LPF LPF LPF LPF
17
8
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
10
=0 =1 =2 =3
ADL5811 3.6 V PERFORMANCE VS = 3.6 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. 150 140
TA = –40°C TA = +25°C TA = +85°C
70 60
120 110 100
50 40 30
90
20
80
10
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
0 700
RF FREQUENCY (MHz)
Figure 52. Supply Current vs. RF Frequency at 3.6 V 24
TA = –40°C TA = +25°C TA = +85°C
18
10 8 6 4
15 12 9 6
2
3
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
0 700
09912-053
0 700
RF FREQUENCY (MHz)
24
TA = –40°C TA = +25°C TA = +85°C
21
SSB NOISE FIGURE (dB)
30
20 15 10 5
TA = –40°C TA = +25°C TA = +85°C
18 15 12 9 6 3
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
09912-054
INPUT IP3 (dBm)
25
0 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
Figure 56. Input P1dB vs. RF Frequency at 3.6 V
Figure 53. Power Conversion Gain vs. RF Frequency at 3.6 V 35
TA = –40°C TA = +25°C TA = +85°C
21
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
12
Figure 55. Input IP2 vs. RF Frequency at 3.6 V
09912-056
14
900 1100 1300 1500 1700 1900 2100 2300 2500 2700
0 700
900 1100 1300 1500 1700 1900 2100 2300 2500 2700 RF FREQUENCY (MHz)
Figure 57. SSB Noise Figure vs. RF Frequency at 3.6 V
Figure 54. Input IP3 vs. RF Frequency at 3.6 V
Rev. 0 | Page 16 of 28
09912-057
70 700
09912-055
INPUT IP2 (dBm)
130
09912-052
SUPPLY CURRENT (mA)
80
TA = –40°C TA = +25°C TA = +85°C
ADL5811 SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.
5 V Performance VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. Table 5. RF = 900 MHz, LO = 697 MHz 0 0 1 2 3 4 5 6 7 N 8 9 10 11 12 13 14 15
−37.8 −65.0 −94.0 <−100 <−100 <−100
1 −54.2 0.0 −54.4 −86.7 <−100 <−100 <−100 <−100
2 −31.4 −38.7 −69.6 <−100 <−100 <−100 <−100 <−100 <−100
3 −41.5 −19.6 −53.4 −91.0 <−100 <−100 <−100 <−100 <−100
4 −29.4 −51.6 −72.5 <−100 <−100 <−100 <−100 <−100 <−100 <−100
5 −58.5 −38.0 −82.3 −95.3 <−100 <−100 <−100 <−100 <−100 <−100 <−100
6 −49.3 −62.9 −93.5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
7 −70.5 −52.4 −97.4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
M 8 −52.9 −70.2 −93.0 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
5
6
7
M 8
9 −57.9 −98.8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
12
13
14
15
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
12
13
14
15
<−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
Table 6. RF = 1900 MHz, LO = 1697 MHz 0 0 1 −33.2 2 −75.0 3 <−100 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −34.9 0.0 −78.5 <−100 <−100
2 −30.7 −56.6 −71.5 <−100 <−100
3 −66.0 −51.3 −85.2 −89.5 <−100 <−100
4 −77.8 −80.3 −94.8 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100
Rev. 0 | Page 17 of 28
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
ADL5811 Table 7. RF = 2500 MHz, LO = 2297 MHz 0 0 1 −32.5 2 −91.2 3 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −28.6 0.0 −82.8 <−100
2 −45.7 −53.0 −60.5 <−100 <−100
3 −52.4 −80.8 −87.7 <−100 <−100
4
5
−97.3 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100
6
7
<−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100
M 8
<−100 <−100 <−100 <−100 <−100
9
<−100 <−100 <−100 <−100 <−100
10
<−100 <−100 <−100 <−100 <−100
11
<−100 <−100 <−100 <−100 <−100
12
<−100 <−100 <−100 <−100 <−100
13
<−100 <−100 <−100 <−100 <−100
14
15
<−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100
3.6 V Performance VS = 3.6 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted. Table 8. RF = 900 MHz, LO = 697 MHz M 0 0 1 2 3 4 5 6 7 N 8 9 10 11 12 13 14 15
−41.0 −59.2 −90.0 <−100 <−100 <−100
1 −45.5 0.0 −54.7 −81.9 <−100 <−100 <−100 <−100
2 −35.1 −37.3 −78.2 <−100 <−100 <−100 <−100 <−100 <−100
3 −44.1 −18.9 −54.8 −73.9 <−100 <−100 <−100 <−100 <−100
4 −30.2 −54.8 −62.8 −89.6 <−100 <−100 <−100 <−100 <−100 <−100
5 −49.9 −40.4 −83.1 −79.4 <−100 <−100 <−100 <−100 <−100 <−100 <−100
6 −48.7 −62.4 −78.3 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
7 −66.6 −53.2 −96.1 −95.3 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
8 −66.5 −73.0 −79.5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
Rev. 0 | Page 18 of 28
9 −66.8 −96.2 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
12
13
14
15
−96.2 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
ADL5811 Table 9. RF = 1900 MHz, LO = 1697 MHz M 0 0 1 −33.4 2 −68.9 3 <−100 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −46.6 0.0 −77.2 <−100 <−100
2 −30.5 −57.0 −69.2 <−100 <−100
3 −78.5 −53.8 −72.8 −74.4 <−100 <−100
4 −79.5 −75.2 −94.0 <−100 <−100 <−100
5
<−100 <−100 <−100 <−100 <−100 <−100
6
<−100 <−100 <−100 <−100 <−100 <−100
7
8
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100 <−100
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100
10
11
<−100 <−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100 <−100
10
11
12
<−100 <−100 <−100 <−100 <−100 <−100
13
<−100 <−100 <−100 <−100 <−100 <−100
14
15
<−100 <−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
14
15
<−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100
Table 10. RF = 2500 MHz, LO = 2297 MHz M 0 0 1 −32.1 2 −89.0 3 4 5 6 7 N 8 9 10 11 12 13 14 15
1 −30.0 0.0 −78.0 <−100
2 −51.1 −53.6 −65.5 <−100 <−100
3 −51.7 −72.9 −73.5 <−100 <−100
4
5
−88.2 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100
6
<−100 <−100 <−100 <−100
7
8
<−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
Rev. 0 | Page 19 of 28
9
<−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
<−100 <−100 <−100 <−100 <−100
12
<−100 <−100 <−100 <−100 <−100
13
<−100 <−100 <−100 <−100 <−100
ADL5811 CIRCUIT DESCRIPTION The ADL5811 consists of two primary components: the RF subsystem and the LO subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance device with excellent electrical, mechanical, and thermal properties. The wideband frequency response and flexible frequency programming simplifies the receiver design, saves on-board space, and minimizes the need for external components. The RF subsystem consists of an integrated, tunable, low loss RF balun; a double balanced, passive MOSFET mixer; a tunable sum termination network; and an IF amplifier.
VPIF
IFGM
NC
IFOP
IFON
NC
IFGD
COMM
The LO subsystem consists of a multistage limiting LO amplifier. The purpose of the LO subsystem is to provide a large, fixed amplitude, balanced signal to drive the mixer independent of the level of the LO input. A block diagram of the device is shown in Figure 58.
32
31
30
29
28
27
26
25 24 NC
NC 1 RFCT 2
ADL5811
NC 3
23 NC 22 NC
RFIN 4
21 LOIP
NC
20 LOIN
5
NC 6
19 LE
SERIAL PORT INTERFACE
BIAS GEN
NC 7
18 DATA
NC 8 10
11
12
13
14
15
16
COMM
VLO3
COMM
VLO2
COMM
VLO1
COMM
09912-162
9
VLO4
17 CLK
Figure 58. Block Diagram
RF SUBSYSTEM The single-ended, 50 Ω RF input is internally transformed to a balanced signal using a tunable, low loss, unbalanced-to-balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended that a blocking capacitor be used to avoid running excessive dc current through the part. The RF balun can easily support an RF input frequency range of 700 MHz to 2800 MHz. This balun is tuned over the frequency range by SPI controlled switched capacitor networks at the input and output of the RF balun.
The resulting balanced RF signal is applied to a passive mixer that commutates the RF input in accordance with the output of the LO subsystem. The passive mixer is essentially a balanced, low loss switch that adds minimum noise to the frequency translation. The only noise contribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms. Because the mixer is inherently broadband and bidirectional, it is necessary to properly terminate all idler (M × N product) frequencies generated by the mixing process. Terminating the mixer avoids the generation of unwanted intermodulation products and reduces the level of unwanted signals at the input of the IF amplifier, where high peak signal levels can compromise the compression and intermodulation performance of the system. This termination is accomplished by the addition of a programmable low-pass filter network between the IF amplifier and the mixer and in the feedback elements in the IF amplifier. The IF amplifier is a balanced feedback design that simultaneously provides the desired gain, noise figure, and input impedance that is required to achieve the overall performance. The balanced open-collector output of the IF amplifier, with an impedance modified by the feedback within the amplifier, permits the output to be connected directly to a high impedance filter, a differential amplifier, or an analog-to-digital converter (ADC) input while providing optimum second-order intermodulation suppression. The differential output impedance of the IF amplifier is approximately 200 Ω. If operation in a 50 Ω system is desired, the output can be transformed to 50 Ω by using a 4:1 transformer or an LC impedance matching network. The intermodulation performance of the design is generally limited by the IF amplifier. The IP3 performance can be optimized by adjusting the low-pass filter between the mixer and the IF amplifier. Further optimization can be made by adjusting the IF current with an external resistor. Figure 42 and Figure 43 illustrate how various IF resistors affect the performance with a 5 V supply. Additionally, dc current can be saved by increasing the IF resistor. It is permissible to reduce the IF amplifier’s dc supply voltage to as low as 3.3 V, further reducing the dissipated power of the part. (Note that no performance enhancement is obtained by reducing the value of these resistors, and excessive dc power dissipation may result.) Because the mixer is bidirectional, the tuning of the RF and IF ports is linked and it is possible for the user to optimize gain, noise figure, IP3, and impedance match via the SPI. This feature permits high performance operation and is achieved entirely using SPI control. Additionally, the performance of the mixer can be improved by setting the optimum gate voltage on the passive mixer, which is also controlled by the SPI to enable optimum performance of the part. See the Applications Information section for examples of this tuning.
Rev. 0 | Page 20 of 28
ADL5811 LO SUBSYSTEM The LO amplifier is designed to provide a large signal level to the mixer to obtain optimum intermodulation and compression performance. The resulting LO amplifier provides very high performance over a wide range of LO input frequencies. The ideal waveshape for switching the passive mixer is a square wave at the LO frequency to cause the mixer to switch through its resistive region (from on to off and off to on) as rapidly as possible. While it has always been possible to generate such a square wave, the amount of dc current required to generate a large amplitude square wave at high frequencies has made it impractical to create such a mixer. Novel circuitry within the ADL5811 permits the generation of a near-square wave output at frequencies of up to 2800 MHz with dc current that compares favorably with that employed by narrow-band passive mixers. The input stages of the LO amplifier provide common-mode rejection, permitting the LO input to be driven either single ended or balanced. For a single-ended input, either LOIP or LOIN can be grounded. It is desirable to dc block the LO inputs to avoid damaging the part by the accidental application of a large dc voltage to the part. In addition, the LO inputs are internally dc blocked. Because the LO amplifier is inherently wideband, the ADL5811 can be driven with either high-side or low-side LO by simply setting the optimum RF balun and LPF inputs to the SPI. The LO amplifier converts a variable level, single or balanced input signal (−6 dBm to +10 dBm) to a hard voltage limited, balanced signal internally to drive the mixer. Excellent performance can be
obtained with a 0 dBm input level; however, the circuit continues to function at considerably lower levels of LO input power. The performance of this amplifier is critical in achieving a high intercept passive mixer without degrading the noise floor of the system. This is a critical requirement in an interferer rich environment, such as cellular infrastructure, where blocking interferers can limit mixer performance. Blocking dynamic range can benefit from a higher level of LO drive, which pushes the LO amplifier stages harder into compression and causes them to switch harder and to limit the small signal gain of the chain. Both of these conditions are beneficial to low noise figure under blocking. NF under blocking can be improved several decibels for LO input power levels above 0 dBm. The LO amplifier topology inherently minimizes the dc current based on the LO operating voltage and the LO operating frequency. It is permissible to reduce the LO supply voltage down as low as 3.6 V, which drops the dc current rapidly. The mixer dynamic range varies accordingly with the LO supply voltage. No external biasing resistor is required for optimizing the LO amplifier. In addition, the ADL5811 has a power-down mode that can be used with any supply voltage applied to the part. All of the SPI inputs are designed to work with any logic family that provides a Logic 0 input level of less than 0.4 V and a Logic 1 input level that exceeds 1.4 V. All pins, including the RF pins, are ESD protected and have been tested up to a level of 2000 V HBM and 1250 V CDM.
Rev. 0 | Page 21 of 28
ADL5811 APPLICATIONS INFORMATION BASIC CONNECTIONS
BIAS RESISTOR SELECTION
The ADL5811 mixer is designed to downconvert radio frequencies (RF) primarily between 700 MHz and 2800 MHz to lower intermediate frequencies (IF) between 30 MHz and 450 MHz. Figure 59 depicts the basic connections of the mixer. It is recommended to ac couple RF and LO input ports to prevent nonzero dc voltages from damaging the RF balun or LO input circuit. A RFIN capacitor value of 22 pF is recommended.
An external resistor, R1, is used to adjust the bias current of the integrated amplifier at the IF terminal. It is necessary to have a sufficient amount of current to bias both the internal IF amplifier to optimize dc current vs. optimum input IP3 performance. Figure 42 and Figure 43 provide the reference for the bias resistor selection when lower power consumption is considered at the expense of conversion gain and input IP3 performance.
IF PORT
VGS PROGRAMMING
The mixer differential IF interface requires pull-up choke inductors to bias the open-collector outputs and to set the output match. The shunting impedance of the choke inductors used to couple dc current into the IF amplifier should be selected to provide the desired output return loss.
The ADL5811 allows programmability for internal gate-to-source voltages for optimizing mixer performance over the desired frequency bands. The ADL5811 defaults the VGS setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 39 and Figure 40.
The real part of the output impedance is approximately 200 Ω, as seen in Figure 31, which matches many commonly used SAW filters without the need for a transformer. This results in a voltage conversion gain that is approximately 6 dB higher than the power conversion gain. When a 50 Ω output impedance is needed, use a 4:1 impedance transformer, as shown in Figure 59. C3 T1 120pF TC4-1W+
L1 470nH
VCC
L2 470nH
C1 0.1µF
IFOP R20 OPEN
C5 120pF
C4 120pF
C2 0.1µF
IFON
R21 0Ω
R1 910Ω
C7 100pF
1 2 3 4 5 6 7 8
RFIN
NC RFCT NC RFIN NC NC NC NC
NC NC NC LOIP LOIN LE DATA CLK
ADL5811
24 23 22 21 20 19 18 17
C17 22pF
LOIP
LE DATA CLK
VCC
9 10 11 12 13 14 15 16
VLO4 COMM VLO3 COMM VLO2 COMM VOL1 COMM
C6 22pF
PAD VPIF IFGM NC IFOP IFON NC IFGD COMM
PAD
32 31 30 29 28 27 26 25
C8 0.1µF
C23 10pF
VCC VCC VCC
BLK
C20 10pF
VPOS
C18 10pF
09912-163
AGND
C19 10pF
RED VCC
Figure 59. Basic Connections
Rev. 0 | Page 22 of 28
ADL5811 LOW-PASS FILTER PROGRAMMING
RF BALUN PROGRAMMING
The ADL5811 allows programmability for the low-pass filter terminating the mixer output. This filter helps to block sum term mixing products at the expense of some noise figure and gain and can significantly increase input IP3. The ADL5811 defaults the LPF setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 48 to Figure 51.
The ADL5811 allows programmability for the RF balun by allowing capacitance to be switched into both the input and the output, which allows the balun to be tuned to cover the entire frequency band (700 MHz to 2800 MHz). Under most circumstances, the input and output can be tuned together though sometimes it may be advantageous for matching reasons to tune them separately. The ADL5811 defaults the RFB setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 44 to Figure 47.
Rev. 0 | Page 23 of 28
ADL5811 REGISTER STRUCTURE The LPF bits control the low-pass filter settings at the IF output. The ability to tune the low-pass filter allows some trade-off between gain, noise figure, and input IP3 with higher settings, 7, providing higher input IP3 at the cost of some gain and noise figure, and lower settings, 0, providing higher gain and lower NF at the cost of lower input IP3. The VGS bits control the VGS settings of the mixer core and allow further tuning of the device.
Figure 60 illustrates the register map of the ADL5811. The ADL5811 only uses Register 5. Because of this, set all of the control bits to 5. When set to 0, the ENBL bit, DB7, enables the part. By setting this bit to 1, the mixer is powered down. The RFB IN CAP DAC and RFB OUT CAP DAC bits are used to tune the RF balun. In most cases, they are tuned together with the higher settings, 7, tuning for the low frequencies, and with the lower settings, 0, tuning for the high frequencies. There are times where it becomes advantageous to tune the input and output of the RF balun separately and that ability is provided.
RESERVED
VGS
LPF
RFB OUT CAP DAC
Table 11 lists the optimum settings characterized for each frequency band. All register bits default to 0.
RFB IN CAP DAC
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 0 0 VGS2 VGS1 VGS0 LPF1 LPF0 0 CDO2 DCDO1 CDO0 0 CDI2 CDI1 CDI0
VGS2 VGS1 VGS0 0 0 0 ' ' ' 1 1 1
ENBL DB8 0
RESERVED
DB7 EN
DB6 0
DB5 0
DB4 0
MEN 0 1
MAIN ENABLE DEVICE ENABLED DEVICE DISABLED
CONTROL BITS DB3 0
DB2 DB1 DB0 C3(1) C2(0) C1(1)
VGS SETTING 0 ' 7
LPF1 LPF0 LOW PASS FILTER SETTING 0 0 0 ' ' ' 1 1 3
CDI2 CDI1 CDI0 RF BALUN INTPUT TUNING 0 0 0 0 ' ' ' ' 1 1 1 7
09912-160
CDO2 CDO1 CDO0 RF BALUN OUTPUT TUNING 0 0 0 0 ' ' ' ' 1 1 1 7
Figure 60. ADL5811 Register Maps
Table 11. Optimum Settings RF Frequency (MHz) 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800
LO Frequency (MHz) 497 597 697 797 897 997 1097 1197 1297 1397 1497 1597 1697 1797 1897 1997 2097 2197 2297 2397 2497 2597
VGS 3 1 2 1 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 1 3
LPF 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 2 2 3 2 2 2
Rev. 0 | Page 24 of 28
RFB OUT CAP DAC 7 6 6 4 7 5 5 4 4 3 3 3 2 2 1 2 2 2 1 2 2 1
RFB IN CAP DAC 7 6 6 4 7 5 5 4 4 3 3 3 2 2 1 2 2 2 1 2 2 1
ADL5811 EVALUATION BOARD The evaluation board is fabricated using Rogers® 3003 material. Table 12 details the configuration for the mixer characterization. The evaluation board software is available on www.analog.com.
An evaluation board is available for the ADL5811. The standard evaluation board schematic is presented in Figure 61. The USB interface circuitry schematic is presented in Figure 64. The evaluation board layout is shown in Figure 62 and Figure 63.
VCC C1 0.1µF
L1 470nH
C3 T1 120pF TC4-1W+
L2 470nH
3
4
2 1
6
R20 OPEN
C5 120pF
C4 120pF
C2 0.1µF
IFOP
IFON
R21 0Ω
R1 910Ω
C7 100pF
1 2 3 4 5 6 7 8
RFIN
NC RFCT NC RFIN NC NC NC NC
NC NC NC LOIP LOIN LE DATA CLK
ADL5811
24 23 22 21 20 19 18 17
C17 22pF
LOIP
LE DATA CLK
VCC
9 10 11 12 13 14 15 16
VLO4 COMM VLO3 COMM VLO2 COMM VOL1 COMM
C6 22pF
PAD VPIF IFGM NC IFOP IFON NC IFGD COMM
PAD
32 31 30 29 28 27 26 25
C8 0.1µF
C23 10pF
VCC VCC VCC C20 10pF
VPOS
BLK
C19 10pF
09912-060
AGND
C18 10pF
RED VCC
Figure 61. Evaluation Board Schematic
Table 12. Evaluation Board Configuration Components C1, C2, C8, C18, C19, C20, C23 C6, C7, RFIN C3, C4, C5, L1, L2, R20, R21, T1, IFOP, IFON
C17, LOIP R1
Description Power supply decoupling. Nominal supply decoupling consists of a 0.1 μF capacitor to ground in parallel with a 10 pF capacitor to ground positioned as close to the device as possible. RF input interface. The input channel is ac-coupled through C6. C7 provides bypassing for the center tap of the RF input balun. IF output interface. The open-collector IF output interfaces are biased through pull-up choke inductors, L1 and L2. T1 is a 4:1 impedance transformer used to provide a single-ended IF output interface, with C5 providing center-tap bypassing. Remove R21 for balanced output operation. LO interface. C17 provides ac coupling for the LOIP local oscillator input. Bias control. R1 sets the bias point for the internal IF amplifier.
Rev. 0 | Page 25 of 28
Default Conditions C1, C2 = 0.1 μF (size 0402), C8, C18, C19, C20, C23 = 10 pF (size 0402) C6 = 22 pF (size 0402), C7 = 100 pF (size 0402) C3, C4, C5 = 120 pF (size 0402), L1, L2 = 470 nH (size 0603), R20 = open, R21 = 0 Ω (size 0402), T1 = TC4-1W+ (Mini-Circuits®) C17 = 22 pF (size 0402) R1 = 910 Ω (size 0402)
Figure 62. Evaluation Board Top Layer
09912-063
09912-062
ADL5811
Figure 63. Evaluation Board Bottom Layer
Rev. 0 | Page 26 of 28
ADL5811 Y2 24.000000MHZ
3
1
C40 22PF
5V_USB
C41 22PF
CASE
2 4
DGND DGND
DGND
J6 C34
1
10PF C35
2 3 4 5
3V3_USB
10PF C37 DGND
4
AVCC
100K
SDA
R10 100K
C38 0.1UF
SCL
5 42
C39 0.1UF
44 14
DGND
1
2 DGND
XTALIN RESET_N
33 34 35 36 37 38 39 40
PB0_FD0 PB1_FD1 PB2_FD2 PB3_FD3 PB4_FD4 PB5_FD5 PB6_FD6 PB7_FD7 PD0_FD8 PD1_FD9 PD2_FD10 PD3_FD11 PD4_FD12 PD5_FD13 PD6_FD14 PD7_FD15
18 19 20 21 22 23 24 25 45 46 47 48 49 50 51 52
WAKEUP RESERVED
RDY0_SLRD RDY1_SLWR
28
26
6
GND 12
AGND 10
55
PA0_INT0_N PA1_INT1_N PA2_SLOE PA3_WU2 PA4_FIFOADR0 PA5_FIFOADR1 PA6_PKTEND PA7_FLAGD_SLCS_N
41
R9 3V3_USB
P1
4 XTALOUT DPLUS 8 DMINUS 9 13 IFCLK 54 CLKOUT 29 CTL0_FLAGA CTL1_FLAGB 30 CTL2_FLAGC 31
DGND
15 16
897-43-005-00-100001
DGND
U6
GND PINS
VCC
1
2 3 SAMTECTSW10608GS3PIN R11
R17
0
0
R12
R18
0
0 R19
R13
0
LE
DATA
CLK
0 R14 1K DNI DGND
C49 TBD0402
330PF DNI DGND
R15 1K DNI DGND
C50 TBD0402
330PF DNI DGND
R16 1K DNI DGND
C51 TBD0402 330PF DNI DGND
DGND
PAD 56
WC_N GND
24LC64-I-SN
43
0.1UF
PAD
5
17
SDA
11
SCL
G1 G2 G3 G4
3V3_USB
32
VCC A0 A1 A2
27
2 3 6 7
53
1
R8 2K
3
R7 2K
3V3_USB
C36 DGND
0.1UF
7
U7 8
CY7C68013A-56LTXC
DGND
3V3_USB 5V_USB 1
3P3V ORG
3V3_USB
DNI
C
SML-210MTT86
D1 DGND
U5
7 8 6
IN1
OUT1
IN2 OUT2 SD_N PAD
PAD
FB GND
DECOUPLING FOR U6
C33 1.0UF
R6 140K
DGND
C42 0.1UF
5 R5 78.7K
DGND
ADP3334ACPZ
C32 1000PF
1
2 3
DGND
1
C43 0.1UF
DGND BLK
DNI
DGND
Figure 64. USB Interface Circuitry on the Evaluation Board
Rev. 0 | Page 27 of 28
DGND
C44 0.1UF
C45 0.1UF
C46 0.1UF
C47 0.1UF
C48 0.1UF
09912-161
DGND DGND
A
AGND
C31 1.0UF
R4 2K
R3
0
ADL5811 OUTLINE DIMENSIONS 5.10 5.00 SQ 4.90
1
0.50 BSC
3.45 3.30 SQ 3.15
EXPOSED PAD
17
TOP VIEW 0.80 0.75 0.70
0.50 0.40 0.30
8 16
0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF
SEATING PLANE
PIN 1 INDICATOR
32
25 24
9
BOTTOM VIEW
0.25 MIN
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
033009-A
PIN 1 INDICATOR
0.30 0.25 0.18
Figure 65. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 5 mm × 5 mm Body, Very Very Thin Quad (CP-32-13) Dimensions shown in millimeters
ORDERING GUIDE Model 1 ADL5811ACPZ-R7 ADL5811-EVALZ 1
Temperature Range −40°C to +85°C
Package Description 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] Evaluation Board
Z = RoHS Compliant Part.
©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09912-0-7/11(0)
Rev. 0 | Page 28 of 28
Package Option CP-32-13
Quantity 1500